SCCP.cpp revision 785a7a97da06ce5108d1d194b26f6cf73d3cffb0
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18//===----------------------------------------------------------------------===// 19 20#define DEBUG_TYPE "sccp" 21#include "llvm/Transforms/Scalar.h" 22#include "llvm/Transforms/IPO.h" 23#include "llvm/Constants.h" 24#include "llvm/DerivedTypes.h" 25#include "llvm/Instructions.h" 26#include "llvm/Pass.h" 27#include "llvm/Analysis/ConstantFolding.h" 28#include "llvm/Transforms/Utils/Local.h" 29#include "llvm/Target/TargetData.h" 30#include "llvm/Target/TargetLibraryInfo.h" 31#include "llvm/Support/CallSite.h" 32#include "llvm/Support/Debug.h" 33#include "llvm/Support/ErrorHandling.h" 34#include "llvm/Support/InstVisitor.h" 35#include "llvm/Support/raw_ostream.h" 36#include "llvm/ADT/DenseMap.h" 37#include "llvm/ADT/DenseSet.h" 38#include "llvm/ADT/PointerIntPair.h" 39#include "llvm/ADT/SmallPtrSet.h" 40#include "llvm/ADT/SmallVector.h" 41#include "llvm/ADT/Statistic.h" 42#include <algorithm> 43using namespace llvm; 44 45STATISTIC(NumInstRemoved, "Number of instructions removed"); 46STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 47 48STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); 49STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 50STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 51 52namespace { 53/// LatticeVal class - This class represents the different lattice values that 54/// an LLVM value may occupy. It is a simple class with value semantics. 55/// 56class LatticeVal { 57 enum LatticeValueTy { 58 /// undefined - This LLVM Value has no known value yet. 59 undefined, 60 61 /// constant - This LLVM Value has a specific constant value. 62 constant, 63 64 /// forcedconstant - This LLVM Value was thought to be undef until 65 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 66 /// with another (different) constant, it goes to overdefined, instead of 67 /// asserting. 68 forcedconstant, 69 70 /// overdefined - This instruction is not known to be constant, and we know 71 /// it has a value. 72 overdefined 73 }; 74 75 /// Val: This stores the current lattice value along with the Constant* for 76 /// the constant if this is a 'constant' or 'forcedconstant' value. 77 PointerIntPair<Constant *, 2, LatticeValueTy> Val; 78 79 LatticeValueTy getLatticeValue() const { 80 return Val.getInt(); 81 } 82 83public: 84 LatticeVal() : Val(0, undefined) {} 85 86 bool isUndefined() const { return getLatticeValue() == undefined; } 87 bool isConstant() const { 88 return getLatticeValue() == constant || getLatticeValue() == forcedconstant; 89 } 90 bool isOverdefined() const { return getLatticeValue() == overdefined; } 91 92 Constant *getConstant() const { 93 assert(isConstant() && "Cannot get the constant of a non-constant!"); 94 return Val.getPointer(); 95 } 96 97 /// markOverdefined - Return true if this is a change in status. 98 bool markOverdefined() { 99 if (isOverdefined()) 100 return false; 101 102 Val.setInt(overdefined); 103 return true; 104 } 105 106 /// markConstant - Return true if this is a change in status. 107 bool markConstant(Constant *V) { 108 if (getLatticeValue() == constant) { // Constant but not forcedconstant. 109 assert(getConstant() == V && "Marking constant with different value"); 110 return false; 111 } 112 113 if (isUndefined()) { 114 Val.setInt(constant); 115 assert(V && "Marking constant with NULL"); 116 Val.setPointer(V); 117 } else { 118 assert(getLatticeValue() == forcedconstant && 119 "Cannot move from overdefined to constant!"); 120 // Stay at forcedconstant if the constant is the same. 121 if (V == getConstant()) return false; 122 123 // Otherwise, we go to overdefined. Assumptions made based on the 124 // forced value are possibly wrong. Assuming this is another constant 125 // could expose a contradiction. 126 Val.setInt(overdefined); 127 } 128 return true; 129 } 130 131 /// getConstantInt - If this is a constant with a ConstantInt value, return it 132 /// otherwise return null. 133 ConstantInt *getConstantInt() const { 134 if (isConstant()) 135 return dyn_cast<ConstantInt>(getConstant()); 136 return 0; 137 } 138 139 void markForcedConstant(Constant *V) { 140 assert(isUndefined() && "Can't force a defined value!"); 141 Val.setInt(forcedconstant); 142 Val.setPointer(V); 143 } 144}; 145} // end anonymous namespace. 146 147 148namespace { 149 150//===----------------------------------------------------------------------===// 151// 152/// SCCPSolver - This class is a general purpose solver for Sparse Conditional 153/// Constant Propagation. 154/// 155class SCCPSolver : public InstVisitor<SCCPSolver> { 156 const TargetData *TD; 157 const TargetLibraryInfo *TLI; 158 SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable. 159 DenseMap<Value*, LatticeVal> ValueState; // The state each value is in. 160 161 /// StructValueState - This maintains ValueState for values that have 162 /// StructType, for example for formal arguments, calls, insertelement, etc. 163 /// 164 DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState; 165 166 /// GlobalValue - If we are tracking any values for the contents of a global 167 /// variable, we keep a mapping from the constant accessor to the element of 168 /// the global, to the currently known value. If the value becomes 169 /// overdefined, it's entry is simply removed from this map. 170 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; 171 172 /// TrackedRetVals - If we are tracking arguments into and the return 173 /// value out of a function, it will have an entry in this map, indicating 174 /// what the known return value for the function is. 175 DenseMap<Function*, LatticeVal> TrackedRetVals; 176 177 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 178 /// that return multiple values. 179 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; 180 181 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is 182 /// represented here for efficient lookup. 