SCCP.cpp revision 0b8c9a80f20772c3793201ab5b251d3520b9cea3
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "sccp"
21#include "llvm/Transforms/Scalar.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/DenseSet.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/Analysis/ConstantFolding.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/InstVisitor.h"
34#include "llvm/Pass.h"
35#include "llvm/Support/CallSite.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/Target/TargetLibraryInfo.h"
40#include "llvm/Transforms/IPO.h"
41#include "llvm/Transforms/Utils/Local.h"
42#include <algorithm>
43using namespace llvm;
44
45STATISTIC(NumInstRemoved, "Number of instructions removed");
46STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
47
48STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
49STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
50STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
51
52namespace {
53/// LatticeVal class - This class represents the different lattice values that
54/// an LLVM value may occupy.  It is a simple class with value semantics.
55///
56class LatticeVal {
57  enum LatticeValueTy {
58    /// undefined - This LLVM Value has no known value yet.
59    undefined,
60
61    /// constant - This LLVM Value has a specific constant value.
62    constant,
63
64    /// forcedconstant - This LLVM Value was thought to be undef until
65    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
66    /// with another (different) constant, it goes to overdefined, instead of
67    /// asserting.
68    forcedconstant,
69
70    /// overdefined - This instruction is not known to be constant, and we know
71    /// it has a value.
72    overdefined
73  };
74
75  /// Val: This stores the current lattice value along with the Constant* for
76  /// the constant if this is a 'constant' or 'forcedconstant' value.
77  PointerIntPair<Constant *, 2, LatticeValueTy> Val;
78
79  LatticeValueTy getLatticeValue() const {
80    return Val.getInt();
81  }
82
83public:
84  LatticeVal() : Val(0, undefined) {}
85
86  bool isUndefined() const { return getLatticeValue() == undefined; }
87  bool isConstant() const {
88    return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
89  }
90  bool isOverdefined() const { return getLatticeValue() == overdefined; }
91
92  Constant *getConstant() const {
93    assert(isConstant() && "Cannot get the constant of a non-constant!");
94    return Val.getPointer();
95  }
96
97  /// markOverdefined - Return true if this is a change in status.
98  bool markOverdefined() {
99    if (isOverdefined())
100      return false;
101
102    Val.setInt(overdefined);
103    return true;
104  }
105
106  /// markConstant - Return true if this is a change in status.
107  bool markConstant(Constant *V) {
108    if (getLatticeValue() == constant) { // Constant but not forcedconstant.
109      assert(getConstant() == V && "Marking constant with different value");
110      return false;
111    }
112
113    if (isUndefined()) {
114      Val.setInt(constant);
115      assert(V && "Marking constant with NULL");
116      Val.setPointer(V);
117    } else {
118      assert(getLatticeValue() == forcedconstant &&
119             "Cannot move from overdefined to constant!");
120      // Stay at forcedconstant if the constant is the same.
121      if (V == getConstant()) return false;
122
123      // Otherwise, we go to overdefined.  Assumptions made based on the
124      // forced value are possibly wrong.  Assuming this is another constant
125      // could expose a contradiction.
126      Val.setInt(overdefined);
127    }
128    return true;
129  }
130
131  /// getConstantInt - If this is a constant with a ConstantInt value, return it
132  /// otherwise return null.
133  ConstantInt *getConstantInt() const {
134    if (isConstant())
135      return dyn_cast<ConstantInt>(getConstant());
136    return 0;
137  }
138
139  void markForcedConstant(Constant *V) {
140    assert(isUndefined() && "Can't force a defined value!");
141    Val.setInt(forcedconstant);
142    Val.setPointer(V);
143  }
144};
145} // end anonymous namespace.
146
147
148namespace {
149
150//===----------------------------------------------------------------------===//
151//
152/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
153/// Constant Propagation.
154///
155class SCCPSolver : public InstVisitor<SCCPSolver> {
156  const DataLayout *TD;
157  const TargetLibraryInfo *TLI;
158  SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
159  DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
160
161  /// StructValueState - This maintains ValueState for values that have
162  /// StructType, for example for formal arguments, calls, insertelement, etc.
163  ///
164  DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
165
166  /// GlobalValue - If we are tracking any values for the contents of a global
167  /// variable, we keep a mapping from the constant accessor to the element of
168  /// the global, to the currently known value.  If the value becomes
169  /// overdefined, it's entry is simply removed from this map.
170  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
171
172  /// TrackedRetVals - If we are tracking arguments into and the return
173  /// value out of a function, it will have an entry in this map, indicating
174  /// what the known return value for the function is.
175  DenseMap<Function*, LatticeVal> TrackedRetVals;
176
177  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
178  /// that return multiple values.
179  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
180
181  /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
182  /// represented here for efficient lookup.
183  SmallPtrSet<Function*, 16> MRVFunctionsTracked;
184
185  /// TrackingIncomingArguments - This is the set of functions for whose
186  /// arguments we make optimistic assumptions about and try to prove as
187  /// constants.
188  SmallPtrSet<Function*, 16> TrackingIncomingArguments;
189
190  /// The reason for two worklists is that overdefined is the lowest state
191  /// on the lattice, and moving things to overdefined as fast as possible
192  /// makes SCCP converge much faster.
193  ///
194  /// By having a separate worklist, we accomplish this because everything
195  /// possibly overdefined will become overdefined at the soonest possible
196  /// point.
197  SmallVector<Value*, 64> OverdefinedInstWorkList;
198  SmallVector<Value*, 64> InstWorkList;
199
200
201  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
202
203  /// KnownFeasibleEdges - Entries in this set are edges which have already had
204  /// PHI nodes retriggered.
205  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
206  DenseSet<Edge> KnownFeasibleEdges;
207public:
208  SCCPSolver(const DataLayout *td, const TargetLibraryInfo *tli)
209    : TD(td), TLI(tli) {}
210
211  /// MarkBlockExecutable - This method can be used by clients to mark all of
212  /// the blocks that are known to be intrinsically live in the processed unit.
213  ///
214  /// This returns true if the block was not considered live before.
215  bool MarkBlockExecutable(BasicBlock *BB) {
216    if (!BBExecutable.insert(BB)) return false;
217    DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
218    BBWorkList.push_back(BB);  // Add the block to the work list!
219    return true;
220  }
221
222  /// TrackValueOfGlobalVariable - Clients can use this method to
223  /// inform the SCCPSolver that it should track loads and stores to the
224  /// specified global variable if it can.  This is only legal to call if
225  /// performing Interprocedural SCCP.
226  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
227    // We only track the contents of scalar globals.
228    if (GV->getType()->getElementType()->isSingleValueType()) {
229      LatticeVal &IV = TrackedGlobals[GV];
230      if (!isa<UndefValue>(GV->getInitializer()))
231        IV.markConstant(GV->getInitializer());
232    }
233  }
234
235  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
236  /// and out of the specified function (which cannot have its address taken),
237  /// this method must be called.
238  void AddTrackedFunction(Function *F) {
239    // Add an entry, F -> undef.
240    if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
241      MRVFunctionsTracked.insert(F);
242      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
243        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
244                                                     LatticeVal()));
245    } else
246      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
247  }
248
249  void AddArgumentTrackedFunction(Function *F) {
250    TrackingIncomingArguments.insert(F);
251  }
252
253  /// Solve - Solve for constants and executable blocks.
254  ///
255  void Solve();
256
257  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
258  /// that branches on undef values cannot reach any of their successors.
259  /// However, this is not a safe assumption.  After we solve dataflow, this
260  /// method should be use to handle this.  If this returns true, the solver
261  /// should be rerun.
262  bool ResolvedUndefsIn(Function &F);
263
264  bool isBlockExecutable(BasicBlock *BB) const {
265    return BBExecutable.count(BB);
266  }
267
268  LatticeVal getLatticeValueFor(Value *V) const {
269    DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
270    assert(I != ValueState.end() && "V is not in valuemap!");
271    return I->second;
272  }
273
274  /*LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const {
275    DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I =
276      StructValueState.find(std::make_pair(V, i));
277    assert(I != StructValueState.end() && "V is not in valuemap!");
278    return I->second;
279  }*/
280
281  /// getTrackedRetVals - Get the inferred return value map.
