SCCP.cpp revision 508955156a25a9abc470a29e1760aa176d341cf9
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18// Notice that:
19//   * This pass has a habit of making definitions be dead.  It is a good idea
20//     to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "sccp"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/IPO.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Instructions.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Pass.h"
32#include "llvm/Analysis/ConstantFolding.h"
33#include "llvm/Analysis/ValueTracking.h"
34#include "llvm/Transforms/Utils/Local.h"
35#include "llvm/Support/CallSite.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/InstVisitor.h"
39#include "llvm/ADT/DenseMap.h"
40#include "llvm/ADT/DenseSet.h"
41#include "llvm/ADT/SmallSet.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/STLExtras.h"
45#include <algorithm>
46#include <map>
47using namespace llvm;
48
49STATISTIC(NumInstRemoved, "Number of instructions removed");
50STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
51
52STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
53STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
54STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
55STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
56
57namespace {
58/// LatticeVal class - This class represents the different lattice values that
59/// an LLVM value may occupy.  It is a simple class with value semantics.
60///
61class VISIBILITY_HIDDEN LatticeVal {
62  enum {
63    /// undefined - This LLVM Value has no known value yet.
64    undefined,
65
66    /// constant - This LLVM Value has a specific constant value.
67    constant,
68
69    /// forcedconstant - This LLVM Value was thought to be undef until
70    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
71    /// with another (different) constant, it goes to overdefined, instead of
72    /// asserting.
73    forcedconstant,
74
75    /// overdefined - This instruction is not known to be constant, and we know
76    /// it has a value.
77    overdefined
78  } LatticeValue;    // The current lattice position
79
80  Constant *ConstantVal; // If Constant value, the current value
81public:
82  inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
83
84  // markOverdefined - Return true if this is a new status to be in...
85  inline bool markOverdefined() {
86    if (LatticeValue != overdefined) {
87      LatticeValue = overdefined;
88      return true;
89    }
90    return false;
91  }
92
93  // markConstant - Return true if this is a new status for us.
94  inline bool markConstant(Constant *V) {
95    if (LatticeValue != constant) {
96      if (LatticeValue == undefined) {
97        LatticeValue = constant;
98        assert(V && "Marking constant with NULL");
99        ConstantVal = V;
100      } else {
101        assert(LatticeValue == forcedconstant &&
102               "Cannot move from overdefined to constant!");
103        // Stay at forcedconstant if the constant is the same.
104        if (V == ConstantVal) return false;
105
106        // Otherwise, we go to overdefined.  Assumptions made based on the
107        // forced value are possibly wrong.  Assuming this is another constant
108        // could expose a contradiction.
109        LatticeValue = overdefined;
110      }
111      return true;
112    } else {
113      assert(ConstantVal == V && "Marking constant with different value");
114    }
115    return false;
116  }
117
118  inline void markForcedConstant(Constant *V) {
119    assert(LatticeValue == undefined && "Can't force a defined value!");
120    LatticeValue = forcedconstant;
121    ConstantVal = V;
122  }
123
124  inline bool isUndefined() const { return LatticeValue == undefined; }
125  inline bool isConstant() const {
126    return LatticeValue == constant || LatticeValue == forcedconstant;
127  }
128  inline bool isOverdefined() const { return LatticeValue == overdefined; }
129
130  inline Constant *getConstant() const {
131    assert(isConstant() && "Cannot get the constant of a non-constant!");
132    return ConstantVal;
133  }
134};
135
136//===----------------------------------------------------------------------===//
137//
138/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
139/// Constant Propagation.
140///
141class SCCPSolver : public InstVisitor<SCCPSolver> {
142  LLVMContext* Context;
143  DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable
144  std::map<Value*, LatticeVal> ValueState;  // The state each value is in.
145
146  /// GlobalValue - If we are tracking any values for the contents of a global
147  /// variable, we keep a mapping from the constant accessor to the element of
148  /// the global, to the currently known value.  If the value becomes
149  /// overdefined, it's entry is simply removed from this map.
150  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
151
152  /// TrackedRetVals - If we are tracking arguments into and the return
153  /// value out of a function, it will have an entry in this map, indicating
154  /// what the known return value for the function is.
155  DenseMap<Function*, LatticeVal> TrackedRetVals;
156
157  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
158  /// that return multiple values.
159  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
160
161  // The reason for two worklists is that overdefined is the lowest state
162  // on the lattice, and moving things to overdefined as fast as possible
163  // makes SCCP converge much faster.
164  // By having a separate worklist, we accomplish this because everything
165  // possibly overdefined will become overdefined at the soonest possible
166  // point.
167  SmallVector<Value*, 64> OverdefinedInstWorkList;
168  SmallVector<Value*, 64> InstWorkList;
169
170
171  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
172
173  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
174  /// overdefined, despite the fact that the PHI node is overdefined.
175  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
176
177  /// KnownFeasibleEdges - Entries in this set are edges which have already had
178  /// PHI nodes retriggered.
179  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
180  DenseSet<Edge> KnownFeasibleEdges;
181public:
182  void setContext(LLVMContext* C) { Context = C; }
183
184  /// MarkBlockExecutable - This method can be used by clients to mark all of
185  /// the blocks that are known to be intrinsically live in the processed unit.
186  void MarkBlockExecutable(BasicBlock *BB) {
187    DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n";
188    BBExecutable.insert(BB);   // Basic block is executable!
189    BBWorkList.push_back(BB);  // Add the block to the work list!
190  }
191
192  /// TrackValueOfGlobalVariable - Clients can use this method to
193  /// inform the SCCPSolver that it should track loads and stores to the
194  /// specified global variable if it can.  This is only legal to call if
195  /// performing Interprocedural SCCP.
196  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
197    const Type *ElTy = GV->getType()->getElementType();
198    if (ElTy->isFirstClassType()) {
199      LatticeVal &IV = TrackedGlobals[GV];
200      if (!isa<UndefValue>(GV->getInitializer()))
201        IV.markConstant(GV->getInitializer());
202    }
203  }
204
205  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
206  /// and out of the specified function (which cannot have its address taken),
207  /// this method must be called.
208  void AddTrackedFunction(Function *F) {
209    assert(F->hasLocalLinkage() && "Can only track internal functions!");
210    // Add an entry, F -> undef.
211    if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
212      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
213        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
214                                                     LatticeVal()));
215    } else
216      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
217  }
218
219  /// Solve - Solve for constants and executable blocks.
220  ///
221  void Solve();
222
223  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
224  /// that branches on undef values cannot reach any of their successors.
225  /// However, this is not a safe assumption.  After we solve dataflow, this
226  /// method should be use to handle this.  If this returns true, the solver
227  /// should be rerun.
228  bool ResolvedUndefsIn(Function &F);
229
230  bool isBlockExecutable(BasicBlock *BB) const {
231    return BBExecutable.count(BB);
232  }
233
234  /// getValueMapping - Once we have solved for constants, return the mapping of
235  /// LLVM values to LatticeVals.
236  std::map<Value*, LatticeVal> &getValueMapping() {
237    return ValueState;
238  }
239
240  /// getTrackedRetVals - Get the inferred return value map.
241  ///
242  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
243    return TrackedRetVals;
244  }
245
246  /// getTrackedGlobals - Get and return the set of inferred initializers for
247  /// global variables.
248  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
249    return TrackedGlobals;
250  }
251
252  inline void markOverdefined(Value *V) {
253    markOverdefined(ValueState[V], V);
254  }
255
256private:
257  // markConstant - Make a value be marked as "constant".  If the value
258  // is not already a constant, add it to the instruction work list so that
259  // the users of the instruction are updated later.
