SCCP.cpp revision 1fc291f0d3681e062daed186a934c0bf0c59224b
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "sccp"
21#include "llvm/Transforms/Scalar.h"
22#include "llvm/Transforms/IPO.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/Pass.h"
27#include "llvm/Analysis/ConstantFolding.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/Transforms/Utils/Local.h"
30#include "llvm/Target/TargetData.h"
31#include "llvm/Support/CallSite.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/InstVisitor.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/DenseSet.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/STLExtras.h"
43#include <algorithm>
44#include <map>
45using namespace llvm;
46
47STATISTIC(NumInstRemoved, "Number of instructions removed");
48STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
49
50STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
51STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
52STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
53
54namespace {
55/// LatticeVal class - This class represents the different lattice values that
56/// an LLVM value may occupy.  It is a simple class with value semantics.
57///
58class LatticeVal {
59  enum LatticeValueTy {
60    /// undefined - This LLVM Value has no known value yet.
61    undefined,
62
63    /// constant - This LLVM Value has a specific constant value.
64    constant,
65
66    /// forcedconstant - This LLVM Value was thought to be undef until
67    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
68    /// with another (different) constant, it goes to overdefined, instead of
69    /// asserting.
70    forcedconstant,
71
72    /// overdefined - This instruction is not known to be constant, and we know
73    /// it has a value.
74    overdefined
75  };
76
77  /// Val: This stores the current lattice value along with the Constant* for
78  /// the constant if this is a 'constant' or 'forcedconstant' value.
79  PointerIntPair<Constant *, 2, LatticeValueTy> Val;
80
81  LatticeValueTy getLatticeValue() const {
82    return Val.getInt();
83  }
84
85public:
86  LatticeVal() : Val(0, undefined) {}
87
88  bool isUndefined() const { return getLatticeValue() == undefined; }
89  bool isConstant() const {
90    return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
91  }
92  bool isOverdefined() const { return getLatticeValue() == overdefined; }
93
94  Constant *getConstant() const {
95    assert(isConstant() && "Cannot get the constant of a non-constant!");
96    return Val.getPointer();
97  }
98
99  /// markOverdefined - Return true if this is a change in status.
100  bool markOverdefined() {
101    if (isOverdefined())
102      return false;
103
104    Val.setInt(overdefined);
105    return true;
106  }
107
108  /// markConstant - Return true if this is a change in status.
109  bool markConstant(Constant *V) {
110    if (getLatticeValue() == constant) { // Constant but not forcedconstant.
111      assert(getConstant() == V && "Marking constant with different value");
112      return false;
113    }
114
115    if (isUndefined()) {
116      Val.setInt(constant);
117      assert(V && "Marking constant with NULL");
118      Val.setPointer(V);
119    } else {
120      assert(getLatticeValue() == forcedconstant &&
121             "Cannot move from overdefined to constant!");
122      // Stay at forcedconstant if the constant is the same.
123      if (V == getConstant()) return false;
124
125      // Otherwise, we go to overdefined.  Assumptions made based on the
126      // forced value are possibly wrong.  Assuming this is another constant
127      // could expose a contradiction.
128      Val.setInt(overdefined);
129    }
130    return true;
131  }
132
133  /// getConstantInt - If this is a constant with a ConstantInt value, return it
134  /// otherwise return null.
135  ConstantInt *getConstantInt() const {
136    if (isConstant())
137      return dyn_cast<ConstantInt>(getConstant());
138    return 0;
139  }
140
141  void markForcedConstant(Constant *V) {
142    assert(isUndefined() && "Can't force a defined value!");
143    Val.setInt(forcedconstant);
144    Val.setPointer(V);
145  }
146};
147} // end anonymous namespace.
148
149
150namespace {
151
152//===----------------------------------------------------------------------===//
153//
154/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
155/// Constant Propagation.
156///
157class SCCPSolver : public InstVisitor<SCCPSolver> {
158  const TargetData *TD;
159  SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
160  DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
161
162  /// StructValueState - This maintains ValueState for values that have
163  /// StructType, for example for formal arguments, calls, insertelement, etc.
164  ///
165  DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
166
167  /// GlobalValue - If we are tracking any values for the contents of a global
168  /// variable, we keep a mapping from the constant accessor to the element of
169  /// the global, to the currently known value.  If the value becomes
170  /// overdefined, it's entry is simply removed from this map.
171  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
172
173  /// TrackedRetVals - If we are tracking arguments into and the return
174  /// value out of a function, it will have an entry in this map, indicating
175  /// what the known return value for the function is.
176  DenseMap<Function*, LatticeVal> TrackedRetVals;
177
178  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
179  /// that return multiple values.
180  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
181
182  /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
183  /// represented here for efficient lookup.
184  SmallPtrSet<Function*, 16> MRVFunctionsTracked;
185
186  /// TrackingIncomingArguments - This is the set of functions for whose
187  /// arguments we make optimistic assumptions about and try to prove as
188  /// constants.
189  SmallPtrSet<Function*, 16> TrackingIncomingArguments;
190
191  /// The reason for two worklists is that overdefined is the lowest state
192  /// on the lattice, and moving things to overdefined as fast as possible
193  /// makes SCCP converge much faster.
194  ///
195  /// By having a separate worklist, we accomplish this because everything
196  /// possibly overdefined will become overdefined at the soonest possible
197  /// point.
198  SmallVector<Value*, 64> OverdefinedInstWorkList;
199  SmallVector<Value*, 64> InstWorkList;
200
201
202  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
203
204  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
205  /// overdefined, despite the fact that the PHI node is overdefined.
206  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
207
208  /// KnownFeasibleEdges - Entries in this set are edges which have already had
209  /// PHI nodes retriggered.
210  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
211  DenseSet<Edge> KnownFeasibleEdges;
212public:
213  SCCPSolver(const TargetData *td) : TD(td) {}
214
215  /// MarkBlockExecutable - This method can be used by clients to mark all of
216  /// the blocks that are known to be intrinsically live in the processed unit.
217  ///
218  /// This returns true if the block was not considered live before.
219  bool MarkBlockExecutable(BasicBlock *BB) {
220    if (!BBExecutable.insert(BB)) return false;
221    DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
222    BBWorkList.push_back(BB);  // Add the block to the work list!
223    return true;
224  }
225
226  /// TrackValueOfGlobalVariable - Clients can use this method to
227  /// inform the SCCPSolver that it should track loads and stores to the
228  /// specified global variable if it can.  This is only legal to call if
229  /// performing Interprocedural SCCP.
230  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
231    // We only track the contents of scalar globals.
232    if (GV->getType()->getElementType()->isSingleValueType()) {
233      LatticeVal &IV = TrackedGlobals[GV];
234      if (!isa<UndefValue>(GV->getInitializer()))
235        IV.markConstant(GV->getInitializer());
236    }
237  }
238
239  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
240  /// and out of the specified function (which cannot have its address taken),
241  /// this method must be called.
242  void AddTrackedFunction(Function *F) {
243    // Add an entry, F -> undef.
244    if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
245      MRVFunctionsTracked.insert(F);
246      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
247        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
248                                                     LatticeVal()));
249    } else
250      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
251  }
252
253  void AddArgumentTrackedFunction(Function *F) {
254    TrackingIncomingArguments.insert(F);
255  }
256
257  /// Solve - Solve for constants and executable blocks.
258  ///
259  void Solve();
260
261  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
262  /// that branches on undef values cannot reach any of their successors.
263  /// However, this is not a safe assumption.  After we solve dataflow, this
264  /// method should be use to handle this.  If this returns true, the solver
265  /// should be rerun.
266  bool ResolvedUndefsIn(Function &F);
267
268  bool isBlockExecutable(BasicBlock *BB) const {
269    return BBExecutable.count(BB);
270  }
271
272  LatticeVal getLatticeValueFor(Value *V) const {
273    DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
274    assert(I != ValueState.end() && "V is not in valuemap!");
275    return I->second;
276  }
277
278  /*LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const {
279    DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I =
280      StructValueState.find(std::make_pair(V, i));
281    assert(I != StructValueState.end() && "V is not in valuemap!");
282    return I->second;
283  }*/
284
285  /// getTrackedRetVals - Get the inferred return value map.
286  ///
287  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
288    return TrackedRetVals;
289  }
290
291  /// getTrackedGlobals - Get and return the set of inferred initializers for
292  /// global variables.
293  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
294    return TrackedGlobals;
295  }
296
297  void markOverdefined(Value *V) {
298    assert(!V->getType()->isStructTy() && "Should use other method");
299    markOverdefined(ValueState[V], V);
300  }
301
302  /// markAnythingOverdefined - Mark the specified value overdefined.  This
303  /// works with both scalars and structs.