282  ///
283  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
284    return TrackedRetVals;
285  }
286
287  /// getTrackedGlobals - Get and return the set of inferred initializers for
288  /// global variables.
289  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
290    return TrackedGlobals;
291  }
292
293  void markOverdefined(Value *V) {
294    assert(!V->getType()->isStructTy() && "Should use other method");
295    markOverdefined(ValueState[V], V);
296  }
297
298  /// markAnythingOverdefined - Mark the specified value overdefined.  This
299  /// works with both scalars and structs.
300  void markAnythingOverdefined(Value *V) {
301    if (StructType *STy = dyn_cast<StructType>(V->getType()))
302      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
303        markOverdefined(getStructValueState(V, i), V);
304    else
305      markOverdefined(V);
306  }
307
308private:
309  // markConstant - Make a value be marked as "constant".  If the value
310  // is not already a constant, add it to the instruction work list so that
311  // the users of the instruction are updated later.
312  //
313  void markConstant(LatticeVal &IV, Value *V, Constant *C) {
314    if (!IV.markConstant(C)) return;
315    DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
316    if (IV.isOverdefined())
317      OverdefinedInstWorkList.push_back(V);
318    else
319      InstWorkList.push_back(V);
320  }
321
322  void markConstant(Value *V, Constant *C) {
323    assert(!V->getType()->isStructTy() && "Should use other method");
324    markConstant(ValueState[V], V, C);
325  }
326
327  void markForcedConstant(Value *V, Constant *C) {
328    assert(!V->getType()->isStructTy() && "Should use other method");
329    LatticeVal &IV = ValueState[V];
330    IV.markForcedConstant(C);
331    DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
332    if (IV.isOverdefined())
333      OverdefinedInstWorkList.push_back(V);
334    else
335      InstWorkList.push_back(V);
336  }
337
338
339  // markOverdefined - Make a value be marked as "overdefined". If the
340  // value is not already overdefined, add it to the overdefined instruction
341  // work list so that the users of the instruction are updated later.
342  void markOverdefined(LatticeVal &IV, Value *V) {
343    if (!IV.markOverdefined()) return;
344
345    DEBUG(dbgs() << "markOverdefined: ";
346          if (Function *F = dyn_cast<Function>(V))
347            dbgs() << "Function '" << F->getName() << "'\n";
348          else
349            dbgs() << *V << '\n');
350    // Only instructions go on the work list
351    OverdefinedInstWorkList.push_back(V);
352  }
353
354  void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
355    if (IV.isOverdefined() || MergeWithV.isUndefined())
356      return;  // Noop.
357    if (MergeWithV.isOverdefined())
358      markOverdefined(IV, V);
359    else if (IV.isUndefined())
360      markConstant(IV, V, MergeWithV.getConstant());
361    else if (IV.getConstant() != MergeWithV.getConstant())
362      markOverdefined(IV, V);
363  }
364
365  void mergeInValue(Value *V, LatticeVal MergeWithV) {
366    assert(!V->getType()->isStructTy() && "Should use other method");
367    mergeInValue(ValueState[V], V, MergeWithV);
368  }
369
370
371  /// getValueState - Return the LatticeVal object that corresponds to the
372  /// value.  This function handles the case when the value hasn't been seen yet
373  /// by properly seeding constants etc.
374  LatticeVal &getValueState(Value *V) {
375    assert(!V->getType()->isStructTy() && "Should use getStructValueState");
376
377    std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
378      ValueState.insert(std::make_pair(V, LatticeVal()));
379    LatticeVal &LV = I.first->second;
380
381    if (!I.second)
382      return LV;  // Common case, already in the map.
383
384    if (Constant *C = dyn_cast<Constant>(V)) {
385      // Undef values remain undefined.
386      if (!isa<UndefValue>(V))
387        LV.markConstant(C);          // Constants are constant
388    }
389
390    // All others are underdefined by default.
391    return LV;
392  }
393
394  /// getStructValueState - Return the LatticeVal object that corresponds to the
395  /// value/field pair.  This function handles the case when the value hasn't
396  /// been seen yet by properly seeding constants etc.
397  LatticeVal &getStructValueState(Value *V, unsigned i) {
398    assert(V->getType()->isStructTy() && "Should use getValueState");
399    assert(i < cast<StructType>(V->getType())->getNumElements() &&
400           "Invalid element #");
401
402    std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
403              bool> I = StructValueState.insert(
404                        std::make_pair(std::make_pair(V, i), LatticeVal()));
405    LatticeVal &LV = I.first->second;
406
407    if (!I.second)
408      return LV;  // Common case, already in the map.
409
410    if (Constant *C = dyn_cast<Constant>(V)) {
411      Constant *Elt = C->getAggregateElement(i);
412
413      if (Elt == 0)
414        LV.markOverdefined();      // Unknown sort of constant.
415      else if (isa<UndefValue>(Elt))
416        ; // Undef values remain undefined.
417      else
418        LV.markConstant(Elt);      // Constants are constant.
419    }
420
421    // All others are underdefined by default.
422    return LV;
423  }
424
425
426  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
427  /// work list if it is not already executable.
428  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
429    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
430      return;  // This edge is already known to be executable!
431
432    if (!MarkBlockExecutable(Dest)) {
433      // If the destination is already executable, we just made an *edge*
434      // feasible that wasn't before.  Revisit the PHI nodes in the block
435      // because they have potentially new operands.
436      DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
437            << " -> " << Dest->getName() << "\n");
438
439      PHINode *PN;
440      for (BasicBlock::iterator I = Dest->begin();
441           (PN = dyn_cast<PHINode>(I)); ++I)
442        visitPHINode(*PN);
443    }
444  }
445
446  // getFeasibleSuccessors - Return a vector of booleans to indicate which
447  // successors are reachable from a given terminator instruction.
448  //
449  void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
450
451  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
452  // block to the 'To' basic block is currently feasible.
453  //
454  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
455
456  // OperandChangedState - This method is invoked on all of the users of an
457  // instruction that was just changed state somehow.  Based on this
458  // information, we need to update the specified user of this instruction.
459  //
460  void OperandChangedState(Instruction *I) {
461    if (BBExecutable.count(I->getParent()))   // Inst is executable?
462      visit(*I);
463  }
464
465private:
466  friend class InstVisitor<SCCPSolver>;
467
468  // visit implementations - Something changed in this instruction.  Either an
469  // operand made a transition, or the instruction is newly executable.  Change
470  // the value type of I to reflect these changes if appropriate.
471  void visitPHINode(PHINode &I);
472
473  // Terminators
474  void visitReturnInst(ReturnInst &I);
475  void visitTerminatorInst(TerminatorInst &TI);
476
477  void visitCastInst(CastInst &I);
478  void visitSelectInst(SelectInst &I);
479  void visitBinaryOperator(Instruction &I);
480  void visitCmpInst(CmpInst &I);
481  void visitExtractElementInst(ExtractElementInst &I);
482  void visitInsertElementInst(InsertElementInst &I);
483  void visitShuffleVectorInst(ShuffleVectorInst &I);
484  void visitExtractValueInst(ExtractValueInst &EVI);
485  void visitInsertValueInst(InsertValueInst &IVI);
486  void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
487
488  // Instructions that cannot be folded away.
489  void visitStoreInst     (StoreInst &I);
490  void visitLoadInst      (LoadInst &I);
491  void visitGetElementPtrInst(GetElementPtrInst &I);
492  void visitCallInst      (CallInst &I) {
493    visitCallSite(&I);
494  }
495  void visitInvokeInst    (InvokeInst &II) {
496    visitCallSite(&II);
497    visitTerminatorInst(II);
498  }
499  void visitCallSite      (CallSite CS);
500  void visitResumeInst    (TerminatorInst &I) { /*returns void*/ }
501  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
502  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
503  void visitFenceInst     (FenceInst &I) { /*returns void*/ }
504  void visitAtomicCmpXchgInst (AtomicCmpXchgInst &I) { markOverdefined(&I); }
505  void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
506  void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
507  void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
508
509  void visitInstruction(Instruction &I) {
510    // If a new instruction is added to LLVM that we don't handle.
