SCCP.cpp revision 0b8c9a80f20772c3793201ab5b251d3520b9cea3
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18//===----------------------------------------------------------------------===// 19 20#define DEBUG_TYPE "sccp" 21#include "llvm/Transforms/Scalar.h" 22#include "llvm/ADT/DenseMap.h" 23#include "llvm/ADT/DenseSet.h" 24#include "llvm/ADT/PointerIntPair.h" 25#include "llvm/ADT/SmallPtrSet.h" 26#include "llvm/ADT/SmallVector.h" 27#include "llvm/ADT/Statistic.h" 28#include "llvm/Analysis/ConstantFolding.h" 29#include "llvm/IR/Constants.h" 30#include "llvm/IR/DataLayout.h" 31#include "llvm/IR/DerivedTypes.h" 32#include "llvm/IR/Instructions.h" 33#include "llvm/InstVisitor.h" 34#include "llvm/Pass.h" 35#include "llvm/Support/CallSite.h" 36#include "llvm/Support/Debug.h" 37#include "llvm/Support/ErrorHandling.h" 38#include "llvm/Support/raw_ostream.h" 39#include "llvm/Target/TargetLibraryInfo.h" 40#include "llvm/Transforms/IPO.h" 41#include "llvm/Transforms/Utils/Local.h" 42#include <algorithm> 43using namespace llvm; 44 45STATISTIC(NumInstRemoved, "Number of instructions removed"); 46STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 47 48STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); 49STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 50STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 51 52namespace { 53/// LatticeVal class - This class represents the different lattice values that 54/// an LLVM value may occupy. It is a simple class with value semantics. 55/// 56class LatticeVal { 57 enum LatticeValueTy { 58 /// undefined - This LLVM Value has no known value yet. 59 undefined, 60 61 /// constant - This LLVM Value has a specific constant value. 62 constant, 63 64 /// forcedconstant - This LLVM Value was thought to be undef until 65 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 66 /// with another (different) constant, it goes to overdefined, instead of 67 /// asserting. 68 forcedconstant, 69 70 /// overdefined - This instruction is not known to be constant, and we know 71 /// it has a value. 72 overdefined 73 }; 74 75 /// Val: This stores the current lattice value along with the Constant* for 76 /// the constant if this is a 'constant' or 'forcedconstant' value. 77 PointerIntPair<Constant *, 2, LatticeValueTy> Val; 78 79 LatticeValueTy getLatticeValue() const { 80 return Val.getInt(); 81 } 82 83public: 84 LatticeVal() : Val(0, undefined) {} 85 86 bool isUndefined() const { return getLatticeValue() == undefined; } 87 bool isConstant() const { 88 return getLatticeValue() == constant || getLatticeValue() == forcedconstant; 89 } 90 bool isOverdefined() const { return getLatticeValue() == overdefined; } 91 92 Constant *getConstant() const { 93 assert(isConstant() && "Cannot get the constant of a non-constant!"); 94 return Val.getPointer(); 95 } 96 97 /// markOverdefined - Return true if this is a change in status. 98 bool markOverdefined() { 99 if (isOverdefined()) 100 return false; 101 102 Val.setInt(overdefined); 103 return true; 104 } 105 106 /// markConstant - Return true if this is a change in status. 107 bool markConstant(Constant *V) { 108 if (getLatticeValue() == constant) { // Constant but not forcedconstant. 109 assert(getConstant() == V && "Marking constant with different value"); 110 return false; 111 } 112 113 if (isUndefined()) { 114 Val.setInt(constant); 115 assert(V && "Marking constant with NULL"); 116 Val.setPointer(V); 117 } else { 118 assert(getLatticeValue() == forcedconstant && 119 "Cannot move from overdefined to constant!"); 120 // Stay at forcedconstant if the constant is the same. 121 if (V == getConstant()) return false; 122 123 // Otherwise, we go to overdefined. Assumptions made based on the 124 // forced value are possibly wrong. Assuming this is another constant 125 // could expose a contradiction. 126 Val.setInt(overdefined); 127 } 128 return true; 129 } 130 131 /// getConstantInt - If this is a constant with a ConstantInt value, return it 132 /// otherwise return null. 133 ConstantInt *getConstantInt() const { 134 if (isConstant()) 135 return dyn_cast<ConstantInt>(getConstant()); 136 return 0; 137 } 138 139 void markForcedConstant(Constant *V) { 140 assert(isUndefined() && "Can't force a defined value!"); 141 Val.setInt(forcedconstant); 142 Val.setPointer(V); 143 } 144}; 145} // end anonymous namespace. 146 147 148namespace { 149 150//===----------------------------------------------------------------------===// 151// 152/// SCCPSolver - This class is a general purpose solver for Sparse Conditional 153/// Constant Propagation. 154/// 155class SCCPSolver : public InstVisitor<SCCPSolver> { 156 const DataLayout *TD; 157 const TargetLibraryInfo *TLI; 158 SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable. 159 DenseMap<Value*, LatticeVal> ValueState; // The state each value is in. 160 161 /// StructValueState - This maintains ValueState for values that have 162 /// StructType, for example for formal arguments, calls, insertelement, etc. 163 /// 164 DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState; 165 166 /// GlobalValue - If we are tracking any values for the contents of a global 167 /// variable, we keep a mapping from the constant accessor to the element of 168 /// the global, to the currently known value. If the value becomes 169 /// overdefined, it's entry is simply removed from this map. 170 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; 171 172 /// TrackedRetVals - If we are tracking arguments into and the return 173 /// value out of a function, it will have an entry in this map, indicating 174 /// what the known return value for the function is. 175 DenseMap<Function*, LatticeVal> TrackedRetVals; 176 177 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 178 /// that return multiple values. 179 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; 180 181 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is 182 /// represented here for efficient lookup. 183 SmallPtrSet<Function*, 16> MRVFunctionsTracked; 184 185 /// TrackingIncomingArguments - This is the set of functions for whose 186 /// arguments we make optimistic assumptions about and try to prove as 187 /// constants. 188 SmallPtrSet<Function*, 16> TrackingIncomingArguments; 189 190 /// The reason for two worklists is that overdefined is the lowest state 191 /// on the lattice, and moving things to overdefined as fast as possible 192 /// makes SCCP converge much faster. 193 /// 194 /// By having a separate worklist, we accomplish this because everything 195 /// possibly overdefined will become overdefined at the soonest possible 196 /// point. 197 SmallVector<Value*, 64> OverdefinedInstWorkList; 198 SmallVector<Value*, 64> InstWorkList; 199 200 201 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list 202 203 /// KnownFeasibleEdges - Entries in this set are edges which have already had 204 /// PHI nodes retriggered. 205 typedef std::pair<BasicBlock*, BasicBlock*> Edge; 206 DenseSet<Edge> KnownFeasibleEdges; 207public: 208 SCCPSolver(const DataLayout *td, const TargetLibraryInfo *tli) 209 : TD(td), TLI(tli) {} 210 211 /// MarkBlockExecutable - This method can be used by clients to mark all of 212 /// the blocks that are known to be intrinsically live in the processed unit. 213 /// 214 /// This returns true if the block was not considered live before. 215 bool MarkBlockExecutable(BasicBlock *BB) { 216 if (!BBExecutable.insert(BB)) return false; 217 DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n"); 218 BBWorkList.push_back(BB); // Add the block to the work list! 219 return true; 220 } 221 222 /// TrackValueOfGlobalVariable - Clients can use this method to 223 /// inform the SCCPSolver that it should track loads and stores to the 224 /// specified global variable if it can. This is only legal to call if 225 /// performing Interprocedural SCCP. 226 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 227 // We only track the contents of scalar globals. 228 if (GV->getType()->getElementType()->isSingleValueType()) { 229 LatticeVal &IV = TrackedGlobals[GV]; 230 if (!isa<UndefValue>(GV->getInitializer())) 231 IV.markConstant(GV->getInitializer()); 232 } 233 } 234 235 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 236 /// and out of the specified function (which cannot have its address taken), 237 /// this method must be called. 238 void AddTrackedFunction(Function *F) { 239 // Add an entry, F -> undef. 240 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 241 MRVFunctionsTracked.insert(F); 242 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 243 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), 244 LatticeVal())); 245 } else 246 TrackedRetVals.insert(std::make_pair(F, LatticeVal())); 247 } 248 249 void AddArgumentTrackedFunction(Function *F) { 250 TrackingIncomingArguments.insert(F); 251 } 252 253 /// Solve - Solve for constants and executable blocks. 