SCCP.cpp revision 59f0ce2a41b4349f8062ba050dd84e34635781b5
1//===- SCCP.cpp - Sparse Conditional Constant Propogation -----------------===//
2//
3// This file implements sparse conditional constant propogation and merging:
4//
5// Specifically, this:
6//   * Assumes values are constant unless proven otherwise
7//   * Assumes BasicBlocks are dead unless proven otherwise
8//   * Proves values to be constant, and replaces them with constants
9//   . Proves conditional branches constant, and unconditionalizes them
10//   * Folds multiple identical constants in the constant pool together
11//
12// Notice that:
13//   * This pass has a habit of making definitions be dead.  It is a good idea
14//     to to run a DCE pass sometime after running this pass.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/Transforms/Scalar/ConstantProp.h"
19#include "llvm/ConstantHandling.h"
20#include "llvm/Function.h"
21#include "llvm/iPHINode.h"
22#include "llvm/iMemory.h"
23#include "llvm/iTerminators.h"
24#include "llvm/iOther.h"
25#include "llvm/Pass.h"
26#include "llvm/Support/InstVisitor.h"
27#include "Support/STLExtras.h"
28#include <algorithm>
29#include <set>
30#include <iostream>
31using std::cerr;
32
33#if 0    // Enable this to get SCCP debug output
34#define DEBUG_SCCP(X) X
35#else
36#define DEBUG_SCCP(X)
37#endif
38
39// InstVal class - This class represents the different lattice values that an
40// instruction may occupy.  It is a simple class with value semantics.
41//
42namespace {
43class InstVal {
44  enum {
45    undefined,           // This instruction has no known value
46    constant,            // This instruction has a constant value
47    // Range,            // This instruction is known to fall within a range
48    overdefined          // This instruction has an unknown value
49  } LatticeValue;        // The current lattice position
50  Constant *ConstantVal; // If Constant value, the current value
51public:
52  inline InstVal() : LatticeValue(undefined), ConstantVal(0) {}
53
54  // markOverdefined - Return true if this is a new status to be in...
55  inline bool markOverdefined() {
56    if (LatticeValue != overdefined) {
57      LatticeValue = overdefined;
58      return true;
59    }
60    return false;
61  }
62
63  // markConstant - Return true if this is a new status for us...
64  inline bool markConstant(Constant *V) {
65    if (LatticeValue != constant) {
66      LatticeValue = constant;
67      ConstantVal = V;
68      return true;
69    } else {
70      assert(ConstantVal == V && "Marking constant with different value");
71    }
72    return false;
73  }
74
75  inline bool isUndefined()   const { return LatticeValue == undefined; }
76  inline bool isConstant()    const { return LatticeValue == constant; }
77  inline bool isOverdefined() const { return LatticeValue == overdefined; }
78
79  inline Constant *getConstant() const { return ConstantVal; }
80};
81
82} // end anonymous namespace
83
84
85//===----------------------------------------------------------------------===//
86// SCCP Class
87//
88// This class does all of the work of Sparse Conditional Constant Propogation.
89//
90namespace {
91class SCCP : public FunctionPass, public InstVisitor<SCCP> {
92  std::set<BasicBlock*>     BBExecutable;// The basic blocks that are executable
93  std::map<Value*, InstVal> ValueState;  // The state each value is in...
94
95  std::set<Instruction*>    InstWorkList;// The instruction work list
96  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
97public:
98
99  const char *getPassName() const {
100    return "Sparse Conditional Constant Propogation";
101  }
102
103  // runOnFunction - Run the Sparse Conditional Constant Propogation algorithm,
104  // and return true if the function was modified.
105  //
106  bool runOnFunction(Function *F);
107
108  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
109    // FIXME: SCCP does not preserve the CFG because it folds terminators!
110    //AU.preservesCFG();
111  }
112
113
114  //===--------------------------------------------------------------------===//
115  // The implementation of this class
116  //
117private:
118  friend class InstVisitor<SCCP>;        // Allow callbacks from visitor
119
120  // markValueOverdefined - Make a value be marked as "constant".  If the value
121  // is not already a constant, add it to the instruction work list so that
122  // the users of the instruction are updated later.
123  //
124  inline bool markConstant(Instruction *I, Constant *V) {
125    DEBUG_SCCP(cerr << "markConstant: " << V << " = " << I);
126
127    if (ValueState[I].markConstant(V)) {
128      InstWorkList.insert(I);
129      return true;
130    }
131    return false;
132  }
133
134  // markValueOverdefined - Make a value be marked as "overdefined". If the
135  // value is not already overdefined, add it to the instruction work list so
136  // that the users of the instruction are updated later.