511    dbgs() << "SCCP: Don't know how to handle: " << I;
512    markAnythingOverdefined(&I);   // Just in case
513  }
514};
515
516} // end anonymous namespace
517
518
519// getFeasibleSuccessors - Return a vector of booleans to indicate which
520// successors are reachable from a given terminator instruction.
521//
522void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
523                                       SmallVector<bool, 16> &Succs) {
524  Succs.resize(TI.getNumSuccessors());
525  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
526    if (BI->isUnconditional()) {
527      Succs[0] = true;
528      return;
529    }
530
531    LatticeVal BCValue = getValueState(BI->getCondition());
532    ConstantInt *CI = BCValue.getConstantInt();
533    if (CI == 0) {
534      // Overdefined condition variables, and branches on unfoldable constant
535      // conditions, mean the branch could go either way.
536      if (!BCValue.isUndefined())
537        Succs[0] = Succs[1] = true;
538      return;
539    }
540
541    // Constant condition variables mean the branch can only go a single way.
542    Succs[CI->isZero()] = true;
543    return;
544  }
545
546  if (isa<InvokeInst>(TI)) {
547    // Invoke instructions successors are always executable.
548    Succs[0] = Succs[1] = true;
549    return;
550  }
551
552  if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
553    if (!SI->getNumCases()) {
554      Succs[0] = true;
555      return;
556    }
557    LatticeVal SCValue = getValueState(SI->getCondition());
558    ConstantInt *CI = SCValue.getConstantInt();
559
560    if (CI == 0) {   // Overdefined or undefined condition?
561      // All destinations are executable!
562      if (!SCValue.isUndefined())
563        Succs.assign(TI.getNumSuccessors(), true);
564      return;
565    }
566
567    Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
568    return;
569  }
570
571  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
572  if (isa<IndirectBrInst>(&TI)) {
573    // Just mark all destinations executable!
574    Succs.assign(TI.getNumSuccessors(), true);
575    return;
576  }
577
578#ifndef NDEBUG
579  dbgs() << "Unknown terminator instruction: " << TI << '\n';
580#endif
581  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
582}
583
584
585// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
586// block to the 'To' basic block is currently feasible.
587//
588bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
589  assert(BBExecutable.count(To) && "Dest should always be alive!");
590
591  // Make sure the source basic block is executable!!
592  if (!BBExecutable.count(From)) return false;
593
594  // Check to make sure this edge itself is actually feasible now.
595  TerminatorInst *TI = From->getTerminator();
596  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
597    if (BI->isUnconditional())
598      return true;
599
600    LatticeVal BCValue = getValueState(BI->getCondition());
601
602    // Overdefined condition variables mean the branch could go either way,
603    // undef conditions mean that neither edge is feasible yet.
604    ConstantInt *CI = BCValue.getConstantInt();
605    if (CI == 0)
606      return !BCValue.isUndefined();
607
608    // Constant condition variables mean the branch can only go a single way.
609    return BI->getSuccessor(CI->isZero()) == To;
610  }
611
612  // Invoke instructions successors are always executable.
613  if (isa<InvokeInst>(TI))
614    return true;
615
616  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
617    if (SI->getNumCases() < 1)
618      return true;
619
620    LatticeVal SCValue = getValueState(SI->getCondition());
621    ConstantInt *CI = SCValue.getConstantInt();
622
623    if (CI == 0)
624      return !SCValue.isUndefined();
625
626    return SI->findCaseValue(CI).getCaseSuccessor() == To;
627  }
628
629  // Just mark all destinations executable!
630  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
631  if (isa<IndirectBrInst>(TI))
632    return true;
633
634#ifndef NDEBUG
635  dbgs() << "Unknown terminator instruction: " << *TI << '\n';
636#endif
637  llvm_unreachable(0);
638}
639
640// visit Implementations - Something changed in this instruction, either an
641// operand made a transition, or the instruction is newly executable.  Change
642// the value type of I to reflect these changes if appropriate.  This method
643// makes sure to do the following actions:
644//
645// 1. If a phi node merges two constants in, and has conflicting value coming
646//    from different branches, or if the PHI node merges in an overdefined
647//    value, then the PHI node becomes overdefined.
648// 2. If a phi node merges only constants in, and they all agree on value, the
649//    PHI node becomes a constant value equal to that.
650// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
651// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
652// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
653// 6. If a conditional branch has a value that is constant, make the selected
654//    destination executable
655// 7. If a conditional branch has a value that is overdefined, make all
656//    successors executable.
657//
658void SCCPSolver::visitPHINode(PHINode &PN) {
659  // If this PN returns a struct, just mark the result overdefined.
660  // TODO: We could do a lot better than this if code actually uses this.
661  if (PN.getType()->isStructTy())
662    return markAnythingOverdefined(&PN);
663
664  if (getValueState(&PN).isOverdefined())
665    return;  // Quick exit
666
667  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
668  // and slow us down a lot.  Just mark them overdefined.
669  if (PN.getNumIncomingValues() > 64)
670    return markOverdefined(&PN);
671
672  // Look at all of the executable operands of the PHI node.  If any of them
673  // are overdefined, the PHI becomes overdefined as well.  If they are all
674  // constant, and they agree with each other, the PHI becomes the identical
675  // constant.  If they are constant and don't agree, the PHI is overdefined.
676  // If there are no executable operands, the PHI remains undefined.
677  //
678  Constant *OperandVal = 0;
679  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
680    LatticeVal IV = getValueState(PN.getIncomingValue(i));
681    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
682
683    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
684      continue;
685
686    if (IV.isOverdefined())    // PHI node becomes overdefined!
687      return markOverdefined(&PN);
688
689    if (OperandVal == 0) {   // Grab the first value.
690      OperandVal = IV.getConstant();
691      continue;
692    }
693
694    // There is already a reachable operand.  If we conflict with it,
695    // then the PHI node becomes overdefined.  If we agree with it, we
696    // can continue on.
697
698    // Check to see if there are two different constants merging, if so, the PHI
699    // node is overdefined.
700    if (IV.getConstant() != OperandVal)
701      return markOverdefined(&PN);
702  }
703
704  // If we exited the loop, this means that the PHI node only has constant
705  // arguments that agree with each other(and OperandVal is the constant) or
706  // OperandVal is null because there are no defined incoming arguments.  If
707  // this is the case, the PHI remains undefined.
708  //
709  if (OperandVal)
710    markConstant(&PN, OperandVal);      // Acquire operand value
711}
712
713
714
715
716void SCCPSolver::visitReturnInst(ReturnInst &I) {
717  if (I.getNumOperands() == 0) return;  // ret void
718
719  Function *F = I.getParent()->getParent();
720  Value *ResultOp = I.getOperand(0);
721
722  // If we are tracking the return value of this function, merge it in.
723  if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
724    DenseMap<Function*, LatticeVal>::iterator TFRVI =
725      TrackedRetVals.find(F);
726    if (TFRVI != TrackedRetVals.end()) {
727      mergeInValue(TFRVI->second, F, getValueState(ResultOp));
728      return;
729    }
730  }
731
732  // Handle functions that return multiple values.
733  if (!TrackedMultipleRetVals.empty()) {
734    if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
735      if (MRVFunctionsTracked.count(F))
736        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
737          mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
738                       getStructValueState(ResultOp, i));
739
740  }
741}
742
743void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
744  SmallVector<bool, 16> SuccFeasible;
745  getFeasibleSuccessors(TI, SuccFeasible);
746
747  BasicBlock *BB = TI.getParent();
748
749  // Mark all feasible successors executable.
750  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
751    if (SuccFeasible[i])
752      markEdgeExecutable(BB, TI.getSuccessor(i));
753}
754
755void SCCPSolver::visitCastInst(CastInst &I) {
756  LatticeVal OpSt = getValueState(I.getOperand(0));
757  if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
758    markOverdefined(&I);
759  else if (OpSt.isConstant())        // Propagate constant value
760    markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
761                                           OpSt.getConstant(), I.getType()));
762}
763
764
765void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
766  // If this returns a struct, mark all elements over defined, we don't track
767  // structs in structs.