254 /// 255 void Solve(); 256 257 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 258 /// that branches on undef values cannot reach any of their successors. 259 /// However, this is not a safe assumption. After we solve dataflow, this 260 /// method should be use to handle this. If this returns true, the solver 261 /// should be rerun. 262 bool ResolvedUndefsIn(Function &F); 263 264 bool isBlockExecutable(BasicBlock *BB) const { 265 return BBExecutable.count(BB); 266 } 267 268 LatticeVal getLatticeValueFor(Value *V) const { 269 DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V); 270 assert(I != ValueState.end() && "V is not in valuemap!"); 271 return I->second; 272 } 273 274 /*LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const { 275 DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I = 276 StructValueState.find(std::make_pair(V, i)); 277 assert(I != StructValueState.end() && "V is not in valuemap!"); 278 return I->second; 279 }*/ 280 281 /// getTrackedRetVals - Get the inferred return value map. 282 /// 283 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { 284 return TrackedRetVals; 285 } 286 287 /// getTrackedGlobals - Get and return the set of inferred initializers for 288 /// global variables. 289 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 290 return TrackedGlobals; 291 } 292 293 void markOverdefined(Value *V) { 294 assert(!V->getType()->isStructTy() && "Should use other method"); 295 markOverdefined(ValueState[V], V); 296 } 297 298 /// markAnythingOverdefined - Mark the specified value overdefined. This 299 /// works with both scalars and structs. 300 void markAnythingOverdefined(Value *V) { 301 if (StructType *STy = dyn_cast<StructType>(V->getType())) 302 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 303 markOverdefined(getStructValueState(V, i), V); 304 else 305 markOverdefined(V); 306 } 307 308private: 309 // markConstant - Make a value be marked as "constant". If the value 310 // is not already a constant, add it to the instruction work list so that 311 // the users of the instruction are updated later. 312 // 313 void markConstant(LatticeVal &IV, Value *V, Constant *C) { 314 if (!IV.markConstant(C)) return; 315 DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); 316 if (IV.isOverdefined()) 317 OverdefinedInstWorkList.push_back(V); 318 else 319 InstWorkList.push_back(V); 320 } 321 322 void markConstant(Value *V, Constant *C) { 323 assert(!V->getType()->isStructTy() && "Should use other method"); 324 markConstant(ValueState[V], V, C); 325 } 326 327 void markForcedConstant(Value *V, Constant *C) { 328 assert(!V->getType()->isStructTy() && "Should use other method"); 329 LatticeVal &IV = ValueState[V]; 330 IV.markForcedConstant(C); 331 DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); 332 if (IV.isOverdefined()) 333 OverdefinedInstWorkList.push_back(V); 334 else 335 InstWorkList.push_back(V); 336 } 337 338 339 // markOverdefined - Make a value be marked as "overdefined". If the 340 // value is not already overdefined, add it to the overdefined instruction 341 // work list so that the users of the instruction are updated later. 342 void markOverdefined(LatticeVal &IV, Value *V) { 343 if (!IV.markOverdefined()) return; 344 345 DEBUG(dbgs() << "markOverdefined: "; 346 if (Function *F = dyn_cast<Function>(V)) 347 dbgs() << "Function '" << F->getName() << "'\n"; 348 else 349 dbgs() << *V << '\n'); 350 // Only instructions go on the work list 351 OverdefinedInstWorkList.push_back(V); 352 } 353 354 void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { 355 if (IV.isOverdefined() || MergeWithV.isUndefined()) 356 return; // Noop. 357 if (MergeWithV.isOverdefined()) 358 markOverdefined(IV, V); 359 else if (IV.isUndefined()) 360 markConstant(IV, V, MergeWithV.getConstant()); 361 else if (IV.getConstant() != MergeWithV.getConstant()) 362 markOverdefined(IV, V); 363 } 364 365 void mergeInValue(Value *V, LatticeVal MergeWithV) { 366 assert(!V->getType()->isStructTy() && "Should use other method"); 367 mergeInValue(ValueState[V], V, MergeWithV); 368 } 369 370 371 /// getValueState - Return the LatticeVal object that corresponds to the 372 /// value. This function handles the case when the value hasn't been seen yet 373 /// by properly seeding constants etc. 374 LatticeVal &getValueState(Value *V) { 375 assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 376 377 std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I = 378 ValueState.insert(std::make_pair(V, LatticeVal())); 379 LatticeVal &LV = I.first->second; 380 381 if (!I.second) 382 return LV; // Common case, already in the map. 383 384 if (Constant *C = dyn_cast<Constant>(V)) { 385 // Undef values remain undefined. 386 if (!isa<UndefValue>(V)) 387 LV.markConstant(C); // Constants are constant 388 } 389 390 // All others are underdefined by default. 391 return LV; 392 } 393 394 /// getStructValueState - Return the LatticeVal object that corresponds to the 395 /// value/field pair. This function handles the case when the value hasn't 396 /// been seen yet by properly seeding constants etc. 397 LatticeVal &getStructValueState(Value *V, unsigned i) { 398 assert(V->getType()->isStructTy() && "Should use getValueState"); 399 assert(i < cast<StructType>(V->getType())->getNumElements() && 400 "Invalid element #"); 401 402 std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator, 403 bool> I = StructValueState.insert( 404 std::make_pair(std::make_pair(V, i), LatticeVal())); 405 LatticeVal &LV = I.first->second; 406 407 if (!I.second) 408 return LV; // Common case, already in the map. 409 410 if (Constant *C = dyn_cast<Constant>(V)) { 411 Constant *Elt = C->getAggregateElement(i); 412 413 if (Elt == 0) 414 LV.markOverdefined(); // Unknown sort of constant. 415 else if (isa<UndefValue>(Elt)) 416 ; // Undef values remain undefined. 417 else 418 LV.markConstant(Elt); // Constants are constant. 419 } 420 421 // All others are underdefined by default. 422 return LV; 423 } 424 425 426 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 427 /// work list if it is not already executable. 428 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 429 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 430 return; // This edge is already known to be executable! 431 432 if (!MarkBlockExecutable(Dest)) { 433 // If the destination is already executable, we just made an *edge* 434 // feasible that wasn't before. Revisit the PHI nodes in the block 435 // because they have potentially new operands. 436 DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 437 << " -> " << Dest->getName() << "\n"); 438 439 PHINode *PN; 440 for (BasicBlock::iterator I = Dest->begin(); 441 (PN = dyn_cast<PHINode>(I)); ++I) 442 visitPHINode(*PN); 443 } 444 } 445 446 // getFeasibleSuccessors - Return a vector of booleans to indicate which 447 // successors are reachable from a given terminator instruction. 448 // 449 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs); 450 451 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 452 // block to the 'To' basic block is currently feasible. 453 // 454 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 455 456 // OperandChangedState - This method is invoked on all of the users of an 457 // instruction that was just changed state somehow. Based on this 458 // information, we need to update the specified user of this instruction. 459 // 460 void OperandChangedState(Instruction *I) { 461 if (BBExecutable.count(I->getParent())) // Inst is executable? 462 visit(*I); 463 } 464 465private: 466 friend class InstVisitor<SCCPSolver>; 467 468 // visit implementations - Something changed in this instruction. Either an 469 // operand made a transition, or the instruction is newly executable. Change 470 // the value type of I to reflect these changes if appropriate. 