260  //
261  inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
262    if (IV.markConstant(C)) {
263      DOUT << "markConstant: " << *C << ": " << *V;
264      InstWorkList.push_back(V);
265    }
266  }
267
268  inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
269    IV.markForcedConstant(C);
270    DOUT << "markForcedConstant: " << *C << ": " << *V;
271    InstWorkList.push_back(V);
272  }
273
274  inline void markConstant(Value *V, Constant *C) {
275    markConstant(ValueState[V], V, C);
276  }
277
278  // markOverdefined - Make a value be marked as "overdefined". If the
279  // value is not already overdefined, add it to the overdefined instruction
280  // work list so that the users of the instruction are updated later.
281  inline void markOverdefined(LatticeVal &IV, Value *V) {
282    if (IV.markOverdefined()) {
283      DEBUG(DOUT << "markOverdefined: ";
284            if (Function *F = dyn_cast<Function>(V))
285              DOUT << "Function '" << F->getName() << "'\n";
286            else
287              DOUT << *V);
288      // Only instructions go on the work list
289      OverdefinedInstWorkList.push_back(V);
290    }
291  }
292
293  inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
294    if (IV.isOverdefined() || MergeWithV.isUndefined())
295      return;  // Noop.
296    if (MergeWithV.isOverdefined())
297      markOverdefined(IV, V);
298    else if (IV.isUndefined())
299      markConstant(IV, V, MergeWithV.getConstant());
300    else if (IV.getConstant() != MergeWithV.getConstant())
301      markOverdefined(IV, V);
302  }
303
304  inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
305    return mergeInValue(ValueState[V], V, MergeWithV);
306  }
307
308
309  // getValueState - Return the LatticeVal object that corresponds to the value.
310  // This function is necessary because not all values should start out in the
311  // underdefined state... Argument's should be overdefined, and
312  // constants should be marked as constants.  If a value is not known to be an
313  // Instruction object, then use this accessor to get its value from the map.
314  //
315  inline LatticeVal &getValueState(Value *V) {
316    std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
317    if (I != ValueState.end()) return I->second;  // Common case, in the map
318
319    if (Constant *C = dyn_cast<Constant>(V)) {
320      if (isa<UndefValue>(V)) {
321        // Nothing to do, remain undefined.
322      } else {
323        LatticeVal &LV = ValueState[C];
324        LV.markConstant(C);          // Constants are constant
325        return LV;
326      }
327    }
328    // All others are underdefined by default...
329    return ValueState[V];
330  }
331
332  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
333  // work list if it is not already executable...
334  //
335  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
336    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
337      return;  // This edge is already known to be executable!
338
339    if (BBExecutable.count(Dest)) {
340      DOUT << "Marking Edge Executable: " << Source->getNameStart()
341           << " -> " << Dest->getNameStart() << "\n";
342
343      // The destination is already executable, but we just made an edge
344      // feasible that wasn't before.  Revisit the PHI nodes in the block
345      // because they have potentially new operands.
346      for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
347        visitPHINode(*cast<PHINode>(I));
348
349    } else {
350      MarkBlockExecutable(Dest);
351    }
352  }
353
354  // getFeasibleSuccessors - Return a vector of booleans to indicate which
355  // successors are reachable from a given terminator instruction.
356  //
357  void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
358
359  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
360  // block to the 'To' basic block is currently feasible...
361  //
362  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
363
364  // OperandChangedState - This method is invoked on all of the users of an
365  // instruction that was just changed state somehow....  Based on this
366  // information, we need to update the specified user of this instruction.
367  //
368  void OperandChangedState(User *U) {
369    // Only instructions use other variable values!
370    Instruction &I = cast<Instruction>(*U);
371    if (BBExecutable.count(I.getParent()))   // Inst is executable?
372      visit(I);
373  }
374
375private:
376  friend class InstVisitor<SCCPSolver>;
377
378  // visit implementations - Something changed in this instruction... Either an
379  // operand made a transition, or the instruction is newly executable.  Change
380  // the value type of I to reflect these changes if appropriate.
381  //
382  void visitPHINode(PHINode &I);
383
384  // Terminators
385  void visitReturnInst(ReturnInst &I);
386  void visitTerminatorInst(TerminatorInst &TI);
387
388  void visitCastInst(CastInst &I);
389  void visitSelectInst(SelectInst &I);
390  void visitBinaryOperator(Instruction &I);
391  void visitCmpInst(CmpInst &I);
392  void visitExtractElementInst(ExtractElementInst &I);
393  void visitInsertElementInst(InsertElementInst &I);
394  void visitShuffleVectorInst(ShuffleVectorInst &I);
395  void visitExtractValueInst(ExtractValueInst &EVI);
396  void visitInsertValueInst(InsertValueInst &IVI);
397
398  // Instructions that cannot be folded away...
399  void visitStoreInst     (Instruction &I);
400  void visitLoadInst      (LoadInst &I);
401  void visitGetElementPtrInst(GetElementPtrInst &I);
402  void visitCallInst      (CallInst &I) { visitCallSite(CallSite::get(&I)); }
403  void visitInvokeInst    (InvokeInst &II) {
404    visitCallSite(CallSite::get(&II));
405    visitTerminatorInst(II);
406  }
407  void visitCallSite      (CallSite CS);
408  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
409  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
410  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
411  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
412  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
413  void visitFreeInst      (Instruction &I) { /*returns void*/ }
414
415  void visitInstruction(Instruction &I) {
416    // If a new instruction is added to LLVM that we don't handle...
417    cerr << "SCCP: Don't know how to handle: " << I;
418    markOverdefined(&I);   // Just in case
419  }
420};
421
422} // end anonymous namespace
423
424
425// getFeasibleSuccessors - Return a vector of booleans to indicate which
426// successors are reachable from a given terminator instruction.
427//
428void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
429                                       SmallVector<bool, 16> &Succs) {
430  Succs.resize(TI.getNumSuccessors());
431  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
432    if (BI->isUnconditional()) {
433      Succs[0] = true;
434    } else {
435      LatticeVal &BCValue = getValueState(BI->getCondition());
436      if (BCValue.isOverdefined() ||
437          (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
438        // Overdefined condition variables, and branches on unfoldable constant
439        // conditions, mean the branch could go either way.
440        Succs[0] = Succs[1] = true;
441      } else if (BCValue.isConstant()) {
442        // Constant condition variables mean the branch can only go a single way
443        Succs[BCValue.getConstant() == Context->getConstantIntFalse()] = true;
444      }
445    }
446  } else if (isa<InvokeInst>(&TI)) {
447    // Invoke instructions successors are always executable.
448    Succs[0] = Succs[1] = true;
449  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
450    LatticeVal &SCValue = getValueState(SI->getCondition());
451    if (SCValue.isOverdefined() ||   // Overdefined condition?
452        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
453      // All destinations are executable!
454      Succs.assign(TI.getNumSuccessors(), true);
455    } else if (SCValue.isConstant())
456      Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true;
457  } else {
458    assert(0 && "SCCP: Don't know how to handle this terminator!");
459  }
460}
461
462
463// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
464// block to the 'To' basic block is currently feasible...
465//
466bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
467  assert(BBExecutable.count(To) && "Dest should always be alive!");
468
469  // Make sure the source basic block is executable!!
470  if (!BBExecutable.count(From)) return false;
471
472  // Check to make sure this edge itself is actually feasible now...
473  TerminatorInst *TI = From->getTerminator();
474  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
475    if (BI->isUnconditional())
476      return true;
477    else {
478      LatticeVal &BCValue = getValueState(BI->getCondition());
479      if (BCValue.isOverdefined()) {
480        // Overdefined condition variables mean the branch could go either way.
481        return true;
482      } else if (BCValue.isConstant()) {
483        // Not branching on an evaluatable constant?
484        if (!isa<ConstantInt>(BCValue.getConstant())) return true;
485
486        // Constant condition variables mean the branch can only go a single way
487        return BI->getSuccessor(BCValue.getConstant() ==
488                                       Context->getConstantIntFalse()) == To;
489      }
490      return false;
491    }
492  } else if (isa<InvokeInst>(TI)) {
493    // Invoke instructions successors are always executable.