183 SmallPtrSet<Function*, 16> MRVFunctionsTracked; 184 185 /// TrackingIncomingArguments - This is the set of functions for whose 186 /// arguments we make optimistic assumptions about and try to prove as 187 /// constants. 188 SmallPtrSet<Function*, 16> TrackingIncomingArguments; 189 190 /// The reason for two worklists is that overdefined is the lowest state 191 /// on the lattice, and moving things to overdefined as fast as possible 192 /// makes SCCP converge much faster. 193 /// 194 /// By having a separate worklist, we accomplish this because everything 195 /// possibly overdefined will become overdefined at the soonest possible 196 /// point. 197 SmallVector<Value*, 64> OverdefinedInstWorkList; 198 SmallVector<Value*, 64> InstWorkList; 199 200 201 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list 202 203 /// KnownFeasibleEdges - Entries in this set are edges which have already had 204 /// PHI nodes retriggered. 205 typedef std::pair<BasicBlock*, BasicBlock*> Edge; 206 DenseSet<Edge> KnownFeasibleEdges; 207public: 208 SCCPSolver(const TargetData *td, const TargetLibraryInfo *tli) 209 : TD(td), TLI(tli) {} 210 211 /// MarkBlockExecutable - This method can be used by clients to mark all of 212 /// the blocks that are known to be intrinsically live in the processed unit. 213 /// 214 /// This returns true if the block was not considered live before. 215 bool MarkBlockExecutable(BasicBlock *BB) { 216 if (!BBExecutable.insert(BB)) return false; 217 DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n"); 218 BBWorkList.push_back(BB); // Add the block to the work list! 219 return true; 220 } 221 222 /// TrackValueOfGlobalVariable - Clients can use this method to 223 /// inform the SCCPSolver that it should track loads and stores to the 224 /// specified global variable if it can. This is only legal to call if 225 /// performing Interprocedural SCCP. 226 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 227 // We only track the contents of scalar globals. 228 if (GV->getType()->getElementType()->isSingleValueType()) { 229 LatticeVal &IV = TrackedGlobals[GV]; 230 if (!isa<UndefValue>(GV->getInitializer())) 231 IV.markConstant(GV->getInitializer()); 232 } 233 } 234 235 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 236 /// and out of the specified function (which cannot have its address taken), 237 /// this method must be called. 238 void AddTrackedFunction(Function *F) { 239 // Add an entry, F -> undef. 240 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 241 MRVFunctionsTracked.insert(F); 242 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 243 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), 244 LatticeVal())); 245 } else 246 TrackedRetVals.insert(std::make_pair(F, LatticeVal())); 247 } 248 249 void AddArgumentTrackedFunction(Function *F) { 250 TrackingIncomingArguments.insert(F); 251 } 252 253 /// Solve - Solve for constants and executable blocks. 254 /// 255 void Solve(); 256 257 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 258 /// that branches on undef values cannot reach any of their successors. 259 /// However, this is not a safe assumption. After we solve dataflow, this 260 /// method should be use to handle this. If this returns true, the solver 261 /// should be rerun. 262 bool ResolvedUndefsIn(Function &F); 263 264 bool isBlockExecutable(BasicBlock *BB) const { 265 return BBExecutable.count(BB); 266 } 267 268 LatticeVal getLatticeValueFor(Value *V) const { 269 DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V); 270 assert(I != ValueState.end() && "V is not in valuemap!"); 271 return I->second; 272 } 273 274 /*LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const { 275 DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I = 276 StructValueState.find(std::make_pair(V, i)); 277 assert(I != StructValueState.end() && "V is not in valuemap!"); 278 return I->second; 279 }*/ 280 281 /// getTrackedRetVals - Get the inferred return value map. 282 /// 283 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { 284 return TrackedRetVals; 285 } 286 287 /// getTrackedGlobals - Get and return the set of inferred initializers for 288 /// global variables. 289 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 290 return TrackedGlobals; 291 } 292 293 void markOverdefined(Value *V) { 294 assert(!V->getType()->isStructTy() && "Should use other method"); 295 markOverdefined(ValueState[V], V); 296 } 297 298 /// markAnythingOverdefined - Mark the specified value overdefined. This 299 /// works with both scalars and structs. 300 void markAnythingOverdefined(Value *V) { 301 if (StructType *STy = dyn_cast<StructType>(V->getType())) 302 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 303 markOverdefined(getStructValueState(V, i), V); 304 else 305 markOverdefined(V); 306 } 307 308private: 309 // markConstant - Make a value be marked as "constant". If the value 310 // is not already a constant, add it to the instruction work list so that 311 // the users of the instruction are updated later. 312 // 313 void markConstant(LatticeVal &IV, Value *V, Constant *C) { 314 if (!IV.markConstant(C)) return; 315 DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); 316 if (IV.isOverdefined()) 317 OverdefinedInstWorkList.push_back(V); 318 else 319 InstWorkList.push_back(V); 320 } 321 322 void markConstant(Value *V, Constant *C) { 323 assert(!V->getType()->isStructTy() && "Should use other method"); 324 markConstant(ValueState[V], V, C); 325 } 326 327 void markForcedConstant(Value *V, Constant *C) { 328 assert(!V->getType()->isStructTy() && "Should use other method"); 329 LatticeVal &IV = ValueState[V]; 330 IV.markForcedConstant(C); 331 DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); 332 if (IV.isOverdefined()) 333 OverdefinedInstWorkList.push_back(V); 334 else 335 InstWorkList.push_back(V); 336 } 337 338 339 // markOverdefined - Make a value be marked as "overdefined". If the 340 // value is not already overdefined, add it to the overdefined instruction 341 // work list so that the users of the instruction are updated later. 