471 void visitPHINode(PHINode &I); 472 473 // Terminators 474 void visitReturnInst(ReturnInst &I); 475 void visitTerminatorInst(TerminatorInst &TI); 476 477 void visitCastInst(CastInst &I); 478 void visitSelectInst(SelectInst &I); 479 void visitBinaryOperator(Instruction &I); 480 void visitCmpInst(CmpInst &I); 481 void visitExtractElementInst(ExtractElementInst &I); 482 void visitInsertElementInst(InsertElementInst &I); 483 void visitShuffleVectorInst(ShuffleVectorInst &I); 484 void visitExtractValueInst(ExtractValueInst &EVI); 485 void visitInsertValueInst(InsertValueInst &IVI); 486 void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); } 487 488 // Instructions that cannot be folded away. 489 void visitStoreInst (StoreInst &I); 490 void visitLoadInst (LoadInst &I); 491 void visitGetElementPtrInst(GetElementPtrInst &I); 492 void visitCallInst (CallInst &I) { 493 visitCallSite(&I); 494 } 495 void visitInvokeInst (InvokeInst &II) { 496 visitCallSite(&II); 497 visitTerminatorInst(II); 498 } 499 void visitCallSite (CallSite CS); 500 void visitResumeInst (TerminatorInst &I) { /*returns void*/ } 501 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 502 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 503 void visitFenceInst (FenceInst &I) { /*returns void*/ } 504 void visitAtomicCmpXchgInst (AtomicCmpXchgInst &I) { markOverdefined(&I); } 505 void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); } 506 void visitAllocaInst (Instruction &I) { markOverdefined(&I); } 507 void visitVAArgInst (Instruction &I) { markAnythingOverdefined(&I); } 508 509 void visitInstruction(Instruction &I) { 510 // If a new instruction is added to LLVM that we don't handle. 511 dbgs() << "SCCP: Don't know how to handle: " << I; 512 markAnythingOverdefined(&I); // Just in case 513 } 514}; 515 516} // end anonymous namespace 517 518 519// getFeasibleSuccessors - Return a vector of booleans to indicate which 520// successors are reachable from a given terminator instruction. 521// 522void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 523 SmallVector<bool, 16> &Succs) { 524 Succs.resize(TI.getNumSuccessors()); 525 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 526 if (BI->isUnconditional()) { 527 Succs[0] = true; 528 return; 529 } 530 531 LatticeVal BCValue = getValueState(BI->getCondition()); 532 ConstantInt *CI = BCValue.getConstantInt(); 533 if (CI == 0) { 534 // Overdefined condition variables, and branches on unfoldable constant 535 // conditions, mean the branch could go either way. 536 if (!BCValue.isUndefined()) 537 Succs[0] = Succs[1] = true; 538 return; 539 } 540 541 // Constant condition variables mean the branch can only go a single way. 542 Succs[CI->isZero()] = true; 543 return; 544 } 545 546 if (isa<InvokeInst>(TI)) { 547 // Invoke instructions successors are always executable. 548 Succs[0] = Succs[1] = true; 549 return; 550 } 551 552 if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 553 if (!SI->getNumCases()) { 554 Succs[0] = true; 555 return; 556 } 557 LatticeVal SCValue = getValueState(SI->getCondition()); 558 ConstantInt *CI = SCValue.getConstantInt(); 559 560 if (CI == 0) { // Overdefined or undefined condition? 561 // All destinations are executable! 562 if (!SCValue.isUndefined()) 563 Succs.assign(TI.getNumSuccessors(), true); 564 return; 565 } 566 567 Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true; 568 return; 569 } 570 571 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 572 if (isa<IndirectBrInst>(&TI)) { 573 // Just mark all destinations executable! 574 Succs.assign(TI.getNumSuccessors(), true); 575 return; 576 } 577 578#ifndef NDEBUG 579 dbgs() << "Unknown terminator instruction: " << TI << '\n'; 580#endif 581 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 582} 583 584 585// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 586// block to the 'To' basic block is currently feasible. 587// 588bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 589 assert(BBExecutable.count(To) && "Dest should always be alive!"); 590 591 // Make sure the source basic block is executable!! 592 if (!BBExecutable.count(From)) return false; 593 594 // Check to make sure this edge itself is actually feasible now. 595 TerminatorInst *TI = From->getTerminator(); 596 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 597 if (BI->isUnconditional()) 598 return true; 599 600 LatticeVal BCValue = getValueState(BI->getCondition()); 601 602 // Overdefined condition variables mean the branch could go either way, 603 // undef conditions mean that neither edge is feasible yet. 604 ConstantInt *CI = BCValue.getConstantInt(); 605 if (CI == 0) 606 return !BCValue.isUndefined(); 607 608 // Constant condition variables mean the branch can only go a single way. 609 return BI->getSuccessor(CI->isZero()) == To; 610 } 611 612 // Invoke instructions successors are always executable. 613 if (isa<InvokeInst>(TI)) 614 return true; 615 616 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 617 if (SI->getNumCases() < 1) 618 return true; 619 620 LatticeVal SCValue = getValueState(SI->getCondition()); 621 ConstantInt *CI = SCValue.getConstantInt(); 622 623 if (CI == 0) 624 return !SCValue.isUndefined(); 625 626 return SI->findCaseValue(CI).getCaseSuccessor() == To; 627 } 628 629 // Just mark all destinations executable! 630 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 631 if (isa<IndirectBrInst>(TI)) 632 return true; 633 634#ifndef NDEBUG 635 dbgs() << "Unknown terminator instruction: " << *TI << '\n'; 636#endif 637 llvm_unreachable(0); 638} 639 640// visit Implementations - Something changed in this instruction, either an 641// operand made a transition, or the instruction is newly executable. Change 642// the value type of I to reflect these changes if appropriate. This method 643// makes sure to do the following actions: 644// 645// 1. If a phi node merges two constants in, and has conflicting value coming 646// from different branches, or if the PHI node merges in an overdefined 647// value, then the PHI node becomes overdefined. 648// 2. If a phi node merges only constants in, and they all agree on value, the 649// PHI node becomes a constant value equal to that. 650// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 651// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 652// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 653// 6. If a conditional branch has a value that is constant, make the selected 654// destination executable 655// 7. If a conditional branch has a value that is overdefined, make all 656// successors executable. 657// 658void SCCPSolver::visitPHINode(PHINode &PN) { 659 // If this PN returns a struct, just mark the result overdefined. 660 // TODO: We could do a lot better than this if code actually uses this. 661 if (PN.getType()->isStructTy()) 662 return markAnythingOverdefined(&PN); 663 664 if (getValueState(&PN).isOverdefined()) 665 return; // Quick exit 666 667 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 668 // and slow us down a lot. Just mark them overdefined. 669 if (PN.getNumIncomingValues() > 64) 670 return markOverdefined(&PN); 671 672 // Look at all of the executable operands of the PHI node. If any of them 673 // are overdefined, the PHI becomes overdefined as well. If they are all 674 // constant, and they agree with each other, the PHI becomes the identical 675 // constant. If they are constant and don't agree, the PHI is overdefined. 676 // If there are no executable operands, the PHI remains undefined. 677 // 678 Constant *OperandVal = 0; 679 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 680 LatticeVal IV = getValueState(PN.getIncomingValue(i)); 681 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 682 683 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) 684 continue; 685 686 if (IV.isOverdefined()) // PHI node becomes overdefined! 687 return markOverdefined(&PN); 688 689 if (OperandVal == 0) { // Grab the first value. 690 OperandVal = IV.getConstant(); 691 continue; 692 } 693 694 // There is already a reachable operand. If we conflict with it, 695 // then the PHI node becomes overdefined. If we agree with it, we 696 // can continue on. 697 698 // Check to see if there are two different constants merging, if so, the PHI 699 // node is overdefined. 700 if (IV.getConstant() != OperandVal) 701 return markOverdefined(&PN); 702 } 703 704 // If we exited the loop, this means that the PHI node only has constant 705 // arguments that agree with each other(and OperandVal is the constant) or 706 // OperandVal is null because there are no defined incoming arguments. If 707 // this is the case, the PHI remains undefined. 708 // 709 if (OperandVal) 710 markConstant(&PN, OperandVal); // Acquire operand value 711} 712 713 714 715 716void SCCPSolver::visitReturnInst(ReturnInst &I) { 717 if (I.getNumOperands() == 0) return; // ret void 718 719 Function *F = I.getParent()->getParent(); 720 Value *ResultOp = I.getOperand(0); 721 722 // If we are tracking the return value of this function, merge it in. 723 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { 724 DenseMap<Function*, LatticeVal>::iterator TFRVI = 725 TrackedRetVals.find(F); 726 if (TFRVI != TrackedRetVals.end()) { 727 mergeInValue(TFRVI->second, F, getValueState(ResultOp)); 728 return; 729 } 730 } 731 732 // Handle functions that return multiple values. 