SCCP.cpp revision 05bb789430bab7d8fae1e94fb9aa0bb21e679ebf
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18// Notice that: 19// * This pass has a habit of making definitions be dead. It is a good idea 20// to to run a DCE pass sometime after running this pass. 21// 22//===----------------------------------------------------------------------===// 23 24#define DEBUG_TYPE "sccp" 25#include "llvm/Transforms/Scalar.h" 26#include "llvm/Transforms/IPO.h" 27#include "llvm/Constants.h" 28#include "llvm/DerivedTypes.h" 29#include "llvm/Instructions.h" 30#include "llvm/Pass.h" 31#include "llvm/Analysis/ConstantFolding.h" 32#include "llvm/Transforms/Utils/Local.h" 33#include "llvm/Support/CallSite.h" 34#include "llvm/Support/Compiler.h" 35#include "llvm/Support/Debug.h" 36#include "llvm/Support/InstVisitor.h" 37#include "llvm/ADT/DenseMap.h" 38#include "llvm/ADT/SmallSet.h" 39#include "llvm/ADT/SmallVector.h" 40#include "llvm/ADT/Statistic.h" 41#include "llvm/ADT/STLExtras.h" 42#include <algorithm> 43using namespace llvm; 44 45STATISTIC(NumInstRemoved, "Number of instructions removed"); 46STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 47 48STATISTIC(IPNumInstRemoved, "Number ofinstructions removed by IPSCCP"); 49STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP"); 50STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 51STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 52 53namespace { 54/// LatticeVal class - This class represents the different lattice values that 55/// an LLVM value may occupy. It is a simple class with value semantics. 56/// 57class VISIBILITY_HIDDEN LatticeVal { 58 enum { 59 /// undefined - This LLVM Value has no known value yet. 60 undefined, 61 62 /// constant - This LLVM Value has a specific constant value. 63 constant, 64 65 /// forcedconstant - This LLVM Value was thought to be undef until 66 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 67 /// with another (different) constant, it goes to overdefined, instead of 68 /// asserting. 69 forcedconstant, 70 71 /// overdefined - This instruction is not known to be constant, and we know 72 /// it has a value. 73 overdefined 74 } LatticeValue; // The current lattice position 75 76 Constant *ConstantVal; // If Constant value, the current value 77public: 78 inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {} 79 80 // markOverdefined - Return true if this is a new status to be in... 81 inline bool markOverdefined() { 82 if (LatticeValue != overdefined) { 83 LatticeValue = overdefined; 84 return true; 85 } 86 return false; 87 } 88 89 // markConstant - Return true if this is a new status for us. 90 inline bool markConstant(Constant *V) { 91 if (LatticeValue != constant) { 92 if (LatticeValue == undefined) { 93 LatticeValue = constant; 94 assert(V && "Marking constant with NULL"); 95 ConstantVal = V; 96 } else { 97 assert(LatticeValue == forcedconstant && 98 "Cannot move from overdefined to constant!"); 99 // Stay at forcedconstant if the constant is the same. 100 if (V == ConstantVal) return false; 101 102 // Otherwise, we go to overdefined. Assumptions made based on the 103 // forced value are possibly wrong. Assuming this is another constant 104 // could expose a contradiction. 105 LatticeValue = overdefined; 106 } 107 return true; 108 } else { 109 assert(ConstantVal == V && "Marking constant with different value"); 110 } 111 return false; 112 } 113 114 inline void markForcedConstant(Constant *V) { 115 assert(LatticeValue == undefined && "Can't force a defined value!"); 116 LatticeValue = forcedconstant; 117 ConstantVal = V; 118 } 119 120 inline bool isUndefined() const { return LatticeValue == undefined; } 121 inline bool isConstant() const { 122 return LatticeValue == constant || LatticeValue == forcedconstant; 123 } 124 inline bool isOverdefined() const { return LatticeValue == overdefined; } 125 126 inline Constant *getConstant() const { 127 assert(isConstant() && "Cannot get the constant of a non-constant!"); 128 return ConstantVal; 129 } 130}; 131 132//===----------------------------------------------------------------------===// 133// 134/// SCCPSolver - This class is a general purpose solver for Sparse Conditional 135/// Constant Propagation. 136/// 137class SCCPSolver : public InstVisitor<SCCPSolver> { 138 SmallSet<BasicBlock*, 16> BBExecutable;// The basic blocks that are executable 139 std::map<Value*, LatticeVal> ValueState; // The state each value is in. 140 141 /// GlobalValue - If we are tracking any values for the contents of a global 142 /// variable, we keep a mapping from the constant accessor to the element of 143 /// the global, to the currently known value. If the value becomes 144 /// overdefined, it's entry is simply removed from this map. 145 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; 146 147 /// TrackedFunctionRetVals - If we are tracking arguments into and the return 148 /// value out of a function, it will have an entry in this map, indicating 149 /// what the known return value for the function is. 150 DenseMap<Function*, LatticeVal> TrackedFunctionRetVals; 151 152 // The reason for two worklists is that overdefined is the lowest state 153 // on the lattice, and moving things to overdefined as fast as possible 154 // makes SCCP converge much faster. 155 // By having a separate worklist, we accomplish this because everything 156 // possibly overdefined will become overdefined at the soonest possible 157 // point. 158 std::vector<Value*> OverdefinedInstWorkList; 159 std::vector<Value*> InstWorkList; 160 161 162 std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list 163 164 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not 165 /// overdefined, despite the fact that the PHI node is overdefined. 166 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; 167 168 /// KnownFeasibleEdges - Entries in this set are edges which have already had 169 /// PHI nodes retriggered. 170 typedef std::pair<BasicBlock*,BasicBlock*> Edge; 171 std::set<Edge> KnownFeasibleEdges; 172public: 173 174 /// MarkBlockExecutable - This method can be used by clients to mark all of 175 /// the blocks that are known to be intrinsically live in the processed unit. 176 void MarkBlockExecutable(BasicBlock *BB) { 177 DOUT << "Marking Block Executable: " << BB->getName() << "\n"; 178 BBExecutable.insert(BB); // Basic block is executable! 179 BBWorkList.push_back(BB); // Add the block to the work list! 180 } 181 182 /// TrackValueOfGlobalVariable - Clients can use this method to 183 /// inform the SCCPSolver that it should track loads and stores to the 184 /// specified global variable if it can. This is only legal to call if 185 /// performing Interprocedural SCCP. 186 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 187 const Type *ElTy = GV->getType()->getElementType(); 188 if (ElTy->isFirstClassType()) { 189 LatticeVal &IV = TrackedGlobals[GV]; 190 if (!isa<UndefValue>(GV->getInitializer())) 191 IV.markConstant(GV->getInitializer()); 192 } 193 } 194 195 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 196 /// and out of the specified function (which cannot have its address taken), 197 /// this method must be called. 198 void AddTrackedFunction(Function *F) { 199 assert(F->hasInternalLinkage() && "Can only track internal functions!"); 200 // Add an entry, F -> undef. 201 TrackedFunctionRetVals[F]; 202 } 203 204 /// Solve - Solve for constants and executable blocks. 205 /// 206 void Solve(); 207 208 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 209 /// that branches on undef values cannot reach any of their successors. 210 /// However, this is not a safe assumption. After we solve dataflow, this 211 /// method should be use to handle this. If this returns true, the solver 212 /// should be rerun. 