SCCP.cpp revision 59f0ce2a41b4349f8062ba050dd84e34635781b5
1//===- SCCP.cpp - Sparse Conditional Constant Propogation -----------------===// 2// 3// This file implements sparse conditional constant propogation and merging: 4// 5// Specifically, this: 6// * Assumes values are constant unless proven otherwise 7// * Assumes BasicBlocks are dead unless proven otherwise 8// * Proves values to be constant, and replaces them with constants 9// . Proves conditional branches constant, and unconditionalizes them 10// * Folds multiple identical constants in the constant pool together 11// 12// Notice that: 13// * This pass has a habit of making definitions be dead. It is a good idea 14// to to run a DCE pass sometime after running this pass. 15// 16//===----------------------------------------------------------------------===// 17 18#include "llvm/Transforms/Scalar/ConstantProp.h" 19#include "llvm/ConstantHandling.h" 20#include "llvm/Function.h" 21#include "llvm/iPHINode.h" 22#include "llvm/iMemory.h" 23#include "llvm/iTerminators.h" 24#include "llvm/iOther.h" 25#include "llvm/Pass.h" 26#include "llvm/Support/InstVisitor.h" 27#include "Support/STLExtras.h" 28#include <algorithm> 29#include <set> 30#include <iostream> 31using std::cerr; 32 33#if 0 // Enable this to get SCCP debug output 34#define DEBUG_SCCP(X) X 35#else 36#define DEBUG_SCCP(X) 37#endif 38 39// InstVal class - This class represents the different lattice values that an 40// instruction may occupy. It is a simple class with value semantics. 41// 42namespace { 43class InstVal { 44 enum { 45 undefined, // This instruction has no known value 46 constant, // This instruction has a constant value 47 // Range, // This instruction is known to fall within a range 48 overdefined // This instruction has an unknown value 49 } LatticeValue; // The current lattice position 50 Constant *ConstantVal; // If Constant value, the current value 51public: 52 inline InstVal() : LatticeValue(undefined), ConstantVal(0) {} 53 54 // markOverdefined - Return true if this is a new status to be in... 55 inline bool markOverdefined() { 56 if (LatticeValue != overdefined) { 57 LatticeValue = overdefined; 58 return true; 59 } 60 return false; 61 } 62 63 // markConstant - Return true if this is a new status for us... 64 inline bool markConstant(Constant *V) { 65 if (LatticeValue != constant) { 66 LatticeValue = constant; 67 ConstantVal = V; 68 return true; 69 } else { 70 assert(ConstantVal == V && "Marking constant with different value"); 71 } 72 return false; 73 } 74 75 inline bool isUndefined() const { return LatticeValue == undefined; } 76 inline bool isConstant() const { return LatticeValue == constant; } 77 inline bool isOverdefined() const { return LatticeValue == overdefined; } 78 79 inline Constant *getConstant() const { return ConstantVal; } 80}; 81 82} // end anonymous namespace 83 84 85//===----------------------------------------------------------------------===// 86// SCCP Class 87// 88// This class does all of the work of Sparse Conditional Constant Propogation. 89// 90namespace { 91class SCCP : public FunctionPass, public InstVisitor<SCCP> { 92 std::set<BasicBlock*> BBExecutable;// The basic blocks that are executable 93 std::map<Value*, InstVal> ValueState; // The state each value is in... 94 95 std::set<Instruction*> InstWorkList;// The instruction work list 96 std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list 97public: 98 99 const char *getPassName() const { 100 return "Sparse Conditional Constant Propogation"; 101 } 102 103 // runOnFunction - Run the Sparse Conditional Constant Propogation algorithm, 104 // and return true if the function was modified. 105 // 106 bool runOnFunction(Function *F); 107 108 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 109 // FIXME: SCCP does not preserve the CFG because it folds terminators! 110 //AU.preservesCFG(); 111 } 112 113 114 //===--------------------------------------------------------------------===// 115 // The implementation of this class 116 // 117private: 118 friend class InstVisitor<SCCP>; // Allow callbacks from visitor 119 120 // markValueOverdefined - Make a value be marked as "constant". If the value 121 // is not already a constant, add it to the instruction work list so that 122 // the users of the instruction are updated later. 