SCCP.cpp revision 24473120a253a05f3601cd3373403b47e6d03d41
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18//===----------------------------------------------------------------------===// 19 20#define DEBUG_TYPE "sccp" 21#include "llvm/Transforms/Scalar.h" 22#include "llvm/Transforms/IPO.h" 23#include "llvm/Constants.h" 24#include "llvm/DerivedTypes.h" 25#include "llvm/Instructions.h" 26#include "llvm/Pass.h" 27#include "llvm/Analysis/ConstantFolding.h" 28#include "llvm/Transforms/Utils/Local.h" 29#include "llvm/Target/TargetData.h" 30#include "llvm/Target/TargetLibraryInfo.h" 31#include "llvm/Support/CallSite.h" 32#include "llvm/Support/Debug.h" 33#include "llvm/Support/ErrorHandling.h" 34#include "llvm/Support/InstVisitor.h" 35#include "llvm/Support/raw_ostream.h" 36#include "llvm/ADT/DenseMap.h" 37#include "llvm/ADT/DenseSet.h" 38#include "llvm/ADT/PointerIntPair.h" 39#include "llvm/ADT/SmallPtrSet.h" 40#include "llvm/ADT/SmallVector.h" 41#include "llvm/ADT/Statistic.h" 42#include <algorithm> 43using namespace llvm; 44 45STATISTIC(NumInstRemoved, "Number of instructions removed"); 46STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 47 48STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); 49STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 50STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 51 52namespace { 53/// LatticeVal class - This class represents the different lattice values that 54/// an LLVM value may occupy. It is a simple class with value semantics. 55/// 56class LatticeVal { 57 enum LatticeValueTy { 58 /// undefined - This LLVM Value has no known value yet. 59 undefined, 60 61 /// constant - This LLVM Value has a specific constant value. 62 constant, 63 64 /// forcedconstant - This LLVM Value was thought to be undef until 65 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 66 /// with another (different) constant, it goes to overdefined, instead of 67 /// asserting. 68 forcedconstant, 69 70 /// overdefined - This instruction is not known to be constant, and we know 71 /// it has a value. 72 overdefined 73 }; 74 75 /// Val: This stores the current lattice value along with the Constant* for 76 /// the constant if this is a 'constant' or 'forcedconstant' value. 77 PointerIntPair<Constant *, 2, LatticeValueTy> Val; 78 79 LatticeValueTy getLatticeValue() const { 80 return Val.getInt(); 81 } 82 83public: 84 LatticeVal() : Val(0, undefined) {} 85 86 bool isUndefined() const { return getLatticeValue() == undefined; } 87 bool isConstant() const { 88 return getLatticeValue() == constant || getLatticeValue() == forcedconstant; 89 } 90 bool isOverdefined() const { return getLatticeValue() == overdefined; } 91 92 Constant *getConstant() const { 93 assert(isConstant() && "Cannot get the constant of a non-constant!"); 94 return Val.getPointer(); 95 } 96 97 /// markOverdefined - Return true if this is a change in status. 98 bool markOverdefined() { 99 if (isOverdefined()) 100 return false; 101 102 Val.setInt(overdefined); 103 return true; 104 } 105 106 /// markConstant - Return true if this is a change in status. 107 bool markConstant(Constant *V) { 108 if (getLatticeValue() == constant) { // Constant but not forcedconstant. 109 assert(getConstant() == V && "Marking constant with different value"); 110 return false; 111 } 112 113 if (isUndefined()) { 114 Val.setInt(constant); 115 assert(V && "Marking constant with NULL"); 116 Val.setPointer(V); 117 } else { 118 assert(getLatticeValue() == forcedconstant && 119 "Cannot move from overdefined to constant!"); 120 // Stay at forcedconstant if the constant is the same. 121 if (V == getConstant()) return false; 122 123 // Otherwise, we go to overdefined. Assumptions made based on the 124 // forced value are possibly wrong. Assuming this is another constant 125 // could expose a contradiction. 126 Val.setInt(overdefined); 127 } 128 return true; 129 } 130 131 /// getConstantInt - If this is a constant with a ConstantInt value, return it 132 /// otherwise return null. 133 ConstantInt *getConstantInt() const { 134 if (isConstant()) 135 return dyn_cast<ConstantInt>(getConstant()); 136 return 0; 137 } 138 139 void markForcedConstant(Constant *V) { 140 assert(isUndefined() && "Can't force a defined value!"); 141 Val.setInt(forcedconstant); 142 Val.setPointer(V); 143 } 144}; 145} // end anonymous namespace. 146 147 148namespace { 149 150//===----------------------------------------------------------------------===// 151// 152/// SCCPSolver - This class is a general purpose solver for Sparse Conditional 153/// Constant Propagation. 154/// 155class SCCPSolver : public InstVisitor<SCCPSolver> { 156 const TargetData *TD; 157 const TargetLibraryInfo *TLI; 158 SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable. 159 DenseMap<Value*, LatticeVal> ValueState; // The state each value is in. 160 161 /// StructValueState - This maintains ValueState for values that have 162 /// StructType, for example for formal arguments, calls, insertelement, etc. 163 /// 164 DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState; 165 166 /// GlobalValue - If we are tracking any values for the contents of a global 167 /// variable, we keep a mapping from the constant accessor to the element of 168 /// the global, to the currently known value. If the value becomes 169 /// overdefined, it's entry is simply removed from this map. 170 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; 171 172 /// TrackedRetVals - If we are tracking arguments into and the return 173 /// value out of a function, it will have an entry in this map, indicating 174 /// what the known return value for the function is. 175 DenseMap<Function*, LatticeVal> TrackedRetVals; 176 177 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 178 /// that return multiple values. 179 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; 180 181 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is 182 /// represented here for efficient lookup. 183 SmallPtrSet<Function*, 16> MRVFunctionsTracked; 184 185 /// TrackingIncomingArguments - This is the set of functions for whose 186 /// arguments we make optimistic assumptions about and try to prove as 187 /// constants. 188 SmallPtrSet<Function*, 16> TrackingIncomingArguments; 189 190 /// The reason for two worklists is that overdefined is the lowest state 191 /// on the lattice, and moving things to overdefined as fast as possible 192 /// makes SCCP converge much faster. 193 /// 194 /// By having a separate worklist, we accomplish this because everything 195 /// possibly overdefined will become overdefined at the soonest possible 196 /// point. 197 SmallVector<Value*, 64> OverdefinedInstWorkList; 198 SmallVector<Value*, 64> InstWorkList; 199 200 201 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list 202 203 /// KnownFeasibleEdges - Entries in this set are edges which have already had 204 /// PHI nodes retriggered. 205 typedef std::pair<BasicBlock*, BasicBlock*> Edge; 206 DenseSet<Edge> KnownFeasibleEdges; 207public: 208 SCCPSolver(const TargetData *td, const TargetLibraryInfo *tli) 209 : TD(td), TLI(tli) {} 210 211 /// MarkBlockExecutable - This method can be used by clients to mark all of 212 /// the blocks that are known to be intrinsically live in the processed unit. 213 /// 214 /// This returns true if the block was not considered live before. 215 bool MarkBlockExecutable(BasicBlock *BB) { 216 if (!BBExecutable.insert(BB)) return false; 217 DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n"); 218 BBWorkList.push_back(BB); // Add the block to the work list! 219 return true; 220 } 221 222 /// TrackValueOfGlobalVariable - Clients can use this method to 223 /// inform the SCCPSolver that it should track loads and stores to the 224 /// specified global variable if it can. This is only legal to call if 225 /// performing Interprocedural SCCP. 226 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 227 // We only track the contents of scalar globals. 228 if (GV->getType()->getElementType()->isSingleValueType()) { 229 LatticeVal &IV = TrackedGlobals[GV]; 230 if (!isa<UndefValue>(GV->getInitializer())) 231 IV.markConstant(GV->getInitializer()); 232 } 233 } 234 235 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 236 /// and out of the specified function (which cannot have its address taken), 237 /// this method must be called. 238 void AddTrackedFunction(Function *F) { 239 // Add an entry, F -> undef. 240 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 241 MRVFunctionsTracked.insert(F); 242 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 243 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), 244 LatticeVal())); 245 } else 246 TrackedRetVals.insert(std::make_pair(F, LatticeVal())); 247 } 248 249 void AddArgumentTrackedFunction(Function *F) { 250 TrackingIncomingArguments.insert(F); 251 } 252 253 /// Solve - Solve for constants and executable blocks. 