213 bool ResolvedUndefsIn(Function &F); 214 215 /// getExecutableBlocks - Once we have solved for constants, return the set of 216 /// blocks that is known to be executable. 217 SmallSet<BasicBlock*, 16> &getExecutableBlocks() { 218 return BBExecutable; 219 } 220 221 /// getValueMapping - Once we have solved for constants, return the mapping of 222 /// LLVM values to LatticeVals. 223 std::map<Value*, LatticeVal> &getValueMapping() { 224 return ValueState; 225 } 226 227 /// getTrackedFunctionRetVals - Get the inferred return value map. 228 /// 229 const DenseMap<Function*, LatticeVal> &getTrackedFunctionRetVals() { 230 return TrackedFunctionRetVals; 231 } 232 233 /// getTrackedGlobals - Get and return the set of inferred initializers for 234 /// global variables. 235 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 236 return TrackedGlobals; 237 } 238 239 inline void markOverdefined(Value *V) { 240 markOverdefined(ValueState[V], V); 241 } 242 243private: 244 // markConstant - Make a value be marked as "constant". If the value 245 // is not already a constant, add it to the instruction work list so that 246 // the users of the instruction are updated later. 247 // 248 inline void markConstant(LatticeVal &IV, Value *V, Constant *C) { 249 if (IV.markConstant(C)) { 250 DOUT << "markConstant: " << *C << ": " << *V; 251 InstWorkList.push_back(V); 252 } 253 } 254 255 inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) { 256 IV.markForcedConstant(C); 257 DOUT << "markForcedConstant: " << *C << ": " << *V; 258 InstWorkList.push_back(V); 259 } 260 261 inline void markConstant(Value *V, Constant *C) { 262 markConstant(ValueState[V], V, C); 263 } 264 265 // markOverdefined - Make a value be marked as "overdefined". If the 266 // value is not already overdefined, add it to the overdefined instruction 267 // work list so that the users of the instruction are updated later. 268 269 inline void markOverdefined(LatticeVal &IV, Value *V) { 270 if (IV.markOverdefined()) { 271 DEBUG(DOUT << "markOverdefined: "; 272 if (Function *F = dyn_cast<Function>(V)) 273 DOUT << "Function '" << F->getName() << "'\n"; 274 else 275 DOUT << *V); 276 // Only instructions go on the work list 277 OverdefinedInstWorkList.push_back(V); 278 } 279 } 280 281 inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) { 282 if (IV.isOverdefined() || MergeWithV.isUndefined()) 283 return; // Noop. 284 if (MergeWithV.isOverdefined()) 285 markOverdefined(IV, V); 286 else if (IV.isUndefined()) 287 markConstant(IV, V, MergeWithV.getConstant()); 288 else if (IV.getConstant() != MergeWithV.getConstant()) 289 markOverdefined(IV, V); 290 } 291 292 inline void mergeInValue(Value *V, LatticeVal &MergeWithV) { 293 return mergeInValue(ValueState[V], V, MergeWithV); 294 } 295 296 297 // getValueState - Return the LatticeVal object that corresponds to the value. 298 // This function is necessary because not all values should start out in the 299 // underdefined state... Argument's should be overdefined, and 300 // constants should be marked as constants. If a value is not known to be an 301 // Instruction object, then use this accessor to get its value from the map. 302 // 303 inline LatticeVal &getValueState(Value *V) { 304 std::map<Value*, LatticeVal>::iterator I = ValueState.find(V); 305 if (I != ValueState.end()) return I->second; // Common case, in the map 306 307 if (Constant *C = dyn_cast<Constant>(V)) { 308 if (isa<UndefValue>(V)) { 309 // Nothing to do, remain undefined. 310 } else { 311 LatticeVal &LV = ValueState[C]; 312 LV.markConstant(C); // Constants are constant 313 return LV; 314 } 315 } 316 // All others are underdefined by default... 317 return ValueState[V]; 318 } 319 320 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB 321 // work list if it is not already executable... 322 // 323 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 324 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 325 return; // This edge is already known to be executable! 326 327 if (BBExecutable.count(Dest)) { 328 DOUT << "Marking Edge Executable: " << Source->getName() 329 << " -> " << Dest->getName() << "\n"; 330 331 // The destination is already executable, but we just made an edge 332 // feasible that wasn't before. Revisit the PHI nodes in the block 333 // because they have potentially new operands. 334 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) 335 visitPHINode(*cast<PHINode>(I)); 336 337 } else { 338 MarkBlockExecutable(Dest); 339 } 340 } 341 342 // getFeasibleSuccessors - Return a vector of booleans to indicate which 343 // successors are reachable from a given terminator instruction. 344 // 345 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs); 346 347 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 348 // block to the 'To' basic block is currently feasible... 349 // 350 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 351 352 // OperandChangedState - This method is invoked on all of the users of an 353 // instruction that was just changed state somehow.... Based on this 354 // information, we need to update the specified user of this instruction. 355 // 356 void OperandChangedState(User *U) { 357 // Only instructions use other variable values! 358 Instruction &I = cast<Instruction>(*U); 359 if (BBExecutable.count(I.getParent())) // Inst is executable? 360 visit(I); 361 } 362 363private: 364 friend class InstVisitor<SCCPSolver>; 365 366 // visit implementations - Something changed in this instruction... Either an 367 // operand made a transition, or the instruction is newly executable. Change 368 // the value type of I to reflect these changes if appropriate. 369 // 370 void visitPHINode(PHINode &I); 371 372 // Terminators 373 void visitReturnInst(ReturnInst &I); 374 void visitTerminatorInst(TerminatorInst &TI); 375 376 void visitCastInst(CastInst &I); 377 void visitSelectInst(SelectInst &I); 378 void visitBinaryOperator(Instruction &I); 379 void visitCmpInst(CmpInst &I); 380 void visitExtractElementInst(ExtractElementInst &I); 381 void visitInsertElementInst(InsertElementInst &I); 382 void visitShuffleVectorInst(ShuffleVectorInst &I); 383 384 // Instructions that cannot be folded away... 385 void visitStoreInst (Instruction &I); 386 void visitLoadInst (LoadInst &I); 387 void visitGetElementPtrInst(GetElementPtrInst &I); 388 void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); } 389 void visitInvokeInst (InvokeInst &II) { 390 visitCallSite(CallSite::get(&II)); 391 visitTerminatorInst(II); 392 } 393 void visitCallSite (CallSite CS); 394 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 395 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 396 void visitAllocationInst(Instruction &I) { markOverdefined(&I); } 397 void visitVANextInst (Instruction &I) { markOverdefined(&I); } 398 void visitVAArgInst (Instruction &I) { markOverdefined(&I); } 399 void visitFreeInst (Instruction &I) { /*returns void*/ } 400 401 void visitInstruction(Instruction &I) { 402 // If a new instruction is added to LLVM that we don't handle... 403 cerr << "SCCP: Don't know how to handle: " << I; 404 markOverdefined(&I); // Just in case 405 } 406}; 407 408} // end anonymous namespace 409 410 411// getFeasibleSuccessors - Return a vector of booleans to indicate which 412// successors are reachable from a given terminator instruction. 