123 // 124 inline bool markConstant(Instruction *I, Constant *V) { 125 DEBUG_SCCP(cerr << "markConstant: " << V << " = " << I); 126 127 if (ValueState[I].markConstant(V)) { 128 InstWorkList.insert(I); 129 return true; 130 } 131 return false; 132 } 133 134 // markValueOverdefined - Make a value be marked as "overdefined". If the 135 // value is not already overdefined, add it to the instruction work list so 136 // that the users of the instruction are updated later. 137 // 138 inline bool markOverdefined(Value *V) { 139 if (ValueState[V].markOverdefined()) { 140 if (Instruction *I = dyn_cast<Instruction>(V)) { 141 DEBUG_SCCP(cerr << "markOverdefined: " << V); 142 InstWorkList.insert(I); // Only instructions go on the work list 143 } 144 return true; 145 } 146 return false; 147 } 148 149 // getValueState - Return the InstVal object that corresponds to the value. 150 // This function is neccesary because not all values should start out in the 151 // underdefined state... Argument's should be overdefined, and 152 // constants should be marked as constants. If a value is not known to be an 153 // Instruction object, then use this accessor to get its value from the map. 154 // 155 inline InstVal &getValueState(Value *V) { 156 std::map<Value*, InstVal>::iterator I = ValueState.find(V); 157 if (I != ValueState.end()) return I->second; // Common case, in the map 158 159 if (Constant *CPV = dyn_cast<Constant>(V)) { // Constants are constant 160 ValueState[CPV].markConstant(CPV); 161 } else if (isa<Argument>(V)) { // Arguments are overdefined 162 ValueState[V].markOverdefined(); 163 } 164 // All others are underdefined by default... 165 return ValueState[V]; 166 } 167 168 // markExecutable - Mark a basic block as executable, adding it to the BB 169 // work list if it is not already executable... 170 // 171 void markExecutable(BasicBlock *BB) { 172 if (BBExecutable.count(BB)) return; 173 DEBUG_SCCP(cerr << "Marking BB Executable: " << BB); 174 BBExecutable.insert(BB); // Basic block is executable! 175 BBWorkList.push_back(BB); // Add the block to the work list! 176 } 177 178 179 // visit implementations - Something changed in this instruction... Either an 180 // operand made a transition, or the instruction is newly executable. Change 181 // the value type of I to reflect these changes if appropriate. 182 // 183 void visitPHINode(PHINode *I); 184 185 // Terminators 186 void visitReturnInst(ReturnInst *I) { /*does not have an effect*/ } 187 void visitBranchInst(BranchInst *I); 188 void visitInvokeInst(InvokeInst *I); 189 void visitSwitchInst(SwitchInst *I); 190 191 void visitUnaryOperator(Instruction *I); 192 void visitCastInst(CastInst *I) { visitUnaryOperator(I); } 193 void visitBinaryOperator(Instruction *I); 194 void visitShiftInst(ShiftInst *I) { visitBinaryOperator(I); } 195 196 // Instructions that cannot be folded away... 197 void visitStoreInst (Instruction *I) { /*returns void*/ } 198 void visitMemAccessInst (Instruction *I) { markOverdefined(I); } 199 void visitCallInst (Instruction *I) { markOverdefined(I); } 200 void visitInvokeInst (Instruction *I) { markOverdefined(I); } 201 void visitAllocationInst(Instruction *I) { markOverdefined(I); } 202 void visitFreeInst (Instruction *I) { /*returns void*/ } 203 204 void visitInstruction(Instruction *I) { 205 // If a new instruction is added to LLVM that we don't handle... 206 cerr << "SCCP: Don't know how to handle: " << I; 207 markOverdefined(I); // Just in case 208 } 209 210 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 211 // block to the 'To' basic block is currently feasible... 212 // 213 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 214 215 // OperandChangedState - This method is invoked on all of the users of an 216 // instruction that was just changed state somehow.... Based on this 217 // information, we need to update the specified user of this instruction. 218 // 219 void OperandChangedState(User *U) { 220 // Only instructions use other variable values! 221 Instruction *I = cast<Instruction>(U); 222 if (!BBExecutable.count(I->getParent())) return;// Inst not executable yet! 223 visit(I); 224 } 225}; 226} // end anonymous namespace 227 228 229// createSCCPPass - This is the public interface to this file... 230// 231Pass *createSCCPPass() { 232 return new SCCP(); 233} 234 235 236 237//===----------------------------------------------------------------------===// 238// SCCP Class Implementation 239 240 241// runOnFunction() - Run the Sparse Conditional Constant Propogation algorithm, 242// and return true if the function was modified. 243// 244bool SCCP::runOnFunction(Function *F) { 245 // Mark the first block of the function as being executable... 246 markExecutable(F->front()); 247 248 // Process the work lists until their are empty! 