304  void markAnythingOverdefined(Value *V) {
305    if (StructType *STy = dyn_cast<StructType>(V->getType()))
306      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
307        markOverdefined(getStructValueState(V, i), V);
308    else
309      markOverdefined(V);
310  }
311
312private:
313  // markConstant - Make a value be marked as "constant".  If the value
314  // is not already a constant, add it to the instruction work list so that
315  // the users of the instruction are updated later.
316  //
317  void markConstant(LatticeVal &IV, Value *V, Constant *C) {
318    if (!IV.markConstant(C)) return;
319    DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
320    if (IV.isOverdefined())
321      OverdefinedInstWorkList.push_back(V);
322    else
323      InstWorkList.push_back(V);
324  }
325
326  void markConstant(Value *V, Constant *C) {
327    assert(!V->getType()->isStructTy() && "Should use other method");
328    markConstant(ValueState[V], V, C);
329  }
330
331  void markForcedConstant(Value *V, Constant *C) {
332    assert(!V->getType()->isStructTy() && "Should use other method");
333    LatticeVal &IV = ValueState[V];
334    IV.markForcedConstant(C);
335    DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
336    if (IV.isOverdefined())
337      OverdefinedInstWorkList.push_back(V);
338    else
339      InstWorkList.push_back(V);
340  }
341
342
343  // markOverdefined - Make a value be marked as "overdefined". If the
344  // value is not already overdefined, add it to the overdefined instruction
345  // work list so that the users of the instruction are updated later.
346  void markOverdefined(LatticeVal &IV, Value *V) {
347    if (!IV.markOverdefined()) return;
348
349    DEBUG(dbgs() << "markOverdefined: ";
350          if (Function *F = dyn_cast<Function>(V))
351            dbgs() << "Function '" << F->getName() << "'\n";
352          else
353            dbgs() << *V << '\n');
354    // Only instructions go on the work list
355    OverdefinedInstWorkList.push_back(V);
356  }
357
358  void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
359    if (IV.isOverdefined() || MergeWithV.isUndefined())
360      return;  // Noop.
361    if (MergeWithV.isOverdefined())
362      markOverdefined(IV, V);
363    else if (IV.isUndefined())
364      markConstant(IV, V, MergeWithV.getConstant());
365    else if (IV.getConstant() != MergeWithV.getConstant())
366      markOverdefined(IV, V);
367  }
368
369  void mergeInValue(Value *V, LatticeVal MergeWithV) {
370    assert(!V->getType()->isStructTy() && "Should use other method");
371    mergeInValue(ValueState[V], V, MergeWithV);
372  }
373
374
375  /// getValueState - Return the LatticeVal object that corresponds to the
376  /// value.  This function handles the case when the value hasn't been seen yet
377  /// by properly seeding constants etc.
378  LatticeVal &getValueState(Value *V) {
379    assert(!V->getType()->isStructTy() && "Should use getStructValueState");
380
381    std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
382      ValueState.insert(std::make_pair(V, LatticeVal()));
383    LatticeVal &LV = I.first->second;
384
385    if (!I.second)
386      return LV;  // Common case, already in the map.
387
388    if (Constant *C = dyn_cast<Constant>(V)) {
389      // Undef values remain undefined.
390      if (!isa<UndefValue>(V))
391        LV.markConstant(C);          // Constants are constant
392    }
393
394    // All others are underdefined by default.
395    return LV;
396  }
397
398  /// getStructValueState - Return the LatticeVal object that corresponds to the
399  /// value/field pair.  This function handles the case when the value hasn't
400  /// been seen yet by properly seeding constants etc.
401  LatticeVal &getStructValueState(Value *V, unsigned i) {
402    assert(V->getType()->isStructTy() && "Should use getValueState");
403    assert(i < cast<StructType>(V->getType())->getNumElements() &&
404           "Invalid element #");
405
406    std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
407              bool> I = StructValueState.insert(
408                        std::make_pair(std::make_pair(V, i), LatticeVal()));
409    LatticeVal &LV = I.first->second;
410
411    if (!I.second)
412      return LV;  // Common case, already in the map.
413
414    if (Constant *C = dyn_cast<Constant>(V)) {
415      if (isa<UndefValue>(C))
416        ; // Undef values remain undefined.
417      else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C))
418        LV.markConstant(CS->getOperand(i));      // Constants are constant.
419      else if (isa<ConstantAggregateZero>(C)) {
420        Type *FieldTy = cast<StructType>(V->getType())->getElementType(i);
421        LV.markConstant(Constant::getNullValue(FieldTy));
422      } else
423        LV.markOverdefined();      // Unknown sort of constant.
424    }
425
426    // All others are underdefined by default.
427    return LV;
428  }
429
430
431  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
432  /// work list if it is not already executable.
433  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
434    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
435      return;  // This edge is already known to be executable!
436
437    if (!MarkBlockExecutable(Dest)) {
438      // If the destination is already executable, we just made an *edge*
439      // feasible that wasn't before.  Revisit the PHI nodes in the block
440      // because they have potentially new operands.
441      DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
442            << " -> " << Dest->getName() << "\n");
443
444      PHINode *PN;
445      for (BasicBlock::iterator I = Dest->begin();
446           (PN = dyn_cast<PHINode>(I)); ++I)
447        visitPHINode(*PN);
448    }
449  }
450
451  // getFeasibleSuccessors - Return a vector of booleans to indicate which
452  // successors are reachable from a given terminator instruction.
453  //
454  void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
455
456  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
457  // block to the 'To' basic block is currently feasible.
458  //
459  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
460
461  // OperandChangedState - This method is invoked on all of the users of an
462  // instruction that was just changed state somehow.  Based on this
463  // information, we need to update the specified user of this instruction.
464  //
465  void OperandChangedState(Instruction *I) {
466    if (BBExecutable.count(I->getParent()))   // Inst is executable?
467      visit(*I);
468  }
469
470  /// RemoveFromOverdefinedPHIs - If I has any entries in the
471  /// UsersOfOverdefinedPHIs map for PN, remove them now.
472  void RemoveFromOverdefinedPHIs(Instruction *I, PHINode *PN) {
473    if (UsersOfOverdefinedPHIs.empty()) return;
474    typedef std::multimap<PHINode*, Instruction*>::iterator ItTy;
475    std::pair<ItTy, ItTy> Range = UsersOfOverdefinedPHIs.equal_range(PN);
476    for (ItTy It = Range.first, E = Range.second; It != E;) {
477      if (It->second == I)
478        UsersOfOverdefinedPHIs.erase(It++);
479      else
480        ++It;
481    }
482  }
483
484  /// InsertInOverdefinedPHIs - Insert an entry in the UsersOfOverdefinedPHIS
485  /// map for I and PN, but if one is there already, do not create another.
486  /// (Duplicate entries do not break anything directly, but can lead to
487  /// exponential growth of the table in rare cases.)
488  void InsertInOverdefinedPHIs(Instruction *I, PHINode *PN) {
489    typedef std::multimap<PHINode*, Instruction*>::iterator ItTy;
490    std::pair<ItTy, ItTy> Range = UsersOfOverdefinedPHIs.equal_range(PN);
491    for (ItTy J = Range.first, E = Range.second; J != E; ++J)
492      if (J->second == I)
493        return;
494    UsersOfOverdefinedPHIs.insert(std::make_pair(PN, I));
495  }
496
497private:
498  friend class InstVisitor<SCCPSolver>;
499
500  // visit implementations - Something changed in this instruction.  Either an
501  // operand made a transition, or the instruction is newly executable.  Change
502  // the value type of I to reflect these changes if appropriate.
503  void visitPHINode(PHINode &I);
504
505  // Terminators
506  void visitReturnInst(ReturnInst &I);
507  void visitTerminatorInst(TerminatorInst &TI);
508
509  void visitCastInst(CastInst &I);
510  void visitSelectInst(SelectInst &I);
511  void visitBinaryOperator(Instruction &I);
512  void visitCmpInst(CmpInst &I);
513  void visitExtractElementInst(ExtractElementInst &I);
514  void visitInsertElementInst(InsertElementInst &I);
515  void visitShuffleVectorInst(ShuffleVectorInst &I);
516  void visitExtractValueInst(ExtractValueInst &EVI);
517  void visitInsertValueInst(InsertValueInst &IVI);
518  void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
519
520  // Instructions that cannot be folded away.