413// 414void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 415 SmallVector<bool, 16> &Succs) { 416 Succs.resize(TI.getNumSuccessors()); 417 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 418 if (BI->isUnconditional()) { 419 Succs[0] = true; 420 } else { 421 LatticeVal &BCValue = getValueState(BI->getCondition()); 422 if (BCValue.isOverdefined() || 423 (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) { 424 // Overdefined condition variables, and branches on unfoldable constant 425 // conditions, mean the branch could go either way. 426 Succs[0] = Succs[1] = true; 427 } else if (BCValue.isConstant()) { 428 // Constant condition variables mean the branch can only go a single way 429 Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true; 430 } 431 } 432 } else if (isa<InvokeInst>(&TI)) { 433 // Invoke instructions successors are always executable. 434 Succs[0] = Succs[1] = true; 435 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 436 LatticeVal &SCValue = getValueState(SI->getCondition()); 437 if (SCValue.isOverdefined() || // Overdefined condition? 438 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) { 439 // All destinations are executable! 440 Succs.assign(TI.getNumSuccessors(), true); 441 } else if (SCValue.isConstant()) { 442 Constant *CPV = SCValue.getConstant(); 443 // Make sure to skip the "default value" which isn't a value 444 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { 445 if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... 446 Succs[i] = true; 447 return; 448 } 449 } 450 451 // Constant value not equal to any of the branches... must execute 452 // default branch then... 453 Succs[0] = true; 454 } 455 } else { 456 assert(0 && "SCCP: Don't know how to handle this terminator!"); 457 } 458} 459 460 461// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 462// block to the 'To' basic block is currently feasible... 463// 464bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 465 assert(BBExecutable.count(To) && "Dest should always be alive!"); 466 467 // Make sure the source basic block is executable!! 468 if (!BBExecutable.count(From)) return false; 469 470 // Check to make sure this edge itself is actually feasible now... 471 TerminatorInst *TI = From->getTerminator(); 472 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 473 if (BI->isUnconditional()) 474 return true; 475 else { 476 LatticeVal &BCValue = getValueState(BI->getCondition()); 477 if (BCValue.isOverdefined()) { 478 // Overdefined condition variables mean the branch could go either way. 479 return true; 480 } else if (BCValue.isConstant()) { 481 // Not branching on an evaluatable constant? 482 if (!isa<ConstantInt>(BCValue.getConstant())) return true; 483 484 // Constant condition variables mean the branch can only go a single way 485 return BI->getSuccessor(BCValue.getConstant() == 486 ConstantInt::getFalse()) == To; 487 } 488 return false; 489 } 490 } else if (isa<InvokeInst>(TI)) { 491 // Invoke instructions successors are always executable. 492 return true; 493 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 494 LatticeVal &SCValue = getValueState(SI->getCondition()); 495 if (SCValue.isOverdefined()) { // Overdefined condition? 496 // All destinations are executable! 497 return true; 498 } else if (SCValue.isConstant()) { 499 Constant *CPV = SCValue.getConstant(); 500 if (!isa<ConstantInt>(CPV)) 501 return true; // not a foldable constant? 502 503 // Make sure to skip the "default value" which isn't a value 504 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 505 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... 506 return SI->getSuccessor(i) == To; 507 508 // Constant value not equal to any of the branches... must execute 509 // default branch then... 510 return SI->getDefaultDest() == To; 511 } 512 return false; 513 } else { 514 cerr << "Unknown terminator instruction: " << *TI; 515 abort(); 516 } 517} 518 519// visit Implementations - Something changed in this instruction... Either an 520// operand made a transition, or the instruction is newly executable. Change 521// the value type of I to reflect these changes if appropriate. This method 522// makes sure to do the following actions: 523// 524// 1. If a phi node merges two constants in, and has conflicting value coming 525// from different branches, or if the PHI node merges in an overdefined 526// value, then the PHI node becomes overdefined. 527// 2. If a phi node merges only constants in, and they all agree on value, the 528// PHI node becomes a constant value equal to that. 529// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 530// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 531// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 532// 6. If a conditional branch has a value that is constant, make the selected 533// destination executable 534// 7. If a conditional branch has a value that is overdefined, make all 535// successors executable. 536// 537void SCCPSolver::visitPHINode(PHINode &PN) { 538 LatticeVal &PNIV = getValueState(&PN); 539 if (PNIV.isOverdefined()) { 540 // There may be instructions using this PHI node that are not overdefined 541 // themselves. If so, make sure that they know that the PHI node operand 542 // changed. 543 std::multimap<PHINode*, Instruction*>::iterator I, E; 544 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); 545 if (I != E) { 546 SmallVector<Instruction*, 16> Users; 547 for (; I != E; ++I) Users.push_back(I->second); 548 while (!Users.empty()) { 549 visit(Users.back()); 550 Users.pop_back(); 551 } 552 } 553 return; // Quick exit 554 } 555 556 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 557 // and slow us down a lot. Just mark them overdefined. 558 if (PN.getNumIncomingValues() > 64) { 559 markOverdefined(PNIV, &PN); 560 return; 561 } 562 563 // Look at all of the executable operands of the PHI node. If any of them 564 // are overdefined, the PHI becomes overdefined as well. If they are all 565 // constant, and they agree with each other, the PHI becomes the identical 566 // constant. If they are constant and don't agree, the PHI is overdefined. 567 // If there are no executable operands, the PHI remains undefined. 568 // 569 Constant *OperandVal = 0; 570 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 571 LatticeVal &IV = getValueState(PN.getIncomingValue(i)); 572 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 573 574 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { 575 if (IV.isOverdefined()) { // PHI node becomes overdefined! 576 markOverdefined(PNIV, &PN); 577 return; 578 } 579 580 if (OperandVal == 0) { // Grab the first value... 581 OperandVal = IV.getConstant(); 582 } else { // Another value is being merged in! 583 // There is already a reachable operand. If we conflict with it, 584 // then the PHI node becomes overdefined. If we agree with it, we 585 // can continue on. 586 587 // Check to see if there are two different constants merging... 588 if (IV.getConstant() != OperandVal) { 589 // Yes there is. This means the PHI node is not constant. 590 // You must be overdefined poor PHI. 591 // 592 markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined 593 return; // I'm done analyzing you 594 } 595 } 596 } 597 } 598 599 // If we exited the loop, this means that the PHI node only has constant 600 // arguments that agree with each other(and OperandVal is the constant) or 601 // OperandVal is null because there are no defined incoming arguments. If 602 // this is the case, the PHI remains undefined. 603 // 604 if (OperandVal) 605 markConstant(PNIV, &PN, OperandVal); // Acquire operand value 606} 607 608void SCCPSolver::visitReturnInst(ReturnInst &I) { 609 if (I.getNumOperands() == 0) return; // Ret void 610 611 // If we are tracking the return value of this function, merge it in. 612 Function *F = I.getParent()->getParent(); 613 if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) { 614 DenseMap<Function*, LatticeVal>::iterator TFRVI = 615 TrackedFunctionRetVals.find(F); 616 if (TFRVI != TrackedFunctionRetVals.end() && 617 !TFRVI->second.isOverdefined()) { 618 LatticeVal &IV = getValueState(I.getOperand(0)); 619 mergeInValue(TFRVI->second, F, IV); 620 } 621 } 622} 623 624 625void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 626 SmallVector<bool, 16> SuccFeasible; 627 getFeasibleSuccessors(TI, SuccFeasible); 628 629 BasicBlock *BB = TI.getParent(); 630 631 // Mark all feasible successors executable... 