733 if (!TrackedMultipleRetVals.empty()) { 734 if (StructType *STy = dyn_cast<StructType>(ResultOp->getType())) 735 if (MRVFunctionsTracked.count(F)) 736 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 737 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, 738 getStructValueState(ResultOp, i)); 739 740 } 741} 742 743void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 744 SmallVector<bool, 16> SuccFeasible; 745 getFeasibleSuccessors(TI, SuccFeasible); 746 747 BasicBlock *BB = TI.getParent(); 748 749 // Mark all feasible successors executable. 750 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 751 if (SuccFeasible[i]) 752 markEdgeExecutable(BB, TI.getSuccessor(i)); 753} 754 755void SCCPSolver::visitCastInst(CastInst &I) { 756 LatticeVal OpSt = getValueState(I.getOperand(0)); 757 if (OpSt.isOverdefined()) // Inherit overdefinedness of operand 758 markOverdefined(&I); 759 else if (OpSt.isConstant()) // Propagate constant value 760 markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 761 OpSt.getConstant(), I.getType())); 762} 763 764 765void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { 766 // If this returns a struct, mark all elements over defined, we don't track 767 // structs in structs. 768 if (EVI.getType()->isStructTy()) 769 return markAnythingOverdefined(&EVI); 770 771 // If this is extracting from more than one level of struct, we don't know. 772 if (EVI.getNumIndices() != 1) 773 return markOverdefined(&EVI); 774 775 Value *AggVal = EVI.getAggregateOperand(); 776 if (AggVal->getType()->isStructTy()) { 777 unsigned i = *EVI.idx_begin(); 778 LatticeVal EltVal = getStructValueState(AggVal, i); 779 mergeInValue(getValueState(&EVI), &EVI, EltVal); 780 } else { 781 // Otherwise, must be extracting from an array. 782 return markOverdefined(&EVI); 783 } 784} 785 786void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { 787 StructType *STy = dyn_cast<StructType>(IVI.getType()); 788 if (STy == 0) 789 return markOverdefined(&IVI); 790 791 // If this has more than one index, we can't handle it, drive all results to 792 // undef. 793 if (IVI.getNumIndices() != 1) 794 return markAnythingOverdefined(&IVI); 795 796 Value *Aggr = IVI.getAggregateOperand(); 797 unsigned Idx = *IVI.idx_begin(); 798 799 // Compute the result based on what we're inserting. 800 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 801 // This passes through all values that aren't the inserted element. 802 if (i != Idx) { 803 LatticeVal EltVal = getStructValueState(Aggr, i); 804 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); 805 continue; 806 } 807 808 Value *Val = IVI.getInsertedValueOperand(); 809 if (Val->getType()->isStructTy()) 810 // We don't track structs in structs. 811 markOverdefined(getStructValueState(&IVI, i), &IVI); 812 else { 813 LatticeVal InVal = getValueState(Val); 814 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); 815 } 816 } 817} 818 819void SCCPSolver::visitSelectInst(SelectInst &I) { 820 // If this select returns a struct, just mark the result overdefined. 821 // TODO: We could do a lot better than this if code actually uses this. 822 if (I.getType()->isStructTy()) 823 return markAnythingOverdefined(&I); 824 825 LatticeVal CondValue = getValueState(I.getCondition()); 826 if (CondValue.isUndefined()) 827 return; 828 829 if (ConstantInt *CondCB = CondValue.getConstantInt()) { 830 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); 831 mergeInValue(&I, getValueState(OpVal)); 832 return; 833 } 834 835 // Otherwise, the condition is overdefined or a constant we can't evaluate. 836 // See if we can produce something better than overdefined based on the T/F 837 // value. 838 LatticeVal TVal = getValueState(I.getTrueValue()); 839 LatticeVal FVal = getValueState(I.getFalseValue()); 840 841 // select ?, C, C -> C. 842 if (TVal.isConstant() && FVal.isConstant() && 843 TVal.getConstant() == FVal.getConstant()) 844 return markConstant(&I, FVal.getConstant()); 845 846 if (TVal.isUndefined()) // select ?, undef, X -> X. 847 return mergeInValue(&I, FVal); 848 if (FVal.isUndefined()) // select ?, X, undef -> X. 849 return mergeInValue(&I, TVal); 850 markOverdefined(&I); 851} 852 853// Handle Binary Operators. 854void SCCPSolver::visitBinaryOperator(Instruction &I) { 855 LatticeVal V1State = getValueState(I.getOperand(0)); 856 LatticeVal V2State = getValueState(I.getOperand(1)); 857 858 LatticeVal &IV = ValueState[&I]; 859 if (IV.isOverdefined()) return; 860 861 if (V1State.isConstant() && V2State.isConstant()) 862 return markConstant(IV, &I, 863 ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 864 V2State.getConstant())); 865 866 // If something is undef, wait for it to resolve. 867 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 868 return; 869 870 // Otherwise, one of our operands is overdefined. Try to produce something 871 // better than overdefined with some tricks. 872 873 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 874 // operand is overdefined. 875 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 876 LatticeVal *NonOverdefVal = 0; 877 if (!V1State.isOverdefined()) 878 NonOverdefVal = &V1State; 879 else if (!V2State.isOverdefined()) 880 NonOverdefVal = &V2State; 881 882 if (NonOverdefVal) { 883 if (NonOverdefVal->isUndefined()) { 884 // Could annihilate value. 885 if (I.getOpcode() == Instruction::And) 886 markConstant(IV, &I, Constant::getNullValue(I.getType())); 887 else if (VectorType *PT = dyn_cast<VectorType>(I.getType())) 888 markConstant(IV, &I, Constant::getAllOnesValue(PT)); 889 else 890 markConstant(IV, &I, 891 Constant::getAllOnesValue(I.getType())); 892 return; 893 } 894 895 if (I.getOpcode() == Instruction::And) { 896 // X and 0 = 0 897 if (NonOverdefVal->getConstant()->isNullValue()) 898 return markConstant(IV, &I, NonOverdefVal->getConstant()); 899 } else { 900 if (ConstantInt *CI = NonOverdefVal->getConstantInt()) 901 if (CI->isAllOnesValue()) // X or -1 = -1 902 return markConstant(IV, &I, NonOverdefVal->getConstant()); 903 } 904 } 905 } 906 907 908 markOverdefined(&I); 909} 910 911// Handle ICmpInst instruction. 912void SCCPSolver::visitCmpInst(CmpInst &I) { 913 LatticeVal V1State = getValueState(I.getOperand(0)); 914 LatticeVal V2State = getValueState(I.getOperand(1)); 915 916 LatticeVal &IV = ValueState[&I]; 917 if (IV.isOverdefined()) return; 918 919 if (V1State.isConstant() && V2State.isConstant()) 920 return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 921 V1State.getConstant(), 922 V2State.getConstant())); 923 924 // If operands are still undefined, wait for it to resolve. 925 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 926 return; 927 928 markOverdefined(&I); 929} 930 931void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 932 // TODO : SCCP does not handle vectors properly. 933 return markOverdefined(&I); 934 935#if 0 936 LatticeVal &ValState = getValueState(I.getOperand(0)); 937 LatticeVal &IdxState = getValueState(I.getOperand(1)); 938 939 if (ValState.isOverdefined() || IdxState.isOverdefined()) 940 markOverdefined(&I); 941 else if(ValState.isConstant() && IdxState.isConstant()) 942 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 943 IdxState.getConstant())); 944#endif 945} 946 947void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 948 // TODO : SCCP does not handle vectors properly. 949 return markOverdefined(&I); 950#if 0 951 LatticeVal &ValState = getValueState(I.getOperand(0)); 952 LatticeVal &EltState = getValueState(I.getOperand(1)); 953 LatticeVal &IdxState = getValueState(I.getOperand(2)); 954 955 if (ValState.isOverdefined() || EltState.isOverdefined() || 956 IdxState.isOverdefined()) 957 markOverdefined(&I); 958 else if(ValState.isConstant() && EltState.isConstant() && 959 IdxState.isConstant()) 960 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 961 EltState.getConstant(), 962 IdxState.getConstant())); 963 else if (ValState.isUndefined() && EltState.isConstant() && 964 IdxState.isConstant()) 965 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 966 EltState.getConstant(), 967 IdxState.getConstant())); 968#endif 969} 970 971void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 972 // TODO : SCCP does not handle vectors properly. 973 return markOverdefined(&I); 974#if 0 975 LatticeVal &V1State = getValueState(I.getOperand(0)); 976 LatticeVal &V2State = getValueState(I.getOperand(1)); 977 LatticeVal &MaskState = getValueState(I.getOperand(2)); 978 979 if (MaskState.isUndefined() || 980 (V1State.isUndefined() && V2State.isUndefined())) 981 return; // Undefined output if mask or both inputs undefined. 