249 while (!BBWorkList.empty() || !InstWorkList.empty()) { 250 // Process the instruction work list... 251 while (!InstWorkList.empty()) { 252 Instruction *I = *InstWorkList.begin(); 253 InstWorkList.erase(InstWorkList.begin()); 254 255 DEBUG_SCCP(cerr << "\nPopped off I-WL: " << I); 256 257 258 // "I" got into the work list because it either made the transition from 259 // bottom to constant, or to Overdefined. 260 // 261 // Update all of the users of this instruction's value... 262 // 263 for_each(I->use_begin(), I->use_end(), 264 bind_obj(this, &SCCP::OperandChangedState)); 265 } 266 267 // Process the basic block work list... 268 while (!BBWorkList.empty()) { 269 BasicBlock *BB = BBWorkList.back(); 270 BBWorkList.pop_back(); 271 272 DEBUG_SCCP(cerr << "\nPopped off BBWL: " << BB); 273 274 // If this block only has a single successor, mark it as executable as 275 // well... if not, terminate the do loop. 276 // 277 if (BB->getTerminator()->getNumSuccessors() == 1) 278 markExecutable(BB->getTerminator()->getSuccessor(0)); 279 280 // Notify all instructions in this basic block that they are newly 281 // executable. 282 visit(BB); 283 } 284 } 285 286#ifdef DEBUG_SCCP 287 for (Function::iterator BBI = F->begin(), BBEnd = F->end(); 288 BBI != BBEnd; ++BBI) 289 if (!BBExecutable.count(*BBI)) 290 cerr << "BasicBlock Dead:" << *BBI; 291#endif 292 293 294 // Iterate over all of the instructions in a function, replacing them with 295 // constants if we have found them to be of constant values. 296 // 297 bool MadeChanges = false; 298 for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) { 299 BasicBlock *BB = *FI; 300 for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) { 301 Instruction *Inst = *BI; 302 InstVal &IV = ValueState[Inst]; 303 if (IV.isConstant()) { 304 Constant *Const = IV.getConstant(); 305 DEBUG_SCCP(cerr << "Constant: " << Inst << " is: " << Const); 306 307 // Replaces all of the uses of a variable with uses of the constant. 308 Inst->replaceAllUsesWith(Const); 309 310 // Remove the operator from the list of definitions... and delete it. 311 delete BB->getInstList().remove(BI); 312 313 // Hey, we just changed something! 314 MadeChanges = true; 315 316 // Do NOT advance the iterator, skipping the next instruction... 317 continue; 318 319 } else if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Inst)) { 320 MadeChanges |= ConstantFoldTerminator(BB, BI, TI); 321 } 322 323 ++BI; 324 } 325 } 326 327 // Reset state so that the next invocation will have empty data structures 328 BBExecutable.clear(); 329 ValueState.clear(); 330 331 return MadeChanges; 332} 333 334// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 335// block to the 'To' basic block is currently feasible... 336// 337bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 338 assert(BBExecutable.count(To) && "Dest should always be alive!"); 339 340 // Make sure the source basic block is executable!! 341 if (!BBExecutable.count(From)) return false; 342 343 // This should check the terminator in From! 344 return true; 345} 346 347// visit Implementations - Something changed in this instruction... Either an 348// operand made a transition, or the instruction is newly executable. Change 349// the value type of I to reflect these changes if appropriate. This method 350// makes sure to do the following actions: 351// 352// 1. If a phi node merges two constants in, and has conflicting value coming 353// from different branches, or if the PHI node merges in an overdefined 354// value, then the PHI node becomes overdefined. 355// 2. If a phi node merges only constants in, and they all agree on value, the 356// PHI node becomes a constant value equal to that. 357// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 358// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 359// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 360// 6. If a conditional branch has a value that is constant, make the selected 361// destination executable 362// 7. If a conditional branch has a value that is overdefined, make all 363// successors executable. 364// 365 366void SCCP::visitPHINode(PHINode *PN) { 367 unsigned NumValues = PN->getNumIncomingValues(), i; 368 InstVal *OperandIV = 0; 369 370 // Look at all of the executable operands of the PHI node. If any of them 371 // are overdefined, the PHI becomes overdefined as well. If they are all 372 // constant, and they agree with each other, the PHI becomes the identical 373 // constant. If they are constant and don't agree, the PHI is overdefined. 