632 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 633 if (SuccFeasible[i]) 634 markEdgeExecutable(BB, TI.getSuccessor(i)); 635} 636 637void SCCPSolver::visitCastInst(CastInst &I) { 638 Value *V = I.getOperand(0); 639 LatticeVal &VState = getValueState(V); 640 if (VState.isOverdefined()) // Inherit overdefinedness of operand 641 markOverdefined(&I); 642 else if (VState.isConstant()) // Propagate constant value 643 markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 644 VState.getConstant(), I.getType())); 645} 646 647void SCCPSolver::visitSelectInst(SelectInst &I) { 648 LatticeVal &CondValue = getValueState(I.getCondition()); 649 if (CondValue.isUndefined()) 650 return; 651 if (CondValue.isConstant()) { 652 if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){ 653 mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue() 654 : I.getFalseValue())); 655 return; 656 } 657 } 658 659 // Otherwise, the condition is overdefined or a constant we can't evaluate. 660 // See if we can produce something better than overdefined based on the T/F 661 // value. 662 LatticeVal &TVal = getValueState(I.getTrueValue()); 663 LatticeVal &FVal = getValueState(I.getFalseValue()); 664 665 // select ?, C, C -> C. 666 if (TVal.isConstant() && FVal.isConstant() && 667 TVal.getConstant() == FVal.getConstant()) { 668 markConstant(&I, FVal.getConstant()); 669 return; 670 } 671 672 if (TVal.isUndefined()) { // select ?, undef, X -> X. 673 mergeInValue(&I, FVal); 674 } else if (FVal.isUndefined()) { // select ?, X, undef -> X. 675 mergeInValue(&I, TVal); 676 } else { 677 markOverdefined(&I); 678 } 679} 680 681// Handle BinaryOperators and Shift Instructions... 682void SCCPSolver::visitBinaryOperator(Instruction &I) { 683 LatticeVal &IV = ValueState[&I]; 684 if (IV.isOverdefined()) return; 685 686 LatticeVal &V1State = getValueState(I.getOperand(0)); 687 LatticeVal &V2State = getValueState(I.getOperand(1)); 688 689 if (V1State.isOverdefined() || V2State.isOverdefined()) { 690 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 691 // operand is overdefined. 692 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 693 LatticeVal *NonOverdefVal = 0; 694 if (!V1State.isOverdefined()) { 695 NonOverdefVal = &V1State; 696 } else if (!V2State.isOverdefined()) { 697 NonOverdefVal = &V2State; 698 } 699 700 if (NonOverdefVal) { 701 if (NonOverdefVal->isUndefined()) { 702 // Could annihilate value. 703 if (I.getOpcode() == Instruction::And) 704 markConstant(IV, &I, Constant::getNullValue(I.getType())); 705 else if (const VectorType *PT = dyn_cast<VectorType>(I.getType())) 706 markConstant(IV, &I, ConstantVector::getAllOnesValue(PT)); 707 else 708 markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType())); 709 return; 710 } else { 711 if (I.getOpcode() == Instruction::And) { 712 if (NonOverdefVal->getConstant()->isNullValue()) { 713 markConstant(IV, &I, NonOverdefVal->getConstant()); 714 return; // X and 0 = 0 715 } 716 } else { 717 if (ConstantInt *CI = 718 dyn_cast<ConstantInt>(NonOverdefVal->getConstant())) 719 if (CI->isAllOnesValue()) { 720 markConstant(IV, &I, NonOverdefVal->getConstant()); 721 return; // X or -1 = -1 722 } 723 } 724 } 725 } 726 } 727 728 729 // If both operands are PHI nodes, it is possible that this instruction has 730 // a constant value, despite the fact that the PHI node doesn't. Check for 731 // this condition now. 732 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 733 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 734 if (PN1->getParent() == PN2->getParent()) { 735 // Since the two PHI nodes are in the same basic block, they must have 736 // entries for the same predecessors. Walk the predecessor list, and 737 // if all of the incoming values are constants, and the result of 738 // evaluating this expression with all incoming value pairs is the 739 // same, then this expression is a constant even though the PHI node 740 // is not a constant! 741 LatticeVal Result; 742 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 743 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 744 BasicBlock *InBlock = PN1->getIncomingBlock(i); 745 LatticeVal &In2 = 746 getValueState(PN2->getIncomingValueForBlock(InBlock)); 747 748 if (In1.isOverdefined() || In2.isOverdefined()) { 749 Result.markOverdefined(); 750 break; // Cannot fold this operation over the PHI nodes! 751 } else if (In1.isConstant() && In2.isConstant()) { 752 Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), 753 In2.getConstant()); 754 if (Result.isUndefined()) 755 Result.markConstant(V); 756 else if (Result.isConstant() && Result.getConstant() != V) { 757 Result.markOverdefined(); 758 break; 759 } 760 } 761 } 762 763 // If we found a constant value here, then we know the instruction is 764 // constant despite the fact that the PHI nodes are overdefined. 765 if (Result.isConstant()) { 766 markConstant(IV, &I, Result.getConstant()); 767 // Remember that this instruction is virtually using the PHI node 768 // operands. 769 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 770 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 771 return; 772 } else if (Result.isUndefined()) { 773 return; 774 } 775 776 // Okay, this really is overdefined now. Since we might have 777 // speculatively thought that this was not overdefined before, and 778 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 779 // make sure to clean out any entries that we put there, for 780 // efficiency. 781 std::multimap<PHINode*, Instruction*>::iterator It, E; 782 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 783 while (It != E) { 784 if (It->second == &I) { 785 UsersOfOverdefinedPHIs.erase(It++); 786 } else 787 ++It; 788 } 789 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 790 while (It != E) { 791 if (It->second == &I) { 792 UsersOfOverdefinedPHIs.erase(It++); 793 } else 794 ++It; 795 } 796 } 797 798 markOverdefined(IV, &I); 799 } else if (V1State.isConstant() && V2State.isConstant()) { 800 markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 801 V2State.getConstant())); 802 } 803} 804 805// Handle ICmpInst instruction... 806void SCCPSolver::visitCmpInst(CmpInst &I) { 807 LatticeVal &IV = ValueState[&I]; 808 if (IV.isOverdefined()) return; 809 810 LatticeVal &V1State = getValueState(I.getOperand(0)); 811 LatticeVal &V2State = getValueState(I.getOperand(1)); 812 813 if (V1State.isOverdefined() || V2State.isOverdefined()) { 814 // If both operands are PHI nodes, it is possible that this instruction has 815 // a constant value, despite the fact that the PHI node doesn't. Check for 816 // this condition now. 817 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 818 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 819 if (PN1->getParent() == PN2->getParent()) { 820 // Since the two PHI nodes are in the same basic block, they must have 821 // entries for the same predecessors. Walk the predecessor list, and 822 // if all of the incoming values are constants, and the result of 823 // evaluating this expression with all incoming value pairs is the 824 // same, then this expression is a constant even though the PHI node 825 // is not a constant! 826 LatticeVal Result; 827 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 828 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 829 BasicBlock *InBlock = PN1->getIncomingBlock(i); 830 LatticeVal &In2 = 831 getValueState(PN2->getIncomingValueForBlock(InBlock)); 832 833 if (In1.isOverdefined() || In2.isOverdefined()) { 834 Result.markOverdefined(); 835 break; // Cannot fold this operation over the PHI nodes! 