521  void visitStoreInst     (StoreInst &I);
522  void visitLoadInst      (LoadInst &I);
523  void visitGetElementPtrInst(GetElementPtrInst &I);
524  void visitCallInst      (CallInst &I) {
525    visitCallSite(&I);
526  }
527  void visitInvokeInst    (InvokeInst &II) {
528    visitCallSite(&II);
529    visitTerminatorInst(II);
530  }
531  void visitCallSite      (CallSite CS);
532  void visitResumeInst    (TerminatorInst &I) { /*returns void*/ }
533  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
534  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
535  void visitFenceInst     (FenceInst &I) { /*returns void*/ }
536  void visitAtomicCmpXchgInst (AtomicCmpXchgInst &I) { markOverdefined(&I); }
537  void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
538  void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
539  void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
540
541  void visitInstruction(Instruction &I) {
542    // If a new instruction is added to LLVM that we don't handle.
543    dbgs() << "SCCP: Don't know how to handle: " << I;
544    markAnythingOverdefined(&I);   // Just in case
545  }
546};
547
548} // end anonymous namespace
549
550
551// getFeasibleSuccessors - Return a vector of booleans to indicate which
552// successors are reachable from a given terminator instruction.
553//
554void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
555                                       SmallVector<bool, 16> &Succs) {
556  Succs.resize(TI.getNumSuccessors());
557  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
558    if (BI->isUnconditional()) {
559      Succs[0] = true;
560      return;
561    }
562
563    LatticeVal BCValue = getValueState(BI->getCondition());
564    ConstantInt *CI = BCValue.getConstantInt();
565    if (CI == 0) {
566      // Overdefined condition variables, and branches on unfoldable constant
567      // conditions, mean the branch could go either way.
568      if (!BCValue.isUndefined())
569        Succs[0] = Succs[1] = true;
570      return;
571    }
572
573    // Constant condition variables mean the branch can only go a single way.
574    Succs[CI->isZero()] = true;
575    return;
576  }
577
578  if (isa<InvokeInst>(TI)) {
579    // Invoke instructions successors are always executable.
580    Succs[0] = Succs[1] = true;
581    return;
582  }
583
584  if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
585    if (TI.getNumSuccessors() < 2) {
586      Succs[0] = true;
587      return;
588    }
589    LatticeVal SCValue = getValueState(SI->getCondition());
590    ConstantInt *CI = SCValue.getConstantInt();
591
592    if (CI == 0) {   // Overdefined or undefined condition?
593      // All destinations are executable!
594      if (!SCValue.isUndefined())
595        Succs.assign(TI.getNumSuccessors(), true);
596      return;
597    }
598
599    Succs[SI->findCaseValue(CI)] = true;
600    return;
601  }
602
603  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
604  if (isa<IndirectBrInst>(&TI)) {
605    // Just mark all destinations executable!
606    Succs.assign(TI.getNumSuccessors(), true);
607    return;
608  }
609
610#ifndef NDEBUG
611  dbgs() << "Unknown terminator instruction: " << TI << '\n';
612#endif
613  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
614}
615
616
617// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
618// block to the 'To' basic block is currently feasible.
619//
620bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
621  assert(BBExecutable.count(To) && "Dest should always be alive!");
622
623  // Make sure the source basic block is executable!!
624  if (!BBExecutable.count(From)) return false;
625
626  // Check to make sure this edge itself is actually feasible now.
627  TerminatorInst *TI = From->getTerminator();
628  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
629    if (BI->isUnconditional())
630      return true;
631
632    LatticeVal BCValue = getValueState(BI->getCondition());
633
634    // Overdefined condition variables mean the branch could go either way,
635    // undef conditions mean that neither edge is feasible yet.
636    ConstantInt *CI = BCValue.getConstantInt();
637    if (CI == 0)
638      return !BCValue.isUndefined();
639
640    // Constant condition variables mean the branch can only go a single way.
641    return BI->getSuccessor(CI->isZero()) == To;
642  }
643
644  // Invoke instructions successors are always executable.
645  if (isa<InvokeInst>(TI))
646    return true;
647
648  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
649    if (SI->getNumSuccessors() < 2)
650      return true;
651
652    LatticeVal SCValue = getValueState(SI->getCondition());
653    ConstantInt *CI = SCValue.getConstantInt();
654
655    if (CI == 0)
656      return !SCValue.isUndefined();
657
658    // Make sure to skip the "default value" which isn't a value
659    for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
660      if (SI->getSuccessorValue(i) == CI) // Found the taken branch.
661        return SI->getSuccessor(i) == To;
662
663    // If the constant value is not equal to any of the branches, we must
664    // execute default branch.
665    return SI->getDefaultDest() == To;
666  }
667
668  // Just mark all destinations executable!
669  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
670  if (isa<IndirectBrInst>(TI))
671    return true;
672
673#ifndef NDEBUG
674  dbgs() << "Unknown terminator instruction: " << *TI << '\n';
675#endif
676  llvm_unreachable(0);
677}
678
679// visit Implementations - Something changed in this instruction, either an
680// operand made a transition, or the instruction is newly executable.  Change
681// the value type of I to reflect these changes if appropriate.  This method
682// makes sure to do the following actions:
683//
684// 1. If a phi node merges two constants in, and has conflicting value coming
685//    from different branches, or if the PHI node merges in an overdefined
686//    value, then the PHI node becomes overdefined.
687// 2. If a phi node merges only constants in, and they all agree on value, the
688//    PHI node becomes a constant value equal to that.
689// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
690// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
691// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
692// 6. If a conditional branch has a value that is constant, make the selected
693//    destination executable
694// 7. If a conditional branch has a value that is overdefined, make all
695//    successors executable.
696//
697void SCCPSolver::visitPHINode(PHINode &PN) {
698  // If this PN returns a struct, just mark the result overdefined.
699  // TODO: We could do a lot better than this if code actually uses this.
700  if (PN.getType()->isStructTy())
701    return markAnythingOverdefined(&PN);
702
703  if (getValueState(&PN).isOverdefined()) {
704    // There may be instructions using this PHI node that are not overdefined
705    // themselves.  If so, make sure that they know that the PHI node operand
706    // changed.
707    typedef std::multimap<PHINode*, Instruction*>::iterator ItTy;
708    std::pair<ItTy, ItTy> Range = UsersOfOverdefinedPHIs.equal_range(&PN);
709
710    if (Range.first == Range.second)
711      return;
712
713    SmallVector<Instruction*, 16> Users;
714    for (ItTy I = Range.first, E = Range.second; I != E; ++I)
715      Users.push_back(I->second);
716    while (!Users.empty())
717      visit(Users.pop_back_val());
718    return;  // Quick exit
719  }
720
721  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
722  // and slow us down a lot.  Just mark them overdefined.
723  if (PN.getNumIncomingValues() > 64)
724    return markOverdefined(&PN);
725
726  // Look at all of the executable operands of the PHI node.  If any of them
727  // are overdefined, the PHI becomes overdefined as well.  If they are all
728  // constant, and they agree with each other, the PHI becomes the identical
729  // constant.  If they are constant and don't agree, the PHI is overdefined.
730  // If there are no executable operands, the PHI remains undefined.
731  //
732  Constant *OperandVal = 0;
733  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
734    LatticeVal IV = getValueState(PN.getIncomingValue(i));
735    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
736
737    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
738      continue;
739
740    if (IV.isOverdefined())    // PHI node becomes overdefined!
741      return markOverdefined(&PN);
742
743    if (OperandVal == 0) {   // Grab the first value.
744      OperandVal = IV.getConstant();
745      continue;
746    }
747
748    // There is already a reachable operand.  If we conflict with it,
749    // then the PHI node becomes overdefined.  If we agree with it, we
750    // can continue on.
751
752    // Check to see if there are two different constants merging, if so, the PHI
753    // node is overdefined.
754    if (IV.getConstant() != OperandVal)
755      return markOverdefined(&PN);
756  }
757
758  // If we exited the loop, this means that the PHI node only has constant
759  // arguments that agree with each other(and OperandVal is the constant) or
760  // OperandVal is null because there are no defined incoming arguments.  If
761  // this is the case, the PHI remains undefined.
762  //
763  if (OperandVal)
764    markConstant(&PN, OperandVal);      // Acquire operand value
765}
766
767
768
769
770void SCCPSolver::visitReturnInst(ReturnInst &I) {
771  if (I.getNumOperands() == 0) return;  // ret void
772
773  Function *F = I.getParent()->getParent();
774  Value *ResultOp = I.getOperand(0);
775
776  // If we are tracking the return value of this function, merge it in.
777  if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
778    DenseMap<Function*, LatticeVal>::iterator TFRVI =
779      TrackedRetVals.find(F);
780    if (TFRVI != TrackedRetVals.end()) {
781      mergeInValue(TFRVI->second, F, getValueState(ResultOp));
782      return;
783    }
784  }
785
786  // Handle functions that return multiple values.