342 void markOverdefined(LatticeVal &IV, Value *V) { 343 if (!IV.markOverdefined()) return; 344 345 DEBUG(dbgs() << "markOverdefined: "; 346 if (Function *F = dyn_cast<Function>(V)) 347 dbgs() << "Function '" << F->getName() << "'\n"; 348 else 349 dbgs() << *V << '\n'); 350 // Only instructions go on the work list 351 OverdefinedInstWorkList.push_back(V); 352 } 353 354 void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { 355 if (IV.isOverdefined() || MergeWithV.isUndefined()) 356 return; // Noop. 357 if (MergeWithV.isOverdefined()) 358 markOverdefined(IV, V); 359 else if (IV.isUndefined()) 360 markConstant(IV, V, MergeWithV.getConstant()); 361 else if (IV.getConstant() != MergeWithV.getConstant()) 362 markOverdefined(IV, V); 363 } 364 365 void mergeInValue(Value *V, LatticeVal MergeWithV) { 366 assert(!V->getType()->isStructTy() && "Should use other method"); 367 mergeInValue(ValueState[V], V, MergeWithV); 368 } 369 370 371 /// getValueState - Return the LatticeVal object that corresponds to the 372 /// value. This function handles the case when the value hasn't been seen yet 373 /// by properly seeding constants etc. 374 LatticeVal &getValueState(Value *V) { 375 assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 376 377 std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I = 378 ValueState.insert(std::make_pair(V, LatticeVal())); 379 LatticeVal &LV = I.first->second; 380 381 if (!I.second) 382 return LV; // Common case, already in the map. 383 384 if (Constant *C = dyn_cast<Constant>(V)) { 385 // Undef values remain undefined. 386 if (!isa<UndefValue>(V)) 387 LV.markConstant(C); // Constants are constant 388 } 389 390 // All others are underdefined by default. 391 return LV; 392 } 393 394 /// getStructValueState - Return the LatticeVal object that corresponds to the 395 /// value/field pair. This function handles the case when the value hasn't 396 /// been seen yet by properly seeding constants etc. 397 LatticeVal &getStructValueState(Value *V, unsigned i) { 398 assert(V->getType()->isStructTy() && "Should use getValueState"); 399 assert(i < cast<StructType>(V->getType())->getNumElements() && 400 "Invalid element #"); 401 402 std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator, 403 bool> I = StructValueState.insert( 404 std::make_pair(std::make_pair(V, i), LatticeVal())); 405 LatticeVal &LV = I.first->second; 406 407 if (!I.second) 408 return LV; // Common case, already in the map. 409 410 if (Constant *C = dyn_cast<Constant>(V)) { 411 if (isa<UndefValue>(C)) 412 ; // Undef values remain undefined. 413 else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) 414 LV.markConstant(CS->getOperand(i)); // Constants are constant. 415 else if (isa<ConstantAggregateZero>(C)) { 416 Type *FieldTy = cast<StructType>(V->getType())->getElementType(i); 417 LV.markConstant(Constant::getNullValue(FieldTy)); 418 } else 419 LV.markOverdefined(); // Unknown sort of constant. 420 } 421 422 // All others are underdefined by default. 423 return LV; 424 } 425 426 427 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 428 /// work list if it is not already executable. 429 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 430 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 431 return; // This edge is already known to be executable! 432 433 if (!MarkBlockExecutable(Dest)) { 434 // If the destination is already executable, we just made an *edge* 435 // feasible that wasn't before. Revisit the PHI nodes in the block 436 // because they have potentially new operands. 437 DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 438 << " -> " << Dest->getName() << "\n"); 439 440 PHINode *PN; 441 for (BasicBlock::iterator I = Dest->begin(); 442 (PN = dyn_cast<PHINode>(I)); ++I) 443 visitPHINode(*PN); 444 } 445 } 446 447 // getFeasibleSuccessors - Return a vector of booleans to indicate which 448 // successors are reachable from a given terminator instruction. 449 // 450 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs); 451 452 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 453 // block to the 'To' basic block is currently feasible. 454 // 455 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 456 457 // OperandChangedState - This method is invoked on all of the users of an 458 // instruction that was just changed state somehow. Based on this 459 // information, we need to update the specified user of this instruction. 460 // 461 void OperandChangedState(Instruction *I) { 462 if (BBExecutable.count(I->getParent())) // Inst is executable? 463 visit(*I); 464 } 465 466private: 467 friend class InstVisitor<SCCPSolver>; 468 469 // visit implementations - Something changed in this instruction. Either an 470 // operand made a transition, or the instruction is newly executable. Change 471 // the value type of I to reflect these changes if appropriate. 472 void visitPHINode(PHINode &I); 473 474 // Terminators 475 void visitReturnInst(ReturnInst &I); 476 void visitTerminatorInst(TerminatorInst &TI); 477 478 void visitCastInst(CastInst &I); 479 void visitSelectInst(SelectInst &I); 480 void visitBinaryOperator(Instruction &I); 481 void visitCmpInst(CmpInst &I); 482 void visitExtractElementInst(ExtractElementInst &I); 483 void visitInsertElementInst(InsertElementInst &I); 484 void visitShuffleVectorInst(ShuffleVectorInst &I); 485 void visitExtractValueInst(ExtractValueInst &EVI); 486 void visitInsertValueInst(InsertValueInst &IVI); 487 void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); } 488 489 // Instructions that cannot be folded away. 490 void visitStoreInst (StoreInst &I); 491 void visitLoadInst (LoadInst &I); 492 void visitGetElementPtrInst(GetElementPtrInst &I); 493 void visitCallInst (CallInst &I) { 494 visitCallSite(&I); 495 } 496 void visitInvokeInst (InvokeInst &II) { 497 visitCallSite(&II); 498 visitTerminatorInst(II); 499 } 500 void visitCallSite (CallSite CS); 501 void visitResumeInst (TerminatorInst &I) { /*returns void*/ } 502 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 503 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 504 void visitFenceInst (FenceInst &I) { /*returns void*/ } 505 void visitAtomicCmpXchgInst (AtomicCmpXchgInst &I) { markOverdefined(&I); } 506 void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); } 507 void visitAllocaInst (Instruction &I) { markOverdefined(&I); } 508 void visitVAArgInst (Instruction &I) { markAnythingOverdefined(&I); } 509 510 void visitInstruction(Instruction &I) { 511 // If a new instruction is added to LLVM that we don't handle. 