836 } else if (In1.isConstant() && In2.isConstant()) { 837 Constant *V = ConstantExpr::getCompare(I.getPredicate(), 838 In1.getConstant(), 839 In2.getConstant()); 840 if (Result.isUndefined()) 841 Result.markConstant(V); 842 else if (Result.isConstant() && Result.getConstant() != V) { 843 Result.markOverdefined(); 844 break; 845 } 846 } 847 } 848 849 // If we found a constant value here, then we know the instruction is 850 // constant despite the fact that the PHI nodes are overdefined. 851 if (Result.isConstant()) { 852 markConstant(IV, &I, Result.getConstant()); 853 // Remember that this instruction is virtually using the PHI node 854 // operands. 855 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 856 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 857 return; 858 } else if (Result.isUndefined()) { 859 return; 860 } 861 862 // Okay, this really is overdefined now. Since we might have 863 // speculatively thought that this was not overdefined before, and 864 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 865 // make sure to clean out any entries that we put there, for 866 // efficiency. 867 std::multimap<PHINode*, Instruction*>::iterator It, E; 868 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 869 while (It != E) { 870 if (It->second == &I) { 871 UsersOfOverdefinedPHIs.erase(It++); 872 } else 873 ++It; 874 } 875 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 876 while (It != E) { 877 if (It->second == &I) { 878 UsersOfOverdefinedPHIs.erase(It++); 879 } else 880 ++It; 881 } 882 } 883 884 markOverdefined(IV, &I); 885 } else if (V1State.isConstant() && V2State.isConstant()) { 886 markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 887 V1State.getConstant(), 888 V2State.getConstant())); 889 } 890} 891 892void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 893 // FIXME : SCCP does not handle vectors properly. 894 markOverdefined(&I); 895 return; 896 897#if 0 898 LatticeVal &ValState = getValueState(I.getOperand(0)); 899 LatticeVal &IdxState = getValueState(I.getOperand(1)); 900 901 if (ValState.isOverdefined() || IdxState.isOverdefined()) 902 markOverdefined(&I); 903 else if(ValState.isConstant() && IdxState.isConstant()) 904 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 905 IdxState.getConstant())); 906#endif 907} 908 909void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 910 // FIXME : SCCP does not handle vectors properly. 911 markOverdefined(&I); 912 return; 913#if 0 914 LatticeVal &ValState = getValueState(I.getOperand(0)); 915 LatticeVal &EltState = getValueState(I.getOperand(1)); 916 LatticeVal &IdxState = getValueState(I.getOperand(2)); 917 918 if (ValState.isOverdefined() || EltState.isOverdefined() || 919 IdxState.isOverdefined()) 920 markOverdefined(&I); 921 else if(ValState.isConstant() && EltState.isConstant() && 922 IdxState.isConstant()) 923 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 924 EltState.getConstant(), 925 IdxState.getConstant())); 926 else if (ValState.isUndefined() && EltState.isConstant() && 927 IdxState.isConstant()) 928 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 929 EltState.getConstant(), 930 IdxState.getConstant())); 931#endif 932} 933 934void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 935 // FIXME : SCCP does not handle vectors properly. 936 markOverdefined(&I); 937 return; 938#if 0 939 LatticeVal &V1State = getValueState(I.getOperand(0)); 940 LatticeVal &V2State = getValueState(I.getOperand(1)); 941 LatticeVal &MaskState = getValueState(I.getOperand(2)); 942 943 if (MaskState.isUndefined() || 944 (V1State.isUndefined() && V2State.isUndefined())) 945 return; // Undefined output if mask or both inputs undefined. 946 947 if (V1State.isOverdefined() || V2State.isOverdefined() || 948 MaskState.isOverdefined()) { 949 markOverdefined(&I); 950 } else { 951 // A mix of constant/undef inputs. 952 Constant *V1 = V1State.isConstant() ? 953 V1State.getConstant() : UndefValue::get(I.getType()); 954 Constant *V2 = V2State.isConstant() ? 955 V2State.getConstant() : UndefValue::get(I.getType()); 956 Constant *Mask = MaskState.isConstant() ? 957 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 958 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 959 } 960#endif 961} 962 963// Handle getelementptr instructions... if all operands are constants then we 964// can turn this into a getelementptr ConstantExpr. 965// 966void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 967 LatticeVal &IV = ValueState[&I]; 968 if (IV.isOverdefined()) return; 969 970 SmallVector<Constant*, 8> Operands; 971 Operands.reserve(I.getNumOperands()); 972 973 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 974 LatticeVal &State = getValueState(I.getOperand(i)); 975 if (State.isUndefined()) 976 return; // Operands are not resolved yet... 977 else if (State.isOverdefined()) { 978 markOverdefined(IV, &I); 979 return; 980 } 981 assert(State.isConstant() && "Unknown state!"); 982 Operands.push_back(State.getConstant()); 983 } 984 985 Constant *Ptr = Operands[0]; 986 Operands.erase(Operands.begin()); // Erase the pointer from idx list... 987 988 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0], 989 Operands.size())); 990} 991 992void SCCPSolver::visitStoreInst(Instruction &SI) { 993 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 994 return; 995 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 996 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 997 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 998 999 // Get the value we are storing into the global. 1000 LatticeVal &PtrVal = getValueState(SI.getOperand(0)); 1001 1002 mergeInValue(I->second, GV, PtrVal); 1003 if (I->second.isOverdefined()) 1004 TrackedGlobals.erase(I); // No need to keep tracking this! 1005} 1006 1007 1008// Handle load instructions. If the operand is a constant pointer to a constant 1009// global, we can replace the load with the loaded constant value! 1010void SCCPSolver::visitLoadInst(LoadInst &I) { 1011 LatticeVal &IV = ValueState[&I]; 1012 if (IV.isOverdefined()) return; 1013 1014 LatticeVal &PtrVal = getValueState(I.getOperand(0)); 1015 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 1016 if (PtrVal.isConstant() && !I.isVolatile()) { 1017 Value *Ptr = PtrVal.getConstant(); 1018 // TODO: Consider a target hook for valid address spaces for this xform. 1019 if (isa<ConstantPointerNull>(Ptr) && 1020 cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) { 1021 // load null -> null 1022 markConstant(IV, &I, Constant::getNullValue(I.getType())); 1023 return; 1024 } 1025 1026 // Transform load (constant global) into the value loaded. 1027 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 1028 if (GV->isConstant()) { 1029 if (!GV->isDeclaration()) { 1030 markConstant(IV, &I, GV->getInitializer()); 1031 return; 1032 } 1033 } else if (!TrackedGlobals.empty()) { 1034 // If we are tracking this global, merge in the known value for it. 1035 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1036 TrackedGlobals.find(GV); 1037 if (It != TrackedGlobals.end()) { 1038 mergeInValue(IV, &I, It->second); 1039 return; 1040 } 1041 } 1042 } 1043 1044 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. 1045 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 1046 if (CE->getOpcode() == Instruction::GetElementPtr) 1047 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) 1048 if (GV->isConstant() && !GV->isDeclaration()) 1049 if (Constant *V = 1050 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) { 1051 markConstant(IV, &I, V); 1052 return; 1053 } 1054 } 1055 1056 // Otherwise we cannot say for certain what value this load will produce. 