982 983 if (V1State.isOverdefined() || V2State.isOverdefined() || 984 MaskState.isOverdefined()) { 985 markOverdefined(&I); 986 } else { 987 // A mix of constant/undef inputs. 988 Constant *V1 = V1State.isConstant() ? 989 V1State.getConstant() : UndefValue::get(I.getType()); 990 Constant *V2 = V2State.isConstant() ? 991 V2State.getConstant() : UndefValue::get(I.getType()); 992 Constant *Mask = MaskState.isConstant() ? 993 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 994 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 995 } 996#endif 997} 998 999// Handle getelementptr instructions. If all operands are constants then we 1000// can turn this into a getelementptr ConstantExpr. 1001// 1002void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 1003 if (ValueState[&I].isOverdefined()) return; 1004 1005 SmallVector<Constant*, 8> Operands; 1006 Operands.reserve(I.getNumOperands()); 1007 1008 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1009 LatticeVal State = getValueState(I.getOperand(i)); 1010 if (State.isUndefined()) 1011 return; // Operands are not resolved yet. 1012 1013 if (State.isOverdefined()) 1014 return markOverdefined(&I); 1015 1016 assert(State.isConstant() && "Unknown state!"); 1017 Operands.push_back(State.getConstant()); 1018 } 1019 1020 Constant *Ptr = Operands[0]; 1021 ArrayRef<Constant *> Indices(Operands.begin() + 1, Operands.end()); 1022 markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices)); 1023} 1024 1025void SCCPSolver::visitStoreInst(StoreInst &SI) { 1026 // If this store is of a struct, ignore it. 1027 if (SI.getOperand(0)->getType()->isStructTy()) 1028 return; 1029 1030 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1031 return; 1032 1033 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1034 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 1035 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 1036 1037 // Get the value we are storing into the global, then merge it. 1038 mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); 1039 if (I->second.isOverdefined()) 1040 TrackedGlobals.erase(I); // No need to keep tracking this! 1041} 1042 1043 1044// Handle load instructions. If the operand is a constant pointer to a constant 1045// global, we can replace the load with the loaded constant value! 1046void SCCPSolver::visitLoadInst(LoadInst &I) { 1047 // If this load is of a struct, just mark the result overdefined. 1048 if (I.getType()->isStructTy()) 1049 return markAnythingOverdefined(&I); 1050 1051 LatticeVal PtrVal = getValueState(I.getOperand(0)); 1052 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 1053 1054 LatticeVal &IV = ValueState[&I]; 1055 if (IV.isOverdefined()) return; 1056 1057 if (!PtrVal.isConstant() || I.isVolatile()) 1058 return markOverdefined(IV, &I); 1059 1060 Constant *Ptr = PtrVal.getConstant(); 1061 1062 // load null -> null 1063 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) 1064 return markConstant(IV, &I, Constant::getNullValue(I.getType())); 1065 1066 // Transform load (constant global) into the value loaded. 1067 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 1068 if (!TrackedGlobals.empty()) { 1069 // If we are tracking this global, merge in the known value for it. 1070 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1071 TrackedGlobals.find(GV); 1072 if (It != TrackedGlobals.end()) { 1073 mergeInValue(IV, &I, It->second); 1074 return; 1075 } 1076 } 1077 } 1078 1079 // Transform load from a constant into a constant if possible. 1080 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD)) 1081 return markConstant(IV, &I, C); 1082 1083 // Otherwise we cannot say for certain what value this load will produce. 1084 // Bail out. 1085 markOverdefined(IV, &I); 1086} 1087 1088void SCCPSolver::visitCallSite(CallSite CS) { 1089 Function *F = CS.getCalledFunction(); 1090 Instruction *I = CS.getInstruction(); 1091 1092 // The common case is that we aren't tracking the callee, either because we 1093 // are not doing interprocedural analysis or the callee is indirect, or is 1094 // external. Handle these cases first. 1095 if (F == 0 || F->isDeclaration()) { 1096CallOverdefined: 1097 // Void return and not tracking callee, just bail. 1098 if (I->getType()->isVoidTy()) return; 1099 1100 // Otherwise, if we have a single return value case, and if the function is 1101 // a declaration, maybe we can constant fold it. 1102 if (F && F->isDeclaration() && !I->getType()->isStructTy() && 1103 canConstantFoldCallTo(F)) { 1104 1105 SmallVector<Constant*, 8> Operands; 1106 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1107 AI != E; ++AI) { 1108 LatticeVal State = getValueState(*AI); 1109 1110 if (State.isUndefined()) 1111 return; // Operands are not resolved yet. 1112 if (State.isOverdefined()) 1113 return markOverdefined(I); 1114 assert(State.isConstant() && "Unknown state!"); 1115 Operands.push_back(State.getConstant()); 1116 } 1117 1118 // If we can constant fold this, mark the result of the call as a 1119 // constant. 1120 if (Constant *C = ConstantFoldCall(F, Operands, TLI)) 1121 return markConstant(I, C); 1122 } 1123 1124 // Otherwise, we don't know anything about this call, mark it overdefined. 1125 return markAnythingOverdefined(I); 1126 } 1127 1128 // If this is a local function that doesn't have its address taken, mark its 1129 // entry block executable and merge in the actual arguments to the call into 1130 // the formal arguments of the function. 1131 if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ 1132 MarkBlockExecutable(F->begin()); 1133 1134 // Propagate information from this call site into the callee. 1135 CallSite::arg_iterator CAI = CS.arg_begin(); 1136 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1137 AI != E; ++AI, ++CAI) { 1138 // If this argument is byval, and if the function is not readonly, there 1139 // will be an implicit copy formed of the input aggregate. 1140 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1141 markOverdefined(AI); 1142 continue; 1143 } 1144 1145 if (StructType *STy = dyn_cast<StructType>(AI->getType())) { 1146 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1147 LatticeVal CallArg = getStructValueState(*CAI, i); 1148 mergeInValue(getStructValueState(AI, i), AI, CallArg); 1149 } 1150 } else { 1151 mergeInValue(AI, getValueState(*CAI)); 1152 } 1153 } 1154 } 1155 1156 // If this is a single/zero retval case, see if we're tracking the function. 1157 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 1158 if (!MRVFunctionsTracked.count(F)) 1159 goto CallOverdefined; // Not tracking this callee. 1160 1161 // If we are tracking this callee, propagate the result of the function 1162 // into this call site. 1163 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1164 mergeInValue(getStructValueState(I, i), I, 1165 TrackedMultipleRetVals[std::make_pair(F, i)]); 1166 } else { 1167 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); 1168 if (TFRVI == TrackedRetVals.end()) 1169 goto CallOverdefined; // Not tracking this callee. 1170 1171 // If so, propagate the return value of the callee into this call result. 1172 mergeInValue(I, TFRVI->second); 1173 } 1174} 1175 1176void SCCPSolver::Solve() { 1177 // Process the work lists until they are empty! 1178 while (!BBWorkList.empty() || !InstWorkList.empty() || 1179 !OverdefinedInstWorkList.empty()) { 1180 // Process the overdefined instruction's work list first, which drives other 1181 // things to overdefined more quickly. 1182 while (!OverdefinedInstWorkList.empty()) { 1183 Value *I = OverdefinedInstWorkList.pop_back_val(); 1184 1185 DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); 1186 1187 // "I" got into the work list because it either made the transition from 1188 // bottom to constant 1189 // 1190 // Anything on this worklist that is overdefined need not be visited 1191 // since all of its users will have already been marked as overdefined 1192 // Update all of the users of this instruction's value. 1193 // 1194 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1195 UI != E; ++UI) 1196 if (Instruction *I = dyn_cast<Instruction>(*UI)) 1197 OperandChangedState(I); 1198 } 1199 1200 // Process the instruction work list. 1201 while (!InstWorkList.empty()) { 1202 Value *I = InstWorkList.pop_back_val(); 1203 1204 DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); 1205 1206 // "I" got into the work list because it made the transition from undef to 1207 // constant. 1208 // 1209 // Anything on this worklist that is overdefined need not be visited 1210 // since all of its users will have already been marked as overdefined. 1211 // Update all of the users of this instruction's value. 