787  if (!TrackedMultipleRetVals.empty()) {
788    if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
789      if (MRVFunctionsTracked.count(F))
790        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
791          mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
792                       getStructValueState(ResultOp, i));
793
794  }
795}
796
797void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
798  SmallVector<bool, 16> SuccFeasible;
799  getFeasibleSuccessors(TI, SuccFeasible);
800
801  BasicBlock *BB = TI.getParent();
802
803  // Mark all feasible successors executable.
804  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
805    if (SuccFeasible[i])
806      markEdgeExecutable(BB, TI.getSuccessor(i));
807}
808
809void SCCPSolver::visitCastInst(CastInst &I) {
810  LatticeVal OpSt = getValueState(I.getOperand(0));
811  if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
812    markOverdefined(&I);
813  else if (OpSt.isConstant())        // Propagate constant value
814    markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
815                                           OpSt.getConstant(), I.getType()));
816}
817
818
819void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
820  // If this returns a struct, mark all elements over defined, we don't track
821  // structs in structs.
822  if (EVI.getType()->isStructTy())
823    return markAnythingOverdefined(&EVI);
824
825  // If this is extracting from more than one level of struct, we don't know.
826  if (EVI.getNumIndices() != 1)
827    return markOverdefined(&EVI);
828
829  Value *AggVal = EVI.getAggregateOperand();
830  if (AggVal->getType()->isStructTy()) {
831    unsigned i = *EVI.idx_begin();
832    LatticeVal EltVal = getStructValueState(AggVal, i);
833    mergeInValue(getValueState(&EVI), &EVI, EltVal);
834  } else {
835    // Otherwise, must be extracting from an array.
836    return markOverdefined(&EVI);
837  }
838}
839
840void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
841  StructType *STy = dyn_cast<StructType>(IVI.getType());
842  if (STy == 0)
843    return markOverdefined(&IVI);
844
845  // If this has more than one index, we can't handle it, drive all results to
846  // undef.
847  if (IVI.getNumIndices() != 1)
848    return markAnythingOverdefined(&IVI);
849
850  Value *Aggr = IVI.getAggregateOperand();
851  unsigned Idx = *IVI.idx_begin();
852
853  // Compute the result based on what we're inserting.
854  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
855    // This passes through all values that aren't the inserted element.
856    if (i != Idx) {
857      LatticeVal EltVal = getStructValueState(Aggr, i);
858      mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
859      continue;
860    }
861
862    Value *Val = IVI.getInsertedValueOperand();
863    if (Val->getType()->isStructTy())
864      // We don't track structs in structs.
865      markOverdefined(getStructValueState(&IVI, i), &IVI);
866    else {
867      LatticeVal InVal = getValueState(Val);
868      mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
869    }
870  }
871}
872
873void SCCPSolver::visitSelectInst(SelectInst &I) {
874  // If this select returns a struct, just mark the result overdefined.
875  // TODO: We could do a lot better than this if code actually uses this.
876  if (I.getType()->isStructTy())
877    return markAnythingOverdefined(&I);
878
879  LatticeVal CondValue = getValueState(I.getCondition());
880  if (CondValue.isUndefined())
881    return;
882
883  if (ConstantInt *CondCB = CondValue.getConstantInt()) {
884    Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
885    mergeInValue(&I, getValueState(OpVal));
886    return;
887  }
888
889  // Otherwise, the condition is overdefined or a constant we can't evaluate.
890  // See if we can produce something better than overdefined based on the T/F
891  // value.
892  LatticeVal TVal = getValueState(I.getTrueValue());
893  LatticeVal FVal = getValueState(I.getFalseValue());
894
895  // select ?, C, C -> C.
896  if (TVal.isConstant() && FVal.isConstant() &&
897      TVal.getConstant() == FVal.getConstant())
898    return markConstant(&I, FVal.getConstant());
899
900  if (TVal.isUndefined())   // select ?, undef, X -> X.
901    return mergeInValue(&I, FVal);
902  if (FVal.isUndefined())   // select ?, X, undef -> X.
903    return mergeInValue(&I, TVal);
904  markOverdefined(&I);
905}
906
907// Handle Binary Operators.
908void SCCPSolver::visitBinaryOperator(Instruction &I) {
909  LatticeVal V1State = getValueState(I.getOperand(0));
910  LatticeVal V2State = getValueState(I.getOperand(1));
911
912  LatticeVal &IV = ValueState[&I];
913  if (IV.isOverdefined()) return;
914
915  if (V1State.isConstant() && V2State.isConstant())
916    return markConstant(IV, &I,
917                        ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
918                                          V2State.getConstant()));
919
920  // If something is undef, wait for it to resolve.
921  if (!V1State.isOverdefined() && !V2State.isOverdefined())
922    return;
923
924  // Otherwise, one of our operands is overdefined.  Try to produce something
925  // better than overdefined with some tricks.
926
927  // If this is an AND or OR with 0 or -1, it doesn't matter that the other
928  // operand is overdefined.
929  if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
930    LatticeVal *NonOverdefVal = 0;
931    if (!V1State.isOverdefined())
932      NonOverdefVal = &V1State;
933    else if (!V2State.isOverdefined())
934      NonOverdefVal = &V2State;
935
936    if (NonOverdefVal) {
937      if (NonOverdefVal->isUndefined()) {
938        // Could annihilate value.
939        if (I.getOpcode() == Instruction::And)
940          markConstant(IV, &I, Constant::getNullValue(I.getType()));
941        else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
942          markConstant(IV, &I, Constant::getAllOnesValue(PT));
943        else
944          markConstant(IV, &I,
945                       Constant::getAllOnesValue(I.getType()));
946        return;
947      }
948
949      if (I.getOpcode() == Instruction::And) {
950        // X and 0 = 0
951        if (NonOverdefVal->getConstant()->isNullValue())
952          return markConstant(IV, &I, NonOverdefVal->getConstant());
953      } else {
954        if (ConstantInt *CI = NonOverdefVal->getConstantInt())
955          if (CI->isAllOnesValue())     // X or -1 = -1
956            return markConstant(IV, &I, NonOverdefVal->getConstant());
957      }
958    }
959  }
960
961
962  // If both operands are PHI nodes, it is possible that this instruction has
963  // a constant value, despite the fact that the PHI node doesn't.  Check for
964  // this condition now.
965  if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
966    if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
967      if (PN1->getParent() == PN2->getParent()) {
968        // Since the two PHI nodes are in the same basic block, they must have
969        // entries for the same predecessors.  Walk the predecessor list, and
970        // if all of the incoming values are constants, and the result of
971        // evaluating this expression with all incoming value pairs is the
972        // same, then this expression is a constant even though the PHI node
973        // is not a constant!
974        LatticeVal Result;
975        for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
976          LatticeVal In1 = getValueState(PN1->getIncomingValue(i));
977          BasicBlock *InBlock = PN1->getIncomingBlock(i);
978          LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
979
980          if (In1.isOverdefined() || In2.isOverdefined()) {
981            Result.markOverdefined();
982            break;  // Cannot fold this operation over the PHI nodes!
983          }
984
985          if (In1.isConstant() && In2.isConstant()) {
986            Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
987                                            In2.getConstant());
988            if (Result.isUndefined())
989              Result.markConstant(V);
990            else if (Result.isConstant() && Result.getConstant() != V) {
991              Result.markOverdefined();
992              break;
993            }
994          }
995        }
996
997        // If we found a constant value here, then we know the instruction is
998        // constant despite the fact that the PHI nodes are overdefined.
999        if (Result.isConstant()) {
1000          markConstant(IV, &I, Result.getConstant());
1001          // Remember that this instruction is virtually using the PHI node
1002          // operands.
1003          InsertInOverdefinedPHIs(&I, PN1);
1004          InsertInOverdefinedPHIs(&I, PN2);
1005          return;
1006        }
1007
1008        if (Result.isUndefined())
1009          return;
1010
1011        // Okay, this really is overdefined now.  Since we might have
1012        // speculatively thought that this was not overdefined before, and
1013        // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
1014        // make sure to clean out any entries that we put there, for
1015        // efficiency.
1016        RemoveFromOverdefinedPHIs(&I, PN1);
1017        RemoveFromOverdefinedPHIs(&I, PN2);
1018      }
1019
1020  markOverdefined(&I);
1021}
1022
1023// Handle ICmpInst instruction.