1057 // Bail out. 1058 markOverdefined(IV, &I); 1059} 1060 1061void SCCPSolver::visitCallSite(CallSite CS) { 1062 Function *F = CS.getCalledFunction(); 1063 1064 // If we are tracking this function, we must make sure to bind arguments as 1065 // appropriate. 1066 DenseMap<Function*, LatticeVal>::iterator TFRVI =TrackedFunctionRetVals.end(); 1067 if (F && F->hasInternalLinkage()) 1068 TFRVI = TrackedFunctionRetVals.find(F); 1069 1070 if (TFRVI != TrackedFunctionRetVals.end()) { 1071 // If this is the first call to the function hit, mark its entry block 1072 // executable. 1073 if (!BBExecutable.count(F->begin())) 1074 MarkBlockExecutable(F->begin()); 1075 1076 CallSite::arg_iterator CAI = CS.arg_begin(); 1077 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1078 AI != E; ++AI, ++CAI) { 1079 LatticeVal &IV = ValueState[AI]; 1080 if (!IV.isOverdefined()) 1081 mergeInValue(IV, AI, getValueState(*CAI)); 1082 } 1083 } 1084 Instruction *I = CS.getInstruction(); 1085 if (I->getType() == Type::VoidTy) return; 1086 1087 LatticeVal &IV = ValueState[I]; 1088 if (IV.isOverdefined()) return; 1089 1090 // Propagate the return value of the function to the value of the instruction. 1091 if (TFRVI != TrackedFunctionRetVals.end()) { 1092 mergeInValue(IV, I, TFRVI->second); 1093 return; 1094 } 1095 1096 if (F == 0 || !F->isDeclaration() || !canConstantFoldCallTo(F)) { 1097 markOverdefined(IV, I); 1098 return; 1099 } 1100 1101 SmallVector<Constant*, 8> Operands; 1102 Operands.reserve(I->getNumOperands()-1); 1103 1104 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1105 AI != E; ++AI) { 1106 LatticeVal &State = getValueState(*AI); 1107 if (State.isUndefined()) 1108 return; // Operands are not resolved yet... 1109 else if (State.isOverdefined()) { 1110 markOverdefined(IV, I); 1111 return; 1112 } 1113 assert(State.isConstant() && "Unknown state!"); 1114 Operands.push_back(State.getConstant()); 1115 } 1116 1117 if (Constant *C = ConstantFoldCall(F, &Operands[0], Operands.size())) 1118 markConstant(IV, I, C); 1119 else 1120 markOverdefined(IV, I); 1121} 1122 1123 1124void SCCPSolver::Solve() { 1125 // Process the work lists until they are empty! 1126 while (!BBWorkList.empty() || !InstWorkList.empty() || 1127 !OverdefinedInstWorkList.empty()) { 1128 // Process the instruction work list... 1129 while (!OverdefinedInstWorkList.empty()) { 1130 Value *I = OverdefinedInstWorkList.back(); 1131 OverdefinedInstWorkList.pop_back(); 1132 1133 DOUT << "\nPopped off OI-WL: " << *I; 1134 1135 // "I" got into the work list because it either made the transition from 1136 // bottom to constant 1137 // 1138 // Anything on this worklist that is overdefined need not be visited 1139 // since all of its users will have already been marked as overdefined 1140 // Update all of the users of this instruction's value... 1141 // 1142 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1143 UI != E; ++UI) 1144 OperandChangedState(*UI); 1145 } 1146 // Process the instruction work list... 1147 while (!InstWorkList.empty()) { 1148 Value *I = InstWorkList.back(); 1149 InstWorkList.pop_back(); 1150 1151 DOUT << "\nPopped off I-WL: " << *I; 1152 1153 // "I" got into the work list because it either made the transition from 1154 // bottom to constant 1155 // 1156 // Anything on this worklist that is overdefined need not be visited 1157 // since all of its users will have already been marked as overdefined. 1158 // Update all of the users of this instruction's value... 1159 // 1160 if (!getValueState(I).isOverdefined()) 1161 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1162 UI != E; ++UI) 1163 OperandChangedState(*UI); 1164 } 1165 1166 // Process the basic block work list... 1167 while (!BBWorkList.empty()) { 1168 BasicBlock *BB = BBWorkList.back(); 1169 BBWorkList.pop_back(); 1170 1171 DOUT << "\nPopped off BBWL: " << *BB; 1172 1173 // Notify all instructions in this basic block that they are newly 1174 // executable. 1175 visit(BB); 1176 } 1177 } 1178} 1179 1180/// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1181/// that branches on undef values cannot reach any of their successors. 1182/// However, this is not a safe assumption. After we solve dataflow, this 1183/// method should be use to handle this. If this returns true, the solver 1184/// should be rerun. 1185/// 1186/// This method handles this by finding an unresolved branch and marking it one 1187/// of the edges from the block as being feasible, even though the condition 1188/// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1189/// CFG and only slightly pessimizes the analysis results (by marking one, 1190/// potentially infeasible, edge feasible). This cannot usefully modify the 1191/// constraints on the condition of the branch, as that would impact other users 1192/// of the value. 1193/// 1194/// This scan also checks for values that use undefs, whose results are actually 1195/// defined. For example, 'zext i8 undef to i32' should produce all zeros 1196/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1197/// even if X isn't defined. 1198bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1199 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1200 if (!BBExecutable.count(BB)) 1201 continue; 1202 1203 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1204 // Look for instructions which produce undef values. 1205 if (I->getType() == Type::VoidTy) continue; 1206 1207 LatticeVal &LV = getValueState(I); 1208 if (!LV.isUndefined()) continue; 1209 1210 // Get the lattice values of the first two operands for use below. 1211 LatticeVal &Op0LV = getValueState(I->getOperand(0)); 1212 LatticeVal Op1LV; 1213 if (I->getNumOperands() == 2) { 1214 // If this is a two-operand instruction, and if both operands are 1215 // undefs, the result stays undef. 1216 Op1LV = getValueState(I->getOperand(1)); 1217 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1218 continue; 1219 } 1220 1221 // If this is an instructions whose result is defined even if the input is 1222 // not fully defined, propagate the information. 1223 const Type *ITy = I->getType(); 1224 switch (I->getOpcode()) { 1225 default: break; // Leave the instruction as an undef. 1226 case Instruction::ZExt: 1227 // After a zero extend, we know the top part is zero. SExt doesn't have 1228 // to be handled here, because we don't know whether the top part is 1's 1229 // or 0's. 1230 assert(Op0LV.isUndefined()); 1231 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1232 return true; 1233 case Instruction::Mul: 1234 case Instruction::And: 1235 // undef * X -> 0. X could be zero. 1236 // undef & X -> 0. X could be zero. 1237 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1238 return true; 1239 1240 case Instruction::Or: 1241 // undef | X -> -1. X could be -1. 1242 if (const VectorType *PTy = dyn_cast<VectorType>(ITy)) 1243 markForcedConstant(LV, I, ConstantVector::getAllOnesValue(PTy)); 1244 else 1245 markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy)); 1246 return true; 1247 1248 case Instruction::SDiv: 1249 case Instruction::UDiv: 1250 case Instruction::SRem: 1251 case Instruction::URem: 1252 // X / undef -> undef. No change. 1253 // X % undef -> undef. No change. 1254 if (Op1LV.isUndefined()) break; 1255 1256 // undef / X -> 0. X could be maxint. 1257 // undef % X -> 0. X could be 1. 1258 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1259 return true; 1260 1261 case Instruction::AShr: 1262 // undef >>s X -> undef. No change. 1263 if (Op0LV.isUndefined()) break; 1264 1265 // X >>s undef -> X. X could be 0, X could have the high-bit known set. 1266 if (Op0LV.isConstant()) 1267 markForcedConstant(LV, I, Op0LV.getConstant()); 1268 else 1269 markOverdefined(LV, I); 1270 return true; 1271 case Instruction::LShr: 1272 case Instruction::Shl: 1273 // undef >> X -> undef. No change. 