512 dbgs() << "SCCP: Don't know how to handle: " << I; 513 markAnythingOverdefined(&I); // Just in case 514 } 515}; 516 517} // end anonymous namespace 518 519 520// getFeasibleSuccessors - Return a vector of booleans to indicate which 521// successors are reachable from a given terminator instruction. 522// 523void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 524 SmallVector<bool, 16> &Succs) { 525 Succs.resize(TI.getNumSuccessors()); 526 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 527 if (BI->isUnconditional()) { 528 Succs[0] = true; 529 return; 530 } 531 532 LatticeVal BCValue = getValueState(BI->getCondition()); 533 ConstantInt *CI = BCValue.getConstantInt(); 534 if (CI == 0) { 535 // Overdefined condition variables, and branches on unfoldable constant 536 // conditions, mean the branch could go either way. 537 if (!BCValue.isUndefined()) 538 Succs[0] = Succs[1] = true; 539 return; 540 } 541 542 // Constant condition variables mean the branch can only go a single way. 543 Succs[CI->isZero()] = true; 544 return; 545 } 546 547 if (isa<InvokeInst>(TI)) { 548 // Invoke instructions successors are always executable. 549 Succs[0] = Succs[1] = true; 550 return; 551 } 552 553 if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 554 if (TI.getNumSuccessors() < 2) { 555 Succs[0] = true; 556 return; 557 } 558 LatticeVal SCValue = getValueState(SI->getCondition()); 559 ConstantInt *CI = SCValue.getConstantInt(); 560 561 if (CI == 0) { // Overdefined or undefined condition? 562 // All destinations are executable! 563 if (!SCValue.isUndefined()) 564 Succs.assign(TI.getNumSuccessors(), true); 565 return; 566 } 567 568 Succs[SI->findCaseValue(CI)] = true; 569 return; 570 } 571 572 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 573 if (isa<IndirectBrInst>(&TI)) { 574 // Just mark all destinations executable! 575 Succs.assign(TI.getNumSuccessors(), true); 576 return; 577 } 578 579#ifndef NDEBUG 580 dbgs() << "Unknown terminator instruction: " << TI << '\n'; 581#endif 582 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 583} 584 585 586// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 587// block to the 'To' basic block is currently feasible. 588// 589bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 590 assert(BBExecutable.count(To) && "Dest should always be alive!"); 591 592 // Make sure the source basic block is executable!! 593 if (!BBExecutable.count(From)) return false; 594 595 // Check to make sure this edge itself is actually feasible now. 596 TerminatorInst *TI = From->getTerminator(); 597 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 598 if (BI->isUnconditional()) 599 return true; 600 601 LatticeVal BCValue = getValueState(BI->getCondition()); 602 603 // Overdefined condition variables mean the branch could go either way, 604 // undef conditions mean that neither edge is feasible yet. 605 ConstantInt *CI = BCValue.getConstantInt(); 606 if (CI == 0) 607 return !BCValue.isUndefined(); 608 609 // Constant condition variables mean the branch can only go a single way. 610 return BI->getSuccessor(CI->isZero()) == To; 611 } 612 613 // Invoke instructions successors are always executable. 614 if (isa<InvokeInst>(TI)) 615 return true; 616 617 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 618 if (SI->getNumSuccessors() < 2) 619 return true; 620 621 LatticeVal SCValue = getValueState(SI->getCondition()); 622 ConstantInt *CI = SCValue.getConstantInt(); 623 624 if (CI == 0) 625 return !SCValue.isUndefined(); 626 627 // Make sure to skip the "default value" which isn't a value 628 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 629 if (SI->getSuccessorValue(i) == CI) // Found the taken branch. 630 return SI->getSuccessor(i) == To; 631 632 // If the constant value is not equal to any of the branches, we must 633 // execute default branch. 634 return SI->getDefaultDest() == To; 635 } 636 637 // Just mark all destinations executable! 638 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 639 if (isa<IndirectBrInst>(TI)) 640 return true; 641 642#ifndef NDEBUG 643 dbgs() << "Unknown terminator instruction: " << *TI << '\n'; 644#endif 645 llvm_unreachable(0); 646} 647 648// visit Implementations - Something changed in this instruction, either an 649// operand made a transition, or the instruction is newly executable. Change 650// the value type of I to reflect these changes if appropriate. This method 651// makes sure to do the following actions: 652// 653// 1. If a phi node merges two constants in, and has conflicting value coming 654// from different branches, or if the PHI node merges in an overdefined 655// value, then the PHI node becomes overdefined. 656// 2. If a phi node merges only constants in, and they all agree on value, the 657// PHI node becomes a constant value equal to that. 658// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 659// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 660// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 661// 6. If a conditional branch has a value that is constant, make the selected 662// destination executable 663// 7. If a conditional branch has a value that is overdefined, make all 664// successors executable. 