1212 // 1213 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) 1214 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1215 UI != E; ++UI) 1216 if (Instruction *I = dyn_cast<Instruction>(*UI)) 1217 OperandChangedState(I); 1218 } 1219 1220 // Process the basic block work list. 1221 while (!BBWorkList.empty()) { 1222 BasicBlock *BB = BBWorkList.back(); 1223 BBWorkList.pop_back(); 1224 1225 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); 1226 1227 // Notify all instructions in this basic block that they are newly 1228 // executable. 1229 visit(BB); 1230 } 1231 } 1232} 1233 1234/// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1235/// that branches on undef values cannot reach any of their successors. 1236/// However, this is not a safe assumption. After we solve dataflow, this 1237/// method should be use to handle this. If this returns true, the solver 1238/// should be rerun. 1239/// 1240/// This method handles this by finding an unresolved branch and marking it one 1241/// of the edges from the block as being feasible, even though the condition 1242/// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1243/// CFG and only slightly pessimizes the analysis results (by marking one, 1244/// potentially infeasible, edge feasible). This cannot usefully modify the 1245/// constraints on the condition of the branch, as that would impact other users 1246/// of the value. 1247/// 1248/// This scan also checks for values that use undefs, whose results are actually 1249/// defined. For example, 'zext i8 undef to i32' should produce all zeros 1250/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1251/// even if X isn't defined. 1252bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1253 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1254 if (!BBExecutable.count(BB)) 1255 continue; 1256 1257 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1258 // Look for instructions which produce undef values. 1259 if (I->getType()->isVoidTy()) continue; 1260 1261 if (StructType *STy = dyn_cast<StructType>(I->getType())) { 1262 // Only a few things that can be structs matter for undef. 1263 1264 // Tracked calls must never be marked overdefined in ResolvedUndefsIn. 1265 if (CallSite CS = CallSite(I)) 1266 if (Function *F = CS.getCalledFunction()) 1267 if (MRVFunctionsTracked.count(F)) 1268 continue; 1269 1270 // extractvalue and insertvalue don't need to be marked; they are 1271 // tracked as precisely as their operands. 1272 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) 1273 continue; 1274 1275 // Send the results of everything else to overdefined. We could be 1276 // more precise than this but it isn't worth bothering. 1277 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1278 LatticeVal &LV = getStructValueState(I, i); 1279 if (LV.isUndefined()) 1280 markOverdefined(LV, I); 1281 } 1282 continue; 1283 } 1284 1285 LatticeVal &LV = getValueState(I); 1286 if (!LV.isUndefined()) continue; 1287 1288 // extractvalue is safe; check here because the argument is a struct. 1289 if (isa<ExtractValueInst>(I)) 1290 continue; 1291 1292 // Compute the operand LatticeVals, for convenience below. 1293 // Anything taking a struct is conservatively assumed to require 1294 // overdefined markings. 1295 if (I->getOperand(0)->getType()->isStructTy()) { 1296 markOverdefined(I); 1297 return true; 1298 } 1299 LatticeVal Op0LV = getValueState(I->getOperand(0)); 1300 LatticeVal Op1LV; 1301 if (I->getNumOperands() == 2) { 1302 if (I->getOperand(1)->getType()->isStructTy()) { 1303 markOverdefined(I); 1304 return true; 1305 } 1306 1307 Op1LV = getValueState(I->getOperand(1)); 1308 } 1309 // If this is an instructions whose result is defined even if the input is 1310 // not fully defined, propagate the information. 1311 Type *ITy = I->getType(); 1312 switch (I->getOpcode()) { 1313 case Instruction::Add: 1314 case Instruction::Sub: 1315 case Instruction::Trunc: 1316 case Instruction::FPTrunc: 1317 case Instruction::BitCast: 1318 break; // Any undef -> undef 1319 case Instruction::FSub: 1320 case Instruction::FAdd: 1321 case Instruction::FMul: 1322 case Instruction::FDiv: 1323 case Instruction::FRem: 1324 // Floating-point binary operation: be conservative. 1325 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1326 markForcedConstant(I, Constant::getNullValue(ITy)); 1327 else 1328 markOverdefined(I); 1329 return true; 1330 case Instruction::ZExt: 1331 case Instruction::SExt: 1332 case Instruction::FPToUI: 1333 case Instruction::FPToSI: 1334 case Instruction::FPExt: 1335 case Instruction::PtrToInt: 1336 case Instruction::IntToPtr: 1337 case Instruction::SIToFP: 1338 case Instruction::UIToFP: 1339 // undef -> 0; some outputs are impossible 1340 markForcedConstant(I, Constant::getNullValue(ITy)); 1341 return true; 1342 case Instruction::Mul: 1343 case Instruction::And: 1344 // Both operands undef -> undef 1345 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1346 break; 1347 // undef * X -> 0. X could be zero. 1348 // undef & X -> 0. X could be zero. 1349 markForcedConstant(I, Constant::getNullValue(ITy)); 1350 return true; 1351 1352 case Instruction::Or: 1353 // Both operands undef -> undef 1354 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1355 break; 1356 // undef | X -> -1. X could be -1. 1357 markForcedConstant(I, Constant::getAllOnesValue(ITy)); 1358 return true; 1359 1360 case Instruction::Xor: 1361 // undef ^ undef -> 0; strictly speaking, this is not strictly 1362 // necessary, but we try to be nice to people who expect this 1363 // behavior in simple cases 1364 if (Op0LV.isUndefined() && Op1LV.isUndefined()) { 1365 markForcedConstant(I, Constant::getNullValue(ITy)); 1366 return true; 1367 } 1368 // undef ^ X -> undef 1369 break; 1370 1371 case Instruction::SDiv: 1372 case Instruction::UDiv: 1373 case Instruction::SRem: 1374 case Instruction::URem: 1375 // X / undef -> undef. No change. 1376 // X % undef -> undef. No change. 1377 if (Op1LV.isUndefined()) break; 1378 1379 // undef / X -> 0. X could be maxint. 1380 // undef % X -> 0. X could be 1. 1381 markForcedConstant(I, Constant::getNullValue(ITy)); 1382 return true; 1383 1384 case Instruction::AShr: 1385 // X >>a undef -> undef. 1386 if (Op1LV.isUndefined()) break; 1387 1388 // undef >>a X -> all ones 1389 markForcedConstant(I, Constant::getAllOnesValue(ITy)); 1390 return true; 1391 case Instruction::LShr: 1392 case Instruction::Shl: 1393 // X << undef -> undef. 1394 // X >> undef -> undef. 1395 if (Op1LV.isUndefined()) break; 1396 1397 // undef << X -> 0 1398 // undef >> X -> 0 1399 markForcedConstant(I, Constant::getNullValue(ITy)); 1400 return true; 1401 case Instruction::Select: 1402 Op1LV = getValueState(I->getOperand(1)); 1403 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1404 if (Op0LV.isUndefined()) { 1405 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1406 Op1LV = getValueState(I->getOperand(2)); 1407 } else if (Op1LV.isUndefined()) { 1408 // c ? undef : undef -> undef. No change. 1409 Op1LV = getValueState(I->getOperand(2)); 1410 if (Op1LV.isUndefined()) 1411 break; 1412 // Otherwise, c ? undef : x -> x. 1413 } else { 1414 // Leave Op1LV as Operand(1)'s LatticeValue. 1415 } 1416 1417 if (Op1LV.isConstant()) 1418 markForcedConstant(I, Op1LV.getConstant()); 1419 else 1420 markOverdefined(I); 1421 return true; 1422 case Instruction::Load: 1423 // A load here means one of two things: a load of undef from a global, 1424 // a load from an unknown pointer. Either way, having it return undef 1425 // is okay. 1426 break; 1427 case Instruction::ICmp: 1428 // X == undef -> undef. Other comparisons get more complicated. 1429 if (cast<ICmpInst>(I)->isEquality()) 1430 break; 1431 markOverdefined(I); 1432 return true; 1433 case Instruction::Call: 1434 case Instruction::Invoke: { 1435 // There are two reasons a call can have an undef result 1436 // 1. It could be tracked. 1437 // 2. It could be constant-foldable. 1438 // Because of the way we solve return values, tracked calls must 1439 // never be marked overdefined in ResolvedUndefsIn. 1440 if (Function *F = CallSite(I).getCalledFunction()) 1441 if (TrackedRetVals.count(F)) 1442 break; 1443 1444 // If the call is constant-foldable, we mark it overdefined because 1445 // we do not know what return values are valid. 1446 markOverdefined(I); 1447 return true; 1448 } 1449 default: 1450 // If we don't know what should happen here, conservatively mark it 1451 // overdefined. 1452 markOverdefined(I); 1453 return true; 1454 } 1455 } 1456 1457 // Check to see if we have a branch or switch on an undefined value. If so 1458 // we force the branch to go one way or the other to make the successor 1459 // values live. It doesn't really matter which way we force it. 1460 TerminatorInst *TI = BB->getTerminator(); 1461 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1462 if (!BI->isConditional()) continue; 1463 if (!getValueState(BI->getCondition()).isUndefined()) 1464 continue; 1465 1466 // If the input to SCCP is actually branch on undef, fix the undef to 1467 // false. 