768  if (EVI.getType()->isStructTy())
769    return markAnythingOverdefined(&EVI);
770
771  // If this is extracting from more than one level of struct, we don't know.
772  if (EVI.getNumIndices() != 1)
773    return markOverdefined(&EVI);
774
775  Value *AggVal = EVI.getAggregateOperand();
776  if (AggVal->getType()->isStructTy()) {
777    unsigned i = *EVI.idx_begin();
778    LatticeVal EltVal = getStructValueState(AggVal, i);
779    mergeInValue(getValueState(&EVI), &EVI, EltVal);
780  } else {
781    // Otherwise, must be extracting from an array.
782    return markOverdefined(&EVI);
783  }
784}
785
786void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
787  StructType *STy = dyn_cast<StructType>(IVI.getType());
788  if (STy == 0)
789    return markOverdefined(&IVI);
790
791  // If this has more than one index, we can't handle it, drive all results to
792  // undef.
793  if (IVI.getNumIndices() != 1)
794    return markAnythingOverdefined(&IVI);
795
796  Value *Aggr = IVI.getAggregateOperand();
797  unsigned Idx = *IVI.idx_begin();
798
799  // Compute the result based on what we're inserting.
800  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
801    // This passes through all values that aren't the inserted element.
802    if (i != Idx) {
803      LatticeVal EltVal = getStructValueState(Aggr, i);
804      mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
805      continue;
806    }
807
808    Value *Val = IVI.getInsertedValueOperand();
809    if (Val->getType()->isStructTy())
810      // We don't track structs in structs.
811      markOverdefined(getStructValueState(&IVI, i), &IVI);
812    else {
813      LatticeVal InVal = getValueState(Val);
814      mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
815    }
816  }
817}
818
819void SCCPSolver::visitSelectInst(SelectInst &I) {
820  // If this select returns a struct, just mark the result overdefined.
821  // TODO: We could do a lot better than this if code actually uses this.
822  if (I.getType()->isStructTy())
823    return markAnythingOverdefined(&I);
824
825  LatticeVal CondValue = getValueState(I.getCondition());
826  if (CondValue.isUndefined())
827    return;
828
829  if (ConstantInt *CondCB = CondValue.getConstantInt()) {
830    Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
831    mergeInValue(&I, getValueState(OpVal));
832    return;
833  }
834
835  // Otherwise, the condition is overdefined or a constant we can't evaluate.
836  // See if we can produce something better than overdefined based on the T/F
837  // value.
838  LatticeVal TVal = getValueState(I.getTrueValue());
839  LatticeVal FVal = getValueState(I.getFalseValue());
840
841  // select ?, C, C -> C.
842  if (TVal.isConstant() && FVal.isConstant() &&
843      TVal.getConstant() == FVal.getConstant())
844    return markConstant(&I, FVal.getConstant());
845
846  if (TVal.isUndefined())   // select ?, undef, X -> X.
847    return mergeInValue(&I, FVal);
848  if (FVal.isUndefined())   // select ?, X, undef -> X.
849    return mergeInValue(&I, TVal);
850  markOverdefined(&I);
851}
852
853// Handle Binary Operators.
854void SCCPSolver::visitBinaryOperator(Instruction &I) {
855  LatticeVal V1State = getValueState(I.getOperand(0));
856  LatticeVal V2State = getValueState(I.getOperand(1));
857
858  LatticeVal &IV = ValueState[&I];
859  if (IV.isOverdefined()) return;
860
861  if (V1State.isConstant() && V2State.isConstant())
862    return markConstant(IV, &I,
863                        ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
864                                          V2State.getConstant()));
865
866  // If something is undef, wait for it to resolve.
867  if (!V1State.isOverdefined() && !V2State.isOverdefined())
868    return;
869
870  // Otherwise, one of our operands is overdefined.  Try to produce something
871  // better than overdefined with some tricks.
872
873  // If this is an AND or OR with 0 or -1, it doesn't matter that the other
874  // operand is overdefined.
875  if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
876    LatticeVal *NonOverdefVal = 0;
877    if (!V1State.isOverdefined())
878      NonOverdefVal = &V1State;
879    else if (!V2State.isOverdefined())
880      NonOverdefVal = &V2State;
881
882    if (NonOverdefVal) {
883      if (NonOverdefVal->isUndefined()) {
884        // Could annihilate value.
885        if (I.getOpcode() == Instruction::And)
886          markConstant(IV, &I, Constant::getNullValue(I.getType()));
887        else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
888          markConstant(IV, &I, Constant::getAllOnesValue(PT));
889        else
890          markConstant(IV, &I,
891                       Constant::getAllOnesValue(I.getType()));
892        return;
893      }
894
895      if (I.getOpcode() == Instruction::And) {
896        // X and 0 = 0
897        if (NonOverdefVal->getConstant()->isNullValue())
898          return markConstant(IV, &I, NonOverdefVal->getConstant());
899      } else {
900        if (ConstantInt *CI = NonOverdefVal->getConstantInt())
901          if (CI->isAllOnesValue())     // X or -1 = -1
902            return markConstant(IV, &I, NonOverdefVal->getConstant());
903      }
904    }
905  }
906
907
908  markOverdefined(&I);
909}
910
911// Handle ICmpInst instruction.
912void SCCPSolver::visitCmpInst(CmpInst &I) {
913  LatticeVal V1State = getValueState(I.getOperand(0));
914  LatticeVal V2State = getValueState(I.getOperand(1));
915
916  LatticeVal &IV = ValueState[&I];
917  if (IV.isOverdefined()) return;
918
919  if (V1State.isConstant() && V2State.isConstant())
920    return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
921                                                         V1State.getConstant(),
922                                                        V2State.getConstant()));
923
924  // If operands are still undefined, wait for it to resolve.
925  if (!V1State.isOverdefined() && !V2State.isOverdefined())
926    return;
927
928  markOverdefined(&I);
929}
930
931void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
932  // TODO : SCCP does not handle vectors properly.
933  return markOverdefined(&I);
934
935#if 0
936  LatticeVal &ValState = getValueState(I.getOperand(0));
937  LatticeVal &IdxState = getValueState(I.getOperand(1));
938
939  if (ValState.isOverdefined() || IdxState.isOverdefined())
940    markOverdefined(&I);
941  else if(ValState.isConstant() && IdxState.isConstant())
942    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
943                                                     IdxState.getConstant()));
944#endif
945}
946
947void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
948  // TODO : SCCP does not handle vectors properly.
949  return markOverdefined(&I);
950#if 0
951  LatticeVal &ValState = getValueState(I.getOperand(0));
952  LatticeVal &EltState = getValueState(I.getOperand(1));
953  LatticeVal &IdxState = getValueState(I.getOperand(2));
954
955  if (ValState.isOverdefined() || EltState.isOverdefined() ||
956      IdxState.isOverdefined())
957    markOverdefined(&I);
958  else if(ValState.isConstant() && EltState.isConstant() &&
959          IdxState.isConstant())
960    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
961                                                    EltState.getConstant(),
962                                                    IdxState.getConstant()));
963  else if (ValState.isUndefined() && EltState.isConstant() &&
964           IdxState.isConstant())
965    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
966                                                   EltState.getConstant(),
967                                                   IdxState.getConstant()));
968#endif
969}
970
971void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
972  // TODO : SCCP does not handle vectors properly.
973  return markOverdefined(&I);
974#if 0
975  LatticeVal &V1State   = getValueState(I.getOperand(0));
976  LatticeVal &V2State   = getValueState(I.getOperand(1));
977  LatticeVal &MaskState = getValueState(I.getOperand(2));
978
979  if (MaskState.isUndefined() ||
980      (V1State.isUndefined() && V2State.isUndefined()))
981    return;  // Undefined output if mask or both inputs undefined.
982
983  if (V1State.isOverdefined() || V2State.isOverdefined() ||
984      MaskState.isOverdefined()) {
985    markOverdefined(&I);
986  } else {
987    // A mix of constant/undef inputs.
