SCCP.cpp revision 0dbfc05a2aed61cdb1f83f74474749eb66e0856f
1//===- SCCP.cpp - Sparse Conditional Constant Propogation -----------------===//
2//
3// This file implements sparse conditional constant propogation and merging:
4//
5// Specifically, this:
6//   * Assumes values are constant unless proven otherwise
7//   * Assumes BasicBlocks are dead unless proven otherwise
8//   * Proves values to be constant, and replaces them with constants
9//   . Proves conditional branches constant, and unconditionalizes them
10//   * Folds multiple identical constants in the constant pool together
11//
12// Notice that:
13//   * This pass has a habit of making definitions be dead.  It is a good idea
14//     to to run a DCE pass sometime after running this pass.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/Transforms/Scalar/ConstantProp.h"
19#include "llvm/ConstantHandling.h"
20#include "llvm/Function.h"
21#include "llvm/iPHINode.h"
22#include "llvm/iMemory.h"
23#include "llvm/iTerminators.h"
24#include "llvm/iOther.h"
25#include "llvm/Pass.h"
26#include "llvm/Support/InstVisitor.h"
27#include "Support/STLExtras.h"
28#include <algorithm>
29#include <set>
30#include <iostream>
31using std::cerr;
32
33// InstVal class - This class represents the different lattice values that an
34// instruction may occupy.  It is a simple class with value semantics.
35//
36namespace {
37class InstVal {
38  enum {
39    undefined,           // This instruction has no known value
40    constant,            // This instruction has a constant value
41    // Range,            // This instruction is known to fall within a range
42    overdefined          // This instruction has an unknown value
43  } LatticeValue;        // The current lattice position
44  Constant *ConstantVal; // If Constant value, the current value
45public:
46  inline InstVal() : LatticeValue(undefined), ConstantVal(0) {}
47
48  // markOverdefined - Return true if this is a new status to be in...
49  inline bool markOverdefined() {
50    if (LatticeValue != overdefined) {
51      LatticeValue = overdefined;
52      return true;
53    }
54    return false;
55  }
56
57  // markConstant - Return true if this is a new status for us...
58  inline bool markConstant(Constant *V) {
59    if (LatticeValue != constant) {
60      LatticeValue = constant;
61      ConstantVal = V;
62      return true;
63    } else {
64      assert(ConstantVal == V && "Marking constant with different value");
65    }
66    return false;
67  }
68
69  inline bool isUndefined()   const { return LatticeValue == undefined; }
70  inline bool isConstant()    const { return LatticeValue == constant; }
71  inline bool isOverdefined() const { return LatticeValue == overdefined; }
72
73  inline Constant *getConstant() const { return ConstantVal; }
74};
75
76} // end anonymous namespace
77
78
79//===----------------------------------------------------------------------===//
80// SCCP Class
81//
82// This class does all of the work of Sparse Conditional Constant Propogation.
83//
84namespace {
85class SCCP : public FunctionPass, public InstVisitor<SCCP> {
86  std::set<BasicBlock*>     BBExecutable;// The basic blocks that are executable
87  std::map<Value*, InstVal> ValueState;  // The state each value is in...
88
89  std::vector<Instruction*> InstWorkList;// The instruction work list
90  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
91public:
92
93  const char *getPassName() const {
94    return "Sparse Conditional Constant Propogation";
95  }
96
97  // runOnFunction - Run the Sparse Conditional Constant Propogation algorithm,
98  // and return true if the function was modified.
99  //
100  bool runOnFunction(Function *F);
101
102  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
103    // FIXME: SCCP does not preserve the CFG because it folds terminators!
104    //AU.preservesCFG();
105  }
106
107
108  //===--------------------------------------------------------------------===//
109  // The implementation of this class
110  //
111private:
112  friend class InstVisitor<SCCP>;        // Allow callbacks from visitor
113
114  // markValueOverdefined - Make a value be marked as "constant".  If the value
115  // is not already a constant, add it to the instruction work list so that
116  // the users of the instruction are updated later.
117  //
118  inline bool markConstant(Instruction *I, Constant *V) {
119    //cerr << "markConstant: " << V << " = " << I;
120    if (ValueState[I].markConstant(V)) {
121      InstWorkList.push_back(I);
122      return true;
123    }
124    return false;
125  }
126
127  // markValueOverdefined - Make a value be marked as "overdefined". If the
128  // value is not already overdefined, add it to the instruction work list so
129  // that the users of the instruction are updated later.