254 /// 255 void Solve(); 256 257 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 258 /// that branches on undef values cannot reach any of their successors. 259 /// However, this is not a safe assumption. After we solve dataflow, this 260 /// method should be use to handle this. If this returns true, the solver 261 /// should be rerun. 262 bool ResolvedUndefsIn(Function &F); 263 264 bool isBlockExecutable(BasicBlock *BB) const { 265 return BBExecutable.count(BB); 266 } 267 268 LatticeVal getLatticeValueFor(Value *V) const { 269 DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V); 270 assert(I != ValueState.end() && "V is not in valuemap!"); 271 return I->second; 272 } 273 274 /*LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const { 275 DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I = 276 StructValueState.find(std::make_pair(V, i)); 277 assert(I != StructValueState.end() && "V is not in valuemap!"); 278 return I->second; 279 }*/ 280 281 /// getTrackedRetVals - Get the inferred return value map. 282 /// 283 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { 284 return TrackedRetVals; 285 } 286 287 /// getTrackedGlobals - Get and return the set of inferred initializers for 288 /// global variables. 289 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 290 return TrackedGlobals; 291 } 292 293 void markOverdefined(Value *V) { 294 assert(!V->getType()->isStructTy() && "Should use other method"); 295 markOverdefined(ValueState[V], V); 296 } 297 298 /// markAnythingOverdefined - Mark the specified value overdefined. This 299 /// works with both scalars and structs. 300 void markAnythingOverdefined(Value *V) { 301 if (StructType *STy = dyn_cast<StructType>(V->getType())) 302 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 303 markOverdefined(getStructValueState(V, i), V); 304 else 305 markOverdefined(V); 306 } 307 308private: 309 // markConstant - Make a value be marked as "constant". If the value 310 // is not already a constant, add it to the instruction work list so that 311 // the users of the instruction are updated later. 312 // 313 void markConstant(LatticeVal &IV, Value *V, Constant *C) { 314 if (!IV.markConstant(C)) return; 315 DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); 316 if (IV.isOverdefined()) 317 OverdefinedInstWorkList.push_back(V); 318 else 319 InstWorkList.push_back(V); 320 } 321 322 void markConstant(Value *V, Constant *C) { 323 assert(!V->getType()->isStructTy() && "Should use other method"); 324 markConstant(ValueState[V], V, C); 325 } 326 327 void markForcedConstant(Value *V, Constant *C) { 328 assert(!V->getType()->isStructTy() && "Should use other method"); 329 LatticeVal &IV = ValueState[V]; 330 IV.markForcedConstant(C); 331 DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); 332 if (IV.isOverdefined()) 333 OverdefinedInstWorkList.push_back(V); 334 else 335 InstWorkList.push_back(V); 336 } 337 338 339 // markOverdefined - Make a value be marked as "overdefined". If the 340 // value is not already overdefined, add it to the overdefined instruction 341 // work list so that the users of the instruction are updated later. 342 void markOverdefined(LatticeVal &IV, Value *V) { 343 if (!IV.markOverdefined()) return; 344 345 DEBUG(dbgs() << "markOverdefined: "; 346 if (Function *F = dyn_cast<Function>(V)) 347 dbgs() << "Function '" << F->getName() << "'\n"; 348 else 349 dbgs() << *V << '\n'); 350 // Only instructions go on the work list 351 OverdefinedInstWorkList.push_back(V); 352 } 353 354 void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { 355 if (IV.isOverdefined() || MergeWithV.isUndefined()) 356 return; // Noop. 357 if (MergeWithV.isOverdefined()) 358 markOverdefined(IV, V); 359 else if (IV.isUndefined()) 360 markConstant(IV, V, MergeWithV.getConstant()); 361 else if (IV.getConstant() != MergeWithV.getConstant()) 362 markOverdefined(IV, V); 363 } 364 365 void mergeInValue(Value *V, LatticeVal MergeWithV) { 366 assert(!V->getType()->isStructTy() && "Should use other method"); 367 mergeInValue(ValueState[V], V, MergeWithV); 368 } 369 370 371 /// getValueState - Return the LatticeVal object that corresponds to the 372 /// value. This function handles the case when the value hasn't been seen yet 373 /// by properly seeding constants etc. 374 LatticeVal &getValueState(Value *V) { 375 assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 376 377 std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I = 378 ValueState.insert(std::make_pair(V, LatticeVal())); 379 LatticeVal &LV = I.first->second; 380 381 if (!I.second) 382 return LV; // Common case, already in the map. 383 384 if (Constant *C = dyn_cast<Constant>(V)) { 385 // Undef values remain undefined. 386 if (!isa<UndefValue>(V)) 387 LV.markConstant(C); // Constants are constant 388 } 389 390 // All others are underdefined by default. 391 return LV; 392 } 393 394 /// getStructValueState - Return the LatticeVal object that corresponds to the 395 /// value/field pair. This function handles the case when the value hasn't 396 /// been seen yet by properly seeding constants etc. 397 LatticeVal &getStructValueState(Value *V, unsigned i) { 398 assert(V->getType()->isStructTy() && "Should use getValueState"); 399 assert(i < cast<StructType>(V->getType())->getNumElements() && 400 "Invalid element #"); 401 402 std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator, 403 bool> I = StructValueState.insert( 404 std::make_pair(std::make_pair(V, i), LatticeVal())); 405 LatticeVal &LV = I.first->second; 406 407 if (!I.second) 408 return LV; // Common case, already in the map. 409 410 if (Constant *C = dyn_cast<Constant>(V)) { 411 Constant *Elt = C->getAggregateElement(i); 412 413 if (Elt == 0) 414 LV.markOverdefined(); // Unknown sort of constant. 415 else if (isa<UndefValue>(Elt)) 416 ; // Undef values remain undefined. 417 else 418 LV.markConstant(Elt); // Constants are constant. 419 } 420 421 // All others are underdefined by default. 422 return LV; 423 } 424 425 426 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 427 /// work list if it is not already executable. 428 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 429 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 430 return; // This edge is already known to be executable! 431 432 if (!MarkBlockExecutable(Dest)) { 433 // If the destination is already executable, we just made an *edge* 434 // feasible that wasn't before. Revisit the PHI nodes in the block 435 // because they have potentially new operands. 436 DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 437 << " -> " << Dest->getName() << "\n"); 438 439 PHINode *PN; 440 for (BasicBlock::iterator I = Dest->begin(); 441 (PN = dyn_cast<PHINode>(I)); ++I) 442 visitPHINode(*PN); 443 } 444 } 445 446 // getFeasibleSuccessors - Return a vector of booleans to indicate which 447 // successors are reachable from a given terminator instruction. 448 // 449 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs); 450 451 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 452 // block to the 'To' basic block is currently feasible. 453 // 454 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 455 456 // OperandChangedState - This method is invoked on all of the users of an 457 // instruction that was just changed state somehow. Based on this 458 // information, we need to update the specified user of this instruction. 459 // 460 void OperandChangedState(Instruction *I) { 461 if (BBExecutable.count(I->getParent())) // Inst is executable? 462 visit(*I); 463 } 464 465private: 466 friend class InstVisitor<SCCPSolver>; 467 468 // visit implementations - Something changed in this instruction. Either an 469 // operand made a transition, or the instruction is newly executable. Change 470 // the value type of I to reflect these changes if appropriate. 