SCCP.cpp revision 1df9859c40492511b8aa4321eb76496005d3b75b
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18//===----------------------------------------------------------------------===// 19 20#define DEBUG_TYPE "sccp" 21#include "llvm/Transforms/Scalar.h" 22#include "llvm/Transforms/IPO.h" 23#include "llvm/Constants.h" 24#include "llvm/DerivedTypes.h" 25#include "llvm/Instructions.h" 26#include "llvm/Pass.h" 27#include "llvm/Analysis/ConstantFolding.h" 28#include "llvm/Analysis/ValueTracking.h" 29#include "llvm/Transforms/Utils/Local.h" 30#include "llvm/Target/TargetData.h" 31#include "llvm/Support/CallSite.h" 32#include "llvm/Support/Debug.h" 33#include "llvm/Support/ErrorHandling.h" 34#include "llvm/Support/InstVisitor.h" 35#include "llvm/Support/raw_ostream.h" 36#include "llvm/ADT/DenseMap.h" 37#include "llvm/ADT/DenseSet.h" 38#include "llvm/ADT/PointerIntPair.h" 39#include "llvm/ADT/SmallPtrSet.h" 40#include "llvm/ADT/SmallVector.h" 41#include "llvm/ADT/Statistic.h" 42#include "llvm/ADT/STLExtras.h" 43#include <algorithm> 44#include <map> 45using namespace llvm; 46 47STATISTIC(NumInstRemoved, "Number of instructions removed"); 48STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 49 50STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); 51STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 52STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 53 54namespace { 55/// LatticeVal class - This class represents the different lattice values that 56/// an LLVM value may occupy. It is a simple class with value semantics. 57/// 58class LatticeVal { 59 enum LatticeValueTy { 60 /// undefined - This LLVM Value has no known value yet. 61 undefined, 62 63 /// constant - This LLVM Value has a specific constant value. 64 constant, 65 66 /// forcedconstant - This LLVM Value was thought to be undef until 67 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 68 /// with another (different) constant, it goes to overdefined, instead of 69 /// asserting. 70 forcedconstant, 71 72 /// overdefined - This instruction is not known to be constant, and we know 73 /// it has a value. 74 overdefined 75 }; 76 77 /// Val: This stores the current lattice value along with the Constant* for 78 /// the constant if this is a 'constant' or 'forcedconstant' value. 79 PointerIntPair<Constant *, 2, LatticeValueTy> Val; 80 81 LatticeValueTy getLatticeValue() const { 82 return Val.getInt(); 83 } 84 85public: 86 LatticeVal() : Val(0, undefined) {} 87 88 bool isUndefined() const { return getLatticeValue() == undefined; } 89 bool isConstant() const { 90 return getLatticeValue() == constant || getLatticeValue() == forcedconstant; 91 } 92 bool isOverdefined() const { return getLatticeValue() == overdefined; } 93 94 Constant *getConstant() const { 95 assert(isConstant() && "Cannot get the constant of a non-constant!"); 96 return Val.getPointer(); 97 } 98 99 /// markOverdefined - Return true if this is a change in status. 100 bool markOverdefined() { 101 if (isOverdefined()) 102 return false; 103 104 Val.setInt(overdefined); 105 return true; 106 } 107 108 /// markConstant - Return true if this is a change in status. 109 bool markConstant(Constant *V) { 110 if (getLatticeValue() == constant) { // Constant but not forcedconstant. 111 assert(getConstant() == V && "Marking constant with different value"); 112 return false; 113 } 114 115 if (isUndefined()) { 116 Val.setInt(constant); 117 assert(V && "Marking constant with NULL"); 118 Val.setPointer(V); 119 } else { 120 assert(getLatticeValue() == forcedconstant && 121 "Cannot move from overdefined to constant!"); 122 // Stay at forcedconstant if the constant is the same. 123 if (V == getConstant()) return false; 124 125 // Otherwise, we go to overdefined. Assumptions made based on the 126 // forced value are possibly wrong. Assuming this is another constant 127 // could expose a contradiction. 128 Val.setInt(overdefined); 129 } 130 return true; 131 } 132 133 /// getConstantInt - If this is a constant with a ConstantInt value, return it 134 /// otherwise return null. 135 ConstantInt *getConstantInt() const { 136 if (isConstant()) 137 return dyn_cast<ConstantInt>(getConstant()); 138 return 0; 139 } 140 141 void markForcedConstant(Constant *V) { 142 assert(isUndefined() && "Can't force a defined value!"); 143 Val.setInt(forcedconstant); 144 Val.setPointer(V); 145 } 146}; 147} // end anonymous namespace. 148 149 150namespace { 151 152//===----------------------------------------------------------------------===// 153// 154/// SCCPSolver - This class is a general purpose solver for Sparse Conditional 155/// Constant Propagation. 156/// 157class SCCPSolver : public InstVisitor<SCCPSolver> { 158 const TargetData *TD; 159 SmallPtrSet<BasicBlock*, 8> BBExecutable;// The BBs that are executable. 160 DenseMap<Value*, LatticeVal> ValueState; // The state each value is in. 161 162 /// StructValueState - This maintains ValueState for values that have 163 /// StructType, for example for formal arguments, calls, insertelement, etc. 164 /// 165 DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState; 166 167 /// GlobalValue - If we are tracking any values for the contents of a global 168 /// variable, we keep a mapping from the constant accessor to the element of 169 /// the global, to the currently known value. If the value becomes 170 /// overdefined, it's entry is simply removed from this map. 171 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; 172 173 /// TrackedRetVals - If we are tracking arguments into and the return 174 /// value out of a function, it will have an entry in this map, indicating 175 /// what the known return value for the function is. 176 DenseMap<Function*, LatticeVal> TrackedRetVals; 177 178 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 179 /// that return multiple values. 180 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; 181 182 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is 183 /// represented here for efficient lookup. 184 SmallPtrSet<Function*, 16> MRVFunctionsTracked; 185 186 /// TrackingIncomingArguments - This is the set of functions for whose 187 /// arguments we make optimistic assumptions about and try to prove as 188 /// constants. 189 SmallPtrSet<Function*, 16> TrackingIncomingArguments; 190 191 /// The reason for two worklists is that overdefined is the lowest state 192 /// on the lattice, and moving things to overdefined as fast as possible 193 /// makes SCCP converge much faster. 194 /// 195 /// By having a separate worklist, we accomplish this because everything 196 /// possibly overdefined will become overdefined at the soonest possible 197 /// point. 198 SmallVector<Value*, 64> OverdefinedInstWorkList; 199 SmallVector<Value*, 64> InstWorkList; 200 201 202 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list 203 204 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not 205 /// overdefined, despite the fact that the PHI node is overdefined. 206 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; 207 208 /// KnownFeasibleEdges - Entries in this set are edges which have already had 209 /// PHI nodes retriggered. 210 typedef std::pair<BasicBlock*, BasicBlock*> Edge; 211 DenseSet<Edge> KnownFeasibleEdges; 212public: 213 SCCPSolver(const TargetData *td) : TD(td) {} 214 215 /// MarkBlockExecutable - This method can be used by clients to mark all of 216 /// the blocks that are known to be intrinsically live in the processed unit. 217 /// 218 /// This returns true if the block was not considered live before. 219 bool MarkBlockExecutable(BasicBlock *BB) { 220 if (!BBExecutable.insert(BB)) return false; 221 DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n"); 222 BBWorkList.push_back(BB); // Add the block to the work list! 223 return true; 224 } 225 226 /// TrackValueOfGlobalVariable - Clients can use this method to 227 /// inform the SCCPSolver that it should track loads and stores to the 228 /// specified global variable if it can. This is only legal to call if 229 /// performing Interprocedural SCCP. 230 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 231 // We only track the contents of scalar globals. 232 if (GV->getType()->getElementType()->isSingleValueType()) { 233 LatticeVal &IV = TrackedGlobals[GV]; 234 if (!isa<UndefValue>(GV->getInitializer())) 235 IV.markConstant(GV->getInitializer()); 236 } 237 } 238 239 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 240 /// and out of the specified function (which cannot have its address taken), 241 /// this method must be called. 242 void AddTrackedFunction(Function *F) { 243 // Add an entry, F -> undef. 244 if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 245 MRVFunctionsTracked.insert(F); 246 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 247 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), 248 LatticeVal())); 249 } else 250 TrackedRetVals.insert(std::make_pair(F, LatticeVal())); 251 } 252 253 void AddArgumentTrackedFunction(Function *F) { 254 TrackingIncomingArguments.insert(F); 255 } 256 257 /// Solve - Solve for constants and executable blocks. 