1468 if (isa<UndefValue>(BI->getCondition())) { 1469 BI->setCondition(ConstantInt::getFalse(BI->getContext())); 1470 markEdgeExecutable(BB, TI->getSuccessor(1)); 1471 return true; 1472 } 1473 1474 // Otherwise, it is a branch on a symbolic value which is currently 1475 // considered to be undef. Handle this by forcing the input value to the 1476 // branch to false. 1477 markForcedConstant(BI->getCondition(), 1478 ConstantInt::getFalse(TI->getContext())); 1479 return true; 1480 } 1481 1482 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1483 if (!SI->getNumCases()) 1484 continue; 1485 if (!getValueState(SI->getCondition()).isUndefined()) 1486 continue; 1487 1488 // If the input to SCCP is actually switch on undef, fix the undef to 1489 // the first constant. 1490 if (isa<UndefValue>(SI->getCondition())) { 1491 SI->setCondition(SI->case_begin().getCaseValue()); 1492 markEdgeExecutable(BB, SI->case_begin().getCaseSuccessor()); 1493 return true; 1494 } 1495 1496 markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue()); 1497 return true; 1498 } 1499 } 1500 1501 return false; 1502} 1503 1504 1505namespace { 1506 //===--------------------------------------------------------------------===// 1507 // 1508 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1509 /// Sparse Conditional Constant Propagator. 1510 /// 1511 struct SCCP : public FunctionPass { 1512 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1513 AU.addRequired<TargetLibraryInfo>(); 1514 } 1515 static char ID; // Pass identification, replacement for typeid 1516 SCCP() : FunctionPass(ID) { 1517 initializeSCCPPass(*PassRegistry::getPassRegistry()); 1518 } 1519 1520 // runOnFunction - Run the Sparse Conditional Constant Propagation 1521 // algorithm, and return true if the function was modified. 1522 // 1523 bool runOnFunction(Function &F); 1524 }; 1525} // end anonymous namespace 1526 1527char SCCP::ID = 0; 1528INITIALIZE_PASS(SCCP, "sccp", 1529 "Sparse Conditional Constant Propagation", false, false) 1530 1531// createSCCPPass - This is the public interface to this file. 1532FunctionPass *llvm::createSCCPPass() { 1533 return new SCCP(); 1534} 1535 1536static void DeleteInstructionInBlock(BasicBlock *BB) { 1537 DEBUG(dbgs() << " BasicBlock Dead:" << *BB); 1538 ++NumDeadBlocks; 1539 1540 // Check to see if there are non-terminating instructions to delete. 1541 if (isa<TerminatorInst>(BB->begin())) 1542 return; 1543 1544 // Delete the instructions backwards, as it has a reduced likelihood of having 1545 // to update as many def-use and use-def chains. 1546 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1547 while (EndInst != BB->begin()) { 1548 // Delete the next to last instruction. 1549 BasicBlock::iterator I = EndInst; 1550 Instruction *Inst = --I; 1551 if (!Inst->use_empty()) 1552 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1553 if (isa<LandingPadInst>(Inst)) { 1554 EndInst = Inst; 1555 continue; 1556 } 1557 BB->getInstList().erase(Inst); 1558 ++NumInstRemoved; 1559 } 1560} 1561 1562// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1563// and return true if the function was modified. 1564// 1565bool SCCP::runOnFunction(Function &F) { 1566 DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); 1567 const DataLayout *TD = getAnalysisIfAvailable<DataLayout>(); 1568 const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>(); 1569 SCCPSolver Solver(TD, TLI); 1570 1571 // Mark the first block of the function as being executable. 1572 Solver.MarkBlockExecutable(F.begin()); 1573 1574 // Mark all arguments to the function as being overdefined. 1575 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) 1576 Solver.markAnythingOverdefined(AI); 1577 1578 // Solve for constants. 1579 bool ResolvedUndefs = true; 1580 while (ResolvedUndefs) { 1581 Solver.Solve(); 1582 DEBUG(dbgs() << "RESOLVING UNDEFs\n"); 1583 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1584 } 1585 1586 bool MadeChanges = false; 1587 1588 // If we decided that there are basic blocks that are dead in this function, 1589 // delete their contents now. Note that we cannot actually delete the blocks, 1590 // as we cannot modify the CFG of the function. 1591 1592 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1593 if (!Solver.isBlockExecutable(BB)) { 1594 DeleteInstructionInBlock(BB); 1595 MadeChanges = true; 1596 continue; 1597 } 1598 1599 // Iterate over all of the instructions in a function, replacing them with 1600 // constants if we have found them to be of constant values. 1601 // 1602 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1603 Instruction *Inst = BI++; 1604 if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst)) 1605 continue; 1606 1607 // TODO: Reconstruct structs from their elements. 1608 if (Inst->getType()->isStructTy()) 1609 continue; 1610 1611 LatticeVal IV = Solver.getLatticeValueFor(Inst); 1612 if (IV.isOverdefined()) 1613 continue; 1614 1615 Constant *Const = IV.isConstant() 1616 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1617 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst); 1618 1619 // Replaces all of the uses of a variable with uses of the constant. 1620 Inst->replaceAllUsesWith(Const); 1621 1622 // Delete the instruction. 1623 Inst->eraseFromParent(); 1624 1625 // Hey, we just changed something! 1626 MadeChanges = true; 1627 ++NumInstRemoved; 1628 } 1629 } 1630 1631 return MadeChanges; 1632} 1633 1634namespace { 1635 //===--------------------------------------------------------------------===// 1636 // 1637 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1638 /// Constant Propagation. 1639 /// 1640 struct IPSCCP : public ModulePass { 1641 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1642 AU.addRequired<TargetLibraryInfo>(); 1643 } 1644 static char ID; 1645 IPSCCP() : ModulePass(ID) { 1646 initializeIPSCCPPass(*PassRegistry::getPassRegistry()); 1647 } 1648 bool runOnModule(Module &M); 1649 }; 1650} // end anonymous namespace 1651 1652char IPSCCP::ID = 0; 1653INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp", 1654 "Interprocedural Sparse Conditional Constant Propagation", 1655 false, false) 1656INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 1657INITIALIZE_PASS_END(IPSCCP, "ipsccp", 1658 "Interprocedural Sparse Conditional Constant Propagation", 1659 false, false) 1660 1661// createIPSCCPPass - This is the public interface to this file. 1662ModulePass *llvm::createIPSCCPPass() { 1663 return new IPSCCP(); 1664} 1665 1666 1667static bool AddressIsTaken(const GlobalValue *GV) { 1668 // Delete any dead constantexpr klingons. 1669 GV->removeDeadConstantUsers(); 1670 1671 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); 1672 UI != E; ++UI) { 1673 const User *U = *UI; 1674 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 1675 if (SI->getOperand(0) == GV || SI->isVolatile()) 1676 return true; // Storing addr of GV. 1677 } else if (isa<InvokeInst>(U) || isa<CallInst>(U)) { 1678 // Make sure we are calling the function, not passing the address. 1679 ImmutableCallSite CS(cast<Instruction>(U)); 1680 if (!CS.isCallee(UI)) 1681 return true; 1682 } else if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1683 if (LI->isVolatile()) 1684 return true; 1685 } else if (isa<BlockAddress>(U)) { 1686 // blockaddress doesn't take the address of the function, it takes addr 1687 // of label. 1688 } else { 1689 return true; 1690 } 1691 } 1692 return false; 1693} 1694 1695bool IPSCCP::runOnModule(Module &M) { 1696 const DataLayout *TD = getAnalysisIfAvailable<DataLayout>(); 1697 const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>(); 1698 SCCPSolver Solver(TD, TLI); 1699 1700 // AddressTakenFunctions - This set keeps track of the address-taken functions 1701 // that are in the input. As IPSCCP runs through and simplifies code, 1702 // functions that were address taken can end up losing their 1703 // address-taken-ness. Because of this, we keep track of their addresses from 1704 // the first pass so we can use them for the later simplification pass. 1705 SmallPtrSet<Function*, 32> AddressTakenFunctions; 1706 1707 // Loop over all functions, marking arguments to those with their addresses 1708 // taken or that are external as overdefined. 