494    return true;
495  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
496    LatticeVal &SCValue = getValueState(SI->getCondition());
497    if (SCValue.isOverdefined()) {  // Overdefined condition?
498      // All destinations are executable!
499      return true;
500    } else if (SCValue.isConstant()) {
501      Constant *CPV = SCValue.getConstant();
502      if (!isa<ConstantInt>(CPV))
503        return true;  // not a foldable constant?
504
505      // Make sure to skip the "default value" which isn't a value
506      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
507        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
508          return SI->getSuccessor(i) == To;
509
510      // Constant value not equal to any of the branches... must execute
511      // default branch then...
512      return SI->getDefaultDest() == To;
513    }
514    return false;
515  } else {
516    cerr << "Unknown terminator instruction: " << *TI;
517    abort();
518  }
519}
520
521// visit Implementations - Something changed in this instruction... Either an
522// operand made a transition, or the instruction is newly executable.  Change
523// the value type of I to reflect these changes if appropriate.  This method
524// makes sure to do the following actions:
525//
526// 1. If a phi node merges two constants in, and has conflicting value coming
527//    from different branches, or if the PHI node merges in an overdefined
528//    value, then the PHI node becomes overdefined.
529// 2. If a phi node merges only constants in, and they all agree on value, the
530//    PHI node becomes a constant value equal to that.
531// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
532// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
533// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
534// 6. If a conditional branch has a value that is constant, make the selected
535//    destination executable
536// 7. If a conditional branch has a value that is overdefined, make all
537//    successors executable.
538//
539void SCCPSolver::visitPHINode(PHINode &PN) {
540  LatticeVal &PNIV = getValueState(&PN);
541  if (PNIV.isOverdefined()) {
542    // There may be instructions using this PHI node that are not overdefined
543    // themselves.  If so, make sure that they know that the PHI node operand
544    // changed.
545    std::multimap<PHINode*, Instruction*>::iterator I, E;
546    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
547    if (I != E) {
548      SmallVector<Instruction*, 16> Users;
549      for (; I != E; ++I) Users.push_back(I->second);
550      while (!Users.empty()) {
551        visit(Users.back());
552        Users.pop_back();
553      }
554    }
555    return;  // Quick exit
556  }
557
558  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
559  // and slow us down a lot.  Just mark them overdefined.
560  if (PN.getNumIncomingValues() > 64) {
561    markOverdefined(PNIV, &PN);
562    return;
563  }
564
565  // Look at all of the executable operands of the PHI node.  If any of them
566  // are overdefined, the PHI becomes overdefined as well.  If they are all
567  // constant, and they agree with each other, the PHI becomes the identical
568  // constant.  If they are constant and don't agree, the PHI is overdefined.
569  // If there are no executable operands, the PHI remains undefined.
570  //
571  Constant *OperandVal = 0;
572  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
573    LatticeVal &IV = getValueState(PN.getIncomingValue(i));
574    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
575
576    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
577      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
578        markOverdefined(&PN);
579        return;
580      }
581
582      if (OperandVal == 0) {   // Grab the first value...
583        OperandVal = IV.getConstant();
584      } else {                // Another value is being merged in!
585        // There is already a reachable operand.  If we conflict with it,
586        // then the PHI node becomes overdefined.  If we agree with it, we
587        // can continue on.
588
589        // Check to see if there are two different constants merging...
590        if (IV.getConstant() != OperandVal) {
591          // Yes there is.  This means the PHI node is not constant.
592          // You must be overdefined poor PHI.
593          //
594          markOverdefined(&PN);    // The PHI node now becomes overdefined
595          return;    // I'm done analyzing you
596        }
597      }
598    }
599  }
600
601  // If we exited the loop, this means that the PHI node only has constant
602  // arguments that agree with each other(and OperandVal is the constant) or
603  // OperandVal is null because there are no defined incoming arguments.  If
604  // this is the case, the PHI remains undefined.
605  //
606  if (OperandVal)
607    markConstant(&PN, OperandVal);      // Acquire operand value
608}
609
610void SCCPSolver::visitReturnInst(ReturnInst &I) {
611  if (I.getNumOperands() == 0) return;  // Ret void
612
613  Function *F = I.getParent()->getParent();
614  // If we are tracking the return value of this function, merge it in.
615  if (!F->hasLocalLinkage())
616    return;
617
618  if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
619    DenseMap<Function*, LatticeVal>::iterator TFRVI =
620      TrackedRetVals.find(F);
621    if (TFRVI != TrackedRetVals.end() &&
622        !TFRVI->second.isOverdefined()) {
623      LatticeVal &IV = getValueState(I.getOperand(0));
624      mergeInValue(TFRVI->second, F, IV);
625      return;
626    }
627  }
628
629  // Handle functions that return multiple values.
630  if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
631    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
632      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
633        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
634      if (It == TrackedMultipleRetVals.end()) break;
635      mergeInValue(It->second, F, getValueState(I.getOperand(i)));
636    }
637  } else if (!TrackedMultipleRetVals.empty() &&
638             I.getNumOperands() == 1 &&
639             isa<StructType>(I.getOperand(0)->getType())) {
640    for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
641         i != e; ++i) {
642      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
643        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
644      if (It == TrackedMultipleRetVals.end()) break;
645      if (Value *Val = FindInsertedValue(I.getOperand(0), i))
646        mergeInValue(It->second, F, getValueState(Val));
647    }
648  }
649}
650
651void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
652  SmallVector<bool, 16> SuccFeasible;
653  getFeasibleSuccessors(TI, SuccFeasible);
654
655  BasicBlock *BB = TI.getParent();
656
657  // Mark all feasible successors executable...
658  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
659    if (SuccFeasible[i])
660      markEdgeExecutable(BB, TI.getSuccessor(i));
661}
662
663void SCCPSolver::visitCastInst(CastInst &I) {
664  Value *V = I.getOperand(0);
665  LatticeVal &VState = getValueState(V);
666  if (VState.isOverdefined())          // Inherit overdefinedness of operand
667    markOverdefined(&I);
668  else if (VState.isConstant())        // Propagate constant value
669    markConstant(&I, Context->getConstantExprCast(I.getOpcode(),
670                                           VState.getConstant(), I.getType()));
671}
672
673void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
674  Value *Aggr = EVI.getAggregateOperand();
675
676  // If the operand to the extractvalue is an undef, the result is undef.
677  if (isa<UndefValue>(Aggr))
678    return;
679
680  // Currently only handle single-index extractvalues.
681  if (EVI.getNumIndices() != 1) {
682    markOverdefined(&EVI);
683    return;
684  }
685
686  Function *F = 0;
687  if (CallInst *CI = dyn_cast<CallInst>(Aggr))
688    F = CI->getCalledFunction();
689  else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
690    F = II->getCalledFunction();
691
692  // TODO: If IPSCCP resolves the callee of this function, we could propagate a
693  // result back!
694  if (F == 0 || TrackedMultipleRetVals.empty()) {
695    markOverdefined(&EVI);
696    return;
697  }
698
699  // See if we are tracking the result of the callee.  If not tracking this
700  // function (for example, it is a declaration) just move to overdefined.
701  if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) {
702    markOverdefined(&EVI);
703    return;
704  }
705
706  // Otherwise, the value will be merged in here as a result of CallSite
707  // handling.
708}
709
710void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
711  Value *Aggr = IVI.getAggregateOperand();
712  Value *Val = IVI.getInsertedValueOperand();
713
714  // If the operands to the insertvalue are undef, the result is undef.
715  if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val))
716    return;
717
718  // Currently only handle single-index insertvalues.
719  if (IVI.getNumIndices() != 1) {
720    markOverdefined(&IVI);
721    return;
722  }
723
724  // Currently only handle insertvalue instructions that are in a single-use
725  // chain that builds up a return value.