1024void SCCPSolver::visitCmpInst(CmpInst &I) {
1025  LatticeVal V1State = getValueState(I.getOperand(0));
1026  LatticeVal V2State = getValueState(I.getOperand(1));
1027
1028  LatticeVal &IV = ValueState[&I];
1029  if (IV.isOverdefined()) return;
1030
1031  if (V1State.isConstant() && V2State.isConstant())
1032    return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
1033                                                         V1State.getConstant(),
1034                                                        V2State.getConstant()));
1035
1036  // If operands are still undefined, wait for it to resolve.
1037  if (!V1State.isOverdefined() && !V2State.isOverdefined())
1038    return;
1039
1040  // If something is overdefined, use some tricks to avoid ending up and over
1041  // defined if we can.
1042
1043  // If both operands are PHI nodes, it is possible that this instruction has
1044  // a constant value, despite the fact that the PHI node doesn't.  Check for
1045  // this condition now.
1046  if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
1047    if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
1048      if (PN1->getParent() == PN2->getParent()) {
1049        // Since the two PHI nodes are in the same basic block, they must have
1050        // entries for the same predecessors.  Walk the predecessor list, and
1051        // if all of the incoming values are constants, and the result of
1052        // evaluating this expression with all incoming value pairs is the
1053        // same, then this expression is a constant even though the PHI node
1054        // is not a constant!
1055        LatticeVal Result;
1056        for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
1057          LatticeVal In1 = getValueState(PN1->getIncomingValue(i));
1058          BasicBlock *InBlock = PN1->getIncomingBlock(i);
1059          LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
1060
1061          if (In1.isOverdefined() || In2.isOverdefined()) {
1062            Result.markOverdefined();
1063            break;  // Cannot fold this operation over the PHI nodes!
1064          }
1065
1066          if (In1.isConstant() && In2.isConstant()) {
1067            Constant *V = ConstantExpr::getCompare(I.getPredicate(),
1068                                                   In1.getConstant(),
1069                                                   In2.getConstant());
1070            if (Result.isUndefined())
1071              Result.markConstant(V);
1072            else if (Result.isConstant() && Result.getConstant() != V) {
1073              Result.markOverdefined();
1074              break;
1075            }
1076          }
1077        }
1078
1079        // If we found a constant value here, then we know the instruction is
1080        // constant despite the fact that the PHI nodes are overdefined.
1081        if (Result.isConstant()) {
1082          markConstant(&I, Result.getConstant());
1083          // Remember that this instruction is virtually using the PHI node
1084          // operands.
1085          InsertInOverdefinedPHIs(&I, PN1);
1086          InsertInOverdefinedPHIs(&I, PN2);
1087          return;
1088        }
1089
1090        if (Result.isUndefined())
1091          return;
1092
1093        // Okay, this really is overdefined now.  Since we might have
1094        // speculatively thought that this was not overdefined before, and
1095        // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
1096        // make sure to clean out any entries that we put there, for
1097        // efficiency.
1098        RemoveFromOverdefinedPHIs(&I, PN1);
1099        RemoveFromOverdefinedPHIs(&I, PN2);
1100      }
1101
1102  markOverdefined(&I);
1103}
1104
1105void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1106  // TODO : SCCP does not handle vectors properly.
1107  return markOverdefined(&I);
1108
1109#if 0
1110  LatticeVal &ValState = getValueState(I.getOperand(0));
1111  LatticeVal &IdxState = getValueState(I.getOperand(1));
1112
1113  if (ValState.isOverdefined() || IdxState.isOverdefined())
1114    markOverdefined(&I);
1115  else if(ValState.isConstant() && IdxState.isConstant())
1116    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1117                                                     IdxState.getConstant()));
1118#endif
1119}
1120
1121void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1122  // TODO : SCCP does not handle vectors properly.
1123  return markOverdefined(&I);
1124#if 0
1125  LatticeVal &ValState = getValueState(I.getOperand(0));
1126  LatticeVal &EltState = getValueState(I.getOperand(1));
1127  LatticeVal &IdxState = getValueState(I.getOperand(2));
1128
1129  if (ValState.isOverdefined() || EltState.isOverdefined() ||
1130      IdxState.isOverdefined())
1131    markOverdefined(&I);
1132  else if(ValState.isConstant() && EltState.isConstant() &&
1133          IdxState.isConstant())
1134    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1135                                                    EltState.getConstant(),
1136                                                    IdxState.getConstant()));
1137  else if (ValState.isUndefined() && EltState.isConstant() &&
1138           IdxState.isConstant())
1139    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1140                                                   EltState.getConstant(),
1141                                                   IdxState.getConstant()));
1142#endif
1143}
1144
1145void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1146  // TODO : SCCP does not handle vectors properly.
1147  return markOverdefined(&I);
1148#if 0
1149  LatticeVal &V1State   = getValueState(I.getOperand(0));
1150  LatticeVal &V2State   = getValueState(I.getOperand(1));
1151  LatticeVal &MaskState = getValueState(I.getOperand(2));
1152
1153  if (MaskState.isUndefined() ||
1154      (V1State.isUndefined() && V2State.isUndefined()))
1155    return;  // Undefined output if mask or both inputs undefined.
1156
1157  if (V1State.isOverdefined() || V2State.isOverdefined() ||
1158      MaskState.isOverdefined()) {
1159    markOverdefined(&I);
1160  } else {
1161    // A mix of constant/undef inputs.
1162    Constant *V1 = V1State.isConstant() ?
1163        V1State.getConstant() : UndefValue::get(I.getType());
1164    Constant *V2 = V2State.isConstant() ?
1165        V2State.getConstant() : UndefValue::get(I.getType());
1166    Constant *Mask = MaskState.isConstant() ?
1167      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1168    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1169  }
1170#endif
1171}
1172
1173// Handle getelementptr instructions.  If all operands are constants then we
1174// can turn this into a getelementptr ConstantExpr.
1175//
1176void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1177  if (ValueState[&I].isOverdefined()) return;
1178
1179  SmallVector<Constant*, 8> Operands;
1180  Operands.reserve(I.getNumOperands());
1181
1182  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1183    LatticeVal State = getValueState(I.getOperand(i));
1184    if (State.isUndefined())
1185      return;  // Operands are not resolved yet.
1186
1187    if (State.isOverdefined())
1188      return markOverdefined(&I);
1189
1190    assert(State.isConstant() && "Unknown state!");
1191    Operands.push_back(State.getConstant());
1192  }
1193
1194  Constant *Ptr = Operands[0];
1195  ArrayRef<Constant *> Indices(Operands.begin() + 1, Operands.end());
1196  markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices));
1197}
1198
1199void SCCPSolver::visitStoreInst(StoreInst &SI) {
1200  // If this store is of a struct, ignore it.
1201  if (SI.getOperand(0)->getType()->isStructTy())
1202    return;
1203
1204  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1205    return;
1206
1207  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1208  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1209  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1210
1211  // Get the value we are storing into the global, then merge it.
1212  mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1213  if (I->second.isOverdefined())
1214    TrackedGlobals.erase(I);      // No need to keep tracking this!
1215}
1216
1217
1218// Handle load instructions.  If the operand is a constant pointer to a constant
1219// global, we can replace the load with the loaded constant value!
1220void SCCPSolver::visitLoadInst(LoadInst &I) {
1221  // If this load is of a struct, just mark the result overdefined.
1222  if (I.getType()->isStructTy())
1223    return markAnythingOverdefined(&I);
1224
1225  LatticeVal PtrVal = getValueState(I.getOperand(0));
1226  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1227
1228  LatticeVal &IV = ValueState[&I];
1229  if (IV.isOverdefined()) return;
1230
1231  if (!PtrVal.isConstant() || I.isVolatile())
1232    return markOverdefined(IV, &I);
1233
1234  Constant *Ptr = PtrVal.getConstant();
1235
1236  // load null -> null
1237  if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
1238    return markConstant(IV, &I, Constant::getNullValue(I.getType()));
1239
1240  // Transform load (constant global) into the value loaded.
1241  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1242    if (!TrackedGlobals.empty()) {
1243      // If we are tracking this global, merge in the known value for it.
1244      DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1245        TrackedGlobals.find(GV);
1246      if (It != TrackedGlobals.end()) {
1247        mergeInValue(IV, &I, It->second);
1248        return;
1249      }
1250    }
1251  }
1252
1253  // Transform load from a constant into a constant if possible.
1254  if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD))
1255    return markConstant(IV, &I, C);
1256
1257  // Otherwise we cannot say for certain what value this load will produce.
1258  // Bail out.
1259  markOverdefined(IV, &I);
1260}
1261
1262void SCCPSolver::visitCallSite(CallSite CS) {
1263  Function *F = CS.getCalledFunction();
1264  Instruction *I = CS.getInstruction();
1265
1266  // The common case is that we aren't tracking the callee, either because we
1267  // are not doing interprocedural analysis or the callee is indirect, or is
1268  // external.  Handle these cases first.