130  //
131  inline bool markOverdefined(Value *V) {
132    if (ValueState[V].markOverdefined()) {
133      if (Instruction *I = dyn_cast<Instruction>(V)) {
134	//cerr << "markOverdefined: " << V;
135	InstWorkList.push_back(I);  // Only instructions go on the work list
136      }
137      return true;
138    }
139    return false;
140  }
141
142  // getValueState - Return the InstVal object that corresponds to the value.
143  // This function is neccesary because not all values should start out in the
144  // underdefined state... Argument's should be overdefined, and
145  // constants should be marked as constants.  If a value is not known to be an
146  // Instruction object, then use this accessor to get its value from the map.
147  //
148  inline InstVal &getValueState(Value *V) {
149    std::map<Value*, InstVal>::iterator I = ValueState.find(V);
150    if (I != ValueState.end()) return I->second;  // Common case, in the map
151
152    if (Constant *CPV = dyn_cast<Constant>(V)) {  // Constants are constant
153      ValueState[CPV].markConstant(CPV);
154    } else if (isa<Argument>(V)) {                // Arguments are overdefined
155      ValueState[V].markOverdefined();
156    }
157    // All others are underdefined by default...
158    return ValueState[V];
159  }
160
161  // markExecutable - Mark a basic block as executable, adding it to the BB
162  // work list if it is not already executable...
163  //
164  void markExecutable(BasicBlock *BB) {
165    if (BBExecutable.count(BB)) return;
166    //cerr << "Marking BB Executable: " << BB;
167    BBExecutable.insert(BB);   // Basic block is executable!
168    BBWorkList.push_back(BB);  // Add the block to the work list!
169  }
170
171
172  // visit implementations - Something changed in this instruction... Either an
173  // operand made a transition, or the instruction is newly executable.  Change
174  // the value type of I to reflect these changes if appropriate.
175  //
176  void visitPHINode(PHINode *I);
177
178  // Terminators
179  void visitReturnInst(ReturnInst *I) { /*does not have an effect*/ }
180  void visitBranchInst(BranchInst *I);
181  void visitSwitchInst(SwitchInst *I);
182
183  void visitUnaryOperator(Instruction *I);
184  void visitCastInst(CastInst *I) { visitUnaryOperator(I); }
185  void visitBinaryOperator(Instruction *I);
186  void visitShiftInst(ShiftInst *I) { visitBinaryOperator(I); }
187
188  // Instructions that cannot be folded away...
189  void visitMemAccessInst (Instruction *I) { markOverdefined(I); }
190  void visitCallInst      (Instruction *I) { markOverdefined(I); }
191  void visitInvokeInst    (Instruction *I) { markOverdefined(I); }
192  void visitAllocationInst(Instruction *I) { markOverdefined(I); }
193  void visitFreeInst      (Instruction *I) { markOverdefined(I); }
194
195  void visitInstruction(Instruction *I) {
196    // If a new instruction is added to LLVM that we don't handle...
197    cerr << "SCCP: Don't know how to handle: " << I;
198    markOverdefined(I);   // Just in case
199  }
200
201  // OperandChangedState - This method is invoked on all of the users of an
202  // instruction that was just changed state somehow....  Based on this
203  // information, we need to update the specified user of this instruction.
204  //
205  void OperandChangedState(User *U);
206};
207} // end anonymous namespace
208
209
210// createSCCPPass - This is the public interface to this file...
211//
212Pass *createSCCPPass() {
213  return new SCCP();
214}
215
216
217
218//===----------------------------------------------------------------------===//
219// SCCP Class Implementation
220
221
222// runOnFunction() - Run the Sparse Conditional Constant Propogation algorithm,
223// and return true if the function was modified.
224//
225bool SCCP::runOnFunction(Function *F) {
226  // Mark the first block of the function as being executable...
227  markExecutable(F->front());
228
229  // Process the work lists until their are empty!
230  while (!BBWorkList.empty() || !InstWorkList.empty()) {
231    // Process the instruction work list...
232    while (!InstWorkList.empty()) {
233      Instruction *I = InstWorkList.back();
234      InstWorkList.pop_back();
235
236      //cerr << "\nPopped off I-WL: " << I;
237
238
239      // "I" got into the work list because it either made the transition from
240      // bottom to constant, or to Overdefined.