471 void visitPHINode(PHINode &I); 472 473 // Terminators 474 void visitReturnInst(ReturnInst &I); 475 void visitTerminatorInst(TerminatorInst &TI); 476 477 void visitCastInst(CastInst &I); 478 void visitSelectInst(SelectInst &I); 479 void visitBinaryOperator(Instruction &I); 480 void visitCmpInst(CmpInst &I); 481 void visitExtractElementInst(ExtractElementInst &I); 482 void visitInsertElementInst(InsertElementInst &I); 483 void visitShuffleVectorInst(ShuffleVectorInst &I); 484 void visitExtractValueInst(ExtractValueInst &EVI); 485 void visitInsertValueInst(InsertValueInst &IVI); 486 void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); } 487 488 // Instructions that cannot be folded away. 489 void visitStoreInst (StoreInst &I); 490 void visitLoadInst (LoadInst &I); 491 void visitGetElementPtrInst(GetElementPtrInst &I); 492 void visitCallInst (CallInst &I) { 493 visitCallSite(&I); 494 } 495 void visitInvokeInst (InvokeInst &II) { 496 visitCallSite(&II); 497 visitTerminatorInst(II); 498 } 499 void visitCallSite (CallSite CS); 500 void visitResumeInst (TerminatorInst &I) { /*returns void*/ } 501 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 502 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 503 void visitFenceInst (FenceInst &I) { /*returns void*/ } 504 void visitAtomicCmpXchgInst (AtomicCmpXchgInst &I) { markOverdefined(&I); } 505 void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); } 506 void visitAllocaInst (Instruction &I) { markOverdefined(&I); } 507 void visitVAArgInst (Instruction &I) { markAnythingOverdefined(&I); } 508 509 void visitInstruction(Instruction &I) { 510 // If a new instruction is added to LLVM that we don't handle. 511 dbgs() << "SCCP: Don't know how to handle: " << I; 512 markAnythingOverdefined(&I); // Just in case 513 } 514}; 515 516} // end anonymous namespace 517 518 519// getFeasibleSuccessors - Return a vector of booleans to indicate which 520// successors are reachable from a given terminator instruction. 521// 522void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 523 SmallVector<bool, 16> &Succs) { 524 Succs.resize(TI.getNumSuccessors()); 525 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 526 if (BI->isUnconditional()) { 527 Succs[0] = true; 528 return; 529 } 530 531 LatticeVal BCValue = getValueState(BI->getCondition()); 532 ConstantInt *CI = BCValue.getConstantInt(); 533 if (CI == 0) { 534 // Overdefined condition variables, and branches on unfoldable constant 535 // conditions, mean the branch could go either way. 536 if (!BCValue.isUndefined()) 537 Succs[0] = Succs[1] = true; 538 return; 539 } 540 541 // Constant condition variables mean the branch can only go a single way. 542 Succs[CI->isZero()] = true; 543 return; 544 } 545 546 if (isa<InvokeInst>(TI)) { 547 // Invoke instructions successors are always executable. 548 Succs[0] = Succs[1] = true; 549 return; 550 } 551 552 if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 553 if (!SI->getNumCases()) { 554 Succs[0] = true; 555 return; 556 } 557 LatticeVal SCValue = getValueState(SI->getCondition()); 558 ConstantInt *CI = SCValue.getConstantInt(); 559 560 if (CI == 0) { // Overdefined or undefined condition? 561 // All destinations are executable! 562 if (!SCValue.isUndefined()) 563 Succs.assign(TI.getNumSuccessors(), true); 564 return; 565 } 566 567 Succs[SI->resolveSuccessorIndex(SI->findCaseValue(CI))] = true; 568 return; 569 } 570 571 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 572 if (isa<IndirectBrInst>(&TI)) { 573 // Just mark all destinations executable! 574 Succs.assign(TI.getNumSuccessors(), true); 575 return; 576 } 577 578#ifndef NDEBUG 579 dbgs() << "Unknown terminator instruction: " << TI << '\n'; 580#endif 581 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 582} 583 584 585// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 586// block to the 'To' basic block is currently feasible. 587// 588bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 589 assert(BBExecutable.count(To) && "Dest should always be alive!"); 590 591 // Make sure the source basic block is executable!! 592 if (!BBExecutable.count(From)) return false; 593 594 // Check to make sure this edge itself is actually feasible now. 595 TerminatorInst *TI = From->getTerminator(); 596 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 597 if (BI->isUnconditional()) 598 return true; 599 600 LatticeVal BCValue = getValueState(BI->getCondition()); 601 602 // Overdefined condition variables mean the branch could go either way, 603 // undef conditions mean that neither edge is feasible yet. 604 ConstantInt *CI = BCValue.getConstantInt(); 605 if (CI == 0) 606 return !BCValue.isUndefined(); 607 608 // Constant condition variables mean the branch can only go a single way. 609 return BI->getSuccessor(CI->isZero()) == To; 610 } 611 612 // Invoke instructions successors are always executable. 613 if (isa<InvokeInst>(TI)) 614 return true; 615 616 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 617 if (SI->getNumCases() < 1) 618 return true; 619 620 LatticeVal SCValue = getValueState(SI->getCondition()); 621 ConstantInt *CI = SCValue.getConstantInt(); 622 623 if (CI == 0) 624 return !SCValue.isUndefined(); 625 626 // Make sure to skip the "default value" which isn't a value 627 for (unsigned i = 0, E = SI->getNumCases(); i != E; ++i) 628 if (SI->getCaseValue(i) == CI) // Found the taken branch. 629 return SI->getCaseSuccessor(i) == To; 630 631 // If the constant value is not equal to any of the branches, we must 632 // execute default branch. 633 return SI->getDefaultDest() == To; 634 } 635 636 // Just mark all destinations executable! 637 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 638 if (isa<IndirectBrInst>(TI)) 639 return true; 640 641#ifndef NDEBUG 642 dbgs() << "Unknown terminator instruction: " << *TI << '\n'; 643#endif 644 llvm_unreachable(0); 645} 646 647// visit Implementations - Something changed in this instruction, either an 648// operand made a transition, or the instruction is newly executable. Change 649// the value type of I to reflect these changes if appropriate. This method 650// makes sure to do the following actions: 651// 652// 1. If a phi node merges two constants in, and has conflicting value coming 653// from different branches, or if the PHI node merges in an overdefined 654// value, then the PHI node becomes overdefined. 655// 2. If a phi node merges only constants in, and they all agree on value, the 656// PHI node becomes a constant value equal to that. 657// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 658// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 659// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 660// 6. If a conditional branch has a value that is constant, make the selected 661// destination executable 662// 7. If a conditional branch has a value that is overdefined, make all 663// successors executable. 664// 665void SCCPSolver::visitPHINode(PHINode &PN) { 666 // If this PN returns a struct, just mark the result overdefined. 667 // TODO: We could do a lot better than this if code actually uses this. 668 if (PN.getType()->isStructTy()) 669 return markAnythingOverdefined(&PN); 670 671 if (getValueState(&PN).isOverdefined()) 672 return; // Quick exit 673 674 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 675 // and slow us down a lot. Just mark them overdefined. 676 if (PN.getNumIncomingValues() > 64) 677 return markOverdefined(&PN); 678 679 // Look at all of the executable operands of the PHI node. If any of them 680 // are overdefined, the PHI becomes overdefined as well. If they are all 681 // constant, and they agree with each other, the PHI becomes the identical 682 // constant. If they are constant and don't agree, the PHI is overdefined. 683 // If there are no executable operands, the PHI remains undefined. 684 // 685 Constant *OperandVal = 0; 686 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 687 LatticeVal IV = getValueState(PN.getIncomingValue(i)); 688 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 689 690 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) 691 continue; 692 693 if (IV.isOverdefined()) // PHI node becomes overdefined! 694 return markOverdefined(&PN); 695 696 if (OperandVal == 0) { // Grab the first value. 697 OperandVal = IV.getConstant(); 698 continue; 699 } 700 701 // There is already a reachable operand. If we conflict with it, 702 // then the PHI node becomes overdefined. If we agree with it, we 703 // can continue on. 704 705 // Check to see if there are two different constants merging, if so, the PHI 706 // node is overdefined. 707 if (IV.getConstant() != OperandVal) 708 return markOverdefined(&PN); 709 } 710 711 // If we exited the loop, this means that the PHI node only has constant 712 // arguments that agree with each other(and OperandVal is the constant) or 713 // OperandVal is null because there are no defined incoming arguments. If 714 // this is the case, the PHI remains undefined. 715 // 716 if (OperandVal) 717 markConstant(&PN, OperandVal); // Acquire operand value 718} 719 720 721 722 723void SCCPSolver::visitReturnInst(ReturnInst &I) { 724 if (I.getNumOperands() == 0) return; // ret void 725 726 Function *F = I.getParent()->getParent(); 727 Value *ResultOp = I.getOperand(0); 728 729 // If we are tracking the return value of this function, merge it in. 730 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { 731 DenseMap<Function*, LatticeVal>::iterator TFRVI = 732 TrackedRetVals.find(F); 733 if (TFRVI != TrackedRetVals.end()) { 734 mergeInValue(TFRVI->second, F, getValueState(ResultOp)); 735 return; 736 } 737 } 738 739 // Handle functions that return multiple values. 