1269  if (F == 0 || F->isDeclaration()) {
1270CallOverdefined:
1271    // Void return and not tracking callee, just bail.
1272    if (I->getType()->isVoidTy()) return;
1273
1274    // Otherwise, if we have a single return value case, and if the function is
1275    // a declaration, maybe we can constant fold it.
1276    if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1277        canConstantFoldCallTo(F)) {
1278
1279      SmallVector<Constant*, 8> Operands;
1280      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1281           AI != E; ++AI) {
1282        LatticeVal State = getValueState(*AI);
1283
1284        if (State.isUndefined())
1285          return;  // Operands are not resolved yet.
1286        if (State.isOverdefined())
1287          return markOverdefined(I);
1288        assert(State.isConstant() && "Unknown state!");
1289        Operands.push_back(State.getConstant());
1290      }
1291
1292      // If we can constant fold this, mark the result of the call as a
1293      // constant.
1294      if (Constant *C = ConstantFoldCall(F, Operands))
1295        return markConstant(I, C);
1296    }
1297
1298    // Otherwise, we don't know anything about this call, mark it overdefined.
1299    return markAnythingOverdefined(I);
1300  }
1301
1302  // If this is a local function that doesn't have its address taken, mark its
1303  // entry block executable and merge in the actual arguments to the call into
1304  // the formal arguments of the function.
1305  if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1306    MarkBlockExecutable(F->begin());
1307
1308    // Propagate information from this call site into the callee.
1309    CallSite::arg_iterator CAI = CS.arg_begin();
1310    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1311         AI != E; ++AI, ++CAI) {
1312      // If this argument is byval, and if the function is not readonly, there
1313      // will be an implicit copy formed of the input aggregate.
1314      if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1315        markOverdefined(AI);
1316        continue;
1317      }
1318
1319      if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
1320        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1321          LatticeVal CallArg = getStructValueState(*CAI, i);
1322          mergeInValue(getStructValueState(AI, i), AI, CallArg);
1323        }
1324      } else {
1325        mergeInValue(AI, getValueState(*CAI));
1326      }
1327    }
1328  }
1329
1330  // If this is a single/zero retval case, see if we're tracking the function.
1331  if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
1332    if (!MRVFunctionsTracked.count(F))
1333      goto CallOverdefined;  // Not tracking this callee.
1334
1335    // If we are tracking this callee, propagate the result of the function
1336    // into this call site.
1337    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1338      mergeInValue(getStructValueState(I, i), I,
1339                   TrackedMultipleRetVals[std::make_pair(F, i)]);
1340  } else {
1341    DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1342    if (TFRVI == TrackedRetVals.end())
1343      goto CallOverdefined;  // Not tracking this callee.
1344
1345    // If so, propagate the return value of the callee into this call result.
1346    mergeInValue(I, TFRVI->second);
1347  }
1348}
1349
1350void SCCPSolver::Solve() {
1351  // Process the work lists until they are empty!
1352  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1353         !OverdefinedInstWorkList.empty()) {
1354    // Process the overdefined instruction's work list first, which drives other
1355    // things to overdefined more quickly.
1356    while (!OverdefinedInstWorkList.empty()) {
1357      Value *I = OverdefinedInstWorkList.pop_back_val();
1358
1359      DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1360
1361      // "I" got into the work list because it either made the transition from
1362      // bottom to constant
1363      //
1364      // Anything on this worklist that is overdefined need not be visited
1365      // since all of its users will have already been marked as overdefined
1366      // Update all of the users of this instruction's value.
1367      //
1368      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1369           UI != E; ++UI)
1370        if (Instruction *I = dyn_cast<Instruction>(*UI))
1371          OperandChangedState(I);
1372    }
1373
1374    // Process the instruction work list.
1375    while (!InstWorkList.empty()) {
1376      Value *I = InstWorkList.pop_back_val();
1377
1378      DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1379
1380      // "I" got into the work list because it made the transition from undef to
1381      // constant.
1382      //
1383      // Anything on this worklist that is overdefined need not be visited
1384      // since all of its users will have already been marked as overdefined.
1385      // Update all of the users of this instruction's value.
1386      //
1387      if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1388        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1389             UI != E; ++UI)
1390          if (Instruction *I = dyn_cast<Instruction>(*UI))
1391            OperandChangedState(I);
1392    }
1393
1394    // Process the basic block work list.
1395    while (!BBWorkList.empty()) {
1396      BasicBlock *BB = BBWorkList.back();
1397      BBWorkList.pop_back();
1398
1399      DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1400
1401      // Notify all instructions in this basic block that they are newly
1402      // executable.
1403      visit(BB);
1404    }
1405  }
1406}
1407
1408/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1409/// that branches on undef values cannot reach any of their successors.
1410/// However, this is not a safe assumption.  After we solve dataflow, this
1411/// method should be use to handle this.  If this returns true, the solver
1412/// should be rerun.
1413///
1414/// This method handles this by finding an unresolved branch and marking it one
1415/// of the edges from the block as being feasible, even though the condition
1416/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1417/// CFG and only slightly pessimizes the analysis results (by marking one,
1418/// potentially infeasible, edge feasible).  This cannot usefully modify the
1419/// constraints on the condition of the branch, as that would impact other users
1420/// of the value.
1421///
1422/// This scan also checks for values that use undefs, whose results are actually
1423/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1424/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1425/// even if X isn't defined.
1426bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1427  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1428    if (!BBExecutable.count(BB))
1429      continue;
1430
1431    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1432      // Look for instructions which produce undef values.
1433      if (I->getType()->isVoidTy()) continue;
1434
1435      if (StructType *STy = dyn_cast<StructType>(I->getType())) {
1436        // Only a few things that can be structs matter for undef.  Just send
1437        // all their results to overdefined.  We could be more precise than this
1438        // but it isn't worth bothering.
1439        if (isa<CallInst>(I) || isa<SelectInst>(I)) {
1440          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1441            LatticeVal &LV = getStructValueState(I, i);
1442            if (LV.isUndefined())
1443              markOverdefined(LV, I);
1444          }
1445        }
1446        continue;
1447      }
1448
1449      LatticeVal &LV = getValueState(I);
1450      if (!LV.isUndefined()) continue;
1451
1452      // No instructions using structs need disambiguation.
1453      if (I->getOperand(0)->getType()->isStructTy())
1454        continue;
1455
1456      // Get the lattice values of the first two operands for use below.
1457      LatticeVal Op0LV = getValueState(I->getOperand(0));
1458      LatticeVal Op1LV;
1459      if (I->getNumOperands() == 2) {
1460        // No instructions using structs need disambiguation.
1461        if (I->getOperand(1)->getType()->isStructTy())
1462          continue;
1463
1464        // If this is a two-operand instruction, and if both operands are
1465        // undefs, the result stays undef.
1466        Op1LV = getValueState(I->getOperand(1));
1467        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1468          continue;
1469      }
1470
1471      // If this is an instructions whose result is defined even if the input is
1472      // not fully defined, propagate the information.
1473      Type *ITy = I->getType();
1474      switch (I->getOpcode()) {
1475      default: break;          // Leave the instruction as an undef.
1476      case Instruction::ZExt:
1477        // After a zero extend, we know the top part is zero.  SExt doesn't have
1478        // to be handled here, because we don't know whether the top part is 1's
1479        // or 0's.
1480      case Instruction::SIToFP:  // some FP values are not possible, just use 0.
1481      case Instruction::UIToFP:  // some FP values are not possible, just use 0.
1482        markForcedConstant(I, Constant::getNullValue(ITy));
1483        return true;
1484      case Instruction::Mul:
1485      case Instruction::And:
1486        // undef * X -> 0.   X could be zero.
1487        // undef & X -> 0.   X could be zero.
1488        markForcedConstant(I, Constant::getNullValue(ITy));
1489        return true;
1490
1491      case Instruction::Or:
1492        // undef | X -> -1.   X could be -1.
1493        markForcedConstant(I, Constant::getAllOnesValue(ITy));
1494        return true;
1495
1496      case Instruction::SDiv:
1497      case Instruction::UDiv:
1498      case Instruction::SRem:
1499      case Instruction::URem:
1500        // X / undef -> undef.  No change.
1501        // X % undef -> undef.  No change.
1502        if (Op1LV.isUndefined()) break;
1503
1504        // undef / X -> 0.   X could be maxint.
1505        // undef % X -> 0.   X could be 1.
1506        markForcedConstant(I, Constant::getNullValue(ITy));
1507        return true;
1508
1509      case Instruction::AShr:
1510        // undef >>s X -> undef.  No change.