726  for (const InsertValueInst *TmpIVI = &IVI; ; ) {
727    if (!TmpIVI->hasOneUse()) {
728      markOverdefined(&IVI);
729      return;
730    }
731    const Value *V = *TmpIVI->use_begin();
732    if (isa<ReturnInst>(V))
733      break;
734    TmpIVI = dyn_cast<InsertValueInst>(V);
735    if (!TmpIVI) {
736      markOverdefined(&IVI);
737      return;
738    }
739  }
740
741  // See if we are tracking the result of the callee.
742  Function *F = IVI.getParent()->getParent();
743  DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
744    It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
745
746  // Merge in the inserted member value.
747  if (It != TrackedMultipleRetVals.end())
748    mergeInValue(It->second, F, getValueState(Val));
749
750  // Mark the aggregate result of the IVI overdefined; any tracking that we do
751  // will be done on the individual member values.
752  markOverdefined(&IVI);
753}
754
755void SCCPSolver::visitSelectInst(SelectInst &I) {
756  LatticeVal &CondValue = getValueState(I.getCondition());
757  if (CondValue.isUndefined())
758    return;
759  if (CondValue.isConstant()) {
760    if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
761      mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
762                                                          : I.getFalseValue()));
763      return;
764    }
765  }
766
767  // Otherwise, the condition is overdefined or a constant we can't evaluate.
768  // See if we can produce something better than overdefined based on the T/F
769  // value.
770  LatticeVal &TVal = getValueState(I.getTrueValue());
771  LatticeVal &FVal = getValueState(I.getFalseValue());
772
773  // select ?, C, C -> C.
774  if (TVal.isConstant() && FVal.isConstant() &&
775      TVal.getConstant() == FVal.getConstant()) {
776    markConstant(&I, FVal.getConstant());
777    return;
778  }
779
780  if (TVal.isUndefined()) {  // select ?, undef, X -> X.
781    mergeInValue(&I, FVal);
782  } else if (FVal.isUndefined()) {  // select ?, X, undef -> X.
783    mergeInValue(&I, TVal);
784  } else {
785    markOverdefined(&I);
786  }
787}
788
789// Handle BinaryOperators and Shift Instructions...
790void SCCPSolver::visitBinaryOperator(Instruction &I) {
791  LatticeVal &IV = ValueState[&I];
792  if (IV.isOverdefined()) return;
793
794  LatticeVal &V1State = getValueState(I.getOperand(0));
795  LatticeVal &V2State = getValueState(I.getOperand(1));
796
797  if (V1State.isOverdefined() || V2State.isOverdefined()) {
798    // If this is an AND or OR with 0 or -1, it doesn't matter that the other
799    // operand is overdefined.
800    if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
801      LatticeVal *NonOverdefVal = 0;
802      if (!V1State.isOverdefined()) {
803        NonOverdefVal = &V1State;
804      } else if (!V2State.isOverdefined()) {
805        NonOverdefVal = &V2State;
806      }
807
808      if (NonOverdefVal) {
809        if (NonOverdefVal->isUndefined()) {
810          // Could annihilate value.
811          if (I.getOpcode() == Instruction::And)
812            markConstant(IV, &I, Context->getNullValue(I.getType()));
813          else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
814            markConstant(IV, &I, Context->getConstantVectorAllOnesValue(PT));
815          else
816            markConstant(IV, &I,
817                         Context->getConstantIntAllOnesValue(I.getType()));
818          return;
819        } else {
820          if (I.getOpcode() == Instruction::And) {
821            if (NonOverdefVal->getConstant()->isNullValue()) {
822              markConstant(IV, &I, NonOverdefVal->getConstant());
823              return;      // X and 0 = 0
824            }
825          } else {
826            if (ConstantInt *CI =
827                     dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
828              if (CI->isAllOnesValue()) {
829                markConstant(IV, &I, NonOverdefVal->getConstant());
830                return;    // X or -1 = -1
831              }
832          }
833        }
834      }
835    }
836
837
838    // If both operands are PHI nodes, it is possible that this instruction has
839    // a constant value, despite the fact that the PHI node doesn't.  Check for
840    // this condition now.
841    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
842      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
843        if (PN1->getParent() == PN2->getParent()) {
844          // Since the two PHI nodes are in the same basic block, they must have
845          // entries for the same predecessors.  Walk the predecessor list, and
846          // if all of the incoming values are constants, and the result of
847          // evaluating this expression with all incoming value pairs is the
848          // same, then this expression is a constant even though the PHI node
849          // is not a constant!
850          LatticeVal Result;
851          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
852            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
853            BasicBlock *InBlock = PN1->getIncomingBlock(i);
854            LatticeVal &In2 =
855              getValueState(PN2->getIncomingValueForBlock(InBlock));
856
857            if (In1.isOverdefined() || In2.isOverdefined()) {
858              Result.markOverdefined();
859              break;  // Cannot fold this operation over the PHI nodes!
860            } else if (In1.isConstant() && In2.isConstant()) {
861              Constant *V =
862                     Context->getConstantExpr(I.getOpcode(), In1.getConstant(),
863                                              In2.getConstant());
864              if (Result.isUndefined())
865                Result.markConstant(V);
866              else if (Result.isConstant() && Result.getConstant() != V) {
867                Result.markOverdefined();
868                break;
869              }
870            }
871          }
872
873          // If we found a constant value here, then we know the instruction is
874          // constant despite the fact that the PHI nodes are overdefined.
875          if (Result.isConstant()) {
876            markConstant(IV, &I, Result.getConstant());
877            // Remember that this instruction is virtually using the PHI node
878            // operands.
879            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
880            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
881            return;
882          } else if (Result.isUndefined()) {
883            return;
884          }
885
886          // Okay, this really is overdefined now.  Since we might have
887          // speculatively thought that this was not overdefined before, and
888          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
889          // make sure to clean out any entries that we put there, for
890          // efficiency.
891          std::multimap<PHINode*, Instruction*>::iterator It, E;
892          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
893          while (It != E) {
894            if (It->second == &I) {
895              UsersOfOverdefinedPHIs.erase(It++);
896            } else
897              ++It;
898          }
899          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
900          while (It != E) {
901            if (It->second == &I) {
902              UsersOfOverdefinedPHIs.erase(It++);
903            } else
904              ++It;
905          }
906        }
907
908    markOverdefined(IV, &I);
909  } else if (V1State.isConstant() && V2State.isConstant()) {
910    markConstant(IV, &I,
911                Context->getConstantExpr(I.getOpcode(), V1State.getConstant(),
912                                           V2State.getConstant()));
913  }
914}
915
916// Handle ICmpInst instruction...
917void SCCPSolver::visitCmpInst(CmpInst &I) {
918  LatticeVal &IV = ValueState[&I];
919  if (IV.isOverdefined()) return;
920
921  LatticeVal &V1State = getValueState(I.getOperand(0));
922  LatticeVal &V2State = getValueState(I.getOperand(1));
923
924  if (V1State.isOverdefined() || V2State.isOverdefined()) {
925    // If both operands are PHI nodes, it is possible that this instruction has
926    // a constant value, despite the fact that the PHI node doesn't.  Check for
927    // this condition now.
928    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
929      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
930        if (PN1->getParent() == PN2->getParent()) {
931          // Since the two PHI nodes are in the same basic block, they must have
932          // entries for the same predecessors.  Walk the predecessor list, and
933          // if all of the incoming values are constants, and the result of
934          // evaluating this expression with all incoming value pairs is the
935          // same, then this expression is a constant even though the PHI node
936          // is not a constant!
937          LatticeVal Result;
938          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
939            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
940            BasicBlock *InBlock = PN1->getIncomingBlock(i);
941            LatticeVal &In2 =
942              getValueState(PN2->getIncomingValueForBlock(InBlock));
943
944            if (In1.isOverdefined() || In2.isOverdefined()) {
945              Result.markOverdefined();
946              break;  // Cannot fold this operation over the PHI nodes!