1274 // undef << X -> undef. No change. 1275 if (Op0LV.isUndefined()) break; 1276 1277 // X >> undef -> 0. X could be 0. 1278 // X << undef -> 0. X could be 0. 1279 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1280 return true; 1281 case Instruction::Select: 1282 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1283 if (Op0LV.isUndefined()) { 1284 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1285 Op1LV = getValueState(I->getOperand(2)); 1286 } else if (Op1LV.isUndefined()) { 1287 // c ? undef : undef -> undef. No change. 1288 Op1LV = getValueState(I->getOperand(2)); 1289 if (Op1LV.isUndefined()) 1290 break; 1291 // Otherwise, c ? undef : x -> x. 1292 } else { 1293 // Leave Op1LV as Operand(1)'s LatticeValue. 1294 } 1295 1296 if (Op1LV.isConstant()) 1297 markForcedConstant(LV, I, Op1LV.getConstant()); 1298 else 1299 markOverdefined(LV, I); 1300 return true; 1301 } 1302 } 1303 1304 TerminatorInst *TI = BB->getTerminator(); 1305 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1306 if (!BI->isConditional()) continue; 1307 if (!getValueState(BI->getCondition()).isUndefined()) 1308 continue; 1309 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1310 if (!getValueState(SI->getCondition()).isUndefined()) 1311 continue; 1312 } else { 1313 continue; 1314 } 1315 1316 // If the edge to the second successor isn't thought to be feasible yet, 1317 // mark it so now. We pick the second one so that this goes to some 1318 // enumerated value in a switch instead of going to the default destination. 1319 if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1)))) 1320 continue; 1321 1322 // Otherwise, it isn't already thought to be feasible. Mark it as such now 1323 // and return. This will make other blocks reachable, which will allow new 1324 // values to be discovered and existing ones to be moved in the lattice. 1325 markEdgeExecutable(BB, TI->getSuccessor(1)); 1326 1327 // This must be a conditional branch of switch on undef. At this point, 1328 // force the old terminator to branch to the first successor. This is 1329 // required because we are now influencing the dataflow of the function with 1330 // the assumption that this edge is taken. If we leave the branch condition 1331 // as undef, then further analysis could think the undef went another way 1332 // leading to an inconsistent set of conclusions. 1333 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1334 BI->setCondition(ConstantInt::getFalse()); 1335 } else { 1336 SwitchInst *SI = cast<SwitchInst>(TI); 1337 SI->setCondition(SI->getCaseValue(1)); 1338 } 1339 1340 return true; 1341 } 1342 1343 return false; 1344} 1345 1346 1347namespace { 1348 //===--------------------------------------------------------------------===// 1349 // 1350 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1351 /// Sparse Conditional Constant Propagator. 1352 /// 1353 struct VISIBILITY_HIDDEN SCCP : public FunctionPass { 1354 static char ID; // Pass identification, replacement for typeid 1355 SCCP() : FunctionPass((intptr_t)&ID) {} 1356 1357 // runOnFunction - Run the Sparse Conditional Constant Propagation 1358 // algorithm, and return true if the function was modified. 1359 // 1360 bool runOnFunction(Function &F); 1361 1362 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1363 AU.setPreservesCFG(); 1364 } 1365 }; 1366 1367 char SCCP::ID = 0; 1368 RegisterPass<SCCP> X("sccp", "Sparse Conditional Constant Propagation"); 1369} // end anonymous namespace 1370 1371 1372// createSCCPPass - This is the public interface to this file... 1373FunctionPass *llvm::createSCCPPass() { 1374 return new SCCP(); 1375} 1376 1377 1378// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1379// and return true if the function was modified. 1380// 1381bool SCCP::runOnFunction(Function &F) { 1382 DOUT << "SCCP on function '" << F.getName() << "'\n"; 1383 SCCPSolver Solver; 1384 1385 // Mark the first block of the function as being executable. 1386 Solver.MarkBlockExecutable(F.begin()); 1387 1388 // Mark all arguments to the function as being overdefined. 1389 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) 1390 Solver.markOverdefined(AI); 1391 1392 // Solve for constants. 1393 bool ResolvedUndefs = true; 1394 while (ResolvedUndefs) { 1395 Solver.Solve(); 1396 DOUT << "RESOLVING UNDEFs\n"; 1397 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1398 } 1399 1400 bool MadeChanges = false; 1401 1402 // If we decided that there are basic blocks that are dead in this function, 1403 // delete their contents now. Note that we cannot actually delete the blocks, 1404 // as we cannot modify the CFG of the function. 1405 // 1406 SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks(); 1407 SmallVector<Instruction*, 32> Insts; 1408 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1409 1410 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1411 if (!ExecutableBBs.count(BB)) { 1412 DOUT << " BasicBlock Dead:" << *BB; 1413 ++NumDeadBlocks; 1414 1415 // Delete the instructions backwards, as it has a reduced likelihood of 1416 // having to update as many def-use and use-def chains. 1417 for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator(); 1418 I != E; ++I) 1419 Insts.push_back(I); 1420 while (!Insts.empty()) { 1421 Instruction *I = Insts.back(); 1422 Insts.pop_back(); 1423 if (!I->use_empty()) 1424 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1425 BB->getInstList().erase(I); 1426 MadeChanges = true; 1427 ++NumInstRemoved; 1428 } 1429 } else { 1430 // Iterate over all of the instructions in a function, replacing them with 1431 // constants if we have found them to be of constant values. 1432 // 1433 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1434 Instruction *Inst = BI++; 1435 if (Inst->getType() != Type::VoidTy) { 1436 LatticeVal &IV = Values[Inst]; 1437 if ((IV.isConstant() || IV.isUndefined()) && 1438 !isa<TerminatorInst>(Inst)) { 1439 Constant *Const = IV.isConstant() 1440 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1441 DOUT << " Constant: " << *Const << " = " << *Inst; 1442 1443 // Replaces all of the uses of a variable with uses of the constant. 1444 Inst->replaceAllUsesWith(Const); 1445 1446 // Delete the instruction. 1447 BB->getInstList().erase(Inst); 1448 1449 // Hey, we just changed something! 1450 MadeChanges = true; 1451 ++NumInstRemoved; 1452 } 1453 } 1454 } 1455 } 1456 1457 return MadeChanges; 1458} 1459 1460namespace { 1461 //===--------------------------------------------------------------------===// 1462 // 1463 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1464 /// Constant Propagation. 1465 /// 1466 struct VISIBILITY_HIDDEN IPSCCP : public ModulePass { 1467 static char ID; 1468 IPSCCP() : ModulePass((intptr_t)&ID) {} 1469 bool runOnModule(Module &M); 1470 }; 1471 1472 char IPSCCP::ID = 0; 1473 RegisterPass<IPSCCP> 1474 Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation"); 1475} // end anonymous namespace 1476 1477// createIPSCCPPass - This is the public interface to this file... 1478ModulePass *llvm::createIPSCCPPass() { 1479 return new IPSCCP(); 1480} 1481 1482 1483static bool AddressIsTaken(GlobalValue *GV) { 1484 // Delete any dead constantexpr klingons. 1485 GV->removeDeadConstantUsers(); 1486 1487 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 1488 UI != E; ++UI) 1489 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 1490 if (SI->getOperand(0) == GV || SI->isVolatile()) 1491 return true; // Storing addr of GV. 1492 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) { 1493 // Make sure we are calling the function, not passing the address. 