740 if (!TrackedMultipleRetVals.empty()) { 741 if (StructType *STy = dyn_cast<StructType>(ResultOp->getType())) 742 if (MRVFunctionsTracked.count(F)) 743 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 744 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, 745 getStructValueState(ResultOp, i)); 746 747 } 748} 749 750void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 751 SmallVector<bool, 16> SuccFeasible; 752 getFeasibleSuccessors(TI, SuccFeasible); 753 754 BasicBlock *BB = TI.getParent(); 755 756 // Mark all feasible successors executable. 757 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 758 if (SuccFeasible[i]) 759 markEdgeExecutable(BB, TI.getSuccessor(i)); 760} 761 762void SCCPSolver::visitCastInst(CastInst &I) { 763 LatticeVal OpSt = getValueState(I.getOperand(0)); 764 if (OpSt.isOverdefined()) // Inherit overdefinedness of operand 765 markOverdefined(&I); 766 else if (OpSt.isConstant()) // Propagate constant value 767 markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 768 OpSt.getConstant(), I.getType())); 769} 770 771 772void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { 773 // If this returns a struct, mark all elements over defined, we don't track 774 // structs in structs. 775 if (EVI.getType()->isStructTy()) 776 return markAnythingOverdefined(&EVI); 777 778 // If this is extracting from more than one level of struct, we don't know. 779 if (EVI.getNumIndices() != 1) 780 return markOverdefined(&EVI); 781 782 Value *AggVal = EVI.getAggregateOperand(); 783 if (AggVal->getType()->isStructTy()) { 784 unsigned i = *EVI.idx_begin(); 785 LatticeVal EltVal = getStructValueState(AggVal, i); 786 mergeInValue(getValueState(&EVI), &EVI, EltVal); 787 } else { 788 // Otherwise, must be extracting from an array. 789 return markOverdefined(&EVI); 790 } 791} 792 793void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { 794 StructType *STy = dyn_cast<StructType>(IVI.getType()); 795 if (STy == 0) 796 return markOverdefined(&IVI); 797 798 // If this has more than one index, we can't handle it, drive all results to 799 // undef. 800 if (IVI.getNumIndices() != 1) 801 return markAnythingOverdefined(&IVI); 802 803 Value *Aggr = IVI.getAggregateOperand(); 804 unsigned Idx = *IVI.idx_begin(); 805 806 // Compute the result based on what we're inserting. 807 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 808 // This passes through all values that aren't the inserted element. 809 if (i != Idx) { 810 LatticeVal EltVal = getStructValueState(Aggr, i); 811 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); 812 continue; 813 } 814 815 Value *Val = IVI.getInsertedValueOperand(); 816 if (Val->getType()->isStructTy()) 817 // We don't track structs in structs. 818 markOverdefined(getStructValueState(&IVI, i), &IVI); 819 else { 820 LatticeVal InVal = getValueState(Val); 821 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); 822 } 823 } 824} 825 826void SCCPSolver::visitSelectInst(SelectInst &I) { 827 // If this select returns a struct, just mark the result overdefined. 828 // TODO: We could do a lot better than this if code actually uses this. 829 if (I.getType()->isStructTy()) 830 return markAnythingOverdefined(&I); 831 832 LatticeVal CondValue = getValueState(I.getCondition()); 833 if (CondValue.isUndefined()) 834 return; 835 836 if (ConstantInt *CondCB = CondValue.getConstantInt()) { 837 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); 838 mergeInValue(&I, getValueState(OpVal)); 839 return; 840 } 841 842 // Otherwise, the condition is overdefined or a constant we can't evaluate. 843 // See if we can produce something better than overdefined based on the T/F 844 // value. 845 LatticeVal TVal = getValueState(I.getTrueValue()); 846 LatticeVal FVal = getValueState(I.getFalseValue()); 847 848 // select ?, C, C -> C. 849 if (TVal.isConstant() && FVal.isConstant() && 850 TVal.getConstant() == FVal.getConstant()) 851 return markConstant(&I, FVal.getConstant()); 852 853 if (TVal.isUndefined()) // select ?, undef, X -> X. 854 return mergeInValue(&I, FVal); 855 if (FVal.isUndefined()) // select ?, X, undef -> X. 856 return mergeInValue(&I, TVal); 857 markOverdefined(&I); 858} 859 860// Handle Binary Operators. 861void SCCPSolver::visitBinaryOperator(Instruction &I) { 862 LatticeVal V1State = getValueState(I.getOperand(0)); 863 LatticeVal V2State = getValueState(I.getOperand(1)); 864 865 LatticeVal &IV = ValueState[&I]; 866 if (IV.isOverdefined()) return; 867 868 if (V1State.isConstant() && V2State.isConstant()) 869 return markConstant(IV, &I, 870 ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 871 V2State.getConstant())); 872 873 // If something is undef, wait for it to resolve. 874 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 875 return; 876 877 // Otherwise, one of our operands is overdefined. Try to produce something 878 // better than overdefined with some tricks. 879 880 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 881 // operand is overdefined. 882 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 883 LatticeVal *NonOverdefVal = 0; 884 if (!V1State.isOverdefined()) 885 NonOverdefVal = &V1State; 886 else if (!V2State.isOverdefined()) 887 NonOverdefVal = &V2State; 888 889 if (NonOverdefVal) { 890 if (NonOverdefVal->isUndefined()) { 891 // Could annihilate value. 892 if (I.getOpcode() == Instruction::And) 893 markConstant(IV, &I, Constant::getNullValue(I.getType())); 894 else if (VectorType *PT = dyn_cast<VectorType>(I.getType())) 895 markConstant(IV, &I, Constant::getAllOnesValue(PT)); 896 else 897 markConstant(IV, &I, 898 Constant::getAllOnesValue(I.getType())); 899 return; 900 } 901 902 if (I.getOpcode() == Instruction::And) { 903 // X and 0 = 0 904 if (NonOverdefVal->getConstant()->isNullValue()) 905 return markConstant(IV, &I, NonOverdefVal->getConstant()); 906 } else { 907 if (ConstantInt *CI = NonOverdefVal->getConstantInt()) 908 if (CI->isAllOnesValue()) // X or -1 = -1 909 return markConstant(IV, &I, NonOverdefVal->getConstant()); 910 } 911 } 912 } 913 914 915 markOverdefined(&I); 916} 917 918// Handle ICmpInst instruction. 919void SCCPSolver::visitCmpInst(CmpInst &I) { 920 LatticeVal V1State = getValueState(I.getOperand(0)); 921 LatticeVal V2State = getValueState(I.getOperand(1)); 922 923 LatticeVal &IV = ValueState[&I]; 924 if (IV.isOverdefined()) return; 925 926 if (V1State.isConstant() && V2State.isConstant()) 927 return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 928 V1State.getConstant(), 929 V2State.getConstant())); 930 931 // If operands are still undefined, wait for it to resolve. 932 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 933 return; 934 935 markOverdefined(&I); 936} 937 938void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 939 // TODO : SCCP does not handle vectors properly. 940 return markOverdefined(&I); 941 942#if 0 943 LatticeVal &ValState = getValueState(I.getOperand(0)); 944 LatticeVal &IdxState = getValueState(I.getOperand(1)); 945 946 if (ValState.isOverdefined() || IdxState.isOverdefined()) 947 markOverdefined(&I); 948 else if(ValState.isConstant() && IdxState.isConstant()) 949 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 950 IdxState.getConstant())); 951#endif 952} 953 954void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 955 // TODO : SCCP does not handle vectors properly. 956 return markOverdefined(&I); 957#if 0 958 LatticeVal &ValState = getValueState(I.getOperand(0)); 959 LatticeVal &EltState = getValueState(I.getOperand(1)); 960 LatticeVal &IdxState = getValueState(I.getOperand(2)); 961 962 if (ValState.isOverdefined() || EltState.isOverdefined() || 963 IdxState.isOverdefined()) 964 markOverdefined(&I); 965 else if(ValState.isConstant() && EltState.isConstant() && 966 IdxState.isConstant()) 967 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 968 EltState.getConstant(), 969 IdxState.getConstant())); 970 else if (ValState.isUndefined() && EltState.isConstant() && 971 IdxState.isConstant()) 972 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 973 EltState.getConstant(), 974 IdxState.getConstant())); 975#endif 976} 977 978void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 979 // TODO : SCCP does not handle vectors properly. 980 return markOverdefined(&I); 981#if 0 982 LatticeVal &V1State = getValueState(I.getOperand(0)); 983 LatticeVal &V2State = getValueState(I.getOperand(1)); 984 LatticeVal &MaskState = getValueState(I.getOperand(2)); 985 986 if (MaskState.isUndefined() || 987 (V1State.isUndefined() && V2State.isUndefined())) 988 return; // Undefined output if mask or both inputs undefined. 