947            } else if (In1.isConstant() && In2.isConstant()) {
948              Constant *V = Context->getConstantExprCompare(I.getPredicate(),
949                                                     In1.getConstant(),
950                                                     In2.getConstant());
951              if (Result.isUndefined())
952                Result.markConstant(V);
953              else if (Result.isConstant() && Result.getConstant() != V) {
954                Result.markOverdefined();
955                break;
956              }
957            }
958          }
959
960          // If we found a constant value here, then we know the instruction is
961          // constant despite the fact that the PHI nodes are overdefined.
962          if (Result.isConstant()) {
963            markConstant(IV, &I, Result.getConstant());
964            // Remember that this instruction is virtually using the PHI node
965            // operands.
966            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
967            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
968            return;
969          } else if (Result.isUndefined()) {
970            return;
971          }
972
973          // Okay, this really is overdefined now.  Since we might have
974          // speculatively thought that this was not overdefined before, and
975          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
976          // make sure to clean out any entries that we put there, for
977          // efficiency.
978          std::multimap<PHINode*, Instruction*>::iterator It, E;
979          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
980          while (It != E) {
981            if (It->second == &I) {
982              UsersOfOverdefinedPHIs.erase(It++);
983            } else
984              ++It;
985          }
986          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
987          while (It != E) {
988            if (It->second == &I) {
989              UsersOfOverdefinedPHIs.erase(It++);
990            } else
991              ++It;
992          }
993        }
994
995    markOverdefined(IV, &I);
996  } else if (V1State.isConstant() && V2State.isConstant()) {
997    markConstant(IV, &I, Context->getConstantExprCompare(I.getPredicate(),
998                                                  V1State.getConstant(),
999                                                  V2State.getConstant()));
1000  }
1001}
1002
1003void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1004  // FIXME : SCCP does not handle vectors properly.
1005  markOverdefined(&I);
1006  return;
1007
1008#if 0
1009  LatticeVal &ValState = getValueState(I.getOperand(0));
1010  LatticeVal &IdxState = getValueState(I.getOperand(1));
1011
1012  if (ValState.isOverdefined() || IdxState.isOverdefined())
1013    markOverdefined(&I);
1014  else if(ValState.isConstant() && IdxState.isConstant())
1015    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1016                                                     IdxState.getConstant()));
1017#endif
1018}
1019
1020void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1021  // FIXME : SCCP does not handle vectors properly.
1022  markOverdefined(&I);
1023  return;
1024#if 0
1025  LatticeVal &ValState = getValueState(I.getOperand(0));
1026  LatticeVal &EltState = getValueState(I.getOperand(1));
1027  LatticeVal &IdxState = getValueState(I.getOperand(2));
1028
1029  if (ValState.isOverdefined() || EltState.isOverdefined() ||
1030      IdxState.isOverdefined())
1031    markOverdefined(&I);
1032  else if(ValState.isConstant() && EltState.isConstant() &&
1033          IdxState.isConstant())
1034    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1035                                                    EltState.getConstant(),
1036                                                    IdxState.getConstant()));
1037  else if (ValState.isUndefined() && EltState.isConstant() &&
1038           IdxState.isConstant())
1039    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1040                                                   EltState.getConstant(),
1041                                                   IdxState.getConstant()));
1042#endif
1043}
1044
1045void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1046  // FIXME : SCCP does not handle vectors properly.
1047  markOverdefined(&I);
1048  return;
1049#if 0
1050  LatticeVal &V1State   = getValueState(I.getOperand(0));
1051  LatticeVal &V2State   = getValueState(I.getOperand(1));
1052  LatticeVal &MaskState = getValueState(I.getOperand(2));
1053
1054  if (MaskState.isUndefined() ||
1055      (V1State.isUndefined() && V2State.isUndefined()))
1056    return;  // Undefined output if mask or both inputs undefined.
1057
1058  if (V1State.isOverdefined() || V2State.isOverdefined() ||
1059      MaskState.isOverdefined()) {
1060    markOverdefined(&I);
1061  } else {
1062    // A mix of constant/undef inputs.
1063    Constant *V1 = V1State.isConstant() ?
1064        V1State.getConstant() : UndefValue::get(I.getType());
1065    Constant *V2 = V2State.isConstant() ?
1066        V2State.getConstant() : UndefValue::get(I.getType());
1067    Constant *Mask = MaskState.isConstant() ?
1068      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1069    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1070  }
1071#endif
1072}
1073
1074// Handle getelementptr instructions... if all operands are constants then we
1075// can turn this into a getelementptr ConstantExpr.
1076//
1077void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1078  LatticeVal &IV = ValueState[&I];
1079  if (IV.isOverdefined()) return;
1080
1081  SmallVector<Constant*, 8> Operands;
1082  Operands.reserve(I.getNumOperands());
1083
1084  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1085    LatticeVal &State = getValueState(I.getOperand(i));
1086    if (State.isUndefined())
1087      return;  // Operands are not resolved yet...
1088    else if (State.isOverdefined()) {
1089      markOverdefined(IV, &I);
1090      return;
1091    }
1092    assert(State.isConstant() && "Unknown state!");
1093    Operands.push_back(State.getConstant());
1094  }
1095
1096  Constant *Ptr = Operands[0];
1097  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
1098
1099  markConstant(IV, &I, Context->getConstantExprGetElementPtr(Ptr, &Operands[0],
1100                                                      Operands.size()));
1101}
1102
1103void SCCPSolver::visitStoreInst(Instruction &SI) {
1104  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1105    return;
1106  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1107  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1108  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1109
1110  // Get the value we are storing into the global.
1111  LatticeVal &PtrVal = getValueState(SI.getOperand(0));
1112
1113  mergeInValue(I->second, GV, PtrVal);
1114  if (I->second.isOverdefined())
1115    TrackedGlobals.erase(I);      // No need to keep tracking this!
1116}
1117
1118
1119// Handle load instructions.  If the operand is a constant pointer to a constant
1120// global, we can replace the load with the loaded constant value!
1121void SCCPSolver::visitLoadInst(LoadInst &I) {
1122  LatticeVal &IV = ValueState[&I];
1123  if (IV.isOverdefined()) return;
1124
1125  LatticeVal &PtrVal = getValueState(I.getOperand(0));
1126  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1127  if (PtrVal.isConstant() && !I.isVolatile()) {
1128    Value *Ptr = PtrVal.getConstant();
1129    // TODO: Consider a target hook for valid address spaces for this xform.
1130    if (isa<ConstantPointerNull>(Ptr) &&
1131        cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) {
1132      // load null -> null
1133      markConstant(IV, &I, Context->getNullValue(I.getType()));
1134      return;
1135    }
1136
1137    // Transform load (constant global) into the value loaded.
1138    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1139      if (GV->isConstant()) {
1140        if (GV->hasDefinitiveInitializer()) {
1141          markConstant(IV, &I, GV->getInitializer());
1142          return;
1143        }
1144      } else if (!TrackedGlobals.empty()) {
1145        // If we are tracking this global, merge in the known value for it.
1146        DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1147          TrackedGlobals.find(GV);
1148        if (It != TrackedGlobals.end()) {
1149          mergeInValue(IV, &I, It->second);
1150          return;
1151        }
1152      }
1153    }
1154
1155    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1156    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1157      if (CE->getOpcode() == Instruction::GetElementPtr)
1158    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
1159      if (GV->isConstant() && GV->hasDefinitiveInitializer())
1160        if (Constant *V =
1161             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
1162                                                    Context)) {
1163          markConstant(IV, &I, V);
1164          return;
1165        }
1166  }
1167
1168  // Otherwise we cannot say for certain what value this load will produce.
1169  // Bail out.
1170  markOverdefined(IV, &I);
1171}
1172
1173void SCCPSolver::visitCallSite(CallSite CS) {
1174  Function *F = CS.getCalledFunction();
1175  Instruction *I = CS.getInstruction();
1176
1177  // The common case is that we aren't tracking the callee, either because we
1178  // are not doing interprocedural analysis or the callee is indirect, or is
1179  // external.  Handle these cases first.