258 /// 259 void Solve(); 260 261 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 262 /// that branches on undef values cannot reach any of their successors. 263 /// However, this is not a safe assumption. After we solve dataflow, this 264 /// method should be use to handle this. If this returns true, the solver 265 /// should be rerun. 266 bool ResolvedUndefsIn(Function &F); 267 268 bool isBlockExecutable(BasicBlock *BB) const { 269 return BBExecutable.count(BB); 270 } 271 272 LatticeVal getLatticeValueFor(Value *V) const { 273 DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V); 274 assert(I != ValueState.end() && "V is not in valuemap!"); 275 return I->second; 276 } 277 278 LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const { 279 DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I = 280 StructValueState.find(std::make_pair(V, i)); 281 assert(I != StructValueState.end() && "V is not in valuemap!"); 282 return I->second; 283 } 284 285 /// getTrackedRetVals - Get the inferred return value map. 286 /// 287 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { 288 return TrackedRetVals; 289 } 290 291 /// getTrackedGlobals - Get and return the set of inferred initializers for 292 /// global variables. 293 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 294 return TrackedGlobals; 295 } 296 297 void markOverdefined(Value *V) { 298 assert(!V->getType()->isStructTy() && "Should use other method"); 299 markOverdefined(ValueState[V], V); 300 } 301 302 /// markAnythingOverdefined - Mark the specified value overdefined. This 303 /// works with both scalars and structs. 304 void markAnythingOverdefined(Value *V) { 305 if (const StructType *STy = dyn_cast<StructType>(V->getType())) 306 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 307 markOverdefined(getStructValueState(V, i), V); 308 else 309 markOverdefined(V); 310 } 311 312private: 313 // markConstant - Make a value be marked as "constant". If the value 314 // is not already a constant, add it to the instruction work list so that 315 // the users of the instruction are updated later. 316 // 317 void markConstant(LatticeVal &IV, Value *V, Constant *C) { 318 if (!IV.markConstant(C)) return; 319 DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); 320 InstWorkList.push_back(V); 321 } 322 323 void markConstant(Value *V, Constant *C) { 324 assert(!V->getType()->isStructTy() && "Should use other method"); 325 markConstant(ValueState[V], V, C); 326 } 327 328 void markForcedConstant(Value *V, Constant *C) { 329 assert(!V->getType()->isStructTy() && "Should use other method"); 330 ValueState[V].markForcedConstant(C); 331 DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); 332 InstWorkList.push_back(V); 333 } 334 335 336 // markOverdefined - Make a value be marked as "overdefined". If the 337 // value is not already overdefined, add it to the overdefined instruction 338 // work list so that the users of the instruction are updated later. 339 void markOverdefined(LatticeVal &IV, Value *V) { 340 if (!IV.markOverdefined()) return; 341 342 DEBUG(dbgs() << "markOverdefined: "; 343 if (Function *F = dyn_cast<Function>(V)) 344 dbgs() << "Function '" << F->getName() << "'\n"; 345 else 346 dbgs() << *V << '\n'); 347 // Only instructions go on the work list 348 OverdefinedInstWorkList.push_back(V); 349 } 350 351 void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { 352 if (IV.isOverdefined() || MergeWithV.isUndefined()) 353 return; // Noop. 354 if (MergeWithV.isOverdefined()) 355 markOverdefined(IV, V); 356 else if (IV.isUndefined()) 357 markConstant(IV, V, MergeWithV.getConstant()); 358 else if (IV.getConstant() != MergeWithV.getConstant()) 359 markOverdefined(IV, V); 360 } 361 362 void mergeInValue(Value *V, LatticeVal MergeWithV) { 363 assert(!V->getType()->isStructTy() && "Should use other method"); 364 mergeInValue(ValueState[V], V, MergeWithV); 365 } 366 367 368 /// getValueState - Return the LatticeVal object that corresponds to the 369 /// value. This function handles the case when the value hasn't been seen yet 370 /// by properly seeding constants etc. 371 LatticeVal &getValueState(Value *V) { 372 assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 373 374 std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I = 375 ValueState.insert(std::make_pair(V, LatticeVal())); 376 LatticeVal &LV = I.first->second; 377 378 if (!I.second) 379 return LV; // Common case, already in the map. 380 381 if (Constant *C = dyn_cast<Constant>(V)) { 382 // Undef values remain undefined. 383 if (!isa<UndefValue>(V)) 384 LV.markConstant(C); // Constants are constant 385 } 386 387 // All others are underdefined by default. 388 return LV; 389 } 390 391 /// getStructValueState - Return the LatticeVal object that corresponds to the 392 /// value/field pair. This function handles the case when the value hasn't 393 /// been seen yet by properly seeding constants etc. 394 LatticeVal &getStructValueState(Value *V, unsigned i) { 395 assert(V->getType()->isStructTy() && "Should use getValueState"); 396 assert(i < cast<StructType>(V->getType())->getNumElements() && 397 "Invalid element #"); 398 399 std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator, 400 bool> I = StructValueState.insert( 401 std::make_pair(std::make_pair(V, i), LatticeVal())); 402 LatticeVal &LV = I.first->second; 403 404 if (!I.second) 405 return LV; // Common case, already in the map. 406 407 if (Constant *C = dyn_cast<Constant>(V)) { 408 if (isa<UndefValue>(C)) 409 ; // Undef values remain undefined. 410 else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) 411 LV.markConstant(CS->getOperand(i)); // Constants are constant. 412 else if (isa<ConstantAggregateZero>(C)) { 413 const Type *FieldTy = cast<StructType>(V->getType())->getElementType(i); 414 LV.markConstant(Constant::getNullValue(FieldTy)); 415 } else 416 LV.markOverdefined(); // Unknown sort of constant. 417 } 418 419 // All others are underdefined by default. 420 return LV; 421 } 422 423 424 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 425 /// work list if it is not already executable. 426 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 427 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 428 return; // This edge is already known to be executable! 429 430 if (!MarkBlockExecutable(Dest)) { 431 // If the destination is already executable, we just made an *edge* 432 // feasible that wasn't before. Revisit the PHI nodes in the block 433 // because they have potentially new operands. 434 DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 435 << " -> " << Dest->getName() << "\n"); 436 437 PHINode *PN; 438 for (BasicBlock::iterator I = Dest->begin(); 439 (PN = dyn_cast<PHINode>(I)); ++I) 440 visitPHINode(*PN); 441 } 442 } 443 444 // getFeasibleSuccessors - Return a vector of booleans to indicate which 445 // successors are reachable from a given terminator instruction. 446 // 447 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs); 448 449 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 450 // block to the 'To' basic block is currently feasible. 451 // 452 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 453 454 // OperandChangedState - This method is invoked on all of the users of an 455 // instruction that was just changed state somehow. Based on this 456 // information, we need to update the specified user of this instruction. 457 // 458 void OperandChangedState(Instruction *I) { 459 if (BBExecutable.count(I->getParent())) // Inst is executable? 460 visit(*I); 461 } 462 463 /// RemoveFromOverdefinedPHIs - If I has any entries in the 464 /// UsersOfOverdefinedPHIs map for PN, remove them now. 465 void RemoveFromOverdefinedPHIs(Instruction *I, PHINode *PN) { 466 if (UsersOfOverdefinedPHIs.empty()) return; 467 std::multimap<PHINode*, Instruction*>::iterator It, E; 468 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN); 469 while (It != E) { 470 if (It->second == I) 471 UsersOfOverdefinedPHIs.erase(It++); 472 else 473 ++It; 474 } 475 } 476 477private: 478 friend class InstVisitor<SCCPSolver>; 479 480 // visit implementations - Something changed in this instruction. Either an 481 // operand made a transition, or the instruction is newly executable. Change 482 // the value type of I to reflect these changes if appropriate. 