1494 CallSite CS = CallSite::get(cast<Instruction>(*UI)); 1495 for (CallSite::arg_iterator AI = CS.arg_begin(), 1496 E = CS.arg_end(); AI != E; ++AI) 1497 if (*AI == GV) 1498 return true; 1499 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1500 if (LI->isVolatile()) 1501 return true; 1502 } else { 1503 return true; 1504 } 1505 return false; 1506} 1507 1508bool IPSCCP::runOnModule(Module &M) { 1509 SCCPSolver Solver; 1510 1511 // Loop over all functions, marking arguments to those with their addresses 1512 // taken or that are external as overdefined. 1513 // 1514 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1515 if (!F->hasInternalLinkage() || AddressIsTaken(F)) { 1516 if (!F->isDeclaration()) 1517 Solver.MarkBlockExecutable(F->begin()); 1518 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1519 AI != E; ++AI) 1520 Solver.markOverdefined(AI); 1521 } else { 1522 Solver.AddTrackedFunction(F); 1523 } 1524 1525 // Loop over global variables. We inform the solver about any internal global 1526 // variables that do not have their 'addresses taken'. If they don't have 1527 // their addresses taken, we can propagate constants through them. 1528 for (Module::global_iterator G = M.global_begin(), E = M.global_end(); 1529 G != E; ++G) 1530 if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G)) 1531 Solver.TrackValueOfGlobalVariable(G); 1532 1533 // Solve for constants. 1534 bool ResolvedUndefs = true; 1535 while (ResolvedUndefs) { 1536 Solver.Solve(); 1537 1538 DOUT << "RESOLVING UNDEFS\n"; 1539 ResolvedUndefs = false; 1540 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1541 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); 1542 } 1543 1544 bool MadeChanges = false; 1545 1546 // Iterate over all of the instructions in the module, replacing them with 1547 // constants if we have found them to be of constant values. 1548 // 1549 SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks(); 1550 SmallVector<Instruction*, 32> Insts; 1551 SmallVector<BasicBlock*, 32> BlocksToErase; 1552 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1553 1554 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1555 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1556 AI != E; ++AI) 1557 if (!AI->use_empty()) { 1558 LatticeVal &IV = Values[AI]; 1559 if (IV.isConstant() || IV.isUndefined()) { 1560 Constant *CST = IV.isConstant() ? 1561 IV.getConstant() : UndefValue::get(AI->getType()); 1562 DOUT << "*** Arg " << *AI << " = " << *CST <<"\n"; 1563 1564 // Replaces all of the uses of a variable with uses of the 1565 // constant. 1566 AI->replaceAllUsesWith(CST); 1567 ++IPNumArgsElimed; 1568 } 1569 } 1570 1571 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1572 if (!ExecutableBBs.count(BB)) { 1573 DOUT << " BasicBlock Dead:" << *BB; 1574 ++IPNumDeadBlocks; 1575 1576 // Delete the instructions backwards, as it has a reduced likelihood of 1577 // having to update as many def-use and use-def chains. 1578 TerminatorInst *TI = BB->getTerminator(); 1579 for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I) 1580 Insts.push_back(I); 1581 1582 while (!Insts.empty()) { 1583 Instruction *I = Insts.back(); 1584 Insts.pop_back(); 1585 if (!I->use_empty()) 1586 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1587 BB->getInstList().erase(I); 1588 MadeChanges = true; 1589 ++IPNumInstRemoved; 1590 } 1591 1592 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1593 BasicBlock *Succ = TI->getSuccessor(i); 1594 if (!Succ->empty() && isa<PHINode>(Succ->begin())) 1595 TI->getSuccessor(i)->removePredecessor(BB); 1596 } 1597 if (!TI->use_empty()) 1598 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1599 BB->getInstList().erase(TI); 1600 1601 if (&*BB != &F->front()) 1602 BlocksToErase.push_back(BB); 1603 else 1604 new UnreachableInst(BB); 1605 1606 } else { 1607 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1608 Instruction *Inst = BI++; 1609 if (Inst->getType() != Type::VoidTy) { 1610 LatticeVal &IV = Values[Inst]; 1611 if (IV.isConstant() || IV.isUndefined() && 1612 !isa<TerminatorInst>(Inst)) { 1613 Constant *Const = IV.isConstant() 1614 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1615 DOUT << " Constant: " << *Const << " = " << *Inst; 1616 1617 // Replaces all of the uses of a variable with uses of the 1618 // constant. 1619 Inst->replaceAllUsesWith(Const); 1620 1621 // Delete the instruction. 1622 if (!isa<TerminatorInst>(Inst) && !isa<CallInst>(Inst)) 1623 BB->getInstList().erase(Inst); 1624 1625 // Hey, we just changed something! 1626 MadeChanges = true; 1627 ++IPNumInstRemoved; 1628 } 1629 } 1630 } 1631 } 1632 1633 // Now that all instructions in the function are constant folded, erase dead 1634 // blocks, because we can now use ConstantFoldTerminator to get rid of 1635 // in-edges. 1636 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1637 // If there are any PHI nodes in this successor, drop entries for BB now. 1638 BasicBlock *DeadBB = BlocksToErase[i]; 1639 while (!DeadBB->use_empty()) { 1640 Instruction *I = cast<Instruction>(DeadBB->use_back()); 1641 bool Folded = ConstantFoldTerminator(I->getParent()); 1642 if (!Folded) { 1643 // The constant folder may not have been able to fold the terminator 1644 // if this is a branch or switch on undef. Fold it manually as a 1645 // branch to the first successor. 1646 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1647 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1648 "Branch should be foldable!"); 1649 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1650 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1651 } else { 1652 assert(0 && "Didn't fold away reference to block!"); 1653 } 1654 1655 // Make this an uncond branch to the first successor. 1656 TerminatorInst *TI = I->getParent()->getTerminator(); 1657 new BranchInst(TI->getSuccessor(0), TI); 1658 1659 // Remove entries in successor phi nodes to remove edges. 1660 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1661 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1662 1663 // Remove the old terminator. 1664 TI->eraseFromParent(); 1665 } 1666 } 1667 1668 // Finally, delete the basic block. 1669 F->getBasicBlockList().erase(DeadBB); 1670 } 1671 BlocksToErase.clear(); 1672 } 1673 1674 // If we inferred constant or undef return values for a function, we replaced 1675 // all call uses with the inferred value. This means we don't need to bother 1676 // actually returning anything from the function. Replace all return 1677 // instructions with return undef. 1678 const DenseMap<Function*, LatticeVal> &RV =Solver.getTrackedFunctionRetVals(); 1679 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), 1680 E = RV.end(); I != E; ++I) 1681 if (!I->second.isOverdefined() && 1682 I->first->getReturnType() != Type::VoidTy) { 1683 Function *F = I->first; 1684 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1685 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1686 if (!isa<UndefValue>(RI->getOperand(0))) 1687 RI->setOperand(0, UndefValue::get(F->getReturnType())); 1688 } 1689 1690 // If we infered constant or undef values for globals variables, we can delete 1691 // the global and any stores that remain to it. 1692 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1693 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1694 E = TG.end(); I != E; ++I) { 1695 GlobalVariable *GV = I->first; 1696 assert(!I->second.isOverdefined() && 1697 "Overdefined values should have been taken out of the map!"); 1698 DOUT << "Found that GV '" << GV->getName()<< "' is constant!\n"; 1699 while (!GV->use_empty()) { 1700 StoreInst *SI = cast<StoreInst>(GV->use_back()); 1701 SI->eraseFromParent(); 1702 } 1703 M.getGlobalList().erase(GV); 1704 ++IPNumGlobalConst; 1705 } 1706 1707 return MadeChanges; 1708} 1709