1180  if (F == 0 || !F->hasLocalLinkage()) {
1181CallOverdefined:
1182    // Void return and not tracking callee, just bail.
1183    if (I->getType() == Type::VoidTy) return;
1184
1185    // Otherwise, if we have a single return value case, and if the function is
1186    // a declaration, maybe we can constant fold it.
1187    if (!isa<StructType>(I->getType()) && F && F->isDeclaration() &&
1188        canConstantFoldCallTo(F)) {
1189
1190      SmallVector<Constant*, 8> Operands;
1191      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1192           AI != E; ++AI) {
1193        LatticeVal &State = getValueState(*AI);
1194        if (State.isUndefined())
1195          return;  // Operands are not resolved yet.
1196        else if (State.isOverdefined()) {
1197          markOverdefined(I);
1198          return;
1199        }
1200        assert(State.isConstant() && "Unknown state!");
1201        Operands.push_back(State.getConstant());
1202      }
1203
1204      // If we can constant fold this, mark the result of the call as a
1205      // constant.
1206      if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) {
1207        markConstant(I, C);
1208        return;
1209      }
1210    }
1211
1212    // Otherwise, we don't know anything about this call, mark it overdefined.
1213    markOverdefined(I);
1214    return;
1215  }
1216
1217  // If this is a single/zero retval case, see if we're tracking the function.
1218  DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1219  if (TFRVI != TrackedRetVals.end()) {
1220    // If so, propagate the return value of the callee into this call result.
1221    mergeInValue(I, TFRVI->second);
1222  } else if (isa<StructType>(I->getType())) {
1223    // Check to see if we're tracking this callee, if not, handle it in the
1224    // common path above.
1225    DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
1226    TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
1227    if (TMRVI == TrackedMultipleRetVals.end())
1228      goto CallOverdefined;
1229
1230    // If we are tracking this callee, propagate the return values of the call
1231    // into this call site.  We do this by walking all the uses. Single-index
1232    // ExtractValueInst uses can be tracked; anything more complicated is
1233    // currently handled conservatively.
1234    for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1235         UI != E; ++UI) {
1236      if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
1237        if (EVI->getNumIndices() == 1) {
1238          mergeInValue(EVI,
1239                  TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
1240          continue;
1241        }
1242      }
1243      // The aggregate value is used in a way not handled here. Assume nothing.
1244      markOverdefined(*UI);
1245    }
1246  } else {
1247    // Otherwise we're not tracking this callee, so handle it in the
1248    // common path above.
1249    goto CallOverdefined;
1250  }
1251
1252  // Finally, if this is the first call to the function hit, mark its entry
1253  // block executable.
1254  if (!BBExecutable.count(F->begin()))
1255    MarkBlockExecutable(F->begin());
1256
1257  // Propagate information from this call site into the callee.
1258  CallSite::arg_iterator CAI = CS.arg_begin();
1259  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1260       AI != E; ++AI, ++CAI) {
1261    LatticeVal &IV = ValueState[AI];
1262    if (!IV.isOverdefined())
1263      mergeInValue(IV, AI, getValueState(*CAI));
1264  }
1265}
1266
1267
1268void SCCPSolver::Solve() {
1269  // Process the work lists until they are empty!
1270  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1271         !OverdefinedInstWorkList.empty()) {
1272    // Process the instruction work list...
1273    while (!OverdefinedInstWorkList.empty()) {
1274      Value *I = OverdefinedInstWorkList.back();
1275      OverdefinedInstWorkList.pop_back();
1276
1277      DOUT << "\nPopped off OI-WL: " << *I;
1278
1279      // "I" got into the work list because it either made the transition from
1280      // bottom to constant
1281      //
1282      // Anything on this worklist that is overdefined need not be visited
1283      // since all of its users will have already been marked as overdefined
1284      // Update all of the users of this instruction's value...
1285      //
1286      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1287           UI != E; ++UI)
1288        OperandChangedState(*UI);
1289    }
1290    // Process the instruction work list...
1291    while (!InstWorkList.empty()) {
1292      Value *I = InstWorkList.back();
1293      InstWorkList.pop_back();
1294
1295      DOUT << "\nPopped off I-WL: " << *I;
1296
1297      // "I" got into the work list because it either made the transition from
1298      // bottom to constant
1299      //
1300      // Anything on this worklist that is overdefined need not be visited
1301      // since all of its users will have already been marked as overdefined.
1302      // Update all of the users of this instruction's value...
1303      //
1304      if (!getValueState(I).isOverdefined())
1305        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1306             UI != E; ++UI)
1307          OperandChangedState(*UI);
1308    }
1309
1310    // Process the basic block work list...
1311    while (!BBWorkList.empty()) {
1312      BasicBlock *BB = BBWorkList.back();
1313      BBWorkList.pop_back();
1314
1315      DOUT << "\nPopped off BBWL: " << *BB;
1316
1317      // Notify all instructions in this basic block that they are newly
1318      // executable.
1319      visit(BB);
1320    }
1321  }
1322}
1323
1324/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1325/// that branches on undef values cannot reach any of their successors.
1326/// However, this is not a safe assumption.  After we solve dataflow, this
1327/// method should be use to handle this.  If this returns true, the solver
1328/// should be rerun.
1329///
1330/// This method handles this by finding an unresolved branch and marking it one
1331/// of the edges from the block as being feasible, even though the condition
1332/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1333/// CFG and only slightly pessimizes the analysis results (by marking one,
1334/// potentially infeasible, edge feasible).  This cannot usefully modify the
1335/// constraints on the condition of the branch, as that would impact other users
1336/// of the value.
1337///
1338/// This scan also checks for values that use undefs, whose results are actually
1339/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1340/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1341/// even if X isn't defined.
1342bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1343  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1344    if (!BBExecutable.count(BB))
1345      continue;
1346
1347    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1348      // Look for instructions which produce undef values.
1349      if (I->getType() == Type::VoidTy) continue;
1350
1351      LatticeVal &LV = getValueState(I);
1352      if (!LV.isUndefined()) continue;
1353
1354      // Get the lattice values of the first two operands for use below.
1355      LatticeVal &Op0LV = getValueState(I->getOperand(0));
1356      LatticeVal Op1LV;
1357      if (I->getNumOperands() == 2) {
1358        // If this is a two-operand instruction, and if both operands are
1359        // undefs, the result stays undef.
1360        Op1LV = getValueState(I->getOperand(1));
1361        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1362          continue;
1363      }
1364
1365      // If this is an instructions whose result is defined even if the input is
1366      // not fully defined, propagate the information.
1367      const Type *ITy = I->getType();
1368      switch (I->getOpcode()) {
1369      default: break;          // Leave the instruction as an undef.
1370      case Instruction::ZExt:
1371        // After a zero extend, we know the top part is zero.  SExt doesn't have
1372        // to be handled here, because we don't know whether the top part is 1's
1373        // or 0's.
1374        assert(Op0LV.isUndefined());
1375        markForcedConstant(LV, I, Context->getNullValue(ITy));
1376        return true;
1377      case Instruction::Mul:
1378      case Instruction::And:
1379        // undef * X -> 0.   X could be zero.
1380        // undef & X -> 0.   X could be zero.
1381        markForcedConstant(LV, I, Context->getNullValue(ITy));
1382        return true;
1383
1384      case Instruction::Or:
1385        // undef | X -> -1.   X could be -1.
1386        if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
1387          markForcedConstant(LV, I,
1388                             Context->getConstantVectorAllOnesValue(PTy));
1389        else
1390          markForcedConstant(LV, I, Context->getConstantIntAllOnesValue(ITy));
1391        return true;
1392
1393      case Instruction::SDiv:
1394      case Instruction::UDiv:
1395      case Instruction::SRem:
1396      case Instruction::URem:
1397        // X / undef -> undef.  No change.
1398        // X % undef -> undef.  No change.
1399        if (Op1LV.isUndefined()) break;
1400
1401        // undef / X -> 0.   X could be maxint.
1402        // undef % X -> 0.   X could be 1.