483 void visitPHINode(PHINode &I); 484 485 // Terminators 486 void visitReturnInst(ReturnInst &I); 487 void visitTerminatorInst(TerminatorInst &TI); 488 489 void visitCastInst(CastInst &I); 490 void visitSelectInst(SelectInst &I); 491 void visitBinaryOperator(Instruction &I); 492 void visitCmpInst(CmpInst &I); 493 void visitExtractElementInst(ExtractElementInst &I); 494 void visitInsertElementInst(InsertElementInst &I); 495 void visitShuffleVectorInst(ShuffleVectorInst &I); 496 void visitExtractValueInst(ExtractValueInst &EVI); 497 void visitInsertValueInst(InsertValueInst &IVI); 498 499 // Instructions that cannot be folded away. 500 void visitStoreInst (StoreInst &I); 501 void visitLoadInst (LoadInst &I); 502 void visitGetElementPtrInst(GetElementPtrInst &I); 503 void visitCallInst (CallInst &I) { 504 visitCallSite(CallSite::get(&I)); 505 } 506 void visitInvokeInst (InvokeInst &II) { 507 visitCallSite(CallSite::get(&II)); 508 visitTerminatorInst(II); 509 } 510 void visitCallSite (CallSite CS); 511 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 512 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 513 void visitAllocaInst (Instruction &I) { markOverdefined(&I); } 514 void visitVANextInst (Instruction &I) { markOverdefined(&I); } 515 void visitVAArgInst (Instruction &I) { markAnythingOverdefined(&I); } 516 517 void visitInstruction(Instruction &I) { 518 // If a new instruction is added to LLVM that we don't handle. 519 dbgs() << "SCCP: Don't know how to handle: " << I; 520 markAnythingOverdefined(&I); // Just in case 521 } 522}; 523 524} // end anonymous namespace 525 526 527// getFeasibleSuccessors - Return a vector of booleans to indicate which 528// successors are reachable from a given terminator instruction. 529// 530void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 531 SmallVector<bool, 16> &Succs) { 532 Succs.resize(TI.getNumSuccessors()); 533 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 534 if (BI->isUnconditional()) { 535 Succs[0] = true; 536 return; 537 } 538 539 LatticeVal BCValue = getValueState(BI->getCondition()); 540 ConstantInt *CI = BCValue.getConstantInt(); 541 if (CI == 0) { 542 // Overdefined condition variables, and branches on unfoldable constant 543 // conditions, mean the branch could go either way. 544 if (!BCValue.isUndefined()) 545 Succs[0] = Succs[1] = true; 546 return; 547 } 548 549 // Constant condition variables mean the branch can only go a single way. 550 Succs[CI->isZero()] = true; 551 return; 552 } 553 554 if (isa<InvokeInst>(TI)) { 555 // Invoke instructions successors are always executable. 556 Succs[0] = Succs[1] = true; 557 return; 558 } 559 560 if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 561 LatticeVal SCValue = getValueState(SI->getCondition()); 562 ConstantInt *CI = SCValue.getConstantInt(); 563 564 if (CI == 0) { // Overdefined or undefined condition? 565 // All destinations are executable! 566 if (!SCValue.isUndefined()) 567 Succs.assign(TI.getNumSuccessors(), true); 568 return; 569 } 570 571 Succs[SI->findCaseValue(CI)] = true; 572 return; 573 } 574 575 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 576 if (isa<IndirectBrInst>(&TI)) { 577 // Just mark all destinations executable! 578 Succs.assign(TI.getNumSuccessors(), true); 579 return; 580 } 581 582#ifndef NDEBUG 583 dbgs() << "Unknown terminator instruction: " << TI << '\n'; 584#endif 585 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 586} 587 588 589// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 590// block to the 'To' basic block is currently feasible. 591// 592bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 593 assert(BBExecutable.count(To) && "Dest should always be alive!"); 594 595 // Make sure the source basic block is executable!! 596 if (!BBExecutable.count(From)) return false; 597 598 // Check to make sure this edge itself is actually feasible now. 599 TerminatorInst *TI = From->getTerminator(); 600 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 601 if (BI->isUnconditional()) 602 return true; 603 604 LatticeVal BCValue = getValueState(BI->getCondition()); 605 606 // Overdefined condition variables mean the branch could go either way, 607 // undef conditions mean that neither edge is feasible yet. 608 ConstantInt *CI = BCValue.getConstantInt(); 609 if (CI == 0) 610 return !BCValue.isUndefined(); 611 612 // Constant condition variables mean the branch can only go a single way. 613 return BI->getSuccessor(CI->isZero()) == To; 614 } 615 616 // Invoke instructions successors are always executable. 617 if (isa<InvokeInst>(TI)) 618 return true; 619 620 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 621 LatticeVal SCValue = getValueState(SI->getCondition()); 622 ConstantInt *CI = SCValue.getConstantInt(); 623 624 if (CI == 0) 625 return !SCValue.isUndefined(); 626 627 // Make sure to skip the "default value" which isn't a value 628 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 629 if (SI->getSuccessorValue(i) == CI) // Found the taken branch. 630 return SI->getSuccessor(i) == To; 631 632 // If the constant value is not equal to any of the branches, we must 633 // execute default branch. 634 return SI->getDefaultDest() == To; 635 } 636 637 // Just mark all destinations executable! 638 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 639 if (isa<IndirectBrInst>(&TI)) 640 return true; 641 642#ifndef NDEBUG 643 dbgs() << "Unknown terminator instruction: " << *TI << '\n'; 644#endif 645 llvm_unreachable(0); 646} 647 648// visit Implementations - Something changed in this instruction, either an 649// operand made a transition, or the instruction is newly executable. Change 650// the value type of I to reflect these changes if appropriate. This method 651// makes sure to do the following actions: 652// 653// 1. If a phi node merges two constants in, and has conflicting value coming 654// from different branches, or if the PHI node merges in an overdefined 655// value, then the PHI node becomes overdefined. 656// 2. If a phi node merges only constants in, and they all agree on value, the 657// PHI node becomes a constant value equal to that. 658// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 659// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 660// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 661// 6. If a conditional branch has a value that is constant, make the selected 662// destination executable 663// 7. If a conditional branch has a value that is overdefined, make all 664// successors executable. 665// 666void SCCPSolver::visitPHINode(PHINode &PN) { 667 // If this PN returns a struct, just mark the result overdefined. 668 // TODO: We could do a lot better than this if code actually uses this. 669 if (PN.getType()->isStructTy()) 670 return markAnythingOverdefined(&PN); 671 672 if (getValueState(&PN).isOverdefined()) { 673 // There may be instructions using this PHI node that are not overdefined 674 // themselves. If so, make sure that they know that the PHI node operand 675 // changed. 676 std::multimap<PHINode*, Instruction*>::iterator I, E; 677 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); 678 if (I == E) 679 return; 680 681 SmallVector<Instruction*, 16> Users; 682 for (; I != E; ++I) 683 Users.push_back(I->second); 684 while (!Users.empty()) 685 visit(Users.pop_back_val()); 686 return; // Quick exit 687 } 688 689 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 690 // and slow us down a lot. Just mark them overdefined. 691 if (PN.getNumIncomingValues() > 64) 692 return markOverdefined(&PN); 693 694 // Look at all of the executable operands of the PHI node. If any of them 695 // are overdefined, the PHI becomes overdefined as well. If they are all 696 // constant, and they agree with each other, the PHI becomes the identical 697 // constant. If they are constant and don't agree, the PHI is overdefined. 698 // If there are no executable operands, the PHI remains undefined. 699 // 700 Constant *OperandVal = 0; 701 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 702 LatticeVal IV = getValueState(PN.getIncomingValue(i)); 703 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 704 705 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) 706 continue; 707 708 if (IV.isOverdefined()) // PHI node becomes overdefined! 709 return markOverdefined(&PN); 710 711 if (OperandVal == 0) { // Grab the first value. 712 OperandVal = IV.getConstant(); 713 continue; 714 } 715 716 // There is already a reachable operand. If we conflict with it, 717 // then the PHI node becomes overdefined. If we agree with it, we 718 // can continue on. 719 720 // Check to see if there are two different constants merging, if so, the PHI 721 // node is overdefined. 722 if (IV.getConstant() != OperandVal) 723 return markOverdefined(&PN); 724 } 725 726 // If we exited the loop, this means that the PHI node only has constant 727 // arguments that agree with each other(and OperandVal is the constant) or 728 // OperandVal is null because there are no defined incoming arguments. If 729 // this is the case, the PHI remains undefined. 