665// 666void SCCPSolver::visitPHINode(PHINode &PN) { 667 // If this PN returns a struct, just mark the result overdefined. 668 // TODO: We could do a lot better than this if code actually uses this. 669 if (PN.getType()->isStructTy()) 670 return markAnythingOverdefined(&PN); 671 672 if (getValueState(&PN).isOverdefined()) 673 return; // Quick exit 674 675 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 676 // and slow us down a lot. Just mark them overdefined. 677 if (PN.getNumIncomingValues() > 64) 678 return markOverdefined(&PN); 679 680 // Look at all of the executable operands of the PHI node. If any of them 681 // are overdefined, the PHI becomes overdefined as well. If they are all 682 // constant, and they agree with each other, the PHI becomes the identical 683 // constant. If they are constant and don't agree, the PHI is overdefined. 684 // If there are no executable operands, the PHI remains undefined. 685 // 686 Constant *OperandVal = 0; 687 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 688 LatticeVal IV = getValueState(PN.getIncomingValue(i)); 689 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 690 691 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) 692 continue; 693 694 if (IV.isOverdefined()) // PHI node becomes overdefined! 695 return markOverdefined(&PN); 696 697 if (OperandVal == 0) { // Grab the first value. 698 OperandVal = IV.getConstant(); 699 continue; 700 } 701 702 // There is already a reachable operand. If we conflict with it, 703 // then the PHI node becomes overdefined. If we agree with it, we 704 // can continue on. 705 706 // Check to see if there are two different constants merging, if so, the PHI 707 // node is overdefined. 708 if (IV.getConstant() != OperandVal) 709 return markOverdefined(&PN); 710 } 711 712 // If we exited the loop, this means that the PHI node only has constant 713 // arguments that agree with each other(and OperandVal is the constant) or 714 // OperandVal is null because there are no defined incoming arguments. If 715 // this is the case, the PHI remains undefined. 716 // 717 if (OperandVal) 718 markConstant(&PN, OperandVal); // Acquire operand value 719} 720 721 722 723 724void SCCPSolver::visitReturnInst(ReturnInst &I) { 725 if (I.getNumOperands() == 0) return; // ret void 726 727 Function *F = I.getParent()->getParent(); 728 Value *ResultOp = I.getOperand(0); 729 730 // If we are tracking the return value of this function, merge it in. 731 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { 732 DenseMap<Function*, LatticeVal>::iterator TFRVI = 733 TrackedRetVals.find(F); 734 if (TFRVI != TrackedRetVals.end()) { 735 mergeInValue(TFRVI->second, F, getValueState(ResultOp)); 736 return; 737 } 738 } 739 740 // Handle functions that return multiple values. 741 if (!TrackedMultipleRetVals.empty()) { 742 if (StructType *STy = dyn_cast<StructType>(ResultOp->getType())) 743 if (MRVFunctionsTracked.count(F)) 744 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 745 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, 746 getStructValueState(ResultOp, i)); 747 748 } 749} 750 751void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 752 SmallVector<bool, 16> SuccFeasible; 753 getFeasibleSuccessors(TI, SuccFeasible); 754 755 BasicBlock *BB = TI.getParent(); 756 757 // Mark all feasible successors executable. 758 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 759 if (SuccFeasible[i]) 760 markEdgeExecutable(BB, TI.getSuccessor(i)); 761} 762 763void SCCPSolver::visitCastInst(CastInst &I) { 764 LatticeVal OpSt = getValueState(I.getOperand(0)); 765 if (OpSt.isOverdefined()) // Inherit overdefinedness of operand 766 markOverdefined(&I); 767 else if (OpSt.isConstant()) // Propagate constant value 768 markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 769 OpSt.getConstant(), I.getType())); 770} 771 772 773void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { 774 // If this returns a struct, mark all elements over defined, we don't track 775 // structs in structs. 776 if (EVI.getType()->isStructTy()) 777 return markAnythingOverdefined(&EVI); 778 779 // If this is extracting from more than one level of struct, we don't know. 780 if (EVI.getNumIndices() != 1) 781 return markOverdefined(&EVI); 782 783 Value *AggVal = EVI.getAggregateOperand(); 784 if (AggVal->getType()->isStructTy()) { 785 unsigned i = *EVI.idx_begin(); 786 LatticeVal EltVal = getStructValueState(AggVal, i); 787 mergeInValue(getValueState(&EVI), &EVI, EltVal); 788 } else { 789 // Otherwise, must be extracting from an array. 790 return markOverdefined(&EVI); 791 } 792} 793 794void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { 795 StructType *STy = dyn_cast<StructType>(IVI.getType()); 796 if (STy == 0) 797 return markOverdefined(&IVI); 798 799 // If this has more than one index, we can't handle it, drive all results to 800 // undef. 801 if (IVI.getNumIndices() != 1) 802 return markAnythingOverdefined(&IVI); 803 804 Value *Aggr = IVI.getAggregateOperand(); 805 unsigned Idx = *IVI.idx_begin(); 806 807 // Compute the result based on what we're inserting. 808 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 809 // This passes through all values that aren't the inserted element. 810 if (i != Idx) { 811 LatticeVal EltVal = getStructValueState(Aggr, i); 812 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); 813 continue; 814 } 815 816 Value *Val = IVI.getInsertedValueOperand(); 817 if (Val->getType()->isStructTy()) 818 // We don't track structs in structs. 819 markOverdefined(getStructValueState(&IVI, i), &IVI); 820 else { 821 LatticeVal InVal = getValueState(Val); 822 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); 823 } 824 } 825} 826 827void SCCPSolver::visitSelectInst(SelectInst &I) { 828 // If this select returns a struct, just mark the result overdefined. 