1403        markForcedConstant(LV, I, Context->getNullValue(ITy));
1404        return true;
1405
1406      case Instruction::AShr:
1407        // undef >>s X -> undef.  No change.
1408        if (Op0LV.isUndefined()) break;
1409
1410        // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
1411        if (Op0LV.isConstant())
1412          markForcedConstant(LV, I, Op0LV.getConstant());
1413        else
1414          markOverdefined(LV, I);
1415        return true;
1416      case Instruction::LShr:
1417      case Instruction::Shl:
1418        // undef >> X -> undef.  No change.
1419        // undef << X -> undef.  No change.
1420        if (Op0LV.isUndefined()) break;
1421
1422        // X >> undef -> 0.  X could be 0.
1423        // X << undef -> 0.  X could be 0.
1424        markForcedConstant(LV, I, Context->getNullValue(ITy));
1425        return true;
1426      case Instruction::Select:
1427        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1428        if (Op0LV.isUndefined()) {
1429          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1430            Op1LV = getValueState(I->getOperand(2));
1431        } else if (Op1LV.isUndefined()) {
1432          // c ? undef : undef -> undef.  No change.
1433          Op1LV = getValueState(I->getOperand(2));
1434          if (Op1LV.isUndefined())
1435            break;
1436          // Otherwise, c ? undef : x -> x.
1437        } else {
1438          // Leave Op1LV as Operand(1)'s LatticeValue.
1439        }
1440
1441        if (Op1LV.isConstant())
1442          markForcedConstant(LV, I, Op1LV.getConstant());
1443        else
1444          markOverdefined(LV, I);
1445        return true;
1446      case Instruction::Call:
1447        // If a call has an undef result, it is because it is constant foldable
1448        // but one of the inputs was undef.  Just force the result to
1449        // overdefined.
1450        markOverdefined(LV, I);
1451        return true;
1452      }
1453    }
1454
1455    TerminatorInst *TI = BB->getTerminator();
1456    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1457      if (!BI->isConditional()) continue;
1458      if (!getValueState(BI->getCondition()).isUndefined())
1459        continue;
1460    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1461      if (SI->getNumSuccessors()<2)   // no cases
1462        continue;
1463      if (!getValueState(SI->getCondition()).isUndefined())
1464        continue;
1465    } else {
1466      continue;
1467    }
1468
1469    // If the edge to the second successor isn't thought to be feasible yet,
1470    // mark it so now.  We pick the second one so that this goes to some
1471    // enumerated value in a switch instead of going to the default destination.
1472    if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
1473      continue;
1474
1475    // Otherwise, it isn't already thought to be feasible.  Mark it as such now
1476    // and return.  This will make other blocks reachable, which will allow new
1477    // values to be discovered and existing ones to be moved in the lattice.
1478    markEdgeExecutable(BB, TI->getSuccessor(1));
1479
1480    // This must be a conditional branch of switch on undef.  At this point,
1481    // force the old terminator to branch to the first successor.  This is
1482    // required because we are now influencing the dataflow of the function with
1483    // the assumption that this edge is taken.  If we leave the branch condition
1484    // as undef, then further analysis could think the undef went another way
1485    // leading to an inconsistent set of conclusions.
1486    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1487      BI->setCondition(Context->getConstantIntFalse());
1488    } else {
1489      SwitchInst *SI = cast<SwitchInst>(TI);
1490      SI->setCondition(SI->getCaseValue(1));
1491    }
1492
1493    return true;
1494  }
1495
1496  return false;
1497}
1498
1499
1500namespace {
1501  //===--------------------------------------------------------------------===//
1502  //
1503  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1504  /// Sparse Conditional Constant Propagator.
1505  ///
1506  struct VISIBILITY_HIDDEN SCCP : public FunctionPass {
1507    static char ID; // Pass identification, replacement for typeid
1508    SCCP() : FunctionPass(&ID) {}
1509
1510    // runOnFunction - Run the Sparse Conditional Constant Propagation
1511    // algorithm, and return true if the function was modified.
1512    //
1513    bool runOnFunction(Function &F);
1514
1515    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1516      AU.setPreservesCFG();
1517    }
1518  };
1519} // end anonymous namespace
1520
1521char SCCP::ID = 0;
1522static RegisterPass<SCCP>
1523X("sccp", "Sparse Conditional Constant Propagation");
1524
1525// createSCCPPass - This is the public interface to this file...
1526FunctionPass *llvm::createSCCPPass() {
1527  return new SCCP();
1528}
1529
1530
1531// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1532// and return true if the function was modified.
1533//
1534bool SCCP::runOnFunction(Function &F) {
1535  DOUT << "SCCP on function '" << F.getNameStart() << "'\n";
1536  SCCPSolver Solver;
1537  Solver.setContext(Context);
1538
1539  // Mark the first block of the function as being executable.
1540  Solver.MarkBlockExecutable(F.begin());
1541
1542  // Mark all arguments to the function as being overdefined.
1543  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1544    Solver.markOverdefined(AI);
1545
1546  // Solve for constants.
1547  bool ResolvedUndefs = true;
1548  while (ResolvedUndefs) {
1549    Solver.Solve();
1550    DOUT << "RESOLVING UNDEFs\n";
1551    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1552  }
1553
1554  bool MadeChanges = false;
1555
1556  // If we decided that there are basic blocks that are dead in this function,
1557  // delete their contents now.  Note that we cannot actually delete the blocks,
1558  // as we cannot modify the CFG of the function.
1559  //
1560  SmallVector<Instruction*, 512> Insts;
1561  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1562
1563  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1564    if (!Solver.isBlockExecutable(BB)) {
1565      DOUT << "  BasicBlock Dead:" << *BB;
1566      ++NumDeadBlocks;
1567
1568      // Delete the instructions backwards, as it has a reduced likelihood of
1569      // having to update as many def-use and use-def chains.
1570      for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1571           I != E; ++I)
1572        Insts.push_back(I);
1573      while (!Insts.empty()) {
1574        Instruction *I = Insts.back();
1575        Insts.pop_back();
1576        if (!I->use_empty())
1577          I->replaceAllUsesWith(Context->getUndef(I->getType()));
1578        BB->getInstList().erase(I);
1579        MadeChanges = true;
1580        ++NumInstRemoved;
1581      }
1582    } else {
1583      // Iterate over all of the instructions in a function, replacing them with
1584      // constants if we have found them to be of constant values.
1585      //
1586      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1587        Instruction *Inst = BI++;
1588        if (Inst->getType() == Type::VoidTy ||
1589            isa<TerminatorInst>(Inst))
1590          continue;
1591
1592        LatticeVal &IV = Values[Inst];
1593        if (!IV.isConstant() && !IV.isUndefined())
1594          continue;
1595
1596        Constant *Const = IV.isConstant()
1597          ? IV.getConstant() : Context->getUndef(Inst->getType());
1598        DOUT << "  Constant: " << *Const << " = " << *Inst;
1599
1600        // Replaces all of the uses of a variable with uses of the constant.
1601        Inst->replaceAllUsesWith(Const);
1602
1603        // Delete the instruction.
1604        Inst->eraseFromParent();
1605
1606        // Hey, we just changed something!
1607        MadeChanges = true;
1608        ++NumInstRemoved;
1609      }
1610    }
1611
1612  return MadeChanges;
1613}
1614
1615namespace {
1616  //===--------------------------------------------------------------------===//
1617  //
1618  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1619  /// Constant Propagation.
1620  ///
1621  struct VISIBILITY_HIDDEN IPSCCP : public ModulePass {
1622    static char ID;
1623    IPSCCP() : ModulePass(&ID) {}
1624    bool runOnModule(Module &M);
1625  };
1626} // end anonymous namespace
1627
1628char IPSCCP::ID = 0;
1629static RegisterPass<IPSCCP>
1630Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1631
1632// createIPSCCPPass - This is the public interface to this file...