989 990 if (V1State.isOverdefined() || V2State.isOverdefined() || 991 MaskState.isOverdefined()) { 992 markOverdefined(&I); 993 } else { 994 // A mix of constant/undef inputs. 995 Constant *V1 = V1State.isConstant() ? 996 V1State.getConstant() : UndefValue::get(I.getType()); 997 Constant *V2 = V2State.isConstant() ? 998 V2State.getConstant() : UndefValue::get(I.getType()); 999 Constant *Mask = MaskState.isConstant() ? 1000 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 1001 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 1002 } 1003#endif 1004} 1005 1006// Handle getelementptr instructions. If all operands are constants then we 1007// can turn this into a getelementptr ConstantExpr. 1008// 1009void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 1010 if (ValueState[&I].isOverdefined()) return; 1011 1012 SmallVector<Constant*, 8> Operands; 1013 Operands.reserve(I.getNumOperands()); 1014 1015 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1016 LatticeVal State = getValueState(I.getOperand(i)); 1017 if (State.isUndefined()) 1018 return; // Operands are not resolved yet. 1019 1020 if (State.isOverdefined()) 1021 return markOverdefined(&I); 1022 1023 assert(State.isConstant() && "Unknown state!"); 1024 Operands.push_back(State.getConstant()); 1025 } 1026 1027 Constant *Ptr = Operands[0]; 1028 ArrayRef<Constant *> Indices(Operands.begin() + 1, Operands.end()); 1029 markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices)); 1030} 1031 1032void SCCPSolver::visitStoreInst(StoreInst &SI) { 1033 // If this store is of a struct, ignore it. 1034 if (SI.getOperand(0)->getType()->isStructTy()) 1035 return; 1036 1037 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1038 return; 1039 1040 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1041 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 1042 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 1043 1044 // Get the value we are storing into the global, then merge it. 1045 mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); 1046 if (I->second.isOverdefined()) 1047 TrackedGlobals.erase(I); // No need to keep tracking this! 1048} 1049 1050 1051// Handle load instructions. If the operand is a constant pointer to a constant 1052// global, we can replace the load with the loaded constant value! 1053void SCCPSolver::visitLoadInst(LoadInst &I) { 1054 // If this load is of a struct, just mark the result overdefined. 1055 if (I.getType()->isStructTy()) 1056 return markAnythingOverdefined(&I); 1057 1058 LatticeVal PtrVal = getValueState(I.getOperand(0)); 1059 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 1060 1061 LatticeVal &IV = ValueState[&I]; 1062 if (IV.isOverdefined()) return; 1063 1064 if (!PtrVal.isConstant() || I.isVolatile()) 1065 return markOverdefined(IV, &I); 1066 1067 Constant *Ptr = PtrVal.getConstant(); 1068 1069 // load null -> null 1070 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) 1071 return markConstant(IV, &I, Constant::getNullValue(I.getType())); 1072 1073 // Transform load (constant global) into the value loaded. 1074 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 1075 if (!TrackedGlobals.empty()) { 1076 // If we are tracking this global, merge in the known value for it. 1077 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1078 TrackedGlobals.find(GV); 1079 if (It != TrackedGlobals.end()) { 1080 mergeInValue(IV, &I, It->second); 1081 return; 1082 } 1083 } 1084 } 1085 1086 // Transform load from a constant into a constant if possible. 1087 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD)) 1088 return markConstant(IV, &I, C); 1089 1090 // Otherwise we cannot say for certain what value this load will produce. 1091 // Bail out. 1092 markOverdefined(IV, &I); 1093} 1094 1095void SCCPSolver::visitCallSite(CallSite CS) { 1096 Function *F = CS.getCalledFunction(); 1097 Instruction *I = CS.getInstruction(); 1098 1099 // The common case is that we aren't tracking the callee, either because we 1100 // are not doing interprocedural analysis or the callee is indirect, or is 1101 // external. Handle these cases first. 1102 if (F == 0 || F->isDeclaration()) { 1103CallOverdefined: 1104 // Void return and not tracking callee, just bail. 1105 if (I->getType()->isVoidTy()) return; 1106 1107 // Otherwise, if we have a single return value case, and if the function is 1108 // a declaration, maybe we can constant fold it. 1109 if (F && F->isDeclaration() && !I->getType()->isStructTy() && 1110 canConstantFoldCallTo(F)) { 1111 1112 SmallVector<Constant*, 8> Operands; 1113 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1114 AI != E; ++AI) { 1115 LatticeVal State = getValueState(*AI); 1116 1117 if (State.isUndefined()) 1118 return; // Operands are not resolved yet. 1119 if (State.isOverdefined()) 1120 return markOverdefined(I); 1121 assert(State.isConstant() && "Unknown state!"); 1122 Operands.push_back(State.getConstant()); 1123 } 1124 1125 // If we can constant fold this, mark the result of the call as a 1126 // constant. 1127 if (Constant *C = ConstantFoldCall(F, Operands, TLI)) 1128 return markConstant(I, C); 1129 } 1130 1131 // Otherwise, we don't know anything about this call, mark it overdefined. 1132 return markAnythingOverdefined(I); 1133 } 1134 1135 // If this is a local function that doesn't have its address taken, mark its 1136 // entry block executable and merge in the actual arguments to the call into 1137 // the formal arguments of the function. 1138 if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ 1139 MarkBlockExecutable(F->begin()); 1140 1141 // Propagate information from this call site into the callee. 1142 CallSite::arg_iterator CAI = CS.arg_begin(); 1143 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1144 AI != E; ++AI, ++CAI) { 1145 // If this argument is byval, and if the function is not readonly, there 1146 // will be an implicit copy formed of the input aggregate. 1147 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1148 markOverdefined(AI); 1149 continue; 1150 } 1151 1152 if (StructType *STy = dyn_cast<StructType>(AI->getType())) { 1153 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1154 LatticeVal CallArg = getStructValueState(*CAI, i); 1155 mergeInValue(getStructValueState(AI, i), AI, CallArg); 1156 } 1157 } else { 1158 mergeInValue(AI, getValueState(*CAI)); 1159 } 1160 } 1161 } 1162 1163 // If this is a single/zero retval case, see if we're tracking the function. 1164 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 1165 if (!MRVFunctionsTracked.count(F)) 1166 goto CallOverdefined; // Not tracking this callee. 1167 1168 // If we are tracking this callee, propagate the result of the function 1169 // into this call site. 1170 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1171 mergeInValue(getStructValueState(I, i), I, 1172 TrackedMultipleRetVals[std::make_pair(F, i)]); 1173 } else { 1174 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); 1175 if (TFRVI == TrackedRetVals.end()) 1176 goto CallOverdefined; // Not tracking this callee. 1177 1178 // If so, propagate the return value of the callee into this call result. 1179 mergeInValue(I, TFRVI->second); 1180 } 1181} 1182 1183void SCCPSolver::Solve() { 1184 // Process the work lists until they are empty! 1185 while (!BBWorkList.empty() || !InstWorkList.empty() || 1186 !OverdefinedInstWorkList.empty()) { 1187 // Process the overdefined instruction's work list first, which drives other 1188 // things to overdefined more quickly. 1189 while (!OverdefinedInstWorkList.empty()) { 1190 Value *I = OverdefinedInstWorkList.pop_back_val(); 1191 1192 DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); 1193 1194 // "I" got into the work list because it either made the transition from 1195 // bottom to constant 1196 // 1197 // Anything on this worklist that is overdefined need not be visited 1198 // since all of its users will have already been marked as overdefined 1199 // Update all of the users of this instruction's value. 1200 // 1201 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1202 UI != E; ++UI) 1203 if (Instruction *I = dyn_cast<Instruction>(*UI)) 1204 OperandChangedState(I); 1205 } 1206 1207 // Process the instruction work list. 1208 while (!InstWorkList.empty()) { 1209 Value *I = InstWorkList.pop_back_val(); 1210 1211 DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); 1212 1213 // "I" got into the work list because it made the transition from undef to 1214 // constant. 1215 // 1216 // Anything on this worklist that is overdefined need not be visited 1217 // since all of its users will have already been marked as overdefined. 