SCCP.cpp revision 1df9859c40492511b8aa4321eb76496005d3b75b
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "sccp"
21#include "llvm/Transforms/Scalar.h"
22#include "llvm/Transforms/IPO.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/Pass.h"
27#include "llvm/Analysis/ConstantFolding.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/Transforms/Utils/Local.h"
30#include "llvm/Target/TargetData.h"
31#include "llvm/Support/CallSite.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/InstVisitor.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/DenseSet.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/STLExtras.h"
43#include <algorithm>
44#include <map>
45using namespace llvm;
46
47STATISTIC(NumInstRemoved, "Number of instructions removed");
48STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
49
50STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
51STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
52STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
53
54namespace {
55/// LatticeVal class - This class represents the different lattice values that
56/// an LLVM value may occupy.  It is a simple class with value semantics.
57///
58class LatticeVal {
59  enum LatticeValueTy {
60    /// undefined - This LLVM Value has no known value yet.
61    undefined,
62
63    /// constant - This LLVM Value has a specific constant value.
64    constant,
65
66    /// forcedconstant - This LLVM Value was thought to be undef until
67    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
68    /// with another (different) constant, it goes to overdefined, instead of
69    /// asserting.
70    forcedconstant,
71
72    /// overdefined - This instruction is not known to be constant, and we know
73    /// it has a value.
74    overdefined
75  };
76
77  /// Val: This stores the current lattice value along with the Constant* for
78  /// the constant if this is a 'constant' or 'forcedconstant' value.
79  PointerIntPair<Constant *, 2, LatticeValueTy> Val;
80
81  LatticeValueTy getLatticeValue() const {
82    return Val.getInt();
83  }
84
85public:
86  LatticeVal() : Val(0, undefined) {}
87
88  bool isUndefined() const { return getLatticeValue() == undefined; }
89  bool isConstant() const {
90    return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
91  }
92  bool isOverdefined() const { return getLatticeValue() == overdefined; }
93
94  Constant *getConstant() const {
95    assert(isConstant() && "Cannot get the constant of a non-constant!");
96    return Val.getPointer();
97  }
98
99  /// markOverdefined - Return true if this is a change in status.
100  bool markOverdefined() {
101    if (isOverdefined())
102      return false;
103
104    Val.setInt(overdefined);
105    return true;
106  }
107
108  /// markConstant - Return true if this is a change in status.
109  bool markConstant(Constant *V) {
110    if (getLatticeValue() == constant) { // Constant but not forcedconstant.
111      assert(getConstant() == V && "Marking constant with different value");
112      return false;
113    }
114
115    if (isUndefined()) {
116      Val.setInt(constant);
117      assert(V && "Marking constant with NULL");
118      Val.setPointer(V);
119    } else {
120      assert(getLatticeValue() == forcedconstant &&
121             "Cannot move from overdefined to constant!");
122      // Stay at forcedconstant if the constant is the same.
123      if (V == getConstant()) return false;
124
125      // Otherwise, we go to overdefined.  Assumptions made based on the
126      // forced value are possibly wrong.  Assuming this is another constant
127      // could expose a contradiction.
128      Val.setInt(overdefined);
129    }
130    return true;
131  }
132
133  /// getConstantInt - If this is a constant with a ConstantInt value, return it
134  /// otherwise return null.
135  ConstantInt *getConstantInt() const {
136    if (isConstant())
137      return dyn_cast<ConstantInt>(getConstant());
138    return 0;
139  }
140
141  void markForcedConstant(Constant *V) {
142    assert(isUndefined() && "Can't force a defined value!");
143    Val.setInt(forcedconstant);
144    Val.setPointer(V);
145  }
146};
147} // end anonymous namespace.
148
149
150namespace {
151
152//===----------------------------------------------------------------------===//
153//
154/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
155/// Constant Propagation.
156///
157class SCCPSolver : public InstVisitor<SCCPSolver> {
158  const TargetData *TD;
159  SmallPtrSet<BasicBlock*, 8> BBExecutable;// The BBs that are executable.
160  DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
161
162  /// StructValueState - This maintains ValueState for values that have
163  /// StructType, for example for formal arguments, calls, insertelement, etc.
164  ///
165  DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
166
167  /// GlobalValue - If we are tracking any values for the contents of a global
168  /// variable, we keep a mapping from the constant accessor to the element of
169  /// the global, to the currently known value.  If the value becomes
170  /// overdefined, it's entry is simply removed from this map.
171  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
172
173  /// TrackedRetVals - If we are tracking arguments into and the return
174  /// value out of a function, it will have an entry in this map, indicating
175  /// what the known return value for the function is.
176  DenseMap<Function*, LatticeVal> TrackedRetVals;
177
178  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
179  /// that return multiple values.
180  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
181
182  /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
183  /// represented here for efficient lookup.
184  SmallPtrSet<Function*, 16> MRVFunctionsTracked;
185
186  /// TrackingIncomingArguments - This is the set of functions for whose
187  /// arguments we make optimistic assumptions about and try to prove as
188  /// constants.
189  SmallPtrSet<Function*, 16> TrackingIncomingArguments;
190
191  /// The reason for two worklists is that overdefined is the lowest state
192  /// on the lattice, and moving things to overdefined as fast as possible
193  /// makes SCCP converge much faster.
194  ///
195  /// By having a separate worklist, we accomplish this because everything
196  /// possibly overdefined will become overdefined at the soonest possible
197  /// point.
198  SmallVector<Value*, 64> OverdefinedInstWorkList;
199  SmallVector<Value*, 64> InstWorkList;
200
201
202  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
203
204  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
205  /// overdefined, despite the fact that the PHI node is overdefined.
206  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
207
208  /// KnownFeasibleEdges - Entries in this set are edges which have already had
209  /// PHI nodes retriggered.
210  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
211  DenseSet<Edge> KnownFeasibleEdges;
212public:
213  SCCPSolver(const TargetData *td) : TD(td) {}
214
215  /// MarkBlockExecutable - This method can be used by clients to mark all of
216  /// the blocks that are known to be intrinsically live in the processed unit.
217  ///
218  /// This returns true if the block was not considered live before.
219  bool MarkBlockExecutable(BasicBlock *BB) {
220    if (!BBExecutable.insert(BB)) return false;
221    DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
222    BBWorkList.push_back(BB);  // Add the block to the work list!
223    return true;
224  }
225
226  /// TrackValueOfGlobalVariable - Clients can use this method to
227  /// inform the SCCPSolver that it should track loads and stores to the
228  /// specified global variable if it can.  This is only legal to call if
229  /// performing Interprocedural SCCP.
230  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
231    // We only track the contents of scalar globals.
232    if (GV->getType()->getElementType()->isSingleValueType()) {
233      LatticeVal &IV = TrackedGlobals[GV];
234      if (!isa<UndefValue>(GV->getInitializer()))
235        IV.markConstant(GV->getInitializer());
236    }
237  }
238
239  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
240  /// and out of the specified function (which cannot have its address taken),
241  /// this method must be called.
242  void AddTrackedFunction(Function *F) {
243    // Add an entry, F -> undef.
244    if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
245      MRVFunctionsTracked.insert(F);
246      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
247        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
248                                                     LatticeVal()));
249    } else
250      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
251  }
252
253  void AddArgumentTrackedFunction(Function *F) {
254    TrackingIncomingArguments.insert(F);
255  }
256
257  /// Solve - Solve for constants and executable blocks.
258  ///
259  void Solve();
260
261  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
262  /// that branches on undef values cannot reach any of their successors.
263  /// However, this is not a safe assumption.  After we solve dataflow, this
264  /// method should be use to handle this.  If this returns true, the solver
265  /// should be rerun.
266  bool ResolvedUndefsIn(Function &F);
267
268  bool isBlockExecutable(BasicBlock *BB) const {
269    return BBExecutable.count(BB);
270  }
271
272  LatticeVal getLatticeValueFor(Value *V) const {
273    DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
274    assert(I != ValueState.end() && "V is not in valuemap!");
275    return I->second;
276  }
277
278  LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const {
279    DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I =
280      StructValueState.find(std::make_pair(V, i));
281    assert(I != StructValueState.end() && "V is not in valuemap!");
282    return I->second;
283  }
284
285  /// getTrackedRetVals - Get the inferred return value map.