730 // 731 if (OperandVal) 732 markConstant(&PN, OperandVal); // Acquire operand value 733} 734 735 736 737 738void SCCPSolver::visitReturnInst(ReturnInst &I) { 739 if (I.getNumOperands() == 0) return; // ret void 740 741 Function *F = I.getParent()->getParent(); 742 Value *ResultOp = I.getOperand(0); 743 744 // If we are tracking the return value of this function, merge it in. 745 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { 746 DenseMap<Function*, LatticeVal>::iterator TFRVI = 747 TrackedRetVals.find(F); 748 if (TFRVI != TrackedRetVals.end()) { 749 mergeInValue(TFRVI->second, F, getValueState(ResultOp)); 750 return; 751 } 752 } 753 754 // Handle functions that return multiple values. 755 if (!TrackedMultipleRetVals.empty()) { 756 if (const StructType *STy = dyn_cast<StructType>(ResultOp->getType())) 757 if (MRVFunctionsTracked.count(F)) 758 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 759 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, 760 getStructValueState(ResultOp, i)); 761 762 } 763} 764 765void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 766 SmallVector<bool, 16> SuccFeasible; 767 getFeasibleSuccessors(TI, SuccFeasible); 768 769 BasicBlock *BB = TI.getParent(); 770 771 // Mark all feasible successors executable. 772 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 773 if (SuccFeasible[i]) 774 markEdgeExecutable(BB, TI.getSuccessor(i)); 775} 776 777void SCCPSolver::visitCastInst(CastInst &I) { 778 LatticeVal OpSt = getValueState(I.getOperand(0)); 779 if (OpSt.isOverdefined()) // Inherit overdefinedness of operand 780 markOverdefined(&I); 781 else if (OpSt.isConstant()) // Propagate constant value 782 markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 783 OpSt.getConstant(), I.getType())); 784} 785 786 787void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { 788 // If this returns a struct, mark all elements over defined, we don't track 789 // structs in structs. 790 if (EVI.getType()->isStructTy()) 791 return markAnythingOverdefined(&EVI); 792 793 // If this is extracting from more than one level of struct, we don't know. 794 if (EVI.getNumIndices() != 1) 795 return markOverdefined(&EVI); 796 797 Value *AggVal = EVI.getAggregateOperand(); 798 if (AggVal->getType()->isStructTy()) { 799 unsigned i = *EVI.idx_begin(); 800 LatticeVal EltVal = getStructValueState(AggVal, i); 801 mergeInValue(getValueState(&EVI), &EVI, EltVal); 802 } else { 803 // Otherwise, must be extracting from an array. 804 return markOverdefined(&EVI); 805 } 806} 807 808void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { 809 const StructType *STy = dyn_cast<StructType>(IVI.getType()); 810 if (STy == 0) 811 return markOverdefined(&IVI); 812 813 // If this has more than one index, we can't handle it, drive all results to 814 // undef. 815 if (IVI.getNumIndices() != 1) 816 return markAnythingOverdefined(&IVI); 817 818 Value *Aggr = IVI.getAggregateOperand(); 819 unsigned Idx = *IVI.idx_begin(); 820 821 // Compute the result based on what we're inserting. 822 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 823 // This passes through all values that aren't the inserted element. 824 if (i != Idx) { 825 LatticeVal EltVal = getStructValueState(Aggr, i); 826 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); 827 continue; 828 } 829 830 Value *Val = IVI.getInsertedValueOperand(); 831 if (Val->getType()->isStructTy()) 832 // We don't track structs in structs. 833 markOverdefined(getStructValueState(&IVI, i), &IVI); 834 else { 835 LatticeVal InVal = getValueState(Val); 836 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); 837 } 838 } 839} 840 841void SCCPSolver::visitSelectInst(SelectInst &I) { 842 // If this select returns a struct, just mark the result overdefined. 843 // TODO: We could do a lot better than this if code actually uses this. 844 if (I.getType()->isStructTy()) 845 return markAnythingOverdefined(&I); 846 847 LatticeVal CondValue = getValueState(I.getCondition()); 848 if (CondValue.isUndefined()) 849 return; 850 851 if (ConstantInt *CondCB = CondValue.getConstantInt()) { 852 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); 853 mergeInValue(&I, getValueState(OpVal)); 854 return; 855 } 856 857 // Otherwise, the condition is overdefined or a constant we can't evaluate. 858 // See if we can produce something better than overdefined based on the T/F 859 // value. 860 LatticeVal TVal = getValueState(I.getTrueValue()); 861 LatticeVal FVal = getValueState(I.getFalseValue()); 862 863 // select ?, C, C -> C. 864 if (TVal.isConstant() && FVal.isConstant() && 865 TVal.getConstant() == FVal.getConstant()) 866 return markConstant(&I, FVal.getConstant()); 867 868 if (TVal.isUndefined()) // select ?, undef, X -> X. 869 return mergeInValue(&I, FVal); 870 if (FVal.isUndefined()) // select ?, X, undef -> X. 871 return mergeInValue(&I, TVal); 872 markOverdefined(&I); 873} 874 875// Handle Binary Operators. 876void SCCPSolver::visitBinaryOperator(Instruction &I) { 877 LatticeVal V1State = getValueState(I.getOperand(0)); 878 LatticeVal V2State = getValueState(I.getOperand(1)); 879 880 LatticeVal &IV = ValueState[&I]; 881 if (IV.isOverdefined()) return; 882 883 if (V1State.isConstant() && V2State.isConstant()) 884 return markConstant(IV, &I, 885 ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 886 V2State.getConstant())); 887 888 // If something is undef, wait for it to resolve. 889 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 890 return; 891 892 // Otherwise, one of our operands is overdefined. Try to produce something 893 // better than overdefined with some tricks. 894 895 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 896 // operand is overdefined. 897 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 898 LatticeVal *NonOverdefVal = 0; 899 if (!V1State.isOverdefined()) 900 NonOverdefVal = &V1State; 901 else if (!V2State.isOverdefined()) 902 NonOverdefVal = &V2State; 903 904 if (NonOverdefVal) { 905 if (NonOverdefVal->isUndefined()) { 906 // Could annihilate value. 907 if (I.getOpcode() == Instruction::And) 908 markConstant(IV, &I, Constant::getNullValue(I.getType())); 909 else if (const VectorType *PT = dyn_cast<VectorType>(I.getType())) 910 markConstant(IV, &I, Constant::getAllOnesValue(PT)); 911 else 912 markConstant(IV, &I, 913 Constant::getAllOnesValue(I.getType())); 914 return; 915 } 916 917 if (I.getOpcode() == Instruction::And) { 918 // X and 0 = 0 919 if (NonOverdefVal->getConstant()->isNullValue()) 920 return markConstant(IV, &I, NonOverdefVal->getConstant()); 921 } else { 922 if (ConstantInt *CI = NonOverdefVal->getConstantInt()) 923 if (CI->isAllOnesValue()) // X or -1 = -1 924 return markConstant(IV, &I, NonOverdefVal->getConstant()); 925 } 926 } 927 } 928 929 930 // If both operands are PHI nodes, it is possible that this instruction has 931 // a constant value, despite the fact that the PHI node doesn't. Check for 932 // this condition now. 933 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 934 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 935 if (PN1->getParent() == PN2->getParent()) { 936 // Since the two PHI nodes are in the same basic block, they must have 937 // entries for the same predecessors. Walk the predecessor list, and 938 // if all of the incoming values are constants, and the result of 939 // evaluating this expression with all incoming value pairs is the 940 // same, then this expression is a constant even though the PHI node 941 // is not a constant! 942 LatticeVal Result; 943 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 944 LatticeVal In1 = getValueState(PN1->getIncomingValue(i)); 945 BasicBlock *InBlock = PN1->getIncomingBlock(i); 946 LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock)); 947 948 if (In1.isOverdefined() || In2.isOverdefined()) { 949 Result.markOverdefined(); 950 break; // Cannot fold this operation over the PHI nodes! 951 } 952 953 if (In1.isConstant() && In2.isConstant()) { 954 Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), 955 In2.getConstant()); 956 if (Result.isUndefined()) 957 Result.markConstant(V); 958 else if (Result.isConstant() && Result.getConstant() != V) { 959 Result.markOverdefined(); 960 break; 961 } 962 } 963 } 964 965 // If we found a constant value here, then we know the instruction is 966 // constant despite the fact that the PHI nodes are overdefined. 967 if (Result.isConstant()) { 968 markConstant(IV, &I, Result.getConstant()); 969 // Remember that this instruction is virtually using the PHI node 970 // operands. 971 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 972 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 973 return; 974 } 975 976 if (Result.isUndefined()) 977 return; 978 979 // Okay, this really is overdefined now. Since we might have 980 // speculatively thought that this was not overdefined before, and 981 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 982 // make sure to clean out any entries that we put there, for 983 // efficiency. 