1218 // Update all of the users of this instruction's value. 1219 // 1220 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) 1221 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1222 UI != E; ++UI) 1223 if (Instruction *I = dyn_cast<Instruction>(*UI)) 1224 OperandChangedState(I); 1225 } 1226 1227 // Process the basic block work list. 1228 while (!BBWorkList.empty()) { 1229 BasicBlock *BB = BBWorkList.back(); 1230 BBWorkList.pop_back(); 1231 1232 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); 1233 1234 // Notify all instructions in this basic block that they are newly 1235 // executable. 1236 visit(BB); 1237 } 1238 } 1239} 1240 1241/// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1242/// that branches on undef values cannot reach any of their successors. 1243/// However, this is not a safe assumption. After we solve dataflow, this 1244/// method should be use to handle this. If this returns true, the solver 1245/// should be rerun. 1246/// 1247/// This method handles this by finding an unresolved branch and marking it one 1248/// of the edges from the block as being feasible, even though the condition 1249/// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1250/// CFG and only slightly pessimizes the analysis results (by marking one, 1251/// potentially infeasible, edge feasible). This cannot usefully modify the 1252/// constraints on the condition of the branch, as that would impact other users 1253/// of the value. 1254/// 1255/// This scan also checks for values that use undefs, whose results are actually 1256/// defined. For example, 'zext i8 undef to i32' should produce all zeros 1257/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1258/// even if X isn't defined. 1259bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1260 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1261 if (!BBExecutable.count(BB)) 1262 continue; 1263 1264 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1265 // Look for instructions which produce undef values. 1266 if (I->getType()->isVoidTy()) continue; 1267 1268 if (StructType *STy = dyn_cast<StructType>(I->getType())) { 1269 // Only a few things that can be structs matter for undef. 1270 1271 // Tracked calls must never be marked overdefined in ResolvedUndefsIn. 1272 if (CallSite CS = CallSite(I)) 1273 if (Function *F = CS.getCalledFunction()) 1274 if (MRVFunctionsTracked.count(F)) 1275 continue; 1276 1277 // extractvalue and insertvalue don't need to be marked; they are 1278 // tracked as precisely as their operands. 1279 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) 1280 continue; 1281 1282 // Send the results of everything else to overdefined. We could be 1283 // more precise than this but it isn't worth bothering. 1284 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1285 LatticeVal &LV = getStructValueState(I, i); 1286 if (LV.isUndefined()) 1287 markOverdefined(LV, I); 1288 } 1289 continue; 1290 } 1291 1292 LatticeVal &LV = getValueState(I); 1293 if (!LV.isUndefined()) continue; 1294 1295 // extractvalue is safe; check here because the argument is a struct. 1296 if (isa<ExtractValueInst>(I)) 1297 continue; 1298 1299 // Compute the operand LatticeVals, for convenience below. 1300 // Anything taking a struct is conservatively assumed to require 1301 // overdefined markings. 1302 if (I->getOperand(0)->getType()->isStructTy()) { 1303 markOverdefined(I); 1304 return true; 1305 } 1306 LatticeVal Op0LV = getValueState(I->getOperand(0)); 1307 LatticeVal Op1LV; 1308 if (I->getNumOperands() == 2) { 1309 if (I->getOperand(1)->getType()->isStructTy()) { 1310 markOverdefined(I); 1311 return true; 1312 } 1313 1314 Op1LV = getValueState(I->getOperand(1)); 1315 } 1316 // If this is an instructions whose result is defined even if the input is 1317 // not fully defined, propagate the information. 1318 Type *ITy = I->getType(); 1319 switch (I->getOpcode()) { 1320 case Instruction::Add: 1321 case Instruction::Sub: 1322 case Instruction::Trunc: 1323 case Instruction::FPTrunc: 1324 case Instruction::BitCast: 1325 break; // Any undef -> undef 1326 case Instruction::FSub: 1327 case Instruction::FAdd: 1328 case Instruction::FMul: 1329 case Instruction::FDiv: 1330 case Instruction::FRem: 1331 // Floating-point binary operation: be conservative. 1332 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1333 markForcedConstant(I, Constant::getNullValue(ITy)); 1334 else 1335 markOverdefined(I); 1336 return true; 1337 case Instruction::ZExt: 1338 case Instruction::SExt: 1339 case Instruction::FPToUI: 1340 case Instruction::FPToSI: 1341 case Instruction::FPExt: 1342 case Instruction::PtrToInt: 1343 case Instruction::IntToPtr: 1344 case Instruction::SIToFP: 1345 case Instruction::UIToFP: 1346 // undef -> 0; some outputs are impossible 1347 markForcedConstant(I, Constant::getNullValue(ITy)); 1348 return true; 1349 case Instruction::Mul: 1350 case Instruction::And: 1351 // Both operands undef -> undef 1352 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1353 break; 1354 // undef * X -> 0. X could be zero. 1355 // undef & X -> 0. X could be zero. 1356 markForcedConstant(I, Constant::getNullValue(ITy)); 1357 return true; 1358 1359 case Instruction::Or: 1360 // Both operands undef -> undef 1361 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1362 break; 1363 // undef | X -> -1. X could be -1. 1364 markForcedConstant(I, Constant::getAllOnesValue(ITy)); 1365 return true; 1366 1367 case Instruction::Xor: 1368 // undef ^ undef -> 0; strictly speaking, this is not strictly 1369 // necessary, but we try to be nice to people who expect this 1370 // behavior in simple cases 1371 if (Op0LV.isUndefined() && Op1LV.isUndefined()) { 1372 markForcedConstant(I, Constant::getNullValue(ITy)); 1373 return true; 1374 } 1375 // undef ^ X -> undef 1376 break; 1377 1378 case Instruction::SDiv: 1379 case Instruction::UDiv: 1380 case Instruction::SRem: 1381 case Instruction::URem: 1382 // X / undef -> undef. No change. 1383 // X % undef -> undef. No change. 1384 if (Op1LV.isUndefined()) break; 1385 1386 // undef / X -> 0. X could be maxint. 1387 // undef % X -> 0. X could be 1. 1388 markForcedConstant(I, Constant::getNullValue(ITy)); 1389 return true; 1390 1391 case Instruction::AShr: 1392 // X >>a undef -> undef. 1393 if (Op1LV.isUndefined()) break; 1394 1395 // undef >>a X -> all ones 1396 markForcedConstant(I, Constant::getAllOnesValue(ITy)); 1397 return true; 1398 case Instruction::LShr: 1399 case Instruction::Shl: 1400 // X << undef -> undef. 1401 // X >> undef -> undef. 1402 if (Op1LV.isUndefined()) break; 1403 1404 // undef << X -> 0 1405 // undef >> X -> 0 1406 markForcedConstant(I, Constant::getNullValue(ITy)); 1407 return true; 1408 case Instruction::Select: 1409 Op1LV = getValueState(I->getOperand(1)); 1410 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1411 if (Op0LV.isUndefined()) { 1412 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1413 Op1LV = getValueState(I->getOperand(2)); 1414 } else if (Op1LV.isUndefined()) { 1415 // c ? undef : undef -> undef. No change. 1416 Op1LV = getValueState(I->getOperand(2)); 1417 if (Op1LV.isUndefined()) 1418 break; 1419 // Otherwise, c ? undef : x -> x. 1420 } else { 1421 // Leave Op1LV as Operand(1)'s LatticeValue. 1422 } 1423 1424 if (Op1LV.isConstant()) 1425 markForcedConstant(I, Op1LV.getConstant()); 1426 else 1427 markOverdefined(I); 1428 return true; 1429 case Instruction::Load: 1430 // A load here means one of two things: a load of undef from a global, 1431 // a load from an unknown pointer. Either way, having it return undef 1432 // is okay. 1433 break; 1434 case Instruction::ICmp: 1435 // X == undef -> undef. Other comparisons get more complicated. 1436 if (cast<ICmpInst>(I)->isEquality()) 1437 break; 1438 markOverdefined(I); 1439 return true; 1440 case Instruction::Call: 1441 case Instruction::Invoke: { 1442 // There are two reasons a call can have an undef result 1443 // 1. It could be tracked. 1444 // 2. It could be constant-foldable. 1445 // Because of the way we solve return values, tracked calls must 1446 // never be marked overdefined in ResolvedUndefsIn. 1447 if (Function *F = CallSite(I).getCalledFunction()) 1448 if (TrackedRetVals.count(F)) 1449 break; 1450 1451 // If the call is constant-foldable, we mark it overdefined because 1452 // we do not know what return values are valid. 1453 markOverdefined(I); 1454 return true; 1455 } 1456 default: 1457 // If we don't know what should happen here, conservatively mark it 1458 // overdefined. 