286  ///
287  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
288    return TrackedRetVals;
289  }
290
291  /// getTrackedGlobals - Get and return the set of inferred initializers for
292  /// global variables.
293  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
294    return TrackedGlobals;
295  }
296
297  void markOverdefined(Value *V) {
298    assert(!V->getType()->isStructTy() && "Should use other method");
299    markOverdefined(ValueState[V], V);
300  }
301
302  /// markAnythingOverdefined - Mark the specified value overdefined.  This
303  /// works with both scalars and structs.
304  void markAnythingOverdefined(Value *V) {
305    if (const StructType *STy = dyn_cast<StructType>(V->getType()))
306      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
307        markOverdefined(getStructValueState(V, i), V);
308    else
309      markOverdefined(V);
310  }
311
312private:
313  // markConstant - Make a value be marked as "constant".  If the value
314  // is not already a constant, add it to the instruction work list so that
315  // the users of the instruction are updated later.
316  //
317  void markConstant(LatticeVal &IV, Value *V, Constant *C) {
318    if (!IV.markConstant(C)) return;
319    DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
320    InstWorkList.push_back(V);
321  }
322
323  void markConstant(Value *V, Constant *C) {
324    assert(!V->getType()->isStructTy() && "Should use other method");
325    markConstant(ValueState[V], V, C);
326  }
327
328  void markForcedConstant(Value *V, Constant *C) {
329    assert(!V->getType()->isStructTy() && "Should use other method");
330    ValueState[V].markForcedConstant(C);
331    DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
332    InstWorkList.push_back(V);
333  }
334
335
336  // markOverdefined - Make a value be marked as "overdefined". If the
337  // value is not already overdefined, add it to the overdefined instruction
338  // work list so that the users of the instruction are updated later.
339  void markOverdefined(LatticeVal &IV, Value *V) {
340    if (!IV.markOverdefined()) return;
341
342    DEBUG(dbgs() << "markOverdefined: ";
343          if (Function *F = dyn_cast<Function>(V))
344            dbgs() << "Function '" << F->getName() << "'\n";
345          else
346            dbgs() << *V << '\n');
347    // Only instructions go on the work list
348    OverdefinedInstWorkList.push_back(V);
349  }
350
351  void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
352    if (IV.isOverdefined() || MergeWithV.isUndefined())
353      return;  // Noop.
354    if (MergeWithV.isOverdefined())
355      markOverdefined(IV, V);
356    else if (IV.isUndefined())
357      markConstant(IV, V, MergeWithV.getConstant());
358    else if (IV.getConstant() != MergeWithV.getConstant())
359      markOverdefined(IV, V);
360  }
361
362  void mergeInValue(Value *V, LatticeVal MergeWithV) {
363    assert(!V->getType()->isStructTy() && "Should use other method");
364    mergeInValue(ValueState[V], V, MergeWithV);
365  }
366
367
368  /// getValueState - Return the LatticeVal object that corresponds to the
369  /// value.  This function handles the case when the value hasn't been seen yet
370  /// by properly seeding constants etc.
371  LatticeVal &getValueState(Value *V) {
372    assert(!V->getType()->isStructTy() && "Should use getStructValueState");
373
374    std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
375      ValueState.insert(std::make_pair(V, LatticeVal()));
376    LatticeVal &LV = I.first->second;
377
378    if (!I.second)
379      return LV;  // Common case, already in the map.
380
381    if (Constant *C = dyn_cast<Constant>(V)) {
382      // Undef values remain undefined.
383      if (!isa<UndefValue>(V))
384        LV.markConstant(C);          // Constants are constant
385    }
386
387    // All others are underdefined by default.
388    return LV;
389  }
390
391  /// getStructValueState - Return the LatticeVal object that corresponds to the
392  /// value/field pair.  This function handles the case when the value hasn't
393  /// been seen yet by properly seeding constants etc.
394  LatticeVal &getStructValueState(Value *V, unsigned i) {
395    assert(V->getType()->isStructTy() && "Should use getValueState");
396    assert(i < cast<StructType>(V->getType())->getNumElements() &&
397           "Invalid element #");
398
399    std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
400              bool> I = StructValueState.insert(
401                        std::make_pair(std::make_pair(V, i), LatticeVal()));
402    LatticeVal &LV = I.first->second;
403
404    if (!I.second)
405      return LV;  // Common case, already in the map.
406
407    if (Constant *C = dyn_cast<Constant>(V)) {
408      if (isa<UndefValue>(C))
409        ; // Undef values remain undefined.
410      else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C))
411        LV.markConstant(CS->getOperand(i));      // Constants are constant.
412      else if (isa<ConstantAggregateZero>(C)) {
413        const Type *FieldTy = cast<StructType>(V->getType())->getElementType(i);
414        LV.markConstant(Constant::getNullValue(FieldTy));
415      } else
416        LV.markOverdefined();      // Unknown sort of constant.
417    }
418
419    // All others are underdefined by default.
420    return LV;
421  }
422
423
424  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
425  /// work list if it is not already executable.
426  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
427    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
428      return;  // This edge is already known to be executable!
429
430    if (!MarkBlockExecutable(Dest)) {
431      // If the destination is already executable, we just made an *edge*
432      // feasible that wasn't before.  Revisit the PHI nodes in the block
433      // because they have potentially new operands.
434      DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
435            << " -> " << Dest->getName() << "\n");
436
437      PHINode *PN;
438      for (BasicBlock::iterator I = Dest->begin();
439           (PN = dyn_cast<PHINode>(I)); ++I)
440        visitPHINode(*PN);
441    }
442  }
443
444  // getFeasibleSuccessors - Return a vector of booleans to indicate which
445  // successors are reachable from a given terminator instruction.
446  //
447  void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
448
449  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
450  // block to the 'To' basic block is currently feasible.
451  //
452  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
453
454  // OperandChangedState - This method is invoked on all of the users of an
455  // instruction that was just changed state somehow.  Based on this
456  // information, we need to update the specified user of this instruction.
457  //
458  void OperandChangedState(Instruction *I) {
459    if (BBExecutable.count(I->getParent()))   // Inst is executable?
460      visit(*I);
461  }
462
463  /// RemoveFromOverdefinedPHIs - If I has any entries in the
464  /// UsersOfOverdefinedPHIs map for PN, remove them now.
465  void RemoveFromOverdefinedPHIs(Instruction *I, PHINode *PN) {
466    if (UsersOfOverdefinedPHIs.empty()) return;
467    std::multimap<PHINode*, Instruction*>::iterator It, E;
468    tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN);
469    while (It != E) {
470      if (It->second == I)
471        UsersOfOverdefinedPHIs.erase(It++);
472      else
473        ++It;
474    }
475  }
476
477private:
478  friend class InstVisitor<SCCPSolver>;
479
480  // visit implementations - Something changed in this instruction.  Either an
481  // operand made a transition, or the instruction is newly executable.  Change
482  // the value type of I to reflect these changes if appropriate.
483  void visitPHINode(PHINode &I);
484
485  // Terminators
486  void visitReturnInst(ReturnInst &I);
487  void visitTerminatorInst(TerminatorInst &TI);
488
489  void visitCastInst(CastInst &I);
490  void visitSelectInst(SelectInst &I);
491  void visitBinaryOperator(Instruction &I);
492  void visitCmpInst(CmpInst &I);
493  void visitExtractElementInst(ExtractElementInst &I);
494  void visitInsertElementInst(InsertElementInst &I);
495  void visitShuffleVectorInst(ShuffleVectorInst &I);
496  void visitExtractValueInst(ExtractValueInst &EVI);
497  void visitInsertValueInst(InsertValueInst &IVI);
498
499  // Instructions that cannot be folded away.
500  void visitStoreInst     (StoreInst &I);
501  void visitLoadInst      (LoadInst &I);
502  void visitGetElementPtrInst(GetElementPtrInst &I);
503  void visitCallInst      (CallInst &I) {
504    visitCallSite(CallSite::get(&I));
505  }
506  void visitInvokeInst    (InvokeInst &II) {
507    visitCallSite(CallSite::get(&II));
508    visitTerminatorInst(II);
509  }
510  void visitCallSite      (CallSite CS);
511  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
512  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
513  void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
514  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
515  void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
516
517  void visitInstruction(Instruction &I) {
518    // If a new instruction is added to LLVM that we don't handle.