137  //
138  inline bool markOverdefined(Value *V) {
139    if (ValueState[V].markOverdefined()) {
140      if (Instruction *I = dyn_cast<Instruction>(V)) {
141	DEBUG_SCCP(cerr << "markOverdefined: " << V);
142	InstWorkList.insert(I);  // Only instructions go on the work list
143      }
144      return true;
145    }
146    return false;
147  }
148
149  // getValueState - Return the InstVal object that corresponds to the value.
150  // This function is neccesary because not all values should start out in the
151  // underdefined state... Argument's should be overdefined, and
152  // constants should be marked as constants.  If a value is not known to be an
153  // Instruction object, then use this accessor to get its value from the map.
154  //
155  inline InstVal &getValueState(Value *V) {
156    std::map<Value*, InstVal>::iterator I = ValueState.find(V);
157    if (I != ValueState.end()) return I->second;  // Common case, in the map
158
159    if (Constant *CPV = dyn_cast<Constant>(V)) {  // Constants are constant
160      ValueState[CPV].markConstant(CPV);
161    } else if (isa<Argument>(V)) {                // Arguments are overdefined
162      ValueState[V].markOverdefined();
163    }
164    // All others are underdefined by default...
165    return ValueState[V];
166  }
167
168  // markExecutable - Mark a basic block as executable, adding it to the BB
169  // work list if it is not already executable...
170  //
171  void markExecutable(BasicBlock *BB) {
172    if (BBExecutable.count(BB)) return;
173    DEBUG_SCCP(cerr << "Marking BB Executable: " << BB);
174    BBExecutable.insert(BB);   // Basic block is executable!
175    BBWorkList.push_back(BB);  // Add the block to the work list!
176  }
177
178
179  // visit implementations - Something changed in this instruction... Either an
180  // operand made a transition, or the instruction is newly executable.  Change
181  // the value type of I to reflect these changes if appropriate.
182  //
183  void visitPHINode(PHINode *I);
184
185  // Terminators
186  void visitReturnInst(ReturnInst *I) { /*does not have an effect*/ }
187  void visitBranchInst(BranchInst *I);
188  void visitInvokeInst(InvokeInst *I);
189  void visitSwitchInst(SwitchInst *I);
190
191  void visitUnaryOperator(Instruction *I);
192  void visitCastInst(CastInst *I) { visitUnaryOperator(I); }
193  void visitBinaryOperator(Instruction *I);
194  void visitShiftInst(ShiftInst *I) { visitBinaryOperator(I); }
195
196  // Instructions that cannot be folded away...
197  void visitStoreInst     (Instruction *I) { /*returns void*/ }
198  void visitMemAccessInst (Instruction *I) { markOverdefined(I); }
199  void visitCallInst      (Instruction *I) { markOverdefined(I); }
200  void visitInvokeInst    (Instruction *I) { markOverdefined(I); }
201  void visitAllocationInst(Instruction *I) { markOverdefined(I); }
202  void visitFreeInst      (Instruction *I) { /*returns void*/ }
203
204  void visitInstruction(Instruction *I) {
205    // If a new instruction is added to LLVM that we don't handle...
206    cerr << "SCCP: Don't know how to handle: " << I;
207    markOverdefined(I);   // Just in case
208  }
209
210  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
211  // block to the 'To' basic block is currently feasible...
212  //
213  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
214
215  // OperandChangedState - This method is invoked on all of the users of an
216  // instruction that was just changed state somehow....  Based on this
217  // information, we need to update the specified user of this instruction.
218  //
219  void OperandChangedState(User *U) {
220    // Only instructions use other variable values!
221    Instruction *I = cast<Instruction>(U);
222    if (!BBExecutable.count(I->getParent())) return;// Inst not executable yet!
223    visit(I);
224  }
225};
226} // end anonymous namespace
227
228
229// createSCCPPass - This is the public interface to this file...
230//
231Pass *createSCCPPass() {
232  return new SCCP();
233}
234
235
236
237//===----------------------------------------------------------------------===//
238// SCCP Class Implementation
239
240
241// runOnFunction() - Run the Sparse Conditional Constant Propogation algorithm,
242// and return true if the function was modified.
243//
244bool SCCP::runOnFunction(Function *F) {
245  // Mark the first block of the function as being executable...
246  markExecutable(F->front());
247
248  // Process the work lists until their are empty!
249  while (!BBWorkList.empty() || !InstWorkList.empty()) {
250    // Process the instruction work list...