1459 markOverdefined(I); 1460 return true; 1461 } 1462 } 1463 1464 // Check to see if we have a branch or switch on an undefined value. If so 1465 // we force the branch to go one way or the other to make the successor 1466 // values live. It doesn't really matter which way we force it. 1467 TerminatorInst *TI = BB->getTerminator(); 1468 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1469 if (!BI->isConditional()) continue; 1470 if (!getValueState(BI->getCondition()).isUndefined()) 1471 continue; 1472 1473 // If the input to SCCP is actually branch on undef, fix the undef to 1474 // false. 1475 if (isa<UndefValue>(BI->getCondition())) { 1476 BI->setCondition(ConstantInt::getFalse(BI->getContext())); 1477 markEdgeExecutable(BB, TI->getSuccessor(1)); 1478 return true; 1479 } 1480 1481 // Otherwise, it is a branch on a symbolic value which is currently 1482 // considered to be undef. Handle this by forcing the input value to the 1483 // branch to false. 1484 markForcedConstant(BI->getCondition(), 1485 ConstantInt::getFalse(TI->getContext())); 1486 return true; 1487 } 1488 1489 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1490 if (!SI->getNumCases()) 1491 continue; 1492 if (!getValueState(SI->getCondition()).isUndefined()) 1493 continue; 1494 1495 // If the input to SCCP is actually switch on undef, fix the undef to 1496 // the first constant. 1497 if (isa<UndefValue>(SI->getCondition())) { 1498 SI->setCondition(SI->getCaseValue(0)); 1499 markEdgeExecutable(BB, SI->getCaseSuccessor(0)); 1500 return true; 1501 } 1502 1503 markForcedConstant(SI->getCondition(), SI->getCaseValue(0)); 1504 return true; 1505 } 1506 } 1507 1508 return false; 1509} 1510 1511 1512namespace { 1513 //===--------------------------------------------------------------------===// 1514 // 1515 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1516 /// Sparse Conditional Constant Propagator. 1517 /// 1518 struct SCCP : public FunctionPass { 1519 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1520 AU.addRequired<TargetLibraryInfo>(); 1521 } 1522 static char ID; // Pass identification, replacement for typeid 1523 SCCP() : FunctionPass(ID) { 1524 initializeSCCPPass(*PassRegistry::getPassRegistry()); 1525 } 1526 1527 // runOnFunction - Run the Sparse Conditional Constant Propagation 1528 // algorithm, and return true if the function was modified. 1529 // 1530 bool runOnFunction(Function &F); 1531 }; 1532} // end anonymous namespace 1533 1534char SCCP::ID = 0; 1535INITIALIZE_PASS(SCCP, "sccp", 1536 "Sparse Conditional Constant Propagation", false, false) 1537 1538// createSCCPPass - This is the public interface to this file. 1539FunctionPass *llvm::createSCCPPass() { 1540 return new SCCP(); 1541} 1542 1543static void DeleteInstructionInBlock(BasicBlock *BB) { 1544 DEBUG(dbgs() << " BasicBlock Dead:" << *BB); 1545 ++NumDeadBlocks; 1546 1547 // Check to see if there are non-terminating instructions to delete. 1548 if (isa<TerminatorInst>(BB->begin())) 1549 return; 1550 1551 // Delete the instructions backwards, as it has a reduced likelihood of having 1552 // to update as many def-use and use-def chains. 1553 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1554 while (EndInst != BB->begin()) { 1555 // Delete the next to last instruction. 1556 BasicBlock::iterator I = EndInst; 1557 Instruction *Inst = --I; 1558 if (!Inst->use_empty()) 1559 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1560 if (isa<LandingPadInst>(Inst)) { 1561 EndInst = Inst; 1562 continue; 1563 } 1564 BB->getInstList().erase(Inst); 1565 ++NumInstRemoved; 1566 } 1567} 1568 1569// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1570// and return true if the function was modified. 1571// 1572bool SCCP::runOnFunction(Function &F) { 1573 DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); 1574 const TargetData *TD = getAnalysisIfAvailable<TargetData>(); 1575 const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>(); 1576 SCCPSolver Solver(TD, TLI); 1577 1578 // Mark the first block of the function as being executable. 1579 Solver.MarkBlockExecutable(F.begin()); 1580 1581 // Mark all arguments to the function as being overdefined. 1582 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) 1583 Solver.markAnythingOverdefined(AI); 1584 1585 // Solve for constants. 1586 bool ResolvedUndefs = true; 1587 while (ResolvedUndefs) { 1588 Solver.Solve(); 1589 DEBUG(dbgs() << "RESOLVING UNDEFs\n"); 1590 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1591 } 1592 1593 bool MadeChanges = false; 1594 1595 // If we decided that there are basic blocks that are dead in this function, 1596 // delete their contents now. Note that we cannot actually delete the blocks, 1597 // as we cannot modify the CFG of the function. 1598 1599 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1600 if (!Solver.isBlockExecutable(BB)) { 1601 DeleteInstructionInBlock(BB); 1602 MadeChanges = true; 1603 continue; 1604 } 1605 1606 // Iterate over all of the instructions in a function, replacing them with 1607 // constants if we have found them to be of constant values. 1608 // 1609 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1610 Instruction *Inst = BI++; 1611 if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst)) 1612 continue; 1613 1614 // TODO: Reconstruct structs from their elements. 1615 if (Inst->getType()->isStructTy()) 1616 continue; 1617 1618 LatticeVal IV = Solver.getLatticeValueFor(Inst); 1619 if (IV.isOverdefined()) 1620 continue; 1621 1622 Constant *Const = IV.isConstant() 1623 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1624 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst); 1625 1626 // Replaces all of the uses of a variable with uses of the constant. 1627 Inst->replaceAllUsesWith(Const); 1628 1629 // Delete the instruction. 1630 Inst->eraseFromParent(); 1631 1632 // Hey, we just changed something! 1633 MadeChanges = true; 1634 ++NumInstRemoved; 1635 } 1636 } 1637 1638 return MadeChanges; 1639} 1640 1641namespace { 1642 //===--------------------------------------------------------------------===// 1643 // 1644 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1645 /// Constant Propagation. 1646 /// 1647 struct IPSCCP : public ModulePass { 1648 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1649 AU.addRequired<TargetLibraryInfo>(); 1650 } 1651 static char ID; 1652 IPSCCP() : ModulePass(ID) { 1653 initializeIPSCCPPass(*PassRegistry::getPassRegistry()); 1654 } 1655 bool runOnModule(Module &M); 1656 }; 1657} // end anonymous namespace 1658 1659char IPSCCP::ID = 0; 1660INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp", 1661 "Interprocedural Sparse Conditional Constant Propagation", 1662 false, false) 1663INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 1664INITIALIZE_PASS_END(IPSCCP, "ipsccp", 1665 "Interprocedural Sparse Conditional Constant Propagation", 1666 false, false) 1667 1668// createIPSCCPPass - This is the public interface to this file. 1669ModulePass *llvm::createIPSCCPPass() { 1670 return new IPSCCP(); 1671} 1672 1673 1674static bool AddressIsTaken(const GlobalValue *GV) { 1675 // Delete any dead constantexpr klingons. 1676 GV->removeDeadConstantUsers(); 1677 1678 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); 1679 UI != E; ++UI) { 1680 const User *U = *UI; 1681 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 1682 if (SI->getOperand(0) == GV || SI->isVolatile()) 1683 return true; // Storing addr of GV. 1684 } else if (isa<InvokeInst>(U) || isa<CallInst>(U)) { 1685 // Make sure we are calling the function, not passing the address. 1686 ImmutableCallSite CS(cast<Instruction>(U)); 1687 if (!CS.isCallee(UI)) 1688 return true; 1689 } else if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1690 if (LI->isVolatile()) 1691 return true; 1692 } else if (isa<BlockAddress>(U)) { 1693 // blockaddress doesn't take the address of the function, it takes addr 1694 // of label. 1695 } else { 1696 return true; 1697 } 1698 } 1699 return false; 1700} 1701 1702bool IPSCCP::runOnModule(Module &M) { 1703 const TargetData *TD = getAnalysisIfAvailable<TargetData>(); 1704 const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>(); 1705 SCCPSolver Solver(TD, TLI); 1706 1707 // AddressTakenFunctions - This set keeps track of the address-taken functions 1708 // that are in the input. As IPSCCP runs through and simplifies code, 1709 // functions that were address taken can end up losing their 1710 // address-taken-ness. Because of this, we keep track of their addresses from 1711 // the first pass so we can use them for the later simplification pass. 1712 SmallPtrSet<Function*, 32> AddressTakenFunctions; 1713 1714 // Loop over all functions, marking arguments to those with their addresses 1715 // taken or that are external as overdefined. 