829 // TODO: We could do a lot better than this if code actually uses this. 830 if (I.getType()->isStructTy()) 831 return markAnythingOverdefined(&I); 832 833 LatticeVal CondValue = getValueState(I.getCondition()); 834 if (CondValue.isUndefined()) 835 return; 836 837 if (ConstantInt *CondCB = CondValue.getConstantInt()) { 838 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); 839 mergeInValue(&I, getValueState(OpVal)); 840 return; 841 } 842 843 // Otherwise, the condition is overdefined or a constant we can't evaluate. 844 // See if we can produce something better than overdefined based on the T/F 845 // value. 846 LatticeVal TVal = getValueState(I.getTrueValue()); 847 LatticeVal FVal = getValueState(I.getFalseValue()); 848 849 // select ?, C, C -> C. 850 if (TVal.isConstant() && FVal.isConstant() && 851 TVal.getConstant() == FVal.getConstant()) 852 return markConstant(&I, FVal.getConstant()); 853 854 if (TVal.isUndefined()) // select ?, undef, X -> X. 855 return mergeInValue(&I, FVal); 856 if (FVal.isUndefined()) // select ?, X, undef -> X. 857 return mergeInValue(&I, TVal); 858 markOverdefined(&I); 859} 860 861// Handle Binary Operators. 862void SCCPSolver::visitBinaryOperator(Instruction &I) { 863 LatticeVal V1State = getValueState(I.getOperand(0)); 864 LatticeVal V2State = getValueState(I.getOperand(1)); 865 866 LatticeVal &IV = ValueState[&I]; 867 if (IV.isOverdefined()) return; 868 869 if (V1State.isConstant() && V2State.isConstant()) 870 return markConstant(IV, &I, 871 ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 872 V2State.getConstant())); 873 874 // If something is undef, wait for it to resolve. 875 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 876 return; 877 878 // Otherwise, one of our operands is overdefined. Try to produce something 879 // better than overdefined with some tricks. 880 881 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 882 // operand is overdefined. 883 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 884 LatticeVal *NonOverdefVal = 0; 885 if (!V1State.isOverdefined()) 886 NonOverdefVal = &V1State; 887 else if (!V2State.isOverdefined()) 888 NonOverdefVal = &V2State; 889 890 if (NonOverdefVal) { 891 if (NonOverdefVal->isUndefined()) { 892 // Could annihilate value. 893 if (I.getOpcode() == Instruction::And) 894 markConstant(IV, &I, Constant::getNullValue(I.getType())); 895 else if (VectorType *PT = dyn_cast<VectorType>(I.getType())) 896 markConstant(IV, &I, Constant::getAllOnesValue(PT)); 897 else 898 markConstant(IV, &I, 899 Constant::getAllOnesValue(I.getType())); 900 return; 901 } 902 903 if (I.getOpcode() == Instruction::And) { 904 // X and 0 = 0 905 if (NonOverdefVal->getConstant()->isNullValue()) 906 return markConstant(IV, &I, NonOverdefVal->getConstant()); 907 } else { 908 if (ConstantInt *CI = NonOverdefVal->getConstantInt()) 909 if (CI->isAllOnesValue()) // X or -1 = -1 910 return markConstant(IV, &I, NonOverdefVal->getConstant()); 911 } 912 } 913 } 914 915 916 markOverdefined(&I); 917} 918 919// Handle ICmpInst instruction. 920void SCCPSolver::visitCmpInst(CmpInst &I) { 921 LatticeVal V1State = getValueState(I.getOperand(0)); 922 LatticeVal V2State = getValueState(I.getOperand(1)); 923 924 LatticeVal &IV = ValueState[&I]; 925 if (IV.isOverdefined()) return; 926 927 if (V1State.isConstant() && V2State.isConstant()) 928 return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 929 V1State.getConstant(), 930 V2State.getConstant())); 931 932 // If operands are still undefined, wait for it to resolve. 933 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 934 return; 935 936 markOverdefined(&I); 937} 938 939void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 940 // TODO : SCCP does not handle vectors properly. 941 return markOverdefined(&I); 942 943#if 0 944 LatticeVal &ValState = getValueState(I.getOperand(0)); 945 LatticeVal &IdxState = getValueState(I.getOperand(1)); 946 947 if (ValState.isOverdefined() || IdxState.isOverdefined()) 948 markOverdefined(&I); 949 else if(ValState.isConstant() && IdxState.isConstant()) 950 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 951 IdxState.getConstant())); 952#endif 953} 954 955void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 956 // TODO : SCCP does not handle vectors properly. 957 return markOverdefined(&I); 958#if 0 959 LatticeVal &ValState = getValueState(I.getOperand(0)); 960 LatticeVal &EltState = getValueState(I.getOperand(1)); 961 LatticeVal &IdxState = getValueState(I.getOperand(2)); 962 963 if (ValState.isOverdefined() || EltState.isOverdefined() || 964 IdxState.isOverdefined()) 965 markOverdefined(&I); 966 else if(ValState.isConstant() && EltState.isConstant() && 967 IdxState.isConstant()) 968 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 969 EltState.getConstant(), 970 IdxState.getConstant())); 971 else if (ValState.isUndefined() && EltState.isConstant() && 972 IdxState.isConstant()) 973 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 974 EltState.getConstant(), 975 IdxState.getConstant())); 976#endif 977} 978 979void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 980 // TODO : SCCP does not handle vectors properly. 981 return markOverdefined(&I); 982#if 0 983 LatticeVal &V1State = getValueState(I.getOperand(0)); 984 LatticeVal &V2State = getValueState(I.getOperand(1)); 985 LatticeVal &MaskState = getValueState(I.getOperand(2)); 986 987 if (MaskState.isUndefined() || 988 (V1State.isUndefined() && V2State.isUndefined())) 989 return; // Undefined output if mask or both inputs undefined. 990 991 if (V1State.isOverdefined() || V2State.isOverdefined() || 992 MaskState.isOverdefined()) { 993 markOverdefined(&I); 994 } else { 995 // A mix of constant/undef inputs. 996 Constant *V1 = V1State.isConstant() ? 997 V1State.getConstant() : UndefValue::get(I.getType()); 998 Constant *V2 = V2State.isConstant() ? 999 V2State.getConstant() : UndefValue::get(I.getType()); 1000 Constant *Mask = MaskState.isConstant() ? 