251    while (!InstWorkList.empty()) {
252      Instruction *I = *InstWorkList.begin();
253      InstWorkList.erase(InstWorkList.begin());
254
255      DEBUG_SCCP(cerr << "\nPopped off I-WL: " << I);
256
257
258      // "I" got into the work list because it either made the transition from
259      // bottom to constant, or to Overdefined.
260      //
261      // Update all of the users of this instruction's value...
262      //
263      for_each(I->use_begin(), I->use_end(),
264	       bind_obj(this, &SCCP::OperandChangedState));
265    }
266
267    // Process the basic block work list...
268    while (!BBWorkList.empty()) {
269      BasicBlock *BB = BBWorkList.back();
270      BBWorkList.pop_back();
271
272      DEBUG_SCCP(cerr << "\nPopped off BBWL: " << BB);
273
274      // If this block only has a single successor, mark it as executable as
275      // well... if not, terminate the do loop.
276      //
277      if (BB->getTerminator()->getNumSuccessors() == 1)
278        markExecutable(BB->getTerminator()->getSuccessor(0));
279
280      // Notify all instructions in this basic block that they are newly
281      // executable.
282      visit(BB);
283    }
284  }
285
286#ifdef DEBUG_SCCP
287  for (Function::iterator BBI = F->begin(), BBEnd = F->end();
288       BBI != BBEnd; ++BBI)
289    if (!BBExecutable.count(*BBI))
290      cerr << "BasicBlock Dead:" << *BBI;
291#endif
292
293
294  // Iterate over all of the instructions in a function, replacing them with
295  // constants if we have found them to be of constant values.
296  //
297  bool MadeChanges = false;
298  for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) {
299    BasicBlock *BB = *FI;
300    for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) {
301      Instruction *Inst = *BI;
302      InstVal &IV = ValueState[Inst];
303      if (IV.isConstant()) {
304        Constant *Const = IV.getConstant();
305        DEBUG_SCCP(cerr << "Constant: " << Inst << "  is: " << Const);
306
307        // Replaces all of the uses of a variable with uses of the constant.
308        Inst->replaceAllUsesWith(Const);
309
310        // Remove the operator from the list of definitions... and delete it.
311        delete BB->getInstList().remove(BI);
312
313        // Hey, we just changed something!
314        MadeChanges = true;
315
316        // Do NOT advance the iterator, skipping the next instruction...
317        continue;
318
319      } else if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Inst)) {
320        MadeChanges |= ConstantFoldTerminator(BB, BI, TI);
321      }
322
323      ++BI;
324    }
325  }
326
327  // Reset state so that the next invocation will have empty data structures
328  BBExecutable.clear();
329  ValueState.clear();
330
331  return MadeChanges;
332}
333
334// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
335// block to the 'To' basic block is currently feasible...
336//
337bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
338  assert(BBExecutable.count(To) && "Dest should always be alive!");
339
340  // Make sure the source basic block is executable!!
341  if (!BBExecutable.count(From)) return false;
342
343  // This should check the terminator in From!
344  return true;
345}
346
347// visit Implementations - Something changed in this instruction... Either an
348// operand made a transition, or the instruction is newly executable.  Change
349// the value type of I to reflect these changes if appropriate.  This method
350// makes sure to do the following actions:
351//
352// 1. If a phi node merges two constants in, and has conflicting value coming
353//    from different branches, or if the PHI node merges in an overdefined
354//    value, then the PHI node becomes overdefined.
355// 2. If a phi node merges only constants in, and they all agree on value, the
356//    PHI node becomes a constant value equal to that.
357// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
358// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
359// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
360// 6. If a conditional branch has a value that is constant, make the selected
361//    destination executable
362// 7. If a conditional branch has a value that is overdefined, make all
363//    successors executable.
364//
365
366void SCCP::visitPHINode(PHINode *PN) {
367  unsigned NumValues = PN->getNumIncomingValues(), i;
368  InstVal *OperandIV = 0;
369
370  // Look at all of the executable operands of the PHI node.  If any of them
371  // are overdefined, the PHI becomes overdefined as well.  If they are all
372  // constant, and they agree with each other, the PHI becomes the identical
373  // constant.  If they are constant and don't agree, the PHI is overdefined.
374  // If there are no executable operands, the PHI remains undefined.
375  //
376  for (i = 0; i < NumValues; ++i) {
377    if (isEdgeFeasible(PN->getIncomingBlock(i), PN->getParent())) {
378      InstVal &IV = getValueState(PN->getIncomingValue(i));
379      if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
380      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
381        markOverdefined(PN);
382        return;
383      }
384
385      if (OperandIV == 0) {   // Grab the first value...