241      //
242      // Update all of the users of this instruction's value...
243      //
244      for_each(I->use_begin(), I->use_end(),
245	       bind_obj(this, &SCCP::OperandChangedState));
246    }
247
248    // Process the basic block work list...
249    while (!BBWorkList.empty()) {
250      BasicBlock *BB = BBWorkList.back();
251      BBWorkList.pop_back();
252
253      //cerr << "\nPopped off BBWL: " << BB;
254
255      // If this block only has a single successor, mark it as executable as
256      // well... if not, terminate the do loop.
257      //
258      if (BB->getTerminator()->getNumSuccessors() == 1)
259        markExecutable(BB->getTerminator()->getSuccessor(0));
260
261      // Notify all instructions in this basic block that they are newly
262      // executable.
263      visit(BB);
264    }
265  }
266
267#if 0
268  for (Function::iterator BBI = F->begin(), BBEnd = F->end();
269       BBI != BBEnd; ++BBI)
270    if (!BBExecutable.count(*BBI))
271      cerr << "BasicBlock Dead:" << *BBI;
272#endif
273
274
275  // Iterate over all of the instructions in a function, replacing them with
276  // constants if we have found them to be of constant values.
277  //
278  bool MadeChanges = false;
279  for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) {
280    BasicBlock *BB = *FI;
281    for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) {
282      Instruction *Inst = *BI;
283      InstVal &IV = ValueState[Inst];
284      if (IV.isConstant()) {
285        Constant *Const = IV.getConstant();
286        // cerr << "Constant: " << Inst << "  is: " << Const;
287
288        // Replaces all of the uses of a variable with uses of the constant.
289        Inst->replaceAllUsesWith(Const);
290
291        // Remove the operator from the list of definitions...
292        BB->getInstList().remove(BI);
293
294        // The new constant inherits the old name of the operator...
295        if (Inst->hasName() && !Const->hasName())
296          Const->setName(Inst->getName(), F->getSymbolTableSure());
297
298        // Delete the operator now...
299        delete Inst;
300
301        // Hey, we just changed something!
302        MadeChanges = true;
303      } else if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Inst)) {
304        MadeChanges |= ConstantFoldTerminator(BB, BI, TI);
305      }
306
307      ++BI;
308    }
309  }
310
311  // Reset state so that the next invokation will have empty data structures
312  BBExecutable.clear();
313  ValueState.clear();
314
315  // Merge identical constants last: this is important because we may have just
316  // introduced constants that already exist, and we don't want to pollute later
317  // stages with extraneous constants.
318  //
319  return MadeChanges;
320}
321
322
323// visit Implementations - Something changed in this instruction... Either an
324// operand made a transition, or the instruction is newly executable.  Change
325// the value type of I to reflect these changes if appropriate.  This method
326// makes sure to do the following actions:
327//
328// 1. If a phi node merges two constants in, and has conflicting value coming
329//    from different branches, or if the PHI node merges in an overdefined
330//    value, then the PHI node becomes overdefined.
331// 2. If a phi node merges only constants in, and they all agree on value, the
332//    PHI node becomes a constant value equal to that.
333// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
334// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
335// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
336// 6. If a conditional branch has a value that is constant, make the selected
337//    destination executable
338// 7. If a conditional branch has a value that is overdefined, make all
339//    successors executable.
340//
341
342void SCCP::visitPHINode(PHINode *PN) {
343  unsigned NumValues = PN->getNumIncomingValues(), i;
344  InstVal *OperandIV = 0;
345
346  // Look at all of the executable operands of the PHI node.  If any of them
347  // are overdefined, the PHI becomes overdefined as well.  If they are all
348  // constant, and they agree with each other, the PHI becomes the identical
349  // constant.  If they are constant and don't agree, the PHI is overdefined.
350  // If there are no executable operands, the PHI remains undefined.
351  //
352  for (i = 0; i < NumValues; ++i) {
353    if (BBExecutable.count(PN->getIncomingBlock(i))) {
354      InstVal &IV = getValueState(PN->getIncomingValue(i));
355      if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
356      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
357        markOverdefined(PN);
358        return;
359      }
360
361      if (OperandIV == 0) {   // Grab the first value...
362        OperandIV = &IV;
363      } else {                // Another value is being merged in!
364        // There is already a reachable operand.  If we conflict with it,
365        // then the PHI node becomes overdefined.  If we agree with it, we
366        // can continue on.