984 RemoveFromOverdefinedPHIs(&I, PN1); 985 RemoveFromOverdefinedPHIs(&I, PN2); 986 } 987 988 markOverdefined(&I); 989} 990 991// Handle ICmpInst instruction. 992void SCCPSolver::visitCmpInst(CmpInst &I) { 993 LatticeVal V1State = getValueState(I.getOperand(0)); 994 LatticeVal V2State = getValueState(I.getOperand(1)); 995 996 LatticeVal &IV = ValueState[&I]; 997 if (IV.isOverdefined()) return; 998 999 if (V1State.isConstant() && V2State.isConstant()) 1000 return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 1001 V1State.getConstant(), 1002 V2State.getConstant())); 1003 1004 // If operands are still undefined, wait for it to resolve. 1005 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 1006 return; 1007 1008 // If something is overdefined, use some tricks to avoid ending up and over 1009 // defined if we can. 1010 1011 // If both operands are PHI nodes, it is possible that this instruction has 1012 // a constant value, despite the fact that the PHI node doesn't. Check for 1013 // this condition now. 1014 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 1015 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 1016 if (PN1->getParent() == PN2->getParent()) { 1017 // Since the two PHI nodes are in the same basic block, they must have 1018 // entries for the same predecessors. Walk the predecessor list, and 1019 // if all of the incoming values are constants, and the result of 1020 // evaluating this expression with all incoming value pairs is the 1021 // same, then this expression is a constant even though the PHI node 1022 // is not a constant! 1023 LatticeVal Result; 1024 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 1025 LatticeVal In1 = getValueState(PN1->getIncomingValue(i)); 1026 BasicBlock *InBlock = PN1->getIncomingBlock(i); 1027 LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock)); 1028 1029 if (In1.isOverdefined() || In2.isOverdefined()) { 1030 Result.markOverdefined(); 1031 break; // Cannot fold this operation over the PHI nodes! 1032 } 1033 1034 if (In1.isConstant() && In2.isConstant()) { 1035 Constant *V = ConstantExpr::getCompare(I.getPredicate(), 1036 In1.getConstant(), 1037 In2.getConstant()); 1038 if (Result.isUndefined()) 1039 Result.markConstant(V); 1040 else if (Result.isConstant() && Result.getConstant() != V) { 1041 Result.markOverdefined(); 1042 break; 1043 } 1044 } 1045 } 1046 1047 // If we found a constant value here, then we know the instruction is 1048 // constant despite the fact that the PHI nodes are overdefined. 1049 if (Result.isConstant()) { 1050 markConstant(&I, Result.getConstant()); 1051 // Remember that this instruction is virtually using the PHI node 1052 // operands. 1053 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 1054 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 1055 return; 1056 } 1057 1058 if (Result.isUndefined()) 1059 return; 1060 1061 // Okay, this really is overdefined now. Since we might have 1062 // speculatively thought that this was not overdefined before, and 1063 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 1064 // make sure to clean out any entries that we put there, for 1065 // efficiency. 1066 RemoveFromOverdefinedPHIs(&I, PN1); 1067 RemoveFromOverdefinedPHIs(&I, PN2); 1068 } 1069 1070 markOverdefined(&I); 1071} 1072 1073void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 1074 // TODO : SCCP does not handle vectors properly. 1075 return markOverdefined(&I); 1076 1077#if 0 1078 LatticeVal &ValState = getValueState(I.getOperand(0)); 1079 LatticeVal &IdxState = getValueState(I.getOperand(1)); 1080 1081 if (ValState.isOverdefined() || IdxState.isOverdefined()) 1082 markOverdefined(&I); 1083 else if(ValState.isConstant() && IdxState.isConstant()) 1084 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 1085 IdxState.getConstant())); 1086#endif 1087} 1088 1089void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 1090 // TODO : SCCP does not handle vectors properly. 1091 return markOverdefined(&I); 1092#if 0 1093 LatticeVal &ValState = getValueState(I.getOperand(0)); 1094 LatticeVal &EltState = getValueState(I.getOperand(1)); 1095 LatticeVal &IdxState = getValueState(I.getOperand(2)); 1096 1097 if (ValState.isOverdefined() || EltState.isOverdefined() || 1098 IdxState.isOverdefined()) 1099 markOverdefined(&I); 1100 else if(ValState.isConstant() && EltState.isConstant() && 1101 IdxState.isConstant()) 1102 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 1103 EltState.getConstant(), 1104 IdxState.getConstant())); 1105 else if (ValState.isUndefined() && EltState.isConstant() && 1106 IdxState.isConstant()) 1107 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 1108 EltState.getConstant(), 1109 IdxState.getConstant())); 1110#endif 1111} 1112 1113void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 1114 // TODO : SCCP does not handle vectors properly. 1115 return markOverdefined(&I); 1116#if 0 1117 LatticeVal &V1State = getValueState(I.getOperand(0)); 1118 LatticeVal &V2State = getValueState(I.getOperand(1)); 1119 LatticeVal &MaskState = getValueState(I.getOperand(2)); 1120 1121 if (MaskState.isUndefined() || 1122 (V1State.isUndefined() && V2State.isUndefined())) 1123 return; // Undefined output if mask or both inputs undefined. 1124 1125 if (V1State.isOverdefined() || V2State.isOverdefined() || 1126 MaskState.isOverdefined()) { 1127 markOverdefined(&I); 1128 } else { 1129 // A mix of constant/undef inputs. 1130 Constant *V1 = V1State.isConstant() ? 1131 V1State.getConstant() : UndefValue::get(I.getType()); 1132 Constant *V2 = V2State.isConstant() ? 1133 V2State.getConstant() : UndefValue::get(I.getType()); 1134 Constant *Mask = MaskState.isConstant() ? 1135 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 1136 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 1137 } 1138#endif 1139} 1140 1141// Handle getelementptr instructions. If all operands are constants then we 1142// can turn this into a getelementptr ConstantExpr. 1143// 1144void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 1145 if (ValueState[&I].isOverdefined()) return; 1146 1147 SmallVector<Constant*, 8> Operands; 1148 Operands.reserve(I.getNumOperands()); 1149 1150 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1151 LatticeVal State = getValueState(I.getOperand(i)); 1152 if (State.isUndefined()) 1153 return; // Operands are not resolved yet. 1154 1155 if (State.isOverdefined()) 1156 return markOverdefined(&I); 1157 1158 assert(State.isConstant() && "Unknown state!"); 1159 Operands.push_back(State.getConstant()); 1160 } 1161 1162 Constant *Ptr = Operands[0]; 1163 markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0]+1, 1164 Operands.size()-1)); 1165} 1166 1167void SCCPSolver::visitStoreInst(StoreInst &SI) { 1168 // If this store is of a struct, ignore it. 1169 if (SI.getOperand(0)->getType()->isStructTy()) 1170 return; 1171 1172 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1173 return; 1174 1175 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1176 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 1177 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 1178 1179 // Get the value we are storing into the global, then merge it. 1180 mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); 1181 if (I->second.isOverdefined()) 1182 TrackedGlobals.erase(I); // No need to keep tracking this! 1183} 1184 1185 1186// Handle load instructions. If the operand is a constant pointer to a constant 1187// global, we can replace the load with the loaded constant value! 1188void SCCPSolver::visitLoadInst(LoadInst &I) { 1189 // If this load is of a struct, just mark the result overdefined. 1190 if (I.getType()->isStructTy()) 1191 return markAnythingOverdefined(&I); 1192 1193 LatticeVal PtrVal = getValueState(I.getOperand(0)); 1194 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 1195 1196 LatticeVal &IV = ValueState[&I]; 1197 if (IV.isOverdefined()) return; 1198 1199 if (!PtrVal.isConstant() || I.isVolatile()) 1200 return markOverdefined(IV, &I); 1201 1202 Constant *Ptr = PtrVal.getConstant(); 1203 1204 // load null -> null 1205 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) 1206 return markConstant(IV, &I, Constant::getNullValue(I.getType())); 1207 1208 // Transform load (constant global) into the value loaded. 1209 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 1210 if (!TrackedGlobals.empty()) { 1211 // If we are tracking this global, merge in the known value for it. 1212 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1213 TrackedGlobals.find(GV); 1214 if (It != TrackedGlobals.end()) { 1215 mergeInValue(IV, &I, It->second); 1216 return; 1217 } 1218 } 1219 } 1220 1221 // Transform load from a constant into a constant if possible. 1222 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD)) 1223 return markConstant(IV, &I, C); 1224 1225 // Otherwise we cannot say for certain what value this load will produce. 