519    dbgs() << "SCCP: Don't know how to handle: " << I;
520    markAnythingOverdefined(&I);   // Just in case
521  }
522};
523
524} // end anonymous namespace
525
526
527// getFeasibleSuccessors - Return a vector of booleans to indicate which
528// successors are reachable from a given terminator instruction.
529//
530void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
531                                       SmallVector<bool, 16> &Succs) {
532  Succs.resize(TI.getNumSuccessors());
533  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
534    if (BI->isUnconditional()) {
535      Succs[0] = true;
536      return;
537    }
538
539    LatticeVal BCValue = getValueState(BI->getCondition());
540    ConstantInt *CI = BCValue.getConstantInt();
541    if (CI == 0) {
542      // Overdefined condition variables, and branches on unfoldable constant
543      // conditions, mean the branch could go either way.
544      if (!BCValue.isUndefined())
545        Succs[0] = Succs[1] = true;
546      return;
547    }
548
549    // Constant condition variables mean the branch can only go a single way.
550    Succs[CI->isZero()] = true;
551    return;
552  }
553
554  if (isa<InvokeInst>(TI)) {
555    // Invoke instructions successors are always executable.
556    Succs[0] = Succs[1] = true;
557    return;
558  }
559
560  if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
561    LatticeVal SCValue = getValueState(SI->getCondition());
562    ConstantInt *CI = SCValue.getConstantInt();
563
564    if (CI == 0) {   // Overdefined or undefined condition?
565      // All destinations are executable!
566      if (!SCValue.isUndefined())
567        Succs.assign(TI.getNumSuccessors(), true);
568      return;
569    }
570
571    Succs[SI->findCaseValue(CI)] = true;
572    return;
573  }
574
575  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
576  if (isa<IndirectBrInst>(&TI)) {
577    // Just mark all destinations executable!
578    Succs.assign(TI.getNumSuccessors(), true);
579    return;
580  }
581
582#ifndef NDEBUG
583  dbgs() << "Unknown terminator instruction: " << TI << '\n';
584#endif
585  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
586}
587
588
589// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
590// block to the 'To' basic block is currently feasible.
591//
592bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
593  assert(BBExecutable.count(To) && "Dest should always be alive!");
594
595  // Make sure the source basic block is executable!!
596  if (!BBExecutable.count(From)) return false;
597
598  // Check to make sure this edge itself is actually feasible now.
599  TerminatorInst *TI = From->getTerminator();
600  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
601    if (BI->isUnconditional())
602      return true;
603
604    LatticeVal BCValue = getValueState(BI->getCondition());
605
606    // Overdefined condition variables mean the branch could go either way,
607    // undef conditions mean that neither edge is feasible yet.
608    ConstantInt *CI = BCValue.getConstantInt();
609    if (CI == 0)
610      return !BCValue.isUndefined();
611
612    // Constant condition variables mean the branch can only go a single way.
613    return BI->getSuccessor(CI->isZero()) == To;
614  }
615
616  // Invoke instructions successors are always executable.
617  if (isa<InvokeInst>(TI))
618    return true;
619
620  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
621    LatticeVal SCValue = getValueState(SI->getCondition());
622    ConstantInt *CI = SCValue.getConstantInt();
623
624    if (CI == 0)
625      return !SCValue.isUndefined();
626
627    // Make sure to skip the "default value" which isn't a value
628    for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
629      if (SI->getSuccessorValue(i) == CI) // Found the taken branch.
630        return SI->getSuccessor(i) == To;
631
632    // If the constant value is not equal to any of the branches, we must
633    // execute default branch.
634    return SI->getDefaultDest() == To;
635  }
636
637  // Just mark all destinations executable!
638  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
639  if (isa<IndirectBrInst>(&TI))
640    return true;
641
642#ifndef NDEBUG
643  dbgs() << "Unknown terminator instruction: " << *TI << '\n';
644#endif
645  llvm_unreachable(0);
646}
647
648// visit Implementations - Something changed in this instruction, either an
649// operand made a transition, or the instruction is newly executable.  Change
650// the value type of I to reflect these changes if appropriate.  This method
651// makes sure to do the following actions:
652//
653// 1. If a phi node merges two constants in, and has conflicting value coming
654//    from different branches, or if the PHI node merges in an overdefined
655//    value, then the PHI node becomes overdefined.
656// 2. If a phi node merges only constants in, and they all agree on value, the
657//    PHI node becomes a constant value equal to that.
658// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
659// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
660// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
661// 6. If a conditional branch has a value that is constant, make the selected
662//    destination executable
663// 7. If a conditional branch has a value that is overdefined, make all
664//    successors executable.
665//
666void SCCPSolver::visitPHINode(PHINode &PN) {
667  // If this PN returns a struct, just mark the result overdefined.
668  // TODO: We could do a lot better than this if code actually uses this.
669  if (PN.getType()->isStructTy())
670    return markAnythingOverdefined(&PN);
671
672  if (getValueState(&PN).isOverdefined()) {
673    // There may be instructions using this PHI node that are not overdefined
674    // themselves.  If so, make sure that they know that the PHI node operand
675    // changed.
676    std::multimap<PHINode*, Instruction*>::iterator I, E;
677    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
678    if (I == E)
679      return;
680
681    SmallVector<Instruction*, 16> Users;
682    for (; I != E; ++I)
683      Users.push_back(I->second);
684    while (!Users.empty())
685      visit(Users.pop_back_val());
686    return;  // Quick exit
687  }
688
689  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
690  // and slow us down a lot.  Just mark them overdefined.
691  if (PN.getNumIncomingValues() > 64)
692    return markOverdefined(&PN);
693
694  // Look at all of the executable operands of the PHI node.  If any of them
695  // are overdefined, the PHI becomes overdefined as well.  If they are all
696  // constant, and they agree with each other, the PHI becomes the identical
697  // constant.  If they are constant and don't agree, the PHI is overdefined.
698  // If there are no executable operands, the PHI remains undefined.
699  //
700  Constant *OperandVal = 0;
701  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
702    LatticeVal IV = getValueState(PN.getIncomingValue(i));
703    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
704
705    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
706      continue;
707
708    if (IV.isOverdefined())    // PHI node becomes overdefined!
709      return markOverdefined(&PN);
710
711    if (OperandVal == 0) {   // Grab the first value.
712      OperandVal = IV.getConstant();
713      continue;
714    }
715
716    // There is already a reachable operand.  If we conflict with it,
717    // then the PHI node becomes overdefined.  If we agree with it, we
718    // can continue on.
719
720    // Check to see if there are two different constants merging, if so, the PHI
721    // node is overdefined.
722    if (IV.getConstant() != OperandVal)
723      return markOverdefined(&PN);
724  }
725
726  // If we exited the loop, this means that the PHI node only has constant
727  // arguments that agree with each other(and OperandVal is the constant) or
728  // OperandVal is null because there are no defined incoming arguments.  If
729  // this is the case, the PHI remains undefined.
730  //
731  if (OperandVal)
732    markConstant(&PN, OperandVal);      // Acquire operand value
733}
734
735
736
737
738void SCCPSolver::visitReturnInst(ReturnInst &I) {
739  if (I.getNumOperands() == 0) return;  // ret void
740
741  Function *F = I.getParent()->getParent();
742  Value *ResultOp = I.getOperand(0);
743
744  // If we are tracking the return value of this function, merge it in.
745  if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
746    DenseMap<Function*, LatticeVal>::iterator TFRVI =
747      TrackedRetVals.find(F);
748    if (TFRVI != TrackedRetVals.end()) {
749      mergeInValue(TFRVI->second, F, getValueState(ResultOp));
750      return;
751    }
752  }
753
754  // Handle functions that return multiple values.
755  if (!TrackedMultipleRetVals.empty()) {
756    if (const StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
757      if (MRVFunctionsTracked.count(F))
758        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
759          mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
760                       getStructValueState(ResultOp, i));
761
762  }
763}
764
765void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
766  SmallVector<bool, 16> SuccFeasible;
767  getFeasibleSuccessors(TI, SuccFeasible);
768
769  BasicBlock *BB = TI.getParent();
770
771  // Mark all feasible successors executable.