367
368        // Check to see if there are two different constants merging...
369        if (IV.getConstant() != OperandIV->getConstant()) {
370          // Yes there is.  This means the PHI node is not constant.
371          // You must be overdefined poor PHI.
372          //
373          markOverdefined(PN);         // The PHI node now becomes overdefined
374          return;    // I'm done analyzing you
375        }
376      }
377    }
378  }
379
380  // If we exited the loop, this means that the PHI node only has constant
381  // arguments that agree with each other(and OperandIV is a pointer to one
382  // of their InstVal's) or OperandIV is null because there are no defined
383  // incoming arguments.  If this is the case, the PHI remains undefined.
384  //
385  if (OperandIV) {
386    assert(OperandIV->isConstant() && "Should only be here for constants!");
387    markConstant(PN, OperandIV->getConstant());  // Aquire operand value
388  }
389}
390
391void SCCP::visitBranchInst(BranchInst *BI) {
392  if (BI->isUnconditional())
393    return; // Unconditional branches are already handled!
394
395  InstVal &BCValue = getValueState(BI->getCondition());
396  if (BCValue.isOverdefined()) {
397    // Overdefined condition variables mean the branch could go either way.
398    markExecutable(BI->getSuccessor(0));
399    markExecutable(BI->getSuccessor(1));
400  } else if (BCValue.isConstant()) {
401    // Constant condition variables mean the branch can only go a single way.
402    if (BCValue.getConstant() == ConstantBool::True)
403      markExecutable(BI->getSuccessor(0));
404    else
405      markExecutable(BI->getSuccessor(1));
406  }
407}
408
409void SCCP::visitSwitchInst(SwitchInst *SI) {
410  InstVal &SCValue = getValueState(SI->getCondition());
411  if (SCValue.isOverdefined()) {  // Overdefined condition?  All dests are exe
412    for(unsigned i = 0, E = SI->getNumSuccessors(); i != E; ++i)
413      markExecutable(SI->getSuccessor(i));
414  } else if (SCValue.isConstant()) {
415    Constant *CPV = SCValue.getConstant();
416    // Make sure to skip the "default value" which isn't a value
417    for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
418      if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
419        markExecutable(SI->getSuccessor(i));
420        return;
421      }
422    }
423
424    // Constant value not equal to any of the branches... must execute
425    // default branch then...
426    markExecutable(SI->getDefaultDest());
427  }
428}
429
430void SCCP::visitUnaryOperator(Instruction *I) {
431  Value *V = I->getOperand(0);
432  InstVal &VState = getValueState(V);
433  if (VState.isOverdefined()) {        // Inherit overdefinedness of operand
434    markOverdefined(I);
435  } else if (VState.isConstant()) {    // Propogate constant value
436    Constant *Result = isa<CastInst>(I)
437      ? ConstantFoldCastInstruction(VState.getConstant(), I->getType())
438      : ConstantFoldUnaryInstruction(I->getOpcode(), VState.getConstant());
439
440    if (Result) {
441      // This instruction constant folds!
442      markConstant(I, Result);
443    } else {
444      markOverdefined(I);   // Don't know how to fold this instruction.  :(
445    }
446  }
447}
448
449// Handle BinaryOperators and Shift Instructions...
450void SCCP::visitBinaryOperator(Instruction *I) {
451  InstVal &V1State = getValueState(I->getOperand(0));
452  InstVal &V2State = getValueState(I->getOperand(1));
453  if (V1State.isOverdefined() || V2State.isOverdefined()) {
454    markOverdefined(I);
455  } else if (V1State.isConstant() && V2State.isConstant()) {
456    Constant *Result = ConstantFoldBinaryInstruction(I->getOpcode(),
457                                                     V1State.getConstant(),
458                                                     V2State.getConstant());
459    if (Result)
460      markConstant(I, Result);      // This instruction constant fold!s
461    else
462      markOverdefined(I);   // Don't know how to fold this instruction.  :(
463  }
464}
465
466// OperandChangedState - This method is invoked on all of the users of an
467// instruction that was just changed state somehow....  Based on this
468// information, we need to update the specified user of this instruction.
469//
470void SCCP::OperandChangedState(User *U) {
471  // Only instructions use other variable values!
472  Instruction *I = cast<Instruction>(U);
473  if (!BBExecutable.count(I->getParent())) return;  // Inst not executable yet!
474
475  visit(I);
476}
477