374 // If there are no executable operands, the PHI remains undefined. 375 // 376 for (i = 0; i < NumValues; ++i) { 377 if (isEdgeFeasible(PN->getIncomingBlock(i), PN->getParent())) { 378 InstVal &IV = getValueState(PN->getIncomingValue(i)); 379 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 380 if (IV.isOverdefined()) { // PHI node becomes overdefined! 381 markOverdefined(PN); 382 return; 383 } 384 385 if (OperandIV == 0) { // Grab the first value... 386 OperandIV = &IV; 387 } else { // Another value is being merged in! 388 // There is already a reachable operand. If we conflict with it, 389 // then the PHI node becomes overdefined. If we agree with it, we 390 // can continue on. 391 392 // Check to see if there are two different constants merging... 393 if (IV.getConstant() != OperandIV->getConstant()) { 394 // Yes there is. This means the PHI node is not constant. 395 // You must be overdefined poor PHI. 396 // 397 markOverdefined(PN); // The PHI node now becomes overdefined 398 return; // I'm done analyzing you 399 } 400 } 401 } 402 } 403 404 // If we exited the loop, this means that the PHI node only has constant 405 // arguments that agree with each other(and OperandIV is a pointer to one 406 // of their InstVal's) or OperandIV is null because there are no defined 407 // incoming arguments. If this is the case, the PHI remains undefined. 408 // 409 if (OperandIV) { 410 assert(OperandIV->isConstant() && "Should only be here for constants!"); 411 markConstant(PN, OperandIV->getConstant()); // Aquire operand value 412 } 413} 414 415void SCCP::visitBranchInst(BranchInst *BI) { 416 if (BI->isUnconditional()) 417 return; // Unconditional branches are already handled! 418 419 InstVal &BCValue = getValueState(BI->getCondition()); 420 if (BCValue.isOverdefined()) { 421 // Overdefined condition variables mean the branch could go either way. 422 markExecutable(BI->getSuccessor(0)); 423 markExecutable(BI->getSuccessor(1)); 424 } else if (BCValue.isConstant()) { 425 // Constant condition variables mean the branch can only go a single way. 426 if (BCValue.getConstant() == ConstantBool::True) 427 markExecutable(BI->getSuccessor(0)); 428 else 429 markExecutable(BI->getSuccessor(1)); 430 } 431} 432 433void SCCP::visitInvokeInst(InvokeInst *II) { 434 markExecutable(II->getNormalDest()); 435 markExecutable(II->getExceptionalDest()); 436} 437 438void SCCP::visitSwitchInst(SwitchInst *SI) { 439 InstVal &SCValue = getValueState(SI->getCondition()); 440 if (SCValue.isOverdefined()) { // Overdefined condition? All dests are exe 441 for(unsigned i = 0, E = SI->getNumSuccessors(); i != E; ++i) 442 markExecutable(SI->getSuccessor(i)); 443 } else if (SCValue.isConstant()) { 444 Constant *CPV = SCValue.getConstant(); 445 // Make sure to skip the "default value" which isn't a value 446 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { 447 if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... 448 markExecutable(SI->getSuccessor(i)); 449 return; 450 } 451 } 452 453 // Constant value not equal to any of the branches... must execute 454 // default branch then... 455 markExecutable(SI->getDefaultDest()); 456 } 457} 458 459void SCCP::visitUnaryOperator(Instruction *I) { 460 Value *V = I->getOperand(0); 461 InstVal &VState = getValueState(V); 462 if (VState.isOverdefined()) { // Inherit overdefinedness of operand 463 markOverdefined(I); 464 } else if (VState.isConstant()) { // Propogate constant value 465 Constant *Result = isa<CastInst>(I) 466 ? ConstantFoldCastInstruction(VState.getConstant(), I->getType()) 467 : ConstantFoldUnaryInstruction(I->getOpcode(), VState.getConstant()); 468 469 if (Result) { 470 // This instruction constant folds! 471 markConstant(I, Result); 472 } else { 473 markOverdefined(I); // Don't know how to fold this instruction. :( 474 } 475 } 476} 477 478// Handle BinaryOperators and Shift Instructions... 479void SCCP::visitBinaryOperator(Instruction *I) { 480 InstVal &V1State = getValueState(I->getOperand(0)); 481 InstVal &V2State = getValueState(I->getOperand(1)); 482 if (V1State.isOverdefined() || V2State.isOverdefined()) { 483 markOverdefined(I); 484 } else if (V1State.isConstant() && V2State.isConstant()) { 485 Constant *Result = ConstantFoldBinaryInstruction(I->getOpcode(), 486 V1State.getConstant(), 487 V2State.getConstant()); 488 if (Result) 489 markConstant(I, Result); // This instruction constant folds! 490 else 491 markOverdefined(I); // Don't know how to fold this instruction. :( 492 } 493} 494