772  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
773    if (SuccFeasible[i])
774      markEdgeExecutable(BB, TI.getSuccessor(i));
775}
776
777void SCCPSolver::visitCastInst(CastInst &I) {
778  LatticeVal OpSt = getValueState(I.getOperand(0));
779  if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
780    markOverdefined(&I);
781  else if (OpSt.isConstant())        // Propagate constant value
782    markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
783                                           OpSt.getConstant(), I.getType()));
784}
785
786
787void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
788  // If this returns a struct, mark all elements over defined, we don't track
789  // structs in structs.
790  if (EVI.getType()->isStructTy())
791    return markAnythingOverdefined(&EVI);
792
793  // If this is extracting from more than one level of struct, we don't know.
794  if (EVI.getNumIndices() != 1)
795    return markOverdefined(&EVI);
796
797  Value *AggVal = EVI.getAggregateOperand();
798  if (AggVal->getType()->isStructTy()) {
799    unsigned i = *EVI.idx_begin();
800    LatticeVal EltVal = getStructValueState(AggVal, i);
801    mergeInValue(getValueState(&EVI), &EVI, EltVal);
802  } else {
803    // Otherwise, must be extracting from an array.
804    return markOverdefined(&EVI);
805  }
806}
807
808void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
809  const StructType *STy = dyn_cast<StructType>(IVI.getType());
810  if (STy == 0)
811    return markOverdefined(&IVI);
812
813  // If this has more than one index, we can't handle it, drive all results to
814  // undef.
815  if (IVI.getNumIndices() != 1)
816    return markAnythingOverdefined(&IVI);
817
818  Value *Aggr = IVI.getAggregateOperand();
819  unsigned Idx = *IVI.idx_begin();
820
821  // Compute the result based on what we're inserting.
822  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
823    // This passes through all values that aren't the inserted element.
824    if (i != Idx) {
825      LatticeVal EltVal = getStructValueState(Aggr, i);
826      mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
827      continue;
828    }
829
830    Value *Val = IVI.getInsertedValueOperand();
831    if (Val->getType()->isStructTy())
832      // We don't track structs in structs.
833      markOverdefined(getStructValueState(&IVI, i), &IVI);
834    else {
835      LatticeVal InVal = getValueState(Val);
836      mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
837    }
838  }
839}
840
841void SCCPSolver::visitSelectInst(SelectInst &I) {
842  // If this select returns a struct, just mark the result overdefined.
843  // TODO: We could do a lot better than this if code actually uses this.
844  if (I.getType()->isStructTy())
845    return markAnythingOverdefined(&I);
846
847  LatticeVal CondValue = getValueState(I.getCondition());
848  if (CondValue.isUndefined())
849    return;
850
851  if (ConstantInt *CondCB = CondValue.getConstantInt()) {
852    Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
853    mergeInValue(&I, getValueState(OpVal));
854    return;
855  }
856
857  // Otherwise, the condition is overdefined or a constant we can't evaluate.
858  // See if we can produce something better than overdefined based on the T/F
859  // value.
860  LatticeVal TVal = getValueState(I.getTrueValue());
861  LatticeVal FVal = getValueState(I.getFalseValue());
862
863  // select ?, C, C -> C.
864  if (TVal.isConstant() && FVal.isConstant() &&
865      TVal.getConstant() == FVal.getConstant())
866    return markConstant(&I, FVal.getConstant());
867
868  if (TVal.isUndefined())   // select ?, undef, X -> X.
869    return mergeInValue(&I, FVal);
870  if (FVal.isUndefined())   // select ?, X, undef -> X.
871    return mergeInValue(&I, TVal);
872  markOverdefined(&I);
873}
874
875// Handle Binary Operators.
876void SCCPSolver::visitBinaryOperator(Instruction &I) {
877  LatticeVal V1State = getValueState(I.getOperand(0));
878  LatticeVal V2State = getValueState(I.getOperand(1));
879
880  LatticeVal &IV = ValueState[&I];
881  if (IV.isOverdefined()) return;
882
883  if (V1State.isConstant() && V2State.isConstant())
884    return markConstant(IV, &I,
885                        ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
886                                          V2State.getConstant()));
887
888  // If something is undef, wait for it to resolve.
889  if (!V1State.isOverdefined() && !V2State.isOverdefined())
890    return;
891
892  // Otherwise, one of our operands is overdefined.  Try to produce something
893  // better than overdefined with some tricks.
894
895  // If this is an AND or OR with 0 or -1, it doesn't matter that the other
896  // operand is overdefined.
897  if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
898    LatticeVal *NonOverdefVal = 0;
899    if (!V1State.isOverdefined())
900      NonOverdefVal = &V1State;
901    else if (!V2State.isOverdefined())
902      NonOverdefVal = &V2State;
903
904    if (NonOverdefVal) {
905      if (NonOverdefVal->isUndefined()) {
906        // Could annihilate value.
907        if (I.getOpcode() == Instruction::And)
908          markConstant(IV, &I, Constant::getNullValue(I.getType()));
909        else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
910          markConstant(IV, &I, Constant::getAllOnesValue(PT));
911        else
912          markConstant(IV, &I,
913                       Constant::getAllOnesValue(I.getType()));
914        return;
915      }
916
917      if (I.getOpcode() == Instruction::And) {
918        // X and 0 = 0
919        if (NonOverdefVal->getConstant()->isNullValue())
920          return markConstant(IV, &I, NonOverdefVal->getConstant());
921      } else {
922        if (ConstantInt *CI = NonOverdefVal->getConstantInt())
923          if (CI->isAllOnesValue())     // X or -1 = -1
924            return markConstant(IV, &I, NonOverdefVal->getConstant());
925      }
926    }
927  }
928
929
930  // If both operands are PHI nodes, it is possible that this instruction has
931  // a constant value, despite the fact that the PHI node doesn't.  Check for
932  // this condition now.
933  if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
934    if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
935      if (PN1->getParent() == PN2->getParent()) {
936        // Since the two PHI nodes are in the same basic block, they must have
937        // entries for the same predecessors.  Walk the predecessor list, and
938        // if all of the incoming values are constants, and the result of
939        // evaluating this expression with all incoming value pairs is the
940        // same, then this expression is a constant even though the PHI node
941        // is not a constant!
942        LatticeVal Result;
943        for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
944          LatticeVal In1 = getValueState(PN1->getIncomingValue(i));
945          BasicBlock *InBlock = PN1->getIncomingBlock(i);
946          LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
947
948          if (In1.isOverdefined() || In2.isOverdefined()) {
949            Result.markOverdefined();
950            break;  // Cannot fold this operation over the PHI nodes!
951          }
952
953          if (In1.isConstant() && In2.isConstant()) {
954            Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
955                                            In2.getConstant());
956            if (Result.isUndefined())
957              Result.markConstant(V);
958            else if (Result.isConstant() && Result.getConstant() != V) {
959              Result.markOverdefined();
960              break;
961            }
962          }
963        }
964
965        // If we found a constant value here, then we know the instruction is
966        // constant despite the fact that the PHI nodes are overdefined.
967        if (Result.isConstant()) {
968          markConstant(IV, &I, Result.getConstant());
969          // Remember that this instruction is virtually using the PHI node
970          // operands.
971          UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
972          UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
973          return;
974        }
975
976        if (Result.isUndefined())
977          return;
978
979        // Okay, this really is overdefined now.  Since we might have
980        // speculatively thought that this was not overdefined before, and
981        // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
982        // make sure to clean out any entries that we put there, for
983        // efficiency.
984        RemoveFromOverdefinedPHIs(&I, PN1);
985        RemoveFromOverdefinedPHIs(&I, PN2);
986      }
987
988  markOverdefined(&I);
989}
990
991// Handle ICmpInst instruction.
992void SCCPSolver::visitCmpInst(CmpInst &I) {
993  LatticeVal V1State = getValueState(I.getOperand(0));
994  LatticeVal V2State = getValueState(I.getOperand(1));
995
996  LatticeVal &IV = ValueState[&I];
997  if (IV.isOverdefined()) return;
998
999  if (V1State.isConstant() && V2State.isConstant())
1000    return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
1001                                                         V1State.getConstant(),
1002                                                        V2State.getConstant()));
1003
1004  // If operands are still undefined, wait for it to resolve.