1001 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 1002 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 1003 } 1004#endif 1005} 1006 1007// Handle getelementptr instructions. If all operands are constants then we 1008// can turn this into a getelementptr ConstantExpr. 1009// 1010void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 1011 if (ValueState[&I].isOverdefined()) return; 1012 1013 SmallVector<Constant*, 8> Operands; 1014 Operands.reserve(I.getNumOperands()); 1015 1016 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1017 LatticeVal State = getValueState(I.getOperand(i)); 1018 if (State.isUndefined()) 1019 return; // Operands are not resolved yet. 1020 1021 if (State.isOverdefined()) 1022 return markOverdefined(&I); 1023 1024 assert(State.isConstant() && "Unknown state!"); 1025 Operands.push_back(State.getConstant()); 1026 } 1027 1028 Constant *Ptr = Operands[0]; 1029 ArrayRef<Constant *> Indices(Operands.begin() + 1, Operands.end()); 1030 markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices)); 1031} 1032 1033void SCCPSolver::visitStoreInst(StoreInst &SI) { 1034 // If this store is of a struct, ignore it. 1035 if (SI.getOperand(0)->getType()->isStructTy()) 1036 return; 1037 1038 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1039 return; 1040 1041 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1042 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 1043 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 1044 1045 // Get the value we are storing into the global, then merge it. 1046 mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); 1047 if (I->second.isOverdefined()) 1048 TrackedGlobals.erase(I); // No need to keep tracking this! 1049} 1050 1051 1052// Handle load instructions. If the operand is a constant pointer to a constant 1053// global, we can replace the load with the loaded constant value! 1054void SCCPSolver::visitLoadInst(LoadInst &I) { 1055 // If this load is of a struct, just mark the result overdefined. 1056 if (I.getType()->isStructTy()) 1057 return markAnythingOverdefined(&I); 1058 1059 LatticeVal PtrVal = getValueState(I.getOperand(0)); 1060 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 1061 1062 LatticeVal &IV = ValueState[&I]; 1063 if (IV.isOverdefined()) return; 1064 1065 if (!PtrVal.isConstant() || I.isVolatile()) 1066 return markOverdefined(IV, &I); 1067 1068 Constant *Ptr = PtrVal.getConstant(); 1069 1070 // load null -> null 1071 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) 1072 return markConstant(IV, &I, Constant::getNullValue(I.getType())); 1073 1074 // Transform load (constant global) into the value loaded. 1075 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 1076 if (!TrackedGlobals.empty()) { 1077 // If we are tracking this global, merge in the known value for it. 1078 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1079 TrackedGlobals.find(GV); 1080 if (It != TrackedGlobals.end()) { 1081 mergeInValue(IV, &I, It->second); 1082 return; 1083 } 1084 } 1085 } 1086 1087 // Transform load from a constant into a constant if possible. 1088 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD)) 1089 return markConstant(IV, &I, C); 1090 1091 // Otherwise we cannot say for certain what value this load will produce. 1092 // Bail out. 1093 markOverdefined(IV, &I); 1094} 1095 1096void SCCPSolver::visitCallSite(CallSite CS) { 1097 Function *F = CS.getCalledFunction(); 1098 Instruction *I = CS.getInstruction(); 1099 1100 // The common case is that we aren't tracking the callee, either because we 1101 // are not doing interprocedural analysis or the callee is indirect, or is 1102 // external. Handle these cases first. 1103 if (F == 0 || F->isDeclaration()) { 1104CallOverdefined: 1105 // Void return and not tracking callee, just bail. 1106 if (I->getType()->isVoidTy()) return; 1107 1108 // Otherwise, if we have a single return value case, and if the function is 1109 // a declaration, maybe we can constant fold it. 1110 if (F && F->isDeclaration() && !I->getType()->isStructTy() && 1111 canConstantFoldCallTo(F)) { 1112 1113 SmallVector<Constant*, 8> Operands; 1114 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1115 AI != E; ++AI) { 1116 LatticeVal State = getValueState(*AI); 1117 1118 if (State.isUndefined()) 1119 return; // Operands are not resolved yet. 1120 if (State.isOverdefined()) 1121 return markOverdefined(I); 1122 assert(State.isConstant() && "Unknown state!"); 1123 Operands.push_back(State.getConstant()); 1124 } 1125 1126 // If we can constant fold this, mark the result of the call as a 1127 // constant. 1128 if (Constant *C = ConstantFoldCall(F, Operands, TLI)) 1129 return markConstant(I, C); 1130 } 1131 1132 // Otherwise, we don't know anything about this call, mark it overdefined. 1133 return markAnythingOverdefined(I); 1134 } 1135 1136 // If this is a local function that doesn't have its address taken, mark its 1137 // entry block executable and merge in the actual arguments to the call into 1138 // the formal arguments of the function. 1139 if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ 1140 MarkBlockExecutable(F->begin()); 1141 1142 // Propagate information from this call site into the callee. 1143 CallSite::arg_iterator CAI = CS.arg_begin(); 1144 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1145 AI != E; ++AI, ++CAI) { 1146 // If this argument is byval, and if the function is not readonly, there 1147 // will be an implicit copy formed of the input aggregate. 1148 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1149 markOverdefined(AI); 1150 continue; 1151 } 1152 1153 if (StructType *STy = dyn_cast<StructType>(AI->getType())) { 1154 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1155 LatticeVal CallArg = getStructValueState(*CAI, i); 1156 mergeInValue(getStructValueState(AI, i), AI, CallArg); 1157 } 1158 } else { 1159 mergeInValue(AI, getValueState(*CAI)); 1160 } 1161 } 1162 } 1163 1164 // If this is a single/zero retval case, see if we're tracking the function. 