1709 // 1710 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1711 if (F->isDeclaration()) 1712 continue; 1713 1714 // If this is a strong or ODR definition of this function, then we can 1715 // propagate information about its result into callsites of it. 1716 if (!F->mayBeOverridden()) 1717 Solver.AddTrackedFunction(F); 1718 1719 // If this function only has direct calls that we can see, we can track its 1720 // arguments and return value aggressively, and can assume it is not called 1721 // unless we see evidence to the contrary. 1722 if (F->hasLocalLinkage()) { 1723 if (AddressIsTaken(F)) 1724 AddressTakenFunctions.insert(F); 1725 else { 1726 Solver.AddArgumentTrackedFunction(F); 1727 continue; 1728 } 1729 } 1730 1731 // Assume the function is called. 1732 Solver.MarkBlockExecutable(F->begin()); 1733 1734 // Assume nothing about the incoming arguments. 1735 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1736 AI != E; ++AI) 1737 Solver.markAnythingOverdefined(AI); 1738 } 1739 1740 // Loop over global variables. We inform the solver about any internal global 1741 // variables that do not have their 'addresses taken'. If they don't have 1742 // their addresses taken, we can propagate constants through them. 1743 for (Module::global_iterator G = M.global_begin(), E = M.global_end(); 1744 G != E; ++G) 1745 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G)) 1746 Solver.TrackValueOfGlobalVariable(G); 1747 1748 // Solve for constants. 1749 bool ResolvedUndefs = true; 1750 while (ResolvedUndefs) { 1751 Solver.Solve(); 1752 1753 DEBUG(dbgs() << "RESOLVING UNDEFS\n"); 1754 ResolvedUndefs = false; 1755 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1756 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); 1757 } 1758 1759 bool MadeChanges = false; 1760 1761 // Iterate over all of the instructions in the module, replacing them with 1762 // constants if we have found them to be of constant values. 1763 // 1764 SmallVector<BasicBlock*, 512> BlocksToErase; 1765 1766 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1767 if (Solver.isBlockExecutable(F->begin())) { 1768 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1769 AI != E; ++AI) { 1770 if (AI->use_empty() || AI->getType()->isStructTy()) continue; 1771 1772 // TODO: Could use getStructLatticeValueFor to find out if the entire 1773 // result is a constant and replace it entirely if so. 1774 1775 LatticeVal IV = Solver.getLatticeValueFor(AI); 1776 if (IV.isOverdefined()) continue; 1777 1778 Constant *CST = IV.isConstant() ? 1779 IV.getConstant() : UndefValue::get(AI->getType()); 1780 DEBUG(dbgs() << "*** Arg " << *AI << " = " << *CST <<"\n"); 1781 1782 // Replaces all of the uses of a variable with uses of the 1783 // constant. 1784 AI->replaceAllUsesWith(CST); 1785 ++IPNumArgsElimed; 1786 } 1787 } 1788 1789 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { 1790 if (!Solver.isBlockExecutable(BB)) { 1791 DeleteInstructionInBlock(BB); 1792 MadeChanges = true; 1793 1794 TerminatorInst *TI = BB->getTerminator(); 1795 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1796 BasicBlock *Succ = TI->getSuccessor(i); 1797 if (!Succ->empty() && isa<PHINode>(Succ->begin())) 1798 TI->getSuccessor(i)->removePredecessor(BB); 1799 } 1800 if (!TI->use_empty()) 1801 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1802 TI->eraseFromParent(); 1803 1804 if (&*BB != &F->front()) 1805 BlocksToErase.push_back(BB); 1806 else 1807 new UnreachableInst(M.getContext(), BB); 1808 continue; 1809 } 1810 1811 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1812 Instruction *Inst = BI++; 1813 if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy()) 1814 continue; 1815 1816 // TODO: Could use getStructLatticeValueFor to find out if the entire 1817 // result is a constant and replace it entirely if so. 1818 1819 LatticeVal IV = Solver.getLatticeValueFor(Inst); 1820 if (IV.isOverdefined()) 1821 continue; 1822 1823 Constant *Const = IV.isConstant() 1824 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1825 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst); 1826 1827 // Replaces all of the uses of a variable with uses of the 1828 // constant. 1829 Inst->replaceAllUsesWith(Const); 1830 1831 // Delete the instruction. 1832 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst)) 1833 Inst->eraseFromParent(); 1834 1835 // Hey, we just changed something! 1836 MadeChanges = true; 1837 ++IPNumInstRemoved; 1838 } 1839 } 1840 1841 // Now that all instructions in the function are constant folded, erase dead 1842 // blocks, because we can now use ConstantFoldTerminator to get rid of 1843 // in-edges. 1844 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1845 // If there are any PHI nodes in this successor, drop entries for BB now. 1846 BasicBlock *DeadBB = BlocksToErase[i]; 1847 for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end(); 1848 UI != UE; ) { 1849 // Grab the user and then increment the iterator early, as the user 1850 // will be deleted. Step past all adjacent uses from the same user. 1851 Instruction *I = dyn_cast<Instruction>(*UI); 1852 do { ++UI; } while (UI != UE && *UI == I); 1853 1854 // Ignore blockaddress users; BasicBlock's dtor will handle them. 1855 if (!I) continue; 1856 1857 bool Folded = ConstantFoldTerminator(I->getParent()); 1858 if (!Folded) { 1859 // The constant folder may not have been able to fold the terminator 1860 // if this is a branch or switch on undef. Fold it manually as a 1861 // branch to the first successor. 1862#ifndef NDEBUG 1863 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1864 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1865 "Branch should be foldable!"); 1866 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1867 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1868 } else { 1869 llvm_unreachable("Didn't fold away reference to block!"); 1870 } 1871#endif 1872 1873 // Make this an uncond branch to the first successor. 1874 TerminatorInst *TI = I->getParent()->getTerminator(); 1875 BranchInst::Create(TI->getSuccessor(0), TI); 1876 1877 // Remove entries in successor phi nodes to remove edges. 1878 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1879 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1880 1881 // Remove the old terminator. 1882 TI->eraseFromParent(); 1883 } 1884 } 1885 1886 // Finally, delete the basic block. 1887 F->getBasicBlockList().erase(DeadBB); 1888 } 1889 BlocksToErase.clear(); 1890 } 1891 1892 // If we inferred constant or undef return values for a function, we replaced 1893 // all call uses with the inferred value. This means we don't need to bother 1894 // actually returning anything from the function. Replace all return 1895 // instructions with return undef. 1896 // 1897 // Do this in two stages: first identify the functions we should process, then 1898 // actually zap their returns. This is important because we can only do this 1899 // if the address of the function isn't taken. In cases where a return is the 1900 // last use of a function, the order of processing functions would affect 1901 // whether other functions are optimizable. 1902 SmallVector<ReturnInst*, 8> ReturnsToZap; 1903 1904 // TODO: Process multiple value ret instructions also. 1905 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); 1906 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), 1907 E = RV.end(); I != E; ++I) { 1908 Function *F = I->first; 1909 if (I->second.isOverdefined() || F->getReturnType()->isVoidTy()) 1910 continue; 1911 1912 // We can only do this if we know that nothing else can call the function. 1913 if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F)) 1914 continue; 1915 1916 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1917 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1918 if (!isa<UndefValue>(RI->getOperand(0))) 1919 ReturnsToZap.push_back(RI); 1920 } 1921 1922 // Zap all returns which we've identified as zap to change. 1923 for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { 1924 Function *F = ReturnsToZap[i]->getParent()->getParent(); 1925 ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); 1926 } 1927 1928 // If we inferred constant or undef values for globals variables, we can 1929 // delete the global and any stores that remain to it. 1930 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1931 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1932 E = TG.end(); I != E; ++I) { 1933 GlobalVariable *GV = I->first; 1934 assert(!I->second.isOverdefined() && 1935 "Overdefined values should have been taken out of the map!"); 1936 DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n"); 1937 while (!GV->use_empty()) { 1938 StoreInst *SI = cast<StoreInst>(GV->use_back()); 1939 SI->eraseFromParent(); 1940 } 1941 M.getGlobalList().erase(GV); 1942 ++IPNumGlobalConst; 1943 } 1944 1945 return MadeChanges; 1946} 1947