1005  if (!V1State.isOverdefined() && !V2State.isOverdefined())
1006    return;
1007
1008  // If something is overdefined, use some tricks to avoid ending up and over
1009  // defined if we can.
1010
1011  // If both operands are PHI nodes, it is possible that this instruction has
1012  // a constant value, despite the fact that the PHI node doesn't.  Check for
1013  // this condition now.
1014  if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
1015    if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
1016      if (PN1->getParent() == PN2->getParent()) {
1017        // Since the two PHI nodes are in the same basic block, they must have
1018        // entries for the same predecessors.  Walk the predecessor list, and
1019        // if all of the incoming values are constants, and the result of
1020        // evaluating this expression with all incoming value pairs is the
1021        // same, then this expression is a constant even though the PHI node
1022        // is not a constant!
1023        LatticeVal Result;
1024        for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
1025          LatticeVal In1 = getValueState(PN1->getIncomingValue(i));
1026          BasicBlock *InBlock = PN1->getIncomingBlock(i);
1027          LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
1028
1029          if (In1.isOverdefined() || In2.isOverdefined()) {
1030            Result.markOverdefined();
1031            break;  // Cannot fold this operation over the PHI nodes!
1032          }
1033
1034          if (In1.isConstant() && In2.isConstant()) {
1035            Constant *V = ConstantExpr::getCompare(I.getPredicate(),
1036                                                   In1.getConstant(),
1037                                                   In2.getConstant());
1038            if (Result.isUndefined())
1039              Result.markConstant(V);
1040            else if (Result.isConstant() && Result.getConstant() != V) {
1041              Result.markOverdefined();
1042              break;
1043            }
1044          }
1045        }
1046
1047        // If we found a constant value here, then we know the instruction is
1048        // constant despite the fact that the PHI nodes are overdefined.
1049        if (Result.isConstant()) {
1050          markConstant(&I, Result.getConstant());
1051          // Remember that this instruction is virtually using the PHI node
1052          // operands.
1053          UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
1054          UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
1055          return;
1056        }
1057
1058        if (Result.isUndefined())
1059          return;
1060
1061        // Okay, this really is overdefined now.  Since we might have
1062        // speculatively thought that this was not overdefined before, and
1063        // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
1064        // make sure to clean out any entries that we put there, for
1065        // efficiency.
1066        RemoveFromOverdefinedPHIs(&I, PN1);
1067        RemoveFromOverdefinedPHIs(&I, PN2);
1068      }
1069
1070  markOverdefined(&I);
1071}
1072
1073void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1074  // TODO : SCCP does not handle vectors properly.
1075  return markOverdefined(&I);
1076
1077#if 0
1078  LatticeVal &ValState = getValueState(I.getOperand(0));
1079  LatticeVal &IdxState = getValueState(I.getOperand(1));
1080
1081  if (ValState.isOverdefined() || IdxState.isOverdefined())
1082    markOverdefined(&I);
1083  else if(ValState.isConstant() && IdxState.isConstant())
1084    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1085                                                     IdxState.getConstant()));
1086#endif
1087}
1088
1089void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1090  // TODO : SCCP does not handle vectors properly.
1091  return markOverdefined(&I);
1092#if 0
1093  LatticeVal &ValState = getValueState(I.getOperand(0));
1094  LatticeVal &EltState = getValueState(I.getOperand(1));
1095  LatticeVal &IdxState = getValueState(I.getOperand(2));
1096
1097  if (ValState.isOverdefined() || EltState.isOverdefined() ||
1098      IdxState.isOverdefined())
1099    markOverdefined(&I);
1100  else if(ValState.isConstant() && EltState.isConstant() &&
1101          IdxState.isConstant())
1102    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1103                                                    EltState.getConstant(),
1104                                                    IdxState.getConstant()));
1105  else if (ValState.isUndefined() && EltState.isConstant() &&
1106           IdxState.isConstant())
1107    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1108                                                   EltState.getConstant(),
1109                                                   IdxState.getConstant()));
1110#endif
1111}
1112
1113void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1114  // TODO : SCCP does not handle vectors properly.
1115  return markOverdefined(&I);
1116#if 0
1117  LatticeVal &V1State   = getValueState(I.getOperand(0));
1118  LatticeVal &V2State   = getValueState(I.getOperand(1));
1119  LatticeVal &MaskState = getValueState(I.getOperand(2));
1120
1121  if (MaskState.isUndefined() ||
1122      (V1State.isUndefined() && V2State.isUndefined()))
1123    return;  // Undefined output if mask or both inputs undefined.
1124
1125  if (V1State.isOverdefined() || V2State.isOverdefined() ||
1126      MaskState.isOverdefined()) {
1127    markOverdefined(&I);
1128  } else {
1129    // A mix of constant/undef inputs.
1130    Constant *V1 = V1State.isConstant() ?
1131        V1State.getConstant() : UndefValue::get(I.getType());
1132    Constant *V2 = V2State.isConstant() ?
1133        V2State.getConstant() : UndefValue::get(I.getType());
1134    Constant *Mask = MaskState.isConstant() ?
1135      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1136    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1137  }
1138#endif
1139}
1140
1141// Handle getelementptr instructions.  If all operands are constants then we
1142// can turn this into a getelementptr ConstantExpr.
1143//
1144void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1145  if (ValueState[&I].isOverdefined()) return;
1146
1147  SmallVector<Constant*, 8> Operands;
1148  Operands.reserve(I.getNumOperands());
1149
1150  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1151    LatticeVal State = getValueState(I.getOperand(i));
1152    if (State.isUndefined())
1153      return;  // Operands are not resolved yet.
1154
1155    if (State.isOverdefined())
1156      return markOverdefined(&I);
1157
1158    assert(State.isConstant() && "Unknown state!");
1159    Operands.push_back(State.getConstant());
1160  }
1161
1162  Constant *Ptr = Operands[0];
1163  markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0]+1,
1164                                                  Operands.size()-1));
1165}
1166
1167void SCCPSolver::visitStoreInst(StoreInst &SI) {
1168  // If this store is of a struct, ignore it.
1169  if (SI.getOperand(0)->getType()->isStructTy())
1170    return;
1171
1172  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1173    return;
1174
1175  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1176  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1177  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1178
1179  // Get the value we are storing into the global, then merge it.
1180  mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1181  if (I->second.isOverdefined())
1182    TrackedGlobals.erase(I);      // No need to keep tracking this!
1183}
1184
1185
1186// Handle load instructions.  If the operand is a constant pointer to a constant
1187// global, we can replace the load with the loaded constant value!
1188void SCCPSolver::visitLoadInst(LoadInst &I) {
1189  // If this load is of a struct, just mark the result overdefined.
1190  if (I.getType()->isStructTy())
1191    return markAnythingOverdefined(&I);
1192
1193  LatticeVal PtrVal = getValueState(I.getOperand(0));
1194  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1195
1196  LatticeVal &IV = ValueState[&I];
1197  if (IV.isOverdefined()) return;
1198
1199  if (!PtrVal.isConstant() || I.isVolatile())
1200    return markOverdefined(IV, &I);
1201
1202  Constant *Ptr = PtrVal.getConstant();
1203
1204  // load null -> null
1205  if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
1206    return markConstant(IV, &I, Constant::getNullValue(I.getType()));
1207
1208  // Transform load (constant global) into the value loaded.
1209  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1210    if (!TrackedGlobals.empty()) {
1211      // If we are tracking this global, merge in the known value for it.
1212      DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1213        TrackedGlobals.find(GV);
1214      if (It != TrackedGlobals.end()) {
1215        mergeInValue(IV, &I, It->second);
1216        return;
1217      }
1218    }
1219  }
1220
1221  // Transform load from a constant into a constant if possible.
1222  if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD))
1223    return markConstant(IV, &I, C);
1224
1225  // Otherwise we cannot say for certain what value this load will produce.
1226  // Bail out.