386        OperandIV = &IV;
387      } else {                // Another value is being merged in!
388        // There is already a reachable operand.  If we conflict with it,
389        // then the PHI node becomes overdefined.  If we agree with it, we
390        // can continue on.
391
392        // Check to see if there are two different constants merging...
393        if (IV.getConstant() != OperandIV->getConstant()) {
394          // Yes there is.  This means the PHI node is not constant.
395          // You must be overdefined poor PHI.
396          //
397          markOverdefined(PN);         // The PHI node now becomes overdefined
398          return;    // I'm done analyzing you
399        }
400      }
401    }
402  }
403
404  // If we exited the loop, this means that the PHI node only has constant
405  // arguments that agree with each other(and OperandIV is a pointer to one
406  // of their InstVal's) or OperandIV is null because there are no defined
407  // incoming arguments.  If this is the case, the PHI remains undefined.
408  //
409  if (OperandIV) {
410    assert(OperandIV->isConstant() && "Should only be here for constants!");
411    markConstant(PN, OperandIV->getConstant());  // Aquire operand value
412  }
413}
414
415void SCCP::visitBranchInst(BranchInst *BI) {
416  if (BI->isUnconditional())
417    return; // Unconditional branches are already handled!
418
419  InstVal &BCValue = getValueState(BI->getCondition());
420  if (BCValue.isOverdefined()) {
421    // Overdefined condition variables mean the branch could go either way.
422    markExecutable(BI->getSuccessor(0));
423    markExecutable(BI->getSuccessor(1));
424  } else if (BCValue.isConstant()) {
425    // Constant condition variables mean the branch can only go a single way.
426    if (BCValue.getConstant() == ConstantBool::True)
427      markExecutable(BI->getSuccessor(0));
428    else
429      markExecutable(BI->getSuccessor(1));
430  }
431}
432
433void SCCP::visitInvokeInst(InvokeInst *II) {
434  markExecutable(II->getNormalDest());
435  markExecutable(II->getExceptionalDest());
436}
437
438void SCCP::visitSwitchInst(SwitchInst *SI) {
439  InstVal &SCValue = getValueState(SI->getCondition());
440  if (SCValue.isOverdefined()) {  // Overdefined condition?  All dests are exe
441    for(unsigned i = 0, E = SI->getNumSuccessors(); i != E; ++i)
442      markExecutable(SI->getSuccessor(i));
443  } else if (SCValue.isConstant()) {
444    Constant *CPV = SCValue.getConstant();
445    // Make sure to skip the "default value" which isn't a value
446    for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
447      if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
448        markExecutable(SI->getSuccessor(i));
449        return;
450      }
451    }
452
453    // Constant value not equal to any of the branches... must execute
454    // default branch then...
455    markExecutable(SI->getDefaultDest());
456  }
457}
458
459void SCCP::visitUnaryOperator(Instruction *I) {
460  Value *V = I->getOperand(0);
461  InstVal &VState = getValueState(V);
462  if (VState.isOverdefined()) {        // Inherit overdefinedness of operand
463    markOverdefined(I);
464  } else if (VState.isConstant()) {    // Propogate constant value
465    Constant *Result = isa<CastInst>(I)
466      ? ConstantFoldCastInstruction(VState.getConstant(), I->getType())
467      : ConstantFoldUnaryInstruction(I->getOpcode(), VState.getConstant());
468
469    if (Result) {
470      // This instruction constant folds!
471      markConstant(I, Result);
472    } else {
473      markOverdefined(I);   // Don't know how to fold this instruction.  :(
474    }
475  }
476}
477
478// Handle BinaryOperators and Shift Instructions...
479void SCCP::visitBinaryOperator(Instruction *I) {
480  InstVal &V1State = getValueState(I->getOperand(0));
481  InstVal &V2State = getValueState(I->getOperand(1));
482  if (V1State.isOverdefined() || V2State.isOverdefined()) {
483    markOverdefined(I);
484  } else if (V1State.isConstant() && V2State.isConstant()) {
485    Constant *Result = ConstantFoldBinaryInstruction(I->getOpcode(),
486                                                     V1State.getConstant(),
487                                                     V2State.getConstant());
488    if (Result)
489      markConstant(I, Result);      // This instruction constant folds!
490    else
491      markOverdefined(I);   // Don't know how to fold this instruction.  :(
492  }
493}
494