1226 // Bail out. 1227 markOverdefined(IV, &I); 1228} 1229 1230void SCCPSolver::visitCallSite(CallSite CS) { 1231 Function *F = CS.getCalledFunction(); 1232 Instruction *I = CS.getInstruction(); 1233 1234 // The common case is that we aren't tracking the callee, either because we 1235 // are not doing interprocedural analysis or the callee is indirect, or is 1236 // external. Handle these cases first. 1237 if (F == 0 || F->isDeclaration()) { 1238CallOverdefined: 1239 // Void return and not tracking callee, just bail. 1240 if (I->getType()->isVoidTy()) return; 1241 1242 // Otherwise, if we have a single return value case, and if the function is 1243 // a declaration, maybe we can constant fold it. 1244 if (F && F->isDeclaration() && !I->getType()->isStructTy() && 1245 canConstantFoldCallTo(F)) { 1246 1247 SmallVector<Constant*, 8> Operands; 1248 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1249 AI != E; ++AI) { 1250 LatticeVal State = getValueState(*AI); 1251 1252 if (State.isUndefined()) 1253 return; // Operands are not resolved yet. 1254 if (State.isOverdefined()) 1255 return markOverdefined(I); 1256 assert(State.isConstant() && "Unknown state!"); 1257 Operands.push_back(State.getConstant()); 1258 } 1259 1260 // If we can constant fold this, mark the result of the call as a 1261 // constant. 1262 if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) 1263 return markConstant(I, C); 1264 } 1265 1266 // Otherwise, we don't know anything about this call, mark it overdefined. 1267 return markAnythingOverdefined(I); 1268 } 1269 1270 // If this is a local function that doesn't have its address taken, mark its 1271 // entry block executable and merge in the actual arguments to the call into 1272 // the formal arguments of the function. 1273 if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ 1274 MarkBlockExecutable(F->begin()); 1275 1276 // Propagate information from this call site into the callee. 1277 CallSite::arg_iterator CAI = CS.arg_begin(); 1278 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1279 AI != E; ++AI, ++CAI) { 1280 // If this argument is byval, and if the function is not readonly, there 1281 // will be an implicit copy formed of the input aggregate. 1282 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1283 markOverdefined(AI); 1284 continue; 1285 } 1286 1287 if (const StructType *STy = dyn_cast<StructType>(AI->getType())) { 1288 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1289 LatticeVal CallArg = getStructValueState(*CAI, i); 1290 mergeInValue(getStructValueState(AI, i), AI, CallArg); 1291 } 1292 } else { 1293 mergeInValue(AI, getValueState(*CAI)); 1294 } 1295 } 1296 } 1297 1298 // If this is a single/zero retval case, see if we're tracking the function. 1299 if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 1300 if (!MRVFunctionsTracked.count(F)) 1301 goto CallOverdefined; // Not tracking this callee. 1302 1303 // If we are tracking this callee, propagate the result of the function 1304 // into this call site. 1305 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1306 mergeInValue(getStructValueState(I, i), I, 1307 TrackedMultipleRetVals[std::make_pair(F, i)]); 1308 } else { 1309 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); 1310 if (TFRVI == TrackedRetVals.end()) 1311 goto CallOverdefined; // Not tracking this callee. 1312 1313 // If so, propagate the return value of the callee into this call result. 1314 mergeInValue(I, TFRVI->second); 1315 } 1316} 1317 1318void SCCPSolver::Solve() { 1319 // Process the work lists until they are empty! 1320 while (!BBWorkList.empty() || !InstWorkList.empty() || 1321 !OverdefinedInstWorkList.empty()) { 1322 // Process the overdefined instruction's work list first, which drives other 1323 // things to overdefined more quickly. 1324 while (!OverdefinedInstWorkList.empty()) { 1325 Value *I = OverdefinedInstWorkList.pop_back_val(); 1326 1327 DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); 1328 1329 // "I" got into the work list because it either made the transition from 1330 // bottom to constant 1331 // 1332 // Anything on this worklist that is overdefined need not be visited 1333 // since all of its users will have already been marked as overdefined 1334 // Update all of the users of this instruction's value. 1335 // 1336 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1337 UI != E; ++UI) 1338 if (Instruction *I = dyn_cast<Instruction>(*UI)) 1339 OperandChangedState(I); 1340 } 1341 1342 // Process the instruction work list. 1343 while (!InstWorkList.empty()) { 1344 Value *I = InstWorkList.pop_back_val(); 1345 1346 DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); 1347 1348 // "I" got into the work list because it made the transition from undef to 1349 // constant. 1350 // 1351 // Anything on this worklist that is overdefined need not be visited 1352 // since all of its users will have already been marked as overdefined. 1353 // Update all of the users of this instruction's value. 1354 // 1355 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) 1356 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1357 UI != E; ++UI) 1358 if (Instruction *I = dyn_cast<Instruction>(*UI)) 1359 OperandChangedState(I); 1360 } 1361 1362 // Process the basic block work list. 1363 while (!BBWorkList.empty()) { 1364 BasicBlock *BB = BBWorkList.back(); 1365 BBWorkList.pop_back(); 1366 1367 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); 1368 1369 // Notify all instructions in this basic block that they are newly 1370 // executable. 1371 visit(BB); 1372 } 1373 } 1374} 1375 1376/// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1377/// that branches on undef values cannot reach any of their successors. 1378/// However, this is not a safe assumption. After we solve dataflow, this 1379/// method should be use to handle this. If this returns true, the solver 1380/// should be rerun. 1381/// 1382/// This method handles this by finding an unresolved branch and marking it one 1383/// of the edges from the block as being feasible, even though the condition 1384/// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1385/// CFG and only slightly pessimizes the analysis results (by marking one, 1386/// potentially infeasible, edge feasible). This cannot usefully modify the 1387/// constraints on the condition of the branch, as that would impact other users 1388/// of the value. 1389/// 1390/// This scan also checks for values that use undefs, whose results are actually 1391/// defined. For example, 'zext i8 undef to i32' should produce all zeros 1392/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1393/// even if X isn't defined. 1394bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1395 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1396 if (!BBExecutable.count(BB)) 1397 continue; 1398 1399 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1400 // Look for instructions which produce undef values. 1401 if (I->getType()->isVoidTy()) continue; 1402 1403 if (const StructType *STy = dyn_cast<StructType>(I->getType())) { 1404 // Only a few things that can be structs matter for undef. Just send 1405 // all their results to overdefined. We could be more precise than this 1406 // but it isn't worth bothering. 1407 if (isa<CallInst>(I) || isa<SelectInst>(I)) { 1408 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1409 LatticeVal &LV = getStructValueState(I, i); 1410 if (LV.isUndefined()) 1411 markOverdefined(LV, I); 1412 } 1413 } 1414 continue; 1415 } 1416 1417 LatticeVal &LV = getValueState(I); 1418 if (!LV.isUndefined()) continue; 1419 1420 // No instructions using structs need disambiguation. 1421 if (I->getOperand(0)->getType()->isStructTy()) 1422 continue; 1423 1424 // Get the lattice values of the first two operands for use below. 1425 LatticeVal Op0LV = getValueState(I->getOperand(0)); 1426 LatticeVal Op1LV; 1427 if (I->getNumOperands() == 2) { 1428 // No instructions using structs need disambiguation. 1429 if (I->getOperand(1)->getType()->isStructTy()) 1430 continue; 1431 1432 // If this is a two-operand instruction, and if both operands are 1433 // undefs, the result stays undef. 1434 Op1LV = getValueState(I->getOperand(1)); 1435 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1436 continue; 1437 } 1438 1439 // If this is an instructions whose result is defined even if the input is 1440 // not fully defined, propagate the information. 1441 const Type *ITy = I->getType(); 1442 switch (I->getOpcode()) { 1443 default: break; // Leave the instruction as an undef. 1444 case Instruction::ZExt: 1445 // After a zero extend, we know the top part is zero. SExt doesn't have 1446 // to be handled here, because we don't know whether the top part is 1's 1447 // or 0's. 1448 markForcedConstant(I, Constant::getNullValue(ITy)); 1449 return true; 1450 case Instruction::Mul: 1451 case Instruction::And: 1452 // undef * X -> 0. X could be zero. 1453 // undef & X -> 0. X could be zero. 1454 markForcedConstant(I, Constant::getNullValue(ITy)); 1455 return true; 1456 1457 case Instruction::Or: 1458 // undef | X -> -1. X could be -1. 