1227  markOverdefined(IV, &I);
1228}
1229
1230void SCCPSolver::visitCallSite(CallSite CS) {
1231  Function *F = CS.getCalledFunction();
1232  Instruction *I = CS.getInstruction();
1233
1234  // The common case is that we aren't tracking the callee, either because we
1235  // are not doing interprocedural analysis or the callee is indirect, or is
1236  // external.  Handle these cases first.
1237  if (F == 0 || F->isDeclaration()) {
1238CallOverdefined:
1239    // Void return and not tracking callee, just bail.
1240    if (I->getType()->isVoidTy()) return;
1241
1242    // Otherwise, if we have a single return value case, and if the function is
1243    // a declaration, maybe we can constant fold it.
1244    if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1245        canConstantFoldCallTo(F)) {
1246
1247      SmallVector<Constant*, 8> Operands;
1248      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1249           AI != E; ++AI) {
1250        LatticeVal State = getValueState(*AI);
1251
1252        if (State.isUndefined())
1253          return;  // Operands are not resolved yet.
1254        if (State.isOverdefined())
1255          return markOverdefined(I);
1256        assert(State.isConstant() && "Unknown state!");
1257        Operands.push_back(State.getConstant());
1258      }
1259
1260      // If we can constant fold this, mark the result of the call as a
1261      // constant.
1262      if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size()))
1263        return markConstant(I, C);
1264    }
1265
1266    // Otherwise, we don't know anything about this call, mark it overdefined.
1267    return markAnythingOverdefined(I);
1268  }
1269
1270  // If this is a local function that doesn't have its address taken, mark its
1271  // entry block executable and merge in the actual arguments to the call into
1272  // the formal arguments of the function.
1273  if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1274    MarkBlockExecutable(F->begin());
1275
1276    // Propagate information from this call site into the callee.
1277    CallSite::arg_iterator CAI = CS.arg_begin();
1278    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1279         AI != E; ++AI, ++CAI) {
1280      // If this argument is byval, and if the function is not readonly, there
1281      // will be an implicit copy formed of the input aggregate.
1282      if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1283        markOverdefined(AI);
1284        continue;
1285      }
1286
1287      if (const StructType *STy = dyn_cast<StructType>(AI->getType())) {
1288        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1289          LatticeVal CallArg = getStructValueState(*CAI, i);
1290          mergeInValue(getStructValueState(AI, i), AI, CallArg);
1291        }
1292      } else {
1293        mergeInValue(AI, getValueState(*CAI));
1294      }
1295    }
1296  }
1297
1298  // If this is a single/zero retval case, see if we're tracking the function.
1299  if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
1300    if (!MRVFunctionsTracked.count(F))
1301      goto CallOverdefined;  // Not tracking this callee.
1302
1303    // If we are tracking this callee, propagate the result of the function
1304    // into this call site.
1305    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1306      mergeInValue(getStructValueState(I, i), I,
1307                   TrackedMultipleRetVals[std::make_pair(F, i)]);
1308  } else {
1309    DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1310    if (TFRVI == TrackedRetVals.end())
1311      goto CallOverdefined;  // Not tracking this callee.
1312
1313    // If so, propagate the return value of the callee into this call result.
1314    mergeInValue(I, TFRVI->second);
1315  }
1316}
1317
1318void SCCPSolver::Solve() {
1319  // Process the work lists until they are empty!
1320  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1321         !OverdefinedInstWorkList.empty()) {
1322    // Process the overdefined instruction's work list first, which drives other
1323    // things to overdefined more quickly.
1324    while (!OverdefinedInstWorkList.empty()) {
1325      Value *I = OverdefinedInstWorkList.pop_back_val();
1326
1327      DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1328
1329      // "I" got into the work list because it either made the transition from
1330      // bottom to constant
1331      //
1332      // Anything on this worklist that is overdefined need not be visited
1333      // since all of its users will have already been marked as overdefined
1334      // Update all of the users of this instruction's value.
1335      //
1336      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1337           UI != E; ++UI)
1338        if (Instruction *I = dyn_cast<Instruction>(*UI))
1339          OperandChangedState(I);
1340    }
1341
1342    // Process the instruction work list.
1343    while (!InstWorkList.empty()) {
1344      Value *I = InstWorkList.pop_back_val();
1345
1346      DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1347
1348      // "I" got into the work list because it made the transition from undef to
1349      // constant.
1350      //
1351      // Anything on this worklist that is overdefined need not be visited
1352      // since all of its users will have already been marked as overdefined.
1353      // Update all of the users of this instruction's value.
1354      //
1355      if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1356        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1357             UI != E; ++UI)
1358          if (Instruction *I = dyn_cast<Instruction>(*UI))
1359            OperandChangedState(I);
1360    }
1361
1362    // Process the basic block work list.
1363    while (!BBWorkList.empty()) {
1364      BasicBlock *BB = BBWorkList.back();
1365      BBWorkList.pop_back();
1366
1367      DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1368
1369      // Notify all instructions in this basic block that they are newly
1370      // executable.
1371      visit(BB);
1372    }
1373  }
1374}
1375
1376/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1377/// that branches on undef values cannot reach any of their successors.
1378/// However, this is not a safe assumption.  After we solve dataflow, this
1379/// method should be use to handle this.  If this returns true, the solver
1380/// should be rerun.
1381///
1382/// This method handles this by finding an unresolved branch and marking it one
1383/// of the edges from the block as being feasible, even though the condition
1384/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1385/// CFG and only slightly pessimizes the analysis results (by marking one,
1386/// potentially infeasible, edge feasible).  This cannot usefully modify the
1387/// constraints on the condition of the branch, as that would impact other users
1388/// of the value.
1389///
1390/// This scan also checks for values that use undefs, whose results are actually
1391/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1392/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1393/// even if X isn't defined.
1394bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1395  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1396    if (!BBExecutable.count(BB))
1397      continue;
1398
1399    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1400      // Look for instructions which produce undef values.
1401      if (I->getType()->isVoidTy()) continue;
1402
1403      if (const StructType *STy = dyn_cast<StructType>(I->getType())) {
1404        // Only a few things that can be structs matter for undef.  Just send
1405        // all their results to overdefined.  We could be more precise than this
1406        // but it isn't worth bothering.
1407        if (isa<CallInst>(I) || isa<SelectInst>(I)) {
1408          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1409            LatticeVal &LV = getStructValueState(I, i);
1410            if (LV.isUndefined())
1411              markOverdefined(LV, I);
1412          }
1413        }
1414        continue;
1415      }
1416
1417      LatticeVal &LV = getValueState(I);
1418      if (!LV.isUndefined()) continue;
1419
1420      // No instructions using structs need disambiguation.
1421      if (I->getOperand(0)->getType()->isStructTy())
1422        continue;
1423
1424      // Get the lattice values of the first two operands for use below.
1425      LatticeVal Op0LV = getValueState(I->getOperand(0));
1426      LatticeVal Op1LV;
1427      if (I->getNumOperands() == 2) {
1428        // No instructions using structs need disambiguation.
1429        if (I->getOperand(1)->getType()->isStructTy())
1430          continue;
1431
1432        // If this is a two-operand instruction, and if both operands are
1433        // undefs, the result stays undef.
1434        Op1LV = getValueState(I->getOperand(1));
1435        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1436          continue;
1437      }
1438
1439      // If this is an instructions whose result is defined even if the input is
1440      // not fully defined, propagate the information.
1441      const Type *ITy = I->getType();
1442      switch (I->getOpcode()) {
1443      default: break;          // Leave the instruction as an undef.
1444      case Instruction::ZExt:
1445        // After a zero extend, we know the top part is zero.  SExt doesn't have
1446        // to be handled here, because we don't know whether the top part is 1's
1447        // or 0's.
1448        markForcedConstant(I, Constant::getNullValue(ITy));
1449        return true;
1450      case Instruction::Mul:
1451      case Instruction::And:
1452        // undef * X -> 0.   X could be zero.
1453        // undef & X -> 0.   X could be zero.
1454        markForcedConstant(I, Constant::getNullValue(ITy));
1455        return true;
1456
1457      case Instruction::Or:
1458        // undef | X -> -1.   X could be -1.