1511        if (Op0LV.isUndefined()) break;
1512
1513        // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
1514        if (Op0LV.isConstant())
1515          markForcedConstant(I, Op0LV.getConstant());
1516        else
1517          markOverdefined(I);
1518        return true;
1519      case Instruction::LShr:
1520      case Instruction::Shl:
1521        // undef >> X -> undef.  No change.
1522        // undef << X -> undef.  No change.
1523        if (Op0LV.isUndefined()) break;
1524
1525        // X >> undef -> 0.  X could be 0.
1526        // X << undef -> 0.  X could be 0.
1527        markForcedConstant(I, Constant::getNullValue(ITy));
1528        return true;
1529      case Instruction::Select:
1530        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1531        if (Op0LV.isUndefined()) {
1532          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1533            Op1LV = getValueState(I->getOperand(2));
1534        } else if (Op1LV.isUndefined()) {
1535          // c ? undef : undef -> undef.  No change.
1536          Op1LV = getValueState(I->getOperand(2));
1537          if (Op1LV.isUndefined())
1538            break;
1539          // Otherwise, c ? undef : x -> x.
1540        } else {
1541          // Leave Op1LV as Operand(1)'s LatticeValue.
1542        }
1543
1544        if (Op1LV.isConstant())
1545          markForcedConstant(I, Op1LV.getConstant());
1546        else
1547          markOverdefined(I);
1548        return true;
1549      case Instruction::Call:
1550        // If a call has an undef result, it is because it is constant foldable
1551        // but one of the inputs was undef.  Just force the result to
1552        // overdefined.
1553        markOverdefined(I);
1554        return true;
1555      }
1556    }
1557
1558    // Check to see if we have a branch or switch on an undefined value.  If so
1559    // we force the branch to go one way or the other to make the successor
1560    // values live.  It doesn't really matter which way we force it.
1561    TerminatorInst *TI = BB->getTerminator();
1562    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1563      if (!BI->isConditional()) continue;
1564      if (!getValueState(BI->getCondition()).isUndefined())
1565        continue;
1566
1567      // If the input to SCCP is actually branch on undef, fix the undef to
1568      // false.
1569      if (isa<UndefValue>(BI->getCondition())) {
1570        BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1571        markEdgeExecutable(BB, TI->getSuccessor(1));
1572        return true;
1573      }
1574
1575      // Otherwise, it is a branch on a symbolic value which is currently
1576      // considered to be undef.  Handle this by forcing the input value to the
1577      // branch to false.
1578      markForcedConstant(BI->getCondition(),
1579                         ConstantInt::getFalse(TI->getContext()));
1580      return true;
1581    }
1582
1583    if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1584      if (SI->getNumSuccessors() < 2)   // no cases
1585        continue;
1586      if (!getValueState(SI->getCondition()).isUndefined())
1587        continue;
1588
1589      // If the input to SCCP is actually switch on undef, fix the undef to
1590      // the first constant.
1591      if (isa<UndefValue>(SI->getCondition())) {
1592        SI->setCondition(SI->getCaseValue(1));
1593        markEdgeExecutable(BB, TI->getSuccessor(1));
1594        return true;
1595      }
1596
1597      markForcedConstant(SI->getCondition(), SI->getCaseValue(1));
1598      return true;
1599    }
1600  }
1601
1602  return false;
1603}
1604
1605
1606namespace {
1607  //===--------------------------------------------------------------------===//
1608  //
1609  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1610  /// Sparse Conditional Constant Propagator.
1611  ///
1612  struct SCCP : public FunctionPass {
1613    static char ID; // Pass identification, replacement for typeid
1614    SCCP() : FunctionPass(ID) {
1615      initializeSCCPPass(*PassRegistry::getPassRegistry());
1616    }
1617
1618    // runOnFunction - Run the Sparse Conditional Constant Propagation
1619    // algorithm, and return true if the function was modified.
1620    //
1621    bool runOnFunction(Function &F);
1622  };
1623} // end anonymous namespace
1624
1625char SCCP::ID = 0;
1626INITIALIZE_PASS(SCCP, "sccp",
1627                "Sparse Conditional Constant Propagation", false, false)
1628
1629// createSCCPPass - This is the public interface to this file.
1630FunctionPass *llvm::createSCCPPass() {
1631  return new SCCP();
1632}
1633
1634static void DeleteInstructionInBlock(BasicBlock *BB) {
1635  DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
1636  ++NumDeadBlocks;
1637
1638  // Delete the instructions backwards, as it has a reduced likelihood of
1639  // having to update as many def-use and use-def chains.
1640  while (!isa<TerminatorInst>(BB->begin())) {
1641    Instruction *I = --BasicBlock::iterator(BB->getTerminator());
1642
1643    if (!I->use_empty())
1644      I->replaceAllUsesWith(UndefValue::get(I->getType()));
1645    BB->getInstList().erase(I);
1646    ++NumInstRemoved;
1647  }
1648}
1649
1650// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1651// and return true if the function was modified.
1652//
1653bool SCCP::runOnFunction(Function &F) {
1654  DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1655  SCCPSolver Solver(getAnalysisIfAvailable<TargetData>());
1656
1657  // Mark the first block of the function as being executable.
1658  Solver.MarkBlockExecutable(F.begin());
1659
1660  // Mark all arguments to the function as being overdefined.
1661  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1662    Solver.markAnythingOverdefined(AI);
1663
1664  // Solve for constants.
1665  bool ResolvedUndefs = true;
1666  while (ResolvedUndefs) {
1667    Solver.Solve();
1668    DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1669    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1670  }
1671
1672  bool MadeChanges = false;
1673
1674  // If we decided that there are basic blocks that are dead in this function,
1675  // delete their contents now.  Note that we cannot actually delete the blocks,
1676  // as we cannot modify the CFG of the function.
1677
1678  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1679    if (!Solver.isBlockExecutable(BB)) {
1680      DeleteInstructionInBlock(BB);
1681      MadeChanges = true;
1682      continue;
1683    }
1684
1685    // Iterate over all of the instructions in a function, replacing them with
1686    // constants if we have found them to be of constant values.
1687    //
1688    for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1689      Instruction *Inst = BI++;
1690      if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1691        continue;
1692
1693      // TODO: Reconstruct structs from their elements.
1694      if (Inst->getType()->isStructTy())
1695        continue;
1696
1697      LatticeVal IV = Solver.getLatticeValueFor(Inst);
1698      if (IV.isOverdefined())
1699        continue;
1700
1701      Constant *Const = IV.isConstant()
1702        ? IV.getConstant() : UndefValue::get(Inst->getType());
1703      DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst);
1704
1705      // Replaces all of the uses of a variable with uses of the constant.
1706      Inst->replaceAllUsesWith(Const);
1707
1708      // Delete the instruction.
1709      Inst->eraseFromParent();
1710
1711      // Hey, we just changed something!
1712      MadeChanges = true;
1713      ++NumInstRemoved;
1714    }
1715  }
1716
1717  return MadeChanges;
1718}
1719
1720namespace {
1721  //===--------------------------------------------------------------------===//
1722  //
1723  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1724  /// Constant Propagation.
1725  ///
1726  struct IPSCCP : public ModulePass {
1727    static char ID;
1728    IPSCCP() : ModulePass(ID) {
1729      initializeIPSCCPPass(*PassRegistry::getPassRegistry());
1730    }
1731    bool runOnModule(Module &M);
1732  };
1733} // end anonymous namespace
1734
1735char IPSCCP::ID = 0;
1736INITIALIZE_PASS(IPSCCP, "ipsccp",
1737                "Interprocedural Sparse Conditional Constant Propagation",
1738                false, false)
1739
1740// createIPSCCPPass - This is the public interface to this file.
1741ModulePass *llvm::createIPSCCPPass() {
1742  return new IPSCCP();
1743}
1744
1745
1746static bool AddressIsTaken(const GlobalValue *GV) {
1747  // Delete any dead constantexpr klingons.
1748  GV->removeDeadConstantUsers();
1749
1750  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1751       UI != E; ++UI) {
1752    const User *U = *UI;
1753    if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
1754      if (SI->getOperand(0) == GV || SI->isVolatile())
1755        return true;  // Storing addr of GV.
1756    } else if (isa<InvokeInst>(U) || isa<CallInst>(U)) {
1757      // Make sure we are calling the function, not passing the address.
1758      ImmutableCallSite CS(cast<Instruction>(U));
1759      if (!CS.isCallee(UI))
1760        return true;
1761    } else if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1762      if (LI->isVolatile())
1763        return true;
1764    } else if (isa<BlockAddress>(U)) {
1765      // blockaddress doesn't take the address of the function, it takes addr
1766      // of label.