1459 markForcedConstant(I, Constant::getAllOnesValue(ITy)); 1460 return true; 1461 1462 case Instruction::SDiv: 1463 case Instruction::UDiv: 1464 case Instruction::SRem: 1465 case Instruction::URem: 1466 // X / undef -> undef. No change. 1467 // X % undef -> undef. No change. 1468 if (Op1LV.isUndefined()) break; 1469 1470 // undef / X -> 0. X could be maxint. 1471 // undef % X -> 0. X could be 1. 1472 markForcedConstant(I, Constant::getNullValue(ITy)); 1473 return true; 1474 1475 case Instruction::AShr: 1476 // undef >>s X -> undef. No change. 1477 if (Op0LV.isUndefined()) break; 1478 1479 // X >>s undef -> X. X could be 0, X could have the high-bit known set. 1480 if (Op0LV.isConstant()) 1481 markForcedConstant(I, Op0LV.getConstant()); 1482 else 1483 markOverdefined(I); 1484 return true; 1485 case Instruction::LShr: 1486 case Instruction::Shl: 1487 // undef >> X -> undef. No change. 1488 // undef << X -> undef. No change. 1489 if (Op0LV.isUndefined()) break; 1490 1491 // X >> undef -> 0. X could be 0. 1492 // X << undef -> 0. X could be 0. 1493 markForcedConstant(I, Constant::getNullValue(ITy)); 1494 return true; 1495 case Instruction::Select: 1496 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1497 if (Op0LV.isUndefined()) { 1498 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1499 Op1LV = getValueState(I->getOperand(2)); 1500 } else if (Op1LV.isUndefined()) { 1501 // c ? undef : undef -> undef. No change. 1502 Op1LV = getValueState(I->getOperand(2)); 1503 if (Op1LV.isUndefined()) 1504 break; 1505 // Otherwise, c ? undef : x -> x. 1506 } else { 1507 // Leave Op1LV as Operand(1)'s LatticeValue. 1508 } 1509 1510 if (Op1LV.isConstant()) 1511 markForcedConstant(I, Op1LV.getConstant()); 1512 else 1513 markOverdefined(I); 1514 return true; 1515 case Instruction::Call: 1516 // If a call has an undef result, it is because it is constant foldable 1517 // but one of the inputs was undef. Just force the result to 1518 // overdefined. 1519 markOverdefined(I); 1520 return true; 1521 } 1522 } 1523 1524 TerminatorInst *TI = BB->getTerminator(); 1525 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1526 if (!BI->isConditional()) continue; 1527 if (!getValueState(BI->getCondition()).isUndefined()) 1528 continue; 1529 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1530 if (SI->getNumSuccessors() < 2) // no cases 1531 continue; 1532 if (!getValueState(SI->getCondition()).isUndefined()) 1533 continue; 1534 } else { 1535 continue; 1536 } 1537 1538 // If the edge to the second successor isn't thought to be feasible yet, 1539 // mark it so now. We pick the second one so that this goes to some 1540 // enumerated value in a switch instead of going to the default destination. 1541 if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1)))) 1542 continue; 1543 1544 // Otherwise, it isn't already thought to be feasible. Mark it as such now 1545 // and return. This will make other blocks reachable, which will allow new 1546 // values to be discovered and existing ones to be moved in the lattice. 1547 markEdgeExecutable(BB, TI->getSuccessor(1)); 1548 1549 // This must be a conditional branch of switch on undef. At this point, 1550 // force the old terminator to branch to the first successor. This is 1551 // required because we are now influencing the dataflow of the function with 1552 // the assumption that this edge is taken. If we leave the branch condition 1553 // as undef, then further analysis could think the undef went another way 1554 // leading to an inconsistent set of conclusions. 1555 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1556 BI->setCondition(ConstantInt::getFalse(BI->getContext())); 1557 } else { 1558 SwitchInst *SI = cast<SwitchInst>(TI); 1559 SI->setCondition(SI->getCaseValue(1)); 1560 } 1561 1562 return true; 1563 } 1564 1565 return false; 1566} 1567 1568 1569namespace { 1570 //===--------------------------------------------------------------------===// 1571 // 1572 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1573 /// Sparse Conditional Constant Propagator. 1574 /// 1575 struct SCCP : public FunctionPass { 1576 static char ID; // Pass identification, replacement for typeid 1577 SCCP() : FunctionPass(&ID) {} 1578 1579 // runOnFunction - Run the Sparse Conditional Constant Propagation 1580 // algorithm, and return true if the function was modified. 1581 // 1582 bool runOnFunction(Function &F); 1583 1584 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1585 AU.setPreservesCFG(); 1586 } 1587 }; 1588} // end anonymous namespace 1589 1590char SCCP::ID = 0; 1591static RegisterPass<SCCP> 1592X("sccp", "Sparse Conditional Constant Propagation"); 1593 1594// createSCCPPass - This is the public interface to this file. 1595FunctionPass *llvm::createSCCPPass() { 1596 return new SCCP(); 1597} 1598 1599static void DeleteInstructionInBlock(BasicBlock *BB) { 1600 DEBUG(dbgs() << " BasicBlock Dead:" << *BB); 1601 ++NumDeadBlocks; 1602 1603 // Delete the instructions backwards, as it has a reduced likelihood of 1604 // having to update as many def-use and use-def chains. 1605 while (!isa<TerminatorInst>(BB->begin())) { 1606 Instruction *I = --BasicBlock::iterator(BB->getTerminator()); 1607 1608 if (!I->use_empty()) 1609 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1610 BB->getInstList().erase(I); 1611 ++NumInstRemoved; 1612 } 1613} 1614 1615// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1616// and return true if the function was modified. 1617// 1618bool SCCP::runOnFunction(Function &F) { 1619 DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); 1620 SCCPSolver Solver(getAnalysisIfAvailable<TargetData>()); 1621 1622 // Mark the first block of the function as being executable. 1623 Solver.MarkBlockExecutable(F.begin()); 1624 1625 // Mark all arguments to the function as being overdefined. 1626 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) 1627 Solver.markAnythingOverdefined(AI); 1628 1629 // Solve for constants. 1630 bool ResolvedUndefs = true; 1631 while (ResolvedUndefs) { 1632 Solver.Solve(); 1633 DEBUG(dbgs() << "RESOLVING UNDEFs\n"); 1634 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1635 } 1636 1637 bool MadeChanges = false; 1638 1639 // If we decided that there are basic blocks that are dead in this function, 1640 // delete their contents now. Note that we cannot actually delete the blocks, 1641 // as we cannot modify the CFG of the function. 1642 1643 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1644 if (!Solver.isBlockExecutable(BB)) { 1645 DeleteInstructionInBlock(BB); 1646 MadeChanges = true; 1647 continue; 1648 } 1649 1650 // Iterate over all of the instructions in a function, replacing them with 1651 // constants if we have found them to be of constant values. 1652 // 1653 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1654 Instruction *Inst = BI++; 1655 if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst)) 1656 continue; 1657 1658 // TODO: Reconstruct structs from their elements. 1659 if (Inst->getType()->isStructTy()) 1660 continue; 1661 1662 LatticeVal IV = Solver.getLatticeValueFor(Inst); 1663 if (IV.isOverdefined()) 1664 continue; 1665 1666 Constant *Const = IV.isConstant() 1667 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1668 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst); 1669 1670 // Replaces all of the uses of a variable with uses of the constant. 1671 Inst->replaceAllUsesWith(Const); 1672 1673 // Delete the instruction. 1674 Inst->eraseFromParent(); 1675 1676 // Hey, we just changed something! 1677 MadeChanges = true; 1678 ++NumInstRemoved; 1679 } 1680 } 1681 1682 return MadeChanges; 1683} 1684 1685namespace { 1686 //===--------------------------------------------------------------------===// 1687 // 1688 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1689 /// Constant Propagation. 1690 /// 1691 struct IPSCCP : public ModulePass { 1692 static char ID; 1693 IPSCCP() : ModulePass(&ID) {} 1694 bool runOnModule(Module &M); 1695 }; 1696} // end anonymous namespace 1697 1698char IPSCCP::ID = 0; 1699static RegisterPass<IPSCCP> 1700Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation"); 1701 1702// createIPSCCPPass - This is the public interface to this file. 1703ModulePass *llvm::createIPSCCPPass() { 1704 return new IPSCCP(); 1705} 1706 1707 1708static bool AddressIsTaken(GlobalValue *GV) { 1709 // Delete any dead constantexpr klingons. 1710 GV->removeDeadConstantUsers(); 1711 1712 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 1713 UI != E; ++UI) 1714 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 1715 if (SI->getOperand(0) == GV || SI->isVolatile()) 1716 return true; // Storing addr of GV. 1717 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) { 1718 // Make sure we are calling the function, not passing the address. 