1459        markForcedConstant(I, Constant::getAllOnesValue(ITy));
1460        return true;
1461
1462      case Instruction::SDiv:
1463      case Instruction::UDiv:
1464      case Instruction::SRem:
1465      case Instruction::URem:
1466        // X / undef -> undef.  No change.
1467        // X % undef -> undef.  No change.
1468        if (Op1LV.isUndefined()) break;
1469
1470        // undef / X -> 0.   X could be maxint.
1471        // undef % X -> 0.   X could be 1.
1472        markForcedConstant(I, Constant::getNullValue(ITy));
1473        return true;
1474
1475      case Instruction::AShr:
1476        // undef >>s X -> undef.  No change.
1477        if (Op0LV.isUndefined()) break;
1478
1479        // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
1480        if (Op0LV.isConstant())
1481          markForcedConstant(I, Op0LV.getConstant());
1482        else
1483          markOverdefined(I);
1484        return true;
1485      case Instruction::LShr:
1486      case Instruction::Shl:
1487        // undef >> X -> undef.  No change.
1488        // undef << X -> undef.  No change.
1489        if (Op0LV.isUndefined()) break;
1490
1491        // X >> undef -> 0.  X could be 0.
1492        // X << undef -> 0.  X could be 0.
1493        markForcedConstant(I, Constant::getNullValue(ITy));
1494        return true;
1495      case Instruction::Select:
1496        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1497        if (Op0LV.isUndefined()) {
1498          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1499            Op1LV = getValueState(I->getOperand(2));
1500        } else if (Op1LV.isUndefined()) {
1501          // c ? undef : undef -> undef.  No change.
1502          Op1LV = getValueState(I->getOperand(2));
1503          if (Op1LV.isUndefined())
1504            break;
1505          // Otherwise, c ? undef : x -> x.
1506        } else {
1507          // Leave Op1LV as Operand(1)'s LatticeValue.
1508        }
1509
1510        if (Op1LV.isConstant())
1511          markForcedConstant(I, Op1LV.getConstant());
1512        else
1513          markOverdefined(I);
1514        return true;
1515      case Instruction::Call:
1516        // If a call has an undef result, it is because it is constant foldable
1517        // but one of the inputs was undef.  Just force the result to
1518        // overdefined.
1519        markOverdefined(I);
1520        return true;
1521      }
1522    }
1523
1524    TerminatorInst *TI = BB->getTerminator();
1525    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1526      if (!BI->isConditional()) continue;
1527      if (!getValueState(BI->getCondition()).isUndefined())
1528        continue;
1529    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1530      if (SI->getNumSuccessors() < 2)   // no cases
1531        continue;
1532      if (!getValueState(SI->getCondition()).isUndefined())
1533        continue;
1534    } else {
1535      continue;
1536    }
1537
1538    // If the edge to the second successor isn't thought to be feasible yet,
1539    // mark it so now.  We pick the second one so that this goes to some
1540    // enumerated value in a switch instead of going to the default destination.
1541    if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
1542      continue;
1543
1544    // Otherwise, it isn't already thought to be feasible.  Mark it as such now
1545    // and return.  This will make other blocks reachable, which will allow new
1546    // values to be discovered and existing ones to be moved in the lattice.
1547    markEdgeExecutable(BB, TI->getSuccessor(1));
1548
1549    // This must be a conditional branch of switch on undef.  At this point,
1550    // force the old terminator to branch to the first successor.  This is
1551    // required because we are now influencing the dataflow of the function with
1552    // the assumption that this edge is taken.  If we leave the branch condition
1553    // as undef, then further analysis could think the undef went another way
1554    // leading to an inconsistent set of conclusions.
1555    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1556      BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1557    } else {
1558      SwitchInst *SI = cast<SwitchInst>(TI);
1559      SI->setCondition(SI->getCaseValue(1));
1560    }
1561
1562    return true;
1563  }
1564
1565  return false;
1566}
1567
1568
1569namespace {
1570  //===--------------------------------------------------------------------===//
1571  //
1572  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1573  /// Sparse Conditional Constant Propagator.
1574  ///
1575  struct SCCP : public FunctionPass {
1576    static char ID; // Pass identification, replacement for typeid
1577    SCCP() : FunctionPass(&ID) {}
1578
1579    // runOnFunction - Run the Sparse Conditional Constant Propagation
1580    // algorithm, and return true if the function was modified.
1581    //
1582    bool runOnFunction(Function &F);
1583
1584    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1585      AU.setPreservesCFG();
1586    }
1587  };
1588} // end anonymous namespace
1589
1590char SCCP::ID = 0;
1591static RegisterPass<SCCP>
1592X("sccp", "Sparse Conditional Constant Propagation");
1593
1594// createSCCPPass - This is the public interface to this file.
1595FunctionPass *llvm::createSCCPPass() {
1596  return new SCCP();
1597}
1598
1599static void DeleteInstructionInBlock(BasicBlock *BB) {
1600  DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
1601  ++NumDeadBlocks;
1602
1603  // Delete the instructions backwards, as it has a reduced likelihood of
1604  // having to update as many def-use and use-def chains.
1605  while (!isa<TerminatorInst>(BB->begin())) {
1606    Instruction *I = --BasicBlock::iterator(BB->getTerminator());
1607
1608    if (!I->use_empty())
1609      I->replaceAllUsesWith(UndefValue::get(I->getType()));
1610    BB->getInstList().erase(I);
1611    ++NumInstRemoved;
1612  }
1613}
1614
1615// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1616// and return true if the function was modified.
1617//
1618bool SCCP::runOnFunction(Function &F) {
1619  DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1620  SCCPSolver Solver(getAnalysisIfAvailable<TargetData>());
1621
1622  // Mark the first block of the function as being executable.
1623  Solver.MarkBlockExecutable(F.begin());
1624
1625  // Mark all arguments to the function as being overdefined.
1626  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1627    Solver.markAnythingOverdefined(AI);
1628
1629  // Solve for constants.
1630  bool ResolvedUndefs = true;
1631  while (ResolvedUndefs) {
1632    Solver.Solve();
1633    DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1634    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1635  }
1636
1637  bool MadeChanges = false;
1638
1639  // If we decided that there are basic blocks that are dead in this function,
1640  // delete their contents now.  Note that we cannot actually delete the blocks,
1641  // as we cannot modify the CFG of the function.
1642
1643  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1644    if (!Solver.isBlockExecutable(BB)) {
1645      DeleteInstructionInBlock(BB);
1646      MadeChanges = true;
1647      continue;
1648    }
1649
1650    // Iterate over all of the instructions in a function, replacing them with
1651    // constants if we have found them to be of constant values.
1652    //
1653    for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1654      Instruction *Inst = BI++;
1655      if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1656        continue;
1657
1658      // TODO: Reconstruct structs from their elements.
1659      if (Inst->getType()->isStructTy())
1660        continue;
1661
1662      LatticeVal IV = Solver.getLatticeValueFor(Inst);
1663      if (IV.isOverdefined())
1664        continue;
1665
1666      Constant *Const = IV.isConstant()
1667        ? IV.getConstant() : UndefValue::get(Inst->getType());
1668      DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst);
1669
1670      // Replaces all of the uses of a variable with uses of the constant.
1671      Inst->replaceAllUsesWith(Const);
1672
1673      // Delete the instruction.
1674      Inst->eraseFromParent();
1675
1676      // Hey, we just changed something!
1677      MadeChanges = true;
1678      ++NumInstRemoved;
1679    }
1680  }
1681
1682  return MadeChanges;
1683}
1684
1685namespace {
1686  //===--------------------------------------------------------------------===//
1687  //
1688  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1689  /// Constant Propagation.
1690  ///
1691  struct IPSCCP : public ModulePass {
1692    static char ID;
1693    IPSCCP() : ModulePass(&ID) {}
1694    bool runOnModule(Module &M);
1695  };
1696} // end anonymous namespace
1697
1698char IPSCCP::ID = 0;
1699static RegisterPass<IPSCCP>
1700Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1701
1702// createIPSCCPPass - This is the public interface to this file.
1703ModulePass *llvm::createIPSCCPPass() {
1704  return new IPSCCP();
1705}
1706
1707
1708static bool AddressIsTaken(GlobalValue *GV) {
1709  // Delete any dead constantexpr klingons.