988    Constant *V1 = V1State.isConstant() ?
989        V1State.getConstant() : UndefValue::get(I.getType());
990    Constant *V2 = V2State.isConstant() ?
991        V2State.getConstant() : UndefValue::get(I.getType());
992    Constant *Mask = MaskState.isConstant() ?
993      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
994    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
995  }
996#endif
997}
998
999// Handle getelementptr instructions.  If all operands are constants then we
1000// can turn this into a getelementptr ConstantExpr.
1001//
1002void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1003  if (ValueState[&I].isOverdefined()) return;
1004
1005  SmallVector<Constant*, 8> Operands;
1006  Operands.reserve(I.getNumOperands());
1007
1008  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1009    LatticeVal State = getValueState(I.getOperand(i));
1010    if (State.isUndefined())
1011      return;  // Operands are not resolved yet.
1012
1013    if (State.isOverdefined())
1014      return markOverdefined(&I);
1015
1016    assert(State.isConstant() && "Unknown state!");
1017    Operands.push_back(State.getConstant());
1018  }
1019
1020  Constant *Ptr = Operands[0];
1021  ArrayRef<Constant *> Indices(Operands.begin() + 1, Operands.end());
1022  markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices));
1023}
1024
1025void SCCPSolver::visitStoreInst(StoreInst &SI) {
1026  // If this store is of a struct, ignore it.
1027  if (SI.getOperand(0)->getType()->isStructTy())
1028    return;
1029
1030  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1031    return;
1032
1033  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1034  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1035  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1036
1037  // Get the value we are storing into the global, then merge it.
1038  mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1039  if (I->second.isOverdefined())
1040    TrackedGlobals.erase(I);      // No need to keep tracking this!
1041}
1042
1043
1044// Handle load instructions.  If the operand is a constant pointer to a constant
1045// global, we can replace the load with the loaded constant value!
1046void SCCPSolver::visitLoadInst(LoadInst &I) {
1047  // If this load is of a struct, just mark the result overdefined.
1048  if (I.getType()->isStructTy())
1049    return markAnythingOverdefined(&I);
1050
1051  LatticeVal PtrVal = getValueState(I.getOperand(0));
1052  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1053
1054  LatticeVal &IV = ValueState[&I];
1055  if (IV.isOverdefined()) return;
1056
1057  if (!PtrVal.isConstant() || I.isVolatile())
1058    return markOverdefined(IV, &I);
1059
1060  Constant *Ptr = PtrVal.getConstant();
1061
1062  // load null -> null
1063  if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
1064    return markConstant(IV, &I, Constant::getNullValue(I.getType()));
1065
1066  // Transform load (constant global) into the value loaded.
1067  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1068    if (!TrackedGlobals.empty()) {
1069      // If we are tracking this global, merge in the known value for it.
1070      DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1071        TrackedGlobals.find(GV);
1072      if (It != TrackedGlobals.end()) {
1073        mergeInValue(IV, &I, It->second);
1074        return;
1075      }
1076    }
1077  }
1078
1079  // Transform load from a constant into a constant if possible.
1080  if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD))
1081    return markConstant(IV, &I, C);
1082
1083  // Otherwise we cannot say for certain what value this load will produce.
1084  // Bail out.
1085  markOverdefined(IV, &I);
1086}
1087
1088void SCCPSolver::visitCallSite(CallSite CS) {
1089  Function *F = CS.getCalledFunction();
1090  Instruction *I = CS.getInstruction();
1091
1092  // The common case is that we aren't tracking the callee, either because we
1093  // are not doing interprocedural analysis or the callee is indirect, or is
1094  // external.  Handle these cases first.
1095  if (F == 0 || F->isDeclaration()) {
1096CallOverdefined:
1097    // Void return and not tracking callee, just bail.
1098    if (I->getType()->isVoidTy()) return;
1099
1100    // Otherwise, if we have a single return value case, and if the function is
1101    // a declaration, maybe we can constant fold it.
1102    if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1103        canConstantFoldCallTo(F)) {
1104
1105      SmallVector<Constant*, 8> Operands;
1106      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1107           AI != E; ++AI) {
1108        LatticeVal State = getValueState(*AI);
1109
1110        if (State.isUndefined())
1111          return;  // Operands are not resolved yet.
1112        if (State.isOverdefined())
1113          return markOverdefined(I);
1114        assert(State.isConstant() && "Unknown state!");
1115        Operands.push_back(State.getConstant());
1116      }
1117
1118      // If we can constant fold this, mark the result of the call as a
1119      // constant.
1120      if (Constant *C = ConstantFoldCall(F, Operands, TLI))
1121        return markConstant(I, C);
1122    }
1123
1124    // Otherwise, we don't know anything about this call, mark it overdefined.
1125    return markAnythingOverdefined(I);
1126  }
1127
1128  // If this is a local function that doesn't have its address taken, mark its
1129  // entry block executable and merge in the actual arguments to the call into
1130  // the formal arguments of the function.
1131  if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1132    MarkBlockExecutable(F->begin());
1133
1134    // Propagate information from this call site into the callee.
1135    CallSite::arg_iterator CAI = CS.arg_begin();
1136    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1137         AI != E; ++AI, ++CAI) {
1138      // If this argument is byval, and if the function is not readonly, there
1139      // will be an implicit copy formed of the input aggregate.
1140      if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1141        markOverdefined(AI);
1142        continue;
1143      }
1144
1145      if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
1146        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1147          LatticeVal CallArg = getStructValueState(*CAI, i);
1148          mergeInValue(getStructValueState(AI, i), AI, CallArg);
1149        }
1150      } else {
1151        mergeInValue(AI, getValueState(*CAI));
1152      }
1153    }
1154  }
1155
1156  // If this is a single/zero retval case, see if we're tracking the function.
1157  if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
1158    if (!MRVFunctionsTracked.count(F))
1159      goto CallOverdefined;  // Not tracking this callee.
1160
1161    // If we are tracking this callee, propagate the result of the function
1162    // into this call site.
1163    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1164      mergeInValue(getStructValueState(I, i), I,
1165                   TrackedMultipleRetVals[std::make_pair(F, i)]);
1166  } else {
1167    DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1168    if (TFRVI == TrackedRetVals.end())
1169      goto CallOverdefined;  // Not tracking this callee.
1170
1171    // If so, propagate the return value of the callee into this call result.
1172    mergeInValue(I, TFRVI->second);
1173  }
1174}
1175
1176void SCCPSolver::Solve() {
1177  // Process the work lists until they are empty!
1178  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1179         !OverdefinedInstWorkList.empty()) {
1180    // Process the overdefined instruction's work list first, which drives other
1181    // things to overdefined more quickly.
1182    while (!OverdefinedInstWorkList.empty()) {
1183      Value *I = OverdefinedInstWorkList.pop_back_val();
1184
1185      DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1186
1187      // "I" got into the work list because it either made the transition from
1188      // bottom to constant
1189      //
1190      // Anything on this worklist that is overdefined need not be visited
1191      // since all of its users will have already been marked as overdefined
1192      // Update all of the users of this instruction's value.
1193      //
1194      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1195           UI != E; ++UI)
1196        if (Instruction *I = dyn_cast<Instruction>(*UI))
1197          OperandChangedState(I);
1198    }
1199
1200    // Process the instruction work list.
1201    while (!InstWorkList.empty()) {
1202      Value *I = InstWorkList.pop_back_val();
1203
1204      DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1205
1206      // "I" got into the work list because it made the transition from undef to
1207      // constant.
1208      //
1209      // Anything on this worklist that is overdefined need not be visited
1210      // since all of its users will have already been marked as overdefined.
1211      // Update all of the users of this instruction's value.
1212      //
1213      if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1214        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1215             UI != E; ++UI)
1216          if (Instruction *I = dyn_cast<Instruction>(*UI))
1217            OperandChangedState(I);
1218    }
1219
1220    // Process the basic block work list.
1221    while (!BBWorkList.empty()) {
1222      BasicBlock *BB = BBWorkList.back();
1223      BBWorkList.pop_back();
1224
1225      DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1226
1227      // Notify all instructions in this basic block that they are newly
1228      // executable.