1719 if (UI.getOperandNo() != 0) 1720 return true; 1721 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1722 if (LI->isVolatile()) 1723 return true; 1724 } else if (isa<BlockAddress>(*UI)) { 1725 // blockaddress doesn't take the address of the function, it takes addr 1726 // of label. 1727 } else { 1728 return true; 1729 } 1730 return false; 1731} 1732 1733bool IPSCCP::runOnModule(Module &M) { 1734 SCCPSolver Solver(getAnalysisIfAvailable<TargetData>()); 1735 1736 // Loop over all functions, marking arguments to those with their addresses 1737 // taken or that are external as overdefined. 1738 // 1739 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1740 if (F->isDeclaration()) 1741 continue; 1742 1743 // If this is a strong or ODR definition of this function, then we can 1744 // propagate information about its result into callsites of it. 1745 if (!F->mayBeOverridden()) 1746 Solver.AddTrackedFunction(F); 1747 1748 // If this function only has direct calls that we can see, we can track its 1749 // arguments and return value aggressively, and can assume it is not called 1750 // unless we see evidence to the contrary. 1751 if (F->hasLocalLinkage() && !AddressIsTaken(F)) { 1752 Solver.AddArgumentTrackedFunction(F); 1753 continue; 1754 } 1755 1756 // Assume the function is called. 1757 Solver.MarkBlockExecutable(F->begin()); 1758 1759 // Assume nothing about the incoming arguments. 1760 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1761 AI != E; ++AI) 1762 Solver.markAnythingOverdefined(AI); 1763 } 1764 1765 // Loop over global variables. We inform the solver about any internal global 1766 // variables that do not have their 'addresses taken'. If they don't have 1767 // their addresses taken, we can propagate constants through them. 1768 for (Module::global_iterator G = M.global_begin(), E = M.global_end(); 1769 G != E; ++G) 1770 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G)) 1771 Solver.TrackValueOfGlobalVariable(G); 1772 1773 // Solve for constants. 1774 bool ResolvedUndefs = true; 1775 while (ResolvedUndefs) { 1776 Solver.Solve(); 1777 1778 DEBUG(dbgs() << "RESOLVING UNDEFS\n"); 1779 ResolvedUndefs = false; 1780 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1781 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); 1782 } 1783 1784 bool MadeChanges = false; 1785 1786 // Iterate over all of the instructions in the module, replacing them with 1787 // constants if we have found them to be of constant values. 1788 // 1789 SmallVector<BasicBlock*, 512> BlocksToErase; 1790 1791 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1792 if (Solver.isBlockExecutable(F->begin())) { 1793 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1794 AI != E; ++AI) { 1795 if (AI->use_empty() || AI->getType()->isStructTy()) continue; 1796 1797 // TODO: Could use getStructLatticeValueFor to find out if the entire 1798 // result is a constant and replace it entirely if so. 1799 1800 LatticeVal IV = Solver.getLatticeValueFor(AI); 1801 if (IV.isOverdefined()) continue; 1802 1803 Constant *CST = IV.isConstant() ? 1804 IV.getConstant() : UndefValue::get(AI->getType()); 1805 DEBUG(dbgs() << "*** Arg " << *AI << " = " << *CST <<"\n"); 1806 1807 // Replaces all of the uses of a variable with uses of the 1808 // constant. 1809 AI->replaceAllUsesWith(CST); 1810 ++IPNumArgsElimed; 1811 } 1812 } 1813 1814 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { 1815 if (!Solver.isBlockExecutable(BB)) { 1816 DeleteInstructionInBlock(BB); 1817 MadeChanges = true; 1818 1819 TerminatorInst *TI = BB->getTerminator(); 1820 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1821 BasicBlock *Succ = TI->getSuccessor(i); 1822 if (!Succ->empty() && isa<PHINode>(Succ->begin())) 1823 TI->getSuccessor(i)->removePredecessor(BB); 1824 } 1825 if (!TI->use_empty()) 1826 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1827 TI->eraseFromParent(); 1828 1829 if (&*BB != &F->front()) 1830 BlocksToErase.push_back(BB); 1831 else 1832 new UnreachableInst(M.getContext(), BB); 1833 continue; 1834 } 1835 1836 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1837 Instruction *Inst = BI++; 1838 if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy()) 1839 continue; 1840 1841 // TODO: Could use getStructLatticeValueFor to find out if the entire 1842 // result is a constant and replace it entirely if so. 1843 1844 LatticeVal IV = Solver.getLatticeValueFor(Inst); 1845 if (IV.isOverdefined()) 1846 continue; 1847 1848 Constant *Const = IV.isConstant() 1849 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1850 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst); 1851 1852 // Replaces all of the uses of a variable with uses of the 1853 // constant. 1854 Inst->replaceAllUsesWith(Const); 1855 1856 // Delete the instruction. 1857 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst)) 1858 Inst->eraseFromParent(); 1859 1860 // Hey, we just changed something! 1861 MadeChanges = true; 1862 ++IPNumInstRemoved; 1863 } 1864 } 1865 1866 // Now that all instructions in the function are constant folded, erase dead 1867 // blocks, because we can now use ConstantFoldTerminator to get rid of 1868 // in-edges. 1869 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1870 // If there are any PHI nodes in this successor, drop entries for BB now. 1871 BasicBlock *DeadBB = BlocksToErase[i]; 1872 for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end(); 1873 UI != UE; ) { 1874 // Grab the user and then increment the iterator early, as the user 1875 // will be deleted. Step past all adjacent uses from the same user. 1876 Instruction *I = dyn_cast<Instruction>(*UI); 1877 do { ++UI; } while (UI != UE && *UI == I); 1878 1879 // Ignore blockaddress users; BasicBlock's dtor will handle them. 1880 if (!I) continue; 1881 1882 bool Folded = ConstantFoldTerminator(I->getParent()); 1883 if (!Folded) { 1884 // The constant folder may not have been able to fold the terminator 1885 // if this is a branch or switch on undef. Fold it manually as a 1886 // branch to the first successor. 1887#ifndef NDEBUG 1888 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1889 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1890 "Branch should be foldable!"); 1891 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1892 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1893 } else { 1894 llvm_unreachable("Didn't fold away reference to block!"); 1895 } 1896#endif 1897 1898 // Make this an uncond branch to the first successor. 1899 TerminatorInst *TI = I->getParent()->getTerminator(); 1900 BranchInst::Create(TI->getSuccessor(0), TI); 1901 1902 // Remove entries in successor phi nodes to remove edges. 1903 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1904 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1905 1906 // Remove the old terminator. 1907 TI->eraseFromParent(); 1908 } 1909 } 1910 1911 // Finally, delete the basic block. 1912 F->getBasicBlockList().erase(DeadBB); 1913 } 1914 BlocksToErase.clear(); 1915 } 1916 1917 // If we inferred constant or undef return values for a function, we replaced 1918 // all call uses with the inferred value. This means we don't need to bother 1919 // actually returning anything from the function. Replace all return 1920 // instructions with return undef. 1921 // TODO: Process multiple value ret instructions also. 1922 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); 1923 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), 1924 E = RV.end(); I != E; ++I) { 1925 Function *F = I->first; 1926 if (I->second.isOverdefined() || F->getReturnType()->isVoidTy()) 1927 continue; 1928 1929 // We can only do this if we know that nothing else can call the function. 1930 if (!F->hasLocalLinkage() || AddressIsTaken(F)) 1931 continue; 1932 1933 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1934 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1935 if (!isa<UndefValue>(RI->getOperand(0))) 1936 RI->setOperand(0, UndefValue::get(F->getReturnType())); 1937 } 1938 1939 // If we infered constant or undef values for globals variables, we can delete 1940 // the global and any stores that remain to it. 1941 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1942 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1943 E = TG.end(); I != E; ++I) { 1944 GlobalVariable *GV = I->first; 1945 assert(!I->second.isOverdefined() && 1946 "Overdefined values should have been taken out of the map!"); 1947 DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n"); 1948 while (!GV->use_empty()) { 1949 StoreInst *SI = cast<StoreInst>(GV->use_back()); 1950 SI->eraseFromParent(); 1951 } 1952 M.getGlobalList().erase(GV); 1953 ++IPNumGlobalConst; 1954 } 1955 1956 return MadeChanges; 1957} 1958