1710  GV->removeDeadConstantUsers();
1711
1712  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1713       UI != E; ++UI)
1714    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1715      if (SI->getOperand(0) == GV || SI->isVolatile())
1716        return true;  // Storing addr of GV.
1717    } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1718      // Make sure we are calling the function, not passing the address.
1719      if (UI.getOperandNo() != 0)
1720        return true;
1721    } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1722      if (LI->isVolatile())
1723        return true;
1724    } else if (isa<BlockAddress>(*UI)) {
1725      // blockaddress doesn't take the address of the function, it takes addr
1726      // of label.
1727    } else {
1728      return true;
1729    }
1730  return false;
1731}
1732
1733bool IPSCCP::runOnModule(Module &M) {
1734  SCCPSolver Solver(getAnalysisIfAvailable<TargetData>());
1735
1736  // Loop over all functions, marking arguments to those with their addresses
1737  // taken or that are external as overdefined.
1738  //
1739  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1740    if (F->isDeclaration())
1741      continue;
1742
1743    // If this is a strong or ODR definition of this function, then we can
1744    // propagate information about its result into callsites of it.
1745    if (!F->mayBeOverridden())
1746      Solver.AddTrackedFunction(F);
1747
1748    // If this function only has direct calls that we can see, we can track its
1749    // arguments and return value aggressively, and can assume it is not called
1750    // unless we see evidence to the contrary.
1751    if (F->hasLocalLinkage() && !AddressIsTaken(F)) {
1752      Solver.AddArgumentTrackedFunction(F);
1753      continue;
1754    }
1755
1756    // Assume the function is called.
1757    Solver.MarkBlockExecutable(F->begin());
1758
1759    // Assume nothing about the incoming arguments.
1760    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1761         AI != E; ++AI)
1762      Solver.markAnythingOverdefined(AI);
1763  }
1764
1765  // Loop over global variables.  We inform the solver about any internal global
1766  // variables that do not have their 'addresses taken'.  If they don't have
1767  // their addresses taken, we can propagate constants through them.
1768  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1769       G != E; ++G)
1770    if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1771      Solver.TrackValueOfGlobalVariable(G);
1772
1773  // Solve for constants.
1774  bool ResolvedUndefs = true;
1775  while (ResolvedUndefs) {
1776    Solver.Solve();
1777
1778    DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1779    ResolvedUndefs = false;
1780    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1781      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1782  }
1783
1784  bool MadeChanges = false;
1785
1786  // Iterate over all of the instructions in the module, replacing them with
1787  // constants if we have found them to be of constant values.
1788  //
1789  SmallVector<BasicBlock*, 512> BlocksToErase;
1790
1791  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1792    if (Solver.isBlockExecutable(F->begin())) {
1793      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1794           AI != E; ++AI) {
1795        if (AI->use_empty() || AI->getType()->isStructTy()) continue;
1796
1797        // TODO: Could use getStructLatticeValueFor to find out if the entire
1798        // result is a constant and replace it entirely if so.
1799
1800        LatticeVal IV = Solver.getLatticeValueFor(AI);
1801        if (IV.isOverdefined()) continue;
1802
1803        Constant *CST = IV.isConstant() ?
1804        IV.getConstant() : UndefValue::get(AI->getType());
1805        DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n");
1806
1807        // Replaces all of the uses of a variable with uses of the
1808        // constant.
1809        AI->replaceAllUsesWith(CST);
1810        ++IPNumArgsElimed;
1811      }
1812    }
1813
1814    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
1815      if (!Solver.isBlockExecutable(BB)) {
1816        DeleteInstructionInBlock(BB);
1817        MadeChanges = true;
1818
1819        TerminatorInst *TI = BB->getTerminator();
1820        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1821          BasicBlock *Succ = TI->getSuccessor(i);
1822          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1823            TI->getSuccessor(i)->removePredecessor(BB);
1824        }
1825        if (!TI->use_empty())
1826          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1827        TI->eraseFromParent();
1828
1829        if (&*BB != &F->front())
1830          BlocksToErase.push_back(BB);
1831        else
1832          new UnreachableInst(M.getContext(), BB);
1833        continue;
1834      }
1835
1836      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1837        Instruction *Inst = BI++;
1838        if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
1839          continue;
1840
1841        // TODO: Could use getStructLatticeValueFor to find out if the entire
1842        // result is a constant and replace it entirely if so.
1843
1844        LatticeVal IV = Solver.getLatticeValueFor(Inst);
1845        if (IV.isOverdefined())
1846          continue;
1847
1848        Constant *Const = IV.isConstant()
1849          ? IV.getConstant() : UndefValue::get(Inst->getType());
1850        DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst);
1851
1852        // Replaces all of the uses of a variable with uses of the
1853        // constant.
1854        Inst->replaceAllUsesWith(Const);
1855
1856        // Delete the instruction.
1857        if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1858          Inst->eraseFromParent();
1859
1860        // Hey, we just changed something!
1861        MadeChanges = true;
1862        ++IPNumInstRemoved;
1863      }
1864    }
1865
1866    // Now that all instructions in the function are constant folded, erase dead
1867    // blocks, because we can now use ConstantFoldTerminator to get rid of
1868    // in-edges.
1869    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1870      // If there are any PHI nodes in this successor, drop entries for BB now.
1871      BasicBlock *DeadBB = BlocksToErase[i];
1872      for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end();
1873           UI != UE; ) {
1874        // Grab the user and then increment the iterator early, as the user
1875        // will be deleted. Step past all adjacent uses from the same user.
1876        Instruction *I = dyn_cast<Instruction>(*UI);
1877        do { ++UI; } while (UI != UE && *UI == I);
1878
1879        // Ignore blockaddress users; BasicBlock's dtor will handle them.
1880        if (!I) continue;
1881
1882        bool Folded = ConstantFoldTerminator(I->getParent());
1883        if (!Folded) {
1884          // The constant folder may not have been able to fold the terminator
1885          // if this is a branch or switch on undef.  Fold it manually as a
1886          // branch to the first successor.
1887#ifndef NDEBUG
1888          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1889            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1890                   "Branch should be foldable!");
1891          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1892            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1893          } else {
1894            llvm_unreachable("Didn't fold away reference to block!");
1895          }
1896#endif
1897
1898          // Make this an uncond branch to the first successor.
1899          TerminatorInst *TI = I->getParent()->getTerminator();
1900          BranchInst::Create(TI->getSuccessor(0), TI);
1901
1902          // Remove entries in successor phi nodes to remove edges.
1903          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1904            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1905
1906          // Remove the old terminator.
1907          TI->eraseFromParent();
1908        }
1909      }
1910
1911      // Finally, delete the basic block.
1912      F->getBasicBlockList().erase(DeadBB);
1913    }
1914    BlocksToErase.clear();
1915  }
1916
1917  // If we inferred constant or undef return values for a function, we replaced
1918  // all call uses with the inferred value.  This means we don't need to bother
1919  // actually returning anything from the function.  Replace all return
1920  // instructions with return undef.
1921  // TODO: Process multiple value ret instructions also.
1922  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1923  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1924       E = RV.end(); I != E; ++I) {
1925    Function *F = I->first;
1926    if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
1927      continue;
1928
1929    // We can only do this if we know that nothing else can call the function.
1930    if (!F->hasLocalLinkage() || AddressIsTaken(F))
1931      continue;
1932
1933    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1934      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1935        if (!isa<UndefValue>(RI->getOperand(0)))
1936          RI->setOperand(0, UndefValue::get(F->getReturnType()));
1937  }
1938
1939  // If we infered constant or undef values for globals variables, we can delete
1940  // the global and any stores that remain to it.
1941  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1942  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1943         E = TG.end(); I != E; ++I) {
1944    GlobalVariable *GV = I->first;
1945    assert(!I->second.isOverdefined() &&
1946           "Overdefined values should have been taken out of the map!");
1947    DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1948    while (!GV->use_empty()) {
1949      StoreInst *SI = cast<StoreInst>(GV->use_back());
1950      SI->eraseFromParent();
1951    }
1952    M.getGlobalList().erase(GV);
1953    ++IPNumGlobalConst;
1954  }
1955
1956  return MadeChanges;
1957}
1958