1716 // 1717 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1718 if (F->isDeclaration()) 1719 continue; 1720 1721 // If this is a strong or ODR definition of this function, then we can 1722 // propagate information about its result into callsites of it. 1723 if (!F->mayBeOverridden()) 1724 Solver.AddTrackedFunction(F); 1725 1726 // If this function only has direct calls that we can see, we can track its 1727 // arguments and return value aggressively, and can assume it is not called 1728 // unless we see evidence to the contrary. 1729 if (F->hasLocalLinkage()) { 1730 if (AddressIsTaken(F)) 1731 AddressTakenFunctions.insert(F); 1732 else { 1733 Solver.AddArgumentTrackedFunction(F); 1734 continue; 1735 } 1736 } 1737 1738 // Assume the function is called. 1739 Solver.MarkBlockExecutable(F->begin()); 1740 1741 // Assume nothing about the incoming arguments. 1742 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1743 AI != E; ++AI) 1744 Solver.markAnythingOverdefined(AI); 1745 } 1746 1747 // Loop over global variables. We inform the solver about any internal global 1748 // variables that do not have their 'addresses taken'. If they don't have 1749 // their addresses taken, we can propagate constants through them. 1750 for (Module::global_iterator G = M.global_begin(), E = M.global_end(); 1751 G != E; ++G) 1752 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G)) 1753 Solver.TrackValueOfGlobalVariable(G); 1754 1755 // Solve for constants. 1756 bool ResolvedUndefs = true; 1757 while (ResolvedUndefs) { 1758 Solver.Solve(); 1759 1760 DEBUG(dbgs() << "RESOLVING UNDEFS\n"); 1761 ResolvedUndefs = false; 1762 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1763 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); 1764 } 1765 1766 bool MadeChanges = false; 1767 1768 // Iterate over all of the instructions in the module, replacing them with 1769 // constants if we have found them to be of constant values. 1770 // 1771 SmallVector<BasicBlock*, 512> BlocksToErase; 1772 1773 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1774 if (Solver.isBlockExecutable(F->begin())) { 1775 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1776 AI != E; ++AI) { 1777 if (AI->use_empty() || AI->getType()->isStructTy()) continue; 1778 1779 // TODO: Could use getStructLatticeValueFor to find out if the entire 1780 // result is a constant and replace it entirely if so. 1781 1782 LatticeVal IV = Solver.getLatticeValueFor(AI); 1783 if (IV.isOverdefined()) continue; 1784 1785 Constant *CST = IV.isConstant() ? 1786 IV.getConstant() : UndefValue::get(AI->getType()); 1787 DEBUG(dbgs() << "*** Arg " << *AI << " = " << *CST <<"\n"); 1788 1789 // Replaces all of the uses of a variable with uses of the 1790 // constant. 1791 AI->replaceAllUsesWith(CST); 1792 ++IPNumArgsElimed; 1793 } 1794 } 1795 1796 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { 1797 if (!Solver.isBlockExecutable(BB)) { 1798 DeleteInstructionInBlock(BB); 1799 MadeChanges = true; 1800 1801 TerminatorInst *TI = BB->getTerminator(); 1802 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1803 BasicBlock *Succ = TI->getSuccessor(i); 1804 if (!Succ->empty() && isa<PHINode>(Succ->begin())) 1805 TI->getSuccessor(i)->removePredecessor(BB); 1806 } 1807 if (!TI->use_empty()) 1808 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1809 TI->eraseFromParent(); 1810 1811 if (&*BB != &F->front()) 1812 BlocksToErase.push_back(BB); 1813 else 1814 new UnreachableInst(M.getContext(), BB); 1815 continue; 1816 } 1817 1818 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1819 Instruction *Inst = BI++; 1820 if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy()) 1821 continue; 1822 1823 // TODO: Could use getStructLatticeValueFor to find out if the entire 1824 // result is a constant and replace it entirely if so. 1825 1826 LatticeVal IV = Solver.getLatticeValueFor(Inst); 1827 if (IV.isOverdefined()) 1828 continue; 1829 1830 Constant *Const = IV.isConstant() 1831 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1832 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst); 1833 1834 // Replaces all of the uses of a variable with uses of the 1835 // constant. 1836 Inst->replaceAllUsesWith(Const); 1837 1838 // Delete the instruction. 1839 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst)) 1840 Inst->eraseFromParent(); 1841 1842 // Hey, we just changed something! 1843 MadeChanges = true; 1844 ++IPNumInstRemoved; 1845 } 1846 } 1847 1848 // Now that all instructions in the function are constant folded, erase dead 1849 // blocks, because we can now use ConstantFoldTerminator to get rid of 1850 // in-edges. 1851 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1852 // If there are any PHI nodes in this successor, drop entries for BB now. 1853 BasicBlock *DeadBB = BlocksToErase[i]; 1854 for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end(); 1855 UI != UE; ) { 1856 // Grab the user and then increment the iterator early, as the user 1857 // will be deleted. Step past all adjacent uses from the same user. 1858 Instruction *I = dyn_cast<Instruction>(*UI); 1859 do { ++UI; } while (UI != UE && *UI == I); 1860 1861 // Ignore blockaddress users; BasicBlock's dtor will handle them. 1862 if (!I) continue; 1863 1864 bool Folded = ConstantFoldTerminator(I->getParent()); 1865 if (!Folded) { 1866 // The constant folder may not have been able to fold the terminator 1867 // if this is a branch or switch on undef. Fold it manually as a 1868 // branch to the first successor. 1869#ifndef NDEBUG 1870 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1871 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1872 "Branch should be foldable!"); 1873 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1874 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1875 } else { 1876 llvm_unreachable("Didn't fold away reference to block!"); 1877 } 1878#endif 1879 1880 // Make this an uncond branch to the first successor. 1881 TerminatorInst *TI = I->getParent()->getTerminator(); 1882 BranchInst::Create(TI->getSuccessor(0), TI); 1883 1884 // Remove entries in successor phi nodes to remove edges. 1885 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1886 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1887 1888 // Remove the old terminator. 1889 TI->eraseFromParent(); 1890 } 1891 } 1892 1893 // Finally, delete the basic block. 1894 F->getBasicBlockList().erase(DeadBB); 1895 } 1896 BlocksToErase.clear(); 1897 } 1898 1899 // If we inferred constant or undef return values for a function, we replaced 1900 // all call uses with the inferred value. This means we don't need to bother 1901 // actually returning anything from the function. Replace all return 1902 // instructions with return undef. 1903 // 1904 // Do this in two stages: first identify the functions we should process, then 1905 // actually zap their returns. This is important because we can only do this 1906 // if the address of the function isn't taken. In cases where a return is the 1907 // last use of a function, the order of processing functions would affect 1908 // whether other functions are optimizable. 1909 SmallVector<ReturnInst*, 8> ReturnsToZap; 1910 1911 // TODO: Process multiple value ret instructions also. 1912 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); 1913 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), 1914 E = RV.end(); I != E; ++I) { 1915 Function *F = I->first; 1916 if (I->second.isOverdefined() || F->getReturnType()->isVoidTy()) 1917 continue; 1918 1919 // We can only do this if we know that nothing else can call the function. 1920 if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F)) 1921 continue; 1922 1923 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1924 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1925 if (!isa<UndefValue>(RI->getOperand(0))) 1926 ReturnsToZap.push_back(RI); 1927 } 1928 1929 // Zap all returns which we've identified as zap to change. 1930 for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { 1931 Function *F = ReturnsToZap[i]->getParent()->getParent(); 1932 ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); 1933 } 1934 1935 // If we inferred constant or undef values for globals variables, we can delete 1936 // the global and any stores that remain to it. 1937 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1938 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1939 E = TG.end(); I != E; ++I) { 1940 GlobalVariable *GV = I->first; 1941 assert(!I->second.isOverdefined() && 1942 "Overdefined values should have been taken out of the map!"); 1943 DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n"); 1944 while (!GV->use_empty()) { 1945 StoreInst *SI = cast<StoreInst>(GV->use_back()); 1946 SI->eraseFromParent(); 1947 } 1948 M.getGlobalList().erase(GV); 1949 ++IPNumGlobalConst; 1950 } 1951 1952 return MadeChanges; 1953} 1954