1767    } else {
1768      return true;
1769    }
1770  }
1771  return false;
1772}
1773
1774bool IPSCCP::runOnModule(Module &M) {
1775  SCCPSolver Solver(getAnalysisIfAvailable<TargetData>());
1776
1777  // AddressTakenFunctions - This set keeps track of the address-taken functions
1778  // that are in the input.  As IPSCCP runs through and simplifies code,
1779  // functions that were address taken can end up losing their
1780  // address-taken-ness.  Because of this, we keep track of their addresses from
1781  // the first pass so we can use them for the later simplification pass.
1782  SmallPtrSet<Function*, 32> AddressTakenFunctions;
1783
1784  // Loop over all functions, marking arguments to those with their addresses
1785  // taken or that are external as overdefined.
1786  //
1787  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1788    if (F->isDeclaration())
1789      continue;
1790
1791    // If this is a strong or ODR definition of this function, then we can
1792    // propagate information about its result into callsites of it.
1793    if (!F->mayBeOverridden())
1794      Solver.AddTrackedFunction(F);
1795
1796    // If this function only has direct calls that we can see, we can track its
1797    // arguments and return value aggressively, and can assume it is not called
1798    // unless we see evidence to the contrary.
1799    if (F->hasLocalLinkage()) {
1800      if (AddressIsTaken(F))
1801        AddressTakenFunctions.insert(F);
1802      else {
1803        Solver.AddArgumentTrackedFunction(F);
1804        continue;
1805      }
1806    }
1807
1808    // Assume the function is called.
1809    Solver.MarkBlockExecutable(F->begin());
1810
1811    // Assume nothing about the incoming arguments.
1812    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1813         AI != E; ++AI)
1814      Solver.markAnythingOverdefined(AI);
1815  }
1816
1817  // Loop over global variables.  We inform the solver about any internal global
1818  // variables that do not have their 'addresses taken'.  If they don't have
1819  // their addresses taken, we can propagate constants through them.
1820  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1821       G != E; ++G)
1822    if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1823      Solver.TrackValueOfGlobalVariable(G);
1824
1825  // Solve for constants.
1826  bool ResolvedUndefs = true;
1827  while (ResolvedUndefs) {
1828    Solver.Solve();
1829
1830    DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1831    ResolvedUndefs = false;
1832    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1833      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1834  }
1835
1836  bool MadeChanges = false;
1837
1838  // Iterate over all of the instructions in the module, replacing them with
1839  // constants if we have found them to be of constant values.
1840  //
1841  SmallVector<BasicBlock*, 512> BlocksToErase;
1842
1843  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1844    if (Solver.isBlockExecutable(F->begin())) {
1845      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1846           AI != E; ++AI) {
1847        if (AI->use_empty() || AI->getType()->isStructTy()) continue;
1848
1849        // TODO: Could use getStructLatticeValueFor to find out if the entire
1850        // result is a constant and replace it entirely if so.
1851
1852        LatticeVal IV = Solver.getLatticeValueFor(AI);
1853        if (IV.isOverdefined()) continue;
1854
1855        Constant *CST = IV.isConstant() ?
1856        IV.getConstant() : UndefValue::get(AI->getType());
1857        DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n");
1858
1859        // Replaces all of the uses of a variable with uses of the
1860        // constant.
1861        AI->replaceAllUsesWith(CST);
1862        ++IPNumArgsElimed;
1863      }
1864    }
1865
1866    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
1867      if (!Solver.isBlockExecutable(BB)) {
1868        DeleteInstructionInBlock(BB);
1869        MadeChanges = true;
1870
1871        TerminatorInst *TI = BB->getTerminator();
1872        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1873          BasicBlock *Succ = TI->getSuccessor(i);
1874          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1875            TI->getSuccessor(i)->removePredecessor(BB);
1876        }
1877        if (!TI->use_empty())
1878          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1879        TI->eraseFromParent();
1880
1881        if (&*BB != &F->front())
1882          BlocksToErase.push_back(BB);
1883        else
1884          new UnreachableInst(M.getContext(), BB);
1885        continue;
1886      }
1887
1888      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1889        Instruction *Inst = BI++;
1890        if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
1891          continue;
1892
1893        // TODO: Could use getStructLatticeValueFor to find out if the entire
1894        // result is a constant and replace it entirely if so.
1895
1896        LatticeVal IV = Solver.getLatticeValueFor(Inst);
1897        if (IV.isOverdefined())
1898          continue;
1899
1900        Constant *Const = IV.isConstant()
1901          ? IV.getConstant() : UndefValue::get(Inst->getType());
1902        DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst);
1903
1904        // Replaces all of the uses of a variable with uses of the
1905        // constant.
1906        Inst->replaceAllUsesWith(Const);
1907
1908        // Delete the instruction.
1909        if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1910          Inst->eraseFromParent();
1911
1912        // Hey, we just changed something!
1913        MadeChanges = true;
1914        ++IPNumInstRemoved;
1915      }
1916    }
1917
1918    // Now that all instructions in the function are constant folded, erase dead
1919    // blocks, because we can now use ConstantFoldTerminator to get rid of
1920    // in-edges.
1921    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1922      // If there are any PHI nodes in this successor, drop entries for BB now.
1923      BasicBlock *DeadBB = BlocksToErase[i];
1924      for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end();
1925           UI != UE; ) {
1926        // Grab the user and then increment the iterator early, as the user
1927        // will be deleted. Step past all adjacent uses from the same user.
1928        Instruction *I = dyn_cast<Instruction>(*UI);
1929        do { ++UI; } while (UI != UE && *UI == I);
1930
1931        // Ignore blockaddress users; BasicBlock's dtor will handle them.
1932        if (!I) continue;
1933
1934        bool Folded = ConstantFoldTerminator(I->getParent());
1935        if (!Folded) {
1936          // The constant folder may not have been able to fold the terminator
1937          // if this is a branch or switch on undef.  Fold it manually as a
1938          // branch to the first successor.
1939#ifndef NDEBUG
1940          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1941            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1942                   "Branch should be foldable!");
1943          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1944            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1945          } else {
1946            llvm_unreachable("Didn't fold away reference to block!");
1947          }
1948#endif
1949
1950          // Make this an uncond branch to the first successor.
1951          TerminatorInst *TI = I->getParent()->getTerminator();
1952          BranchInst::Create(TI->getSuccessor(0), TI);
1953
1954          // Remove entries in successor phi nodes to remove edges.
1955          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1956            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1957
1958          // Remove the old terminator.
1959          TI->eraseFromParent();
1960        }
1961      }
1962
1963      // Finally, delete the basic block.
1964      F->getBasicBlockList().erase(DeadBB);
1965    }
1966    BlocksToErase.clear();
1967  }
1968
1969  // If we inferred constant or undef return values for a function, we replaced
1970  // all call uses with the inferred value.  This means we don't need to bother
1971  // actually returning anything from the function.  Replace all return
1972  // instructions with return undef.
1973  //
1974  // Do this in two stages: first identify the functions we should process, then
1975  // actually zap their returns.  This is important because we can only do this
1976  // if the address of the function isn't taken.  In cases where a return is the
1977  // last use of a function, the order of processing functions would affect
1978  // whether other functions are optimizable.
1979  SmallVector<ReturnInst*, 8> ReturnsToZap;
1980
1981  // TODO: Process multiple value ret instructions also.
1982  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1983  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1984       E = RV.end(); I != E; ++I) {
1985    Function *F = I->first;
1986    if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
1987      continue;
1988
1989    // We can only do this if we know that nothing else can call the function.
1990    if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
1991      continue;
1992
1993    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1994      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1995        if (!isa<UndefValue>(RI->getOperand(0)))
1996          ReturnsToZap.push_back(RI);
1997  }
1998
1999  // Zap all returns which we've identified as zap to change.
2000  for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
2001    Function *F = ReturnsToZap[i]->getParent()->getParent();
2002    ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
2003  }
2004
2005  // If we inferred constant or undef values for globals variables, we can delete
2006  // the global and any stores that remain to it.
2007  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
2008  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
2009         E = TG.end(); I != E; ++I) {
2010    GlobalVariable *GV = I->first;
2011    assert(!I->second.isOverdefined() &&
2012           "Overdefined values should have been taken out of the map!");
2013    DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
2014    while (!GV->use_empty()) {
2015      StoreInst *SI = cast<StoreInst>(GV->use_back());
2016      SI->eraseFromParent();
2017    }
2018    M.getGlobalList().erase(GV);
2019    ++IPNumGlobalConst;
2020  }
2021
2022  return MadeChanges;
2023}
2024