1229      visit(BB);
1230    }
1231  }
1232}
1233
1234/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1235/// that branches on undef values cannot reach any of their successors.
1236/// However, this is not a safe assumption.  After we solve dataflow, this
1237/// method should be use to handle this.  If this returns true, the solver
1238/// should be rerun.
1239///
1240/// This method handles this by finding an unresolved branch and marking it one
1241/// of the edges from the block as being feasible, even though the condition
1242/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1243/// CFG and only slightly pessimizes the analysis results (by marking one,
1244/// potentially infeasible, edge feasible).  This cannot usefully modify the
1245/// constraints on the condition of the branch, as that would impact other users
1246/// of the value.
1247///
1248/// This scan also checks for values that use undefs, whose results are actually
1249/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1250/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1251/// even if X isn't defined.
1252bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1253  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1254    if (!BBExecutable.count(BB))
1255      continue;
1256
1257    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1258      // Look for instructions which produce undef values.
1259      if (I->getType()->isVoidTy()) continue;
1260
1261      if (StructType *STy = dyn_cast<StructType>(I->getType())) {
1262        // Only a few things that can be structs matter for undef.
1263
1264        // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
1265        if (CallSite CS = CallSite(I))
1266          if (Function *F = CS.getCalledFunction())
1267            if (MRVFunctionsTracked.count(F))
1268              continue;
1269
1270        // extractvalue and insertvalue don't need to be marked; they are
1271        // tracked as precisely as their operands.
1272        if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1273          continue;
1274
1275        // Send the results of everything else to overdefined.  We could be
1276        // more precise than this but it isn't worth bothering.
1277        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1278          LatticeVal &LV = getStructValueState(I, i);
1279          if (LV.isUndefined())
1280            markOverdefined(LV, I);
1281        }
1282        continue;
1283      }
1284
1285      LatticeVal &LV = getValueState(I);
1286      if (!LV.isUndefined()) continue;
1287
1288      // extractvalue is safe; check here because the argument is a struct.
1289      if (isa<ExtractValueInst>(I))
1290        continue;
1291
1292      // Compute the operand LatticeVals, for convenience below.
1293      // Anything taking a struct is conservatively assumed to require
1294      // overdefined markings.
1295      if (I->getOperand(0)->getType()->isStructTy()) {
1296        markOverdefined(I);
1297        return true;
1298      }
1299      LatticeVal Op0LV = getValueState(I->getOperand(0));
1300      LatticeVal Op1LV;
1301      if (I->getNumOperands() == 2) {
1302        if (I->getOperand(1)->getType()->isStructTy()) {
1303          markOverdefined(I);
1304          return true;
1305        }
1306
1307        Op1LV = getValueState(I->getOperand(1));
1308      }
1309      // If this is an instructions whose result is defined even if the input is
1310      // not fully defined, propagate the information.
1311      Type *ITy = I->getType();
1312      switch (I->getOpcode()) {
1313      case Instruction::Add:
1314      case Instruction::Sub:
1315      case Instruction::Trunc:
1316      case Instruction::FPTrunc:
1317      case Instruction::BitCast:
1318        break; // Any undef -> undef
1319      case Instruction::FSub:
1320      case Instruction::FAdd:
1321      case Instruction::FMul:
1322      case Instruction::FDiv:
1323      case Instruction::FRem:
1324        // Floating-point binary operation: be conservative.
1325        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1326          markForcedConstant(I, Constant::getNullValue(ITy));
1327        else
1328          markOverdefined(I);
1329        return true;
1330      case Instruction::ZExt:
1331      case Instruction::SExt:
1332      case Instruction::FPToUI:
1333      case Instruction::FPToSI:
1334      case Instruction::FPExt:
1335      case Instruction::PtrToInt:
1336      case Instruction::IntToPtr:
1337      case Instruction::SIToFP:
1338      case Instruction::UIToFP:
1339        // undef -> 0; some outputs are impossible
1340        markForcedConstant(I, Constant::getNullValue(ITy));
1341        return true;
1342      case Instruction::Mul:
1343      case Instruction::And:
1344        // Both operands undef -> undef
1345        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1346          break;
1347        // undef * X -> 0.   X could be zero.
1348        // undef & X -> 0.   X could be zero.
1349        markForcedConstant(I, Constant::getNullValue(ITy));
1350        return true;
1351
1352      case Instruction::Or:
1353        // Both operands undef -> undef
1354        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1355          break;
1356        // undef | X -> -1.   X could be -1.
1357        markForcedConstant(I, Constant::getAllOnesValue(ITy));
1358        return true;
1359
1360      case Instruction::Xor:
1361        // undef ^ undef -> 0; strictly speaking, this is not strictly
1362        // necessary, but we try to be nice to people who expect this
1363        // behavior in simple cases
1364        if (Op0LV.isUndefined() && Op1LV.isUndefined()) {
1365          markForcedConstant(I, Constant::getNullValue(ITy));
1366          return true;
1367        }
1368        // undef ^ X -> undef
1369        break;
1370
1371      case Instruction::SDiv:
1372      case Instruction::UDiv:
1373      case Instruction::SRem:
1374      case Instruction::URem:
1375        // X / undef -> undef.  No change.
1376        // X % undef -> undef.  No change.
1377        if (Op1LV.isUndefined()) break;
1378
1379        // undef / X -> 0.   X could be maxint.
1380        // undef % X -> 0.   X could be 1.
1381        markForcedConstant(I, Constant::getNullValue(ITy));
1382        return true;
1383
1384      case Instruction::AShr:
1385        // X >>a undef -> undef.
1386        if (Op1LV.isUndefined()) break;
1387
1388        // undef >>a X -> all ones
1389        markForcedConstant(I, Constant::getAllOnesValue(ITy));
1390        return true;
1391      case Instruction::LShr:
1392      case Instruction::Shl:
1393        // X << undef -> undef.
1394        // X >> undef -> undef.
1395        if (Op1LV.isUndefined()) break;
1396
1397        // undef << X -> 0
1398        // undef >> X -> 0
1399        markForcedConstant(I, Constant::getNullValue(ITy));
1400        return true;
1401      case Instruction::Select:
1402        Op1LV = getValueState(I->getOperand(1));
1403        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1404        if (Op0LV.isUndefined()) {
1405          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1406            Op1LV = getValueState(I->getOperand(2));
1407        } else if (Op1LV.isUndefined()) {
1408          // c ? undef : undef -> undef.  No change.
1409          Op1LV = getValueState(I->getOperand(2));
1410          if (Op1LV.isUndefined())
1411            break;
1412          // Otherwise, c ? undef : x -> x.
1413        } else {
1414          // Leave Op1LV as Operand(1)'s LatticeValue.
1415        }
1416
1417        if (Op1LV.isConstant())
1418          markForcedConstant(I, Op1LV.getConstant());
1419        else
1420          markOverdefined(I);
1421        return true;
1422      case Instruction::Load:
1423        // A load here means one of two things: a load of undef from a global,
1424        // a load from an unknown pointer.  Either way, having it return undef
1425        // is okay.
1426        break;
1427      case Instruction::ICmp:
1428        // X == undef -> undef.  Other comparisons get more complicated.
1429        if (cast<ICmpInst>(I)->isEquality())
1430          break;
1431        markOverdefined(I);
1432        return true;
1433      case Instruction::Call:
1434      case Instruction::Invoke: {
1435        // There are two reasons a call can have an undef result
1436        // 1. It could be tracked.
1437        // 2. It could be constant-foldable.
1438        // Because of the way we solve return values, tracked calls must
1439        // never be marked overdefined in ResolvedUndefsIn.
1440        if (Function *F = CallSite(I).getCalledFunction())
1441          if (TrackedRetVals.count(F))
1442            break;
1443
1444        // If the call is constant-foldable, we mark it overdefined because
1445        // we do not know what return values are valid.
1446        markOverdefined(I);
1447        return true;
1448      }
1449      default:
1450        // If we don't know what should happen here, conservatively mark it
1451        // overdefined.