1633ModulePass *llvm::createIPSCCPPass() {
1634  return new IPSCCP();
1635}
1636
1637
1638static bool AddressIsTaken(GlobalValue *GV) {
1639  // Delete any dead constantexpr klingons.
1640  GV->removeDeadConstantUsers();
1641
1642  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1643       UI != E; ++UI)
1644    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1645      if (SI->getOperand(0) == GV || SI->isVolatile())
1646        return true;  // Storing addr of GV.
1647    } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1648      // Make sure we are calling the function, not passing the address.
1649      CallSite CS = CallSite::get(cast<Instruction>(*UI));
1650      if (CS.hasArgument(GV))
1651        return true;
1652    } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1653      if (LI->isVolatile())
1654        return true;
1655    } else {
1656      return true;
1657    }
1658  return false;
1659}
1660
1661bool IPSCCP::runOnModule(Module &M) {
1662  SCCPSolver Solver;
1663
1664  // Loop over all functions, marking arguments to those with their addresses
1665  // taken or that are external as overdefined.
1666  //
1667  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1668    if (!F->hasLocalLinkage() || AddressIsTaken(F)) {
1669      if (!F->isDeclaration())
1670        Solver.MarkBlockExecutable(F->begin());
1671      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1672           AI != E; ++AI)
1673        Solver.markOverdefined(AI);
1674    } else {
1675      Solver.AddTrackedFunction(F);
1676    }
1677
1678  // Loop over global variables.  We inform the solver about any internal global
1679  // variables that do not have their 'addresses taken'.  If they don't have
1680  // their addresses taken, we can propagate constants through them.
1681  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1682       G != E; ++G)
1683    if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1684      Solver.TrackValueOfGlobalVariable(G);
1685
1686  // Solve for constants.
1687  bool ResolvedUndefs = true;
1688  while (ResolvedUndefs) {
1689    Solver.Solve();
1690
1691    DOUT << "RESOLVING UNDEFS\n";
1692    ResolvedUndefs = false;
1693    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1694      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1695  }
1696
1697  bool MadeChanges = false;
1698
1699  // Iterate over all of the instructions in the module, replacing them with
1700  // constants if we have found them to be of constant values.
1701  //
1702  SmallVector<Instruction*, 512> Insts;
1703  SmallVector<BasicBlock*, 512> BlocksToErase;
1704  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1705
1706  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1707    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1708         AI != E; ++AI)
1709      if (!AI->use_empty()) {
1710        LatticeVal &IV = Values[AI];
1711        if (IV.isConstant() || IV.isUndefined()) {
1712          Constant *CST = IV.isConstant() ?
1713            IV.getConstant() : Context->getUndef(AI->getType());
1714          DOUT << "***  Arg " << *AI << " = " << *CST <<"\n";
1715
1716          // Replaces all of the uses of a variable with uses of the
1717          // constant.
1718          AI->replaceAllUsesWith(CST);
1719          ++IPNumArgsElimed;
1720        }
1721      }
1722
1723    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1724      if (!Solver.isBlockExecutable(BB)) {
1725        DOUT << "  BasicBlock Dead:" << *BB;
1726        ++IPNumDeadBlocks;
1727
1728        // Delete the instructions backwards, as it has a reduced likelihood of
1729        // having to update as many def-use and use-def chains.
1730        TerminatorInst *TI = BB->getTerminator();
1731        for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1732          Insts.push_back(I);
1733
1734        while (!Insts.empty()) {
1735          Instruction *I = Insts.back();
1736          Insts.pop_back();
1737          if (!I->use_empty())
1738            I->replaceAllUsesWith(Context->getUndef(I->getType()));
1739          BB->getInstList().erase(I);
1740          MadeChanges = true;
1741          ++IPNumInstRemoved;
1742        }
1743
1744        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1745          BasicBlock *Succ = TI->getSuccessor(i);
1746          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1747            TI->getSuccessor(i)->removePredecessor(BB);
1748        }
1749        if (!TI->use_empty())
1750          TI->replaceAllUsesWith(Context->getUndef(TI->getType()));
1751        BB->getInstList().erase(TI);
1752
1753        if (&*BB != &F->front())
1754          BlocksToErase.push_back(BB);
1755        else
1756          new UnreachableInst(BB);
1757
1758      } else {
1759        for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1760          Instruction *Inst = BI++;
1761          if (Inst->getType() == Type::VoidTy)
1762            continue;
1763
1764          LatticeVal &IV = Values[Inst];
1765          if (!IV.isConstant() && !IV.isUndefined())
1766            continue;
1767
1768          Constant *Const = IV.isConstant()
1769            ? IV.getConstant() : Context->getUndef(Inst->getType());
1770          DOUT << "  Constant: " << *Const << " = " << *Inst;
1771
1772          // Replaces all of the uses of a variable with uses of the
1773          // constant.
1774          Inst->replaceAllUsesWith(Const);
1775
1776          // Delete the instruction.
1777          if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1778            Inst->eraseFromParent();
1779
1780          // Hey, we just changed something!
1781          MadeChanges = true;
1782          ++IPNumInstRemoved;
1783        }
1784      }
1785
1786    // Now that all instructions in the function are constant folded, erase dead
1787    // blocks, because we can now use ConstantFoldTerminator to get rid of
1788    // in-edges.
1789    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1790      // If there are any PHI nodes in this successor, drop entries for BB now.
1791      BasicBlock *DeadBB = BlocksToErase[i];
1792      while (!DeadBB->use_empty()) {
1793        Instruction *I = cast<Instruction>(DeadBB->use_back());
1794        bool Folded = ConstantFoldTerminator(I->getParent());
1795        if (!Folded) {
1796          // The constant folder may not have been able to fold the terminator
1797          // if this is a branch or switch on undef.  Fold it manually as a
1798          // branch to the first successor.
1799#ifndef NDEBUG
1800          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1801            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1802                   "Branch should be foldable!");
1803          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1804            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1805          } else {
1806            assert(0 && "Didn't fold away reference to block!");
1807          }
1808#endif
1809
1810          // Make this an uncond branch to the first successor.
1811          TerminatorInst *TI = I->getParent()->getTerminator();
1812          BranchInst::Create(TI->getSuccessor(0), TI);
1813
1814          // Remove entries in successor phi nodes to remove edges.
1815          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1816            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1817
1818          // Remove the old terminator.
1819          TI->eraseFromParent();
1820        }
1821      }
1822
1823      // Finally, delete the basic block.
1824      F->getBasicBlockList().erase(DeadBB);
1825    }
1826    BlocksToErase.clear();
1827  }
1828
1829  // If we inferred constant or undef return values for a function, we replaced
1830  // all call uses with the inferred value.  This means we don't need to bother
1831  // actually returning anything from the function.  Replace all return
1832  // instructions with return undef.
1833  // TODO: Process multiple value ret instructions also.
1834  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1835  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1836         E = RV.end(); I != E; ++I)
1837    if (!I->second.isOverdefined() &&
1838        I->first->getReturnType() != Type::VoidTy) {
1839      Function *F = I->first;
1840      for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1841        if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1842          if (!isa<UndefValue>(RI->getOperand(0)))
1843            RI->setOperand(0, Context->getUndef(F->getReturnType()));
1844    }
1845
1846  // If we infered constant or undef values for globals variables, we can delete
1847  // the global and any stores that remain to it.
1848  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1849  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1850         E = TG.end(); I != E; ++I) {
1851    GlobalVariable *GV = I->first;
1852    assert(!I->second.isOverdefined() &&
1853           "Overdefined values should have been taken out of the map!");
1854    DOUT << "Found that GV '" << GV->getNameStart() << "' is constant!\n";
1855    while (!GV->use_empty()) {
1856      StoreInst *SI = cast<StoreInst>(GV->use_back());
1857      SI->eraseFromParent();
1858    }
1859    M.getGlobalList().erase(GV);
1860    ++IPNumGlobalConst;
1861  }
1862
1863  return MadeChanges;
1864}
1865