1452        markOverdefined(I);
1453        return true;
1454      }
1455    }
1456
1457    // Check to see if we have a branch or switch on an undefined value.  If so
1458    // we force the branch to go one way or the other to make the successor
1459    // values live.  It doesn't really matter which way we force it.
1460    TerminatorInst *TI = BB->getTerminator();
1461    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1462      if (!BI->isConditional()) continue;
1463      if (!getValueState(BI->getCondition()).isUndefined())
1464        continue;
1465
1466      // If the input to SCCP is actually branch on undef, fix the undef to
1467      // false.
1468      if (isa<UndefValue>(BI->getCondition())) {
1469        BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1470        markEdgeExecutable(BB, TI->getSuccessor(1));
1471        return true;
1472      }
1473
1474      // Otherwise, it is a branch on a symbolic value which is currently
1475      // considered to be undef.  Handle this by forcing the input value to the
1476      // branch to false.
1477      markForcedConstant(BI->getCondition(),
1478                         ConstantInt::getFalse(TI->getContext()));
1479      return true;
1480    }
1481
1482    if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1483      if (!SI->getNumCases())
1484        continue;
1485      if (!getValueState(SI->getCondition()).isUndefined())
1486        continue;
1487
1488      // If the input to SCCP is actually switch on undef, fix the undef to
1489      // the first constant.
1490      if (isa<UndefValue>(SI->getCondition())) {
1491        SI->setCondition(SI->case_begin().getCaseValue());
1492        markEdgeExecutable(BB, SI->case_begin().getCaseSuccessor());
1493        return true;
1494      }
1495
1496      markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
1497      return true;
1498    }
1499  }
1500
1501  return false;
1502}
1503
1504
1505namespace {
1506  //===--------------------------------------------------------------------===//
1507  //
1508  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1509  /// Sparse Conditional Constant Propagator.
1510  ///
1511  struct SCCP : public FunctionPass {
1512    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1513      AU.addRequired<TargetLibraryInfo>();
1514    }
1515    static char ID; // Pass identification, replacement for typeid
1516    SCCP() : FunctionPass(ID) {
1517      initializeSCCPPass(*PassRegistry::getPassRegistry());
1518    }
1519
1520    // runOnFunction - Run the Sparse Conditional Constant Propagation
1521    // algorithm, and return true if the function was modified.
1522    //
1523    bool runOnFunction(Function &F);
1524  };
1525} // end anonymous namespace
1526
1527char SCCP::ID = 0;
1528INITIALIZE_PASS(SCCP, "sccp",
1529                "Sparse Conditional Constant Propagation", false, false)
1530
1531// createSCCPPass - This is the public interface to this file.
1532FunctionPass *llvm::createSCCPPass() {
1533  return new SCCP();
1534}
1535
1536static void DeleteInstructionInBlock(BasicBlock *BB) {
1537  DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
1538  ++NumDeadBlocks;
1539
1540  // Check to see if there are non-terminating instructions to delete.
1541  if (isa<TerminatorInst>(BB->begin()))
1542    return;
1543
1544  // Delete the instructions backwards, as it has a reduced likelihood of having
1545  // to update as many def-use and use-def chains.
1546  Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1547  while (EndInst != BB->begin()) {
1548    // Delete the next to last instruction.
1549    BasicBlock::iterator I = EndInst;
1550    Instruction *Inst = --I;
1551    if (!Inst->use_empty())
1552      Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1553    if (isa<LandingPadInst>(Inst)) {
1554      EndInst = Inst;
1555      continue;
1556    }
1557    BB->getInstList().erase(Inst);
1558    ++NumInstRemoved;
1559  }
1560}
1561
1562// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1563// and return true if the function was modified.
1564//
1565bool SCCP::runOnFunction(Function &F) {
1566  DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1567  const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
1568  const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
1569  SCCPSolver Solver(TD, TLI);
1570
1571  // Mark the first block of the function as being executable.
1572  Solver.MarkBlockExecutable(F.begin());
1573
1574  // Mark all arguments to the function as being overdefined.
1575  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1576    Solver.markAnythingOverdefined(AI);
1577
1578  // Solve for constants.
1579  bool ResolvedUndefs = true;
1580  while (ResolvedUndefs) {
1581    Solver.Solve();
1582    DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1583    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1584  }
1585
1586  bool MadeChanges = false;
1587
1588  // If we decided that there are basic blocks that are dead in this function,
1589  // delete their contents now.  Note that we cannot actually delete the blocks,
1590  // as we cannot modify the CFG of the function.
1591
1592  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1593    if (!Solver.isBlockExecutable(BB)) {
1594      DeleteInstructionInBlock(BB);
1595      MadeChanges = true;
1596      continue;
1597    }
1598
1599    // Iterate over all of the instructions in a function, replacing them with
1600    // constants if we have found them to be of constant values.
1601    //
1602    for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1603      Instruction *Inst = BI++;
1604      if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1605        continue;
1606
1607      // TODO: Reconstruct structs from their elements.
1608      if (Inst->getType()->isStructTy())
1609        continue;
1610
1611      LatticeVal IV = Solver.getLatticeValueFor(Inst);
1612      if (IV.isOverdefined())
1613        continue;
1614
1615      Constant *Const = IV.isConstant()
1616        ? IV.getConstant() : UndefValue::get(Inst->getType());
1617      DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst);
1618
1619      // Replaces all of the uses of a variable with uses of the constant.
1620      Inst->replaceAllUsesWith(Const);
1621
1622      // Delete the instruction.
1623      Inst->eraseFromParent();
1624
1625      // Hey, we just changed something!
1626      MadeChanges = true;
1627      ++NumInstRemoved;
1628    }
1629  }
1630
1631  return MadeChanges;
1632}
1633
1634namespace {
1635  //===--------------------------------------------------------------------===//
1636  //
1637  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1638  /// Constant Propagation.
1639  ///
1640  struct IPSCCP : public ModulePass {
1641    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1642      AU.addRequired<TargetLibraryInfo>();
1643    }
1644    static char ID;
1645    IPSCCP() : ModulePass(ID) {
1646      initializeIPSCCPPass(*PassRegistry::getPassRegistry());
1647    }
1648    bool runOnModule(Module &M);
1649  };
1650} // end anonymous namespace
1651
1652char IPSCCP::ID = 0;
1653INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp",
1654                "Interprocedural Sparse Conditional Constant Propagation",
1655                false, false)
1656INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
1657INITIALIZE_PASS_END(IPSCCP, "ipsccp",
1658                "Interprocedural Sparse Conditional Constant Propagation",
1659                false, false)
1660
1661// createIPSCCPPass - This is the public interface to this file.
1662ModulePass *llvm::createIPSCCPPass() {
1663  return new IPSCCP();
1664}
1665
1666
1667static bool AddressIsTaken(const GlobalValue *GV) {
1668  // Delete any dead constantexpr klingons.
1669  GV->removeDeadConstantUsers();
1670
1671  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1672       UI != E; ++UI) {
1673    const User *U = *UI;
1674    if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
1675      if (SI->getOperand(0) == GV || SI->isVolatile())
1676        return true;  // Storing addr of GV.
1677    } else if (isa<InvokeInst>(U) || isa<CallInst>(U)) {
1678      // Make sure we are calling the function, not passing the address.
1679      ImmutableCallSite CS(cast<Instruction>(U));
1680      if (!CS.isCallee(UI))
1681        return true;
1682    } else if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1683      if (LI->isVolatile())
1684        return true;
1685    } else if (isa<BlockAddress>(U)) {
1686      // blockaddress doesn't take the address of the function, it takes addr
1687      // of label.
1688    } else {
1689      return true;
1690    }
1691  }
1692  return false;
1693}
1694
1695bool IPSCCP::runOnModule(Module &M) {
1696  const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
1697  const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
1698  SCCPSolver Solver(TD, TLI);
1699
1700  // AddressTakenFunctions - This set keeps track of the address-taken functions
1701  // that are in the input.  As IPSCCP runs through and simplifies code,
1702  // functions that were address taken can end up losing their
1703  // address-taken-ness.  Because of this, we keep track of their addresses from
1704  // the first pass so we can use them for the later simplification pass.
1705  SmallPtrSet<Function*, 32> AddressTakenFunctions;
1706
1707  // Loop over all functions, marking arguments to those with their addresses
1708  // taken or that are external as overdefined.
1709  //
1710  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1711    if (F->isDeclaration())
1712      continue;
1713
1714    // If this is a strong or ODR definition of this function, then we can
1715    // propagate information about its result into callsites of it.
1716    if (!F->mayBeOverridden())
1717      Solver.AddTrackedFunction(F);
1718
1719    // If this function only has direct calls that we can see, we can track its
1720    // arguments and return value aggressively, and can assume it is not called
1721    // unless we see evidence to the contrary.
1722    if (F->hasLocalLinkage()) {
1723      if (AddressIsTaken(F))
1724        AddressTakenFunctions.insert(F);
1725      else {
1726        Solver.AddArgumentTrackedFunction(F);
1727        continue;
1728      }
1729    }
1730
1731    // Assume the function is called.
1732    Solver.MarkBlockExecutable(F->begin());
1733
1734    // Assume nothing about the incoming arguments.
1735    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1736         AI != E; ++AI)
1737      Solver.markAnythingOverdefined(AI);
1738  }
1739
1740  // Loop over global variables.  We inform the solver about any internal global
1741  // variables that do not have their 'addresses taken'.  If they don't have
1742  // their addresses taken, we can propagate constants through them.
1743  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1744       G != E; ++G)
1745    if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1746      Solver.TrackValueOfGlobalVariable(G);
1747
1748  // Solve for constants.
1749  bool ResolvedUndefs = true;
1750  while (ResolvedUndefs) {
1751    Solver.Solve();
1752
1753    DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1754    ResolvedUndefs = false;
1755    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1756      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1757  }
1758
1759  bool MadeChanges = false;
1760
1761  // Iterate over all of the instructions in the module, replacing them with
1762  // constants if we have found them to be of constant values.
1763  //
1764  SmallVector<BasicBlock*, 512> BlocksToErase;
1765
1766  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1767    if (Solver.isBlockExecutable(F->begin())) {
1768      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1769           AI != E; ++AI) {
1770        if (AI->use_empty() || AI->getType()->isStructTy()) continue;
1771
1772        // TODO: Could use getStructLatticeValueFor to find out if the entire
1773        // result is a constant and replace it entirely if so.
1774
1775        LatticeVal IV = Solver.getLatticeValueFor(AI);
1776        if (IV.isOverdefined()) continue;
1777
1778        Constant *CST = IV.isConstant() ?
1779        IV.getConstant() : UndefValue::get(AI->getType());
1780        DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n");
1781
1782        // Replaces all of the uses of a variable with uses of the
1783        // constant.
1784        AI->replaceAllUsesWith(CST);
1785        ++IPNumArgsElimed;
1786      }
1787    }
1788
1789    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
1790      if (!Solver.isBlockExecutable(BB)) {
1791        DeleteInstructionInBlock(BB);
1792        MadeChanges = true;
1793
1794        TerminatorInst *TI = BB->getTerminator();
1795        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1796          BasicBlock *Succ = TI->getSuccessor(i);
1797          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1798            TI->getSuccessor(i)->removePredecessor(BB);
1799        }
1800        if (!TI->use_empty())
1801          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1802        TI->eraseFromParent();
1803
1804        if (&*BB != &F->front())
1805          BlocksToErase.push_back(BB);
1806        else
1807          new UnreachableInst(M.getContext(), BB);
1808        continue;
1809      }
1810
1811      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1812        Instruction *Inst = BI++;
1813        if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
1814          continue;
1815
1816        // TODO: Could use getStructLatticeValueFor to find out if the entire
1817        // result is a constant and replace it entirely if so.
1818
1819        LatticeVal IV = Solver.getLatticeValueFor(Inst);
1820        if (IV.isOverdefined())
1821          continue;
1822
1823        Constant *Const = IV.isConstant()
1824          ? IV.getConstant() : UndefValue::get(Inst->getType());
1825        DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst);
1826
1827        // Replaces all of the uses of a variable with uses of the
1828        // constant.
1829        Inst->replaceAllUsesWith(Const);
1830
1831        // Delete the instruction.
1832        if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1833          Inst->eraseFromParent();
1834
1835        // Hey, we just changed something!
1836        MadeChanges = true;
1837        ++IPNumInstRemoved;
1838      }
1839    }
1840
1841    // Now that all instructions in the function are constant folded, erase dead
1842    // blocks, because we can now use ConstantFoldTerminator to get rid of
1843    // in-edges.
1844    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1845      // If there are any PHI nodes in this successor, drop entries for BB now.
1846      BasicBlock *DeadBB = BlocksToErase[i];
1847      for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end();
1848           UI != UE; ) {
1849        // Grab the user and then increment the iterator early, as the user
1850        // will be deleted. Step past all adjacent uses from the same user.
1851        Instruction *I = dyn_cast<Instruction>(*UI);
1852        do { ++UI; } while (UI != UE && *UI == I);
1853
1854        // Ignore blockaddress users; BasicBlock's dtor will handle them.
1855        if (!I) continue;
1856
1857        bool Folded = ConstantFoldTerminator(I->getParent());
1858        if (!Folded) {
1859          // The constant folder may not have been able to fold the terminator
1860          // if this is a branch or switch on undef.  Fold it manually as a
1861          // branch to the first successor.
1862#ifndef NDEBUG
1863          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1864            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1865                   "Branch should be foldable!");
1866          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1867            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1868          } else {
1869            llvm_unreachable("Didn't fold away reference to block!");
1870          }
1871#endif
1872
1873          // Make this an uncond branch to the first successor.
1874          TerminatorInst *TI = I->getParent()->getTerminator();
1875          BranchInst::Create(TI->getSuccessor(0), TI);
1876
1877          // Remove entries in successor phi nodes to remove edges.
1878          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1879            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1880
1881          // Remove the old terminator.
1882          TI->eraseFromParent();
1883        }
1884      }
1885
1886      // Finally, delete the basic block.
1887      F->getBasicBlockList().erase(DeadBB);
1888    }
1889    BlocksToErase.clear();
1890  }
1891
1892  // If we inferred constant or undef return values for a function, we replaced
1893  // all call uses with the inferred value.  This means we don't need to bother
1894  // actually returning anything from the function.  Replace all return
1895  // instructions with return undef.
1896  //
1897  // Do this in two stages: first identify the functions we should process, then
1898  // actually zap their returns.  This is important because we can only do this
1899  // if the address of the function isn't taken.  In cases where a return is the
1900  // last use of a function, the order of processing functions would affect
1901  // whether other functions are optimizable.
1902  SmallVector<ReturnInst*, 8> ReturnsToZap;
1903
1904  // TODO: Process multiple value ret instructions also.
1905  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1906  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1907       E = RV.end(); I != E; ++I) {
1908    Function *F = I->first;
1909    if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
1910      continue;
1911
1912    // We can only do this if we know that nothing else can call the function.
1913    if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
1914      continue;
1915
1916    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1917      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1918        if (!isa<UndefValue>(RI->getOperand(0)))
1919          ReturnsToZap.push_back(RI);
1920  }
1921
1922  // Zap all returns which we've identified as zap to change.
1923  for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
1924    Function *F = ReturnsToZap[i]->getParent()->getParent();
1925    ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
1926  }
1927
1928  // If we inferred constant or undef values for globals variables, we can
1929  // delete the global and any stores that remain to it.
1930  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1931  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1932         E = TG.end(); I != E; ++I) {
1933    GlobalVariable *GV = I->first;
1934    assert(!I->second.isOverdefined() &&
1935           "Overdefined values should have been taken out of the map!");
1936    DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1937    while (!GV->use_empty()) {
1938      StoreInst *SI = cast<StoreInst>(GV->use_back());
1939      SI->eraseFromParent();
1940    }
1941    M.getGlobalList().erase(GV);
1942    ++IPNumGlobalConst;
1943  }
1944
1945  return MadeChanges;
1946}
1947