1165 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 1166 if (!MRVFunctionsTracked.count(F)) 1167 goto CallOverdefined; // Not tracking this callee. 1168 1169 // If we are tracking this callee, propagate the result of the function 1170 // into this call site. 1171 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1172 mergeInValue(getStructValueState(I, i), I, 1173 TrackedMultipleRetVals[std::make_pair(F, i)]); 1174 } else { 1175 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); 1176 if (TFRVI == TrackedRetVals.end()) 1177 goto CallOverdefined; // Not tracking this callee. 1178 1179 // If so, propagate the return value of the callee into this call result. 1180 mergeInValue(I, TFRVI->second); 1181 } 1182} 1183 1184void SCCPSolver::Solve() { 1185 // Process the work lists until they are empty! 1186 while (!BBWorkList.empty() || !InstWorkList.empty() || 1187 !OverdefinedInstWorkList.empty()) { 1188 // Process the overdefined instruction's work list first, which drives other 1189 // things to overdefined more quickly. 1190 while (!OverdefinedInstWorkList.empty()) { 1191 Value *I = OverdefinedInstWorkList.pop_back_val(); 1192 1193 DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); 1194 1195 // "I" got into the work list because it either made the transition from 1196 // bottom to constant 1197 // 1198 // Anything on this worklist that is overdefined need not be visited 1199 // since all of its users will have already been marked as overdefined 1200 // Update all of the users of this instruction's value. 1201 // 1202 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1203 UI != E; ++UI) 1204 if (Instruction *I = dyn_cast<Instruction>(*UI)) 1205 OperandChangedState(I); 1206 } 1207 1208 // Process the instruction work list. 1209 while (!InstWorkList.empty()) { 1210 Value *I = InstWorkList.pop_back_val(); 1211 1212 DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); 1213 1214 // "I" got into the work list because it made the transition from undef to 1215 // constant. 1216 // 1217 // Anything on this worklist that is overdefined need not be visited 1218 // since all of its users will have already been marked as overdefined. 1219 // Update all of the users of this instruction's value. 1220 // 1221 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) 1222 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1223 UI != E; ++UI) 1224 if (Instruction *I = dyn_cast<Instruction>(*UI)) 1225 OperandChangedState(I); 1226 } 1227 1228 // Process the basic block work list. 1229 while (!BBWorkList.empty()) { 1230 BasicBlock *BB = BBWorkList.back(); 1231 BBWorkList.pop_back(); 1232 1233 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); 1234 1235 // Notify all instructions in this basic block that they are newly 1236 // executable. 1237 visit(BB); 1238 } 1239 } 1240} 1241 1242/// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1243/// that branches on undef values cannot reach any of their successors. 1244/// However, this is not a safe assumption. After we solve dataflow, this 1245/// method should be use to handle this. If this returns true, the solver 1246/// should be rerun. 1247/// 1248/// This method handles this by finding an unresolved branch and marking it one 1249/// of the edges from the block as being feasible, even though the condition 1250/// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1251/// CFG and only slightly pessimizes the analysis results (by marking one, 1252/// potentially infeasible, edge feasible). This cannot usefully modify the 1253/// constraints on the condition of the branch, as that would impact other users 1254/// of the value. 1255/// 1256/// This scan also checks for values that use undefs, whose results are actually 1257/// defined. For example, 'zext i8 undef to i32' should produce all zeros 1258/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1259/// even if X isn't defined. 1260bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1261 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1262 if (!BBExecutable.count(BB)) 1263 continue; 1264 1265 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1266 // Look for instructions which produce undef values. 1267 if (I->getType()->isVoidTy()) continue; 1268 1269 if (StructType *STy = dyn_cast<StructType>(I->getType())) { 1270 // Only a few things that can be structs matter for undef. 1271 1272 // Tracked calls must never be marked overdefined in ResolvedUndefsIn. 1273 if (CallSite CS = CallSite(I)) 1274 if (Function *F = CS.getCalledFunction()) 1275 if (MRVFunctionsTracked.count(F)) 1276 continue; 1277 1278 // extractvalue and insertvalue don't need to be marked; they are 1279 // tracked as precisely as their operands. 1280 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) 1281 continue; 1282 1283 // Send the results of everything else to overdefined. We could be 1284 // more precise than this but it isn't worth bothering. 1285 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1286 LatticeVal &LV = getStructValueState(I, i); 1287 if (LV.isUndefined()) 1288 markOverdefined(LV, I); 1289 } 1290 continue; 1291 } 1292 1293 LatticeVal &LV = getValueState(I); 1294 if (!LV.isUndefined()) continue; 1295 1296 // extractvalue is safe; check here because the argument is a struct. 1297 if (isa<ExtractValueInst>(I)) 1298 continue; 1299 1300 // Compute the operand LatticeVals, for convenience below. 1301 // Anything taking a struct is conservatively assumed to require 1302 // overdefined markings. 1303 if (I->getOperand(0)->getType()->isStructTy()) { 1304 markOverdefined(I); 1305 return true; 1306 } 1307 LatticeVal Op0LV = getValueState(I->getOperand(0)); 1308 LatticeVal Op1LV; 1309 if (I->getNumOperands() == 2) { 1310 if (I->getOperand(1)->getType()->isStructTy()) { 1311 markOverdefined(I); 1312 return true; 1313 } 1314 1315 Op1LV = getValueState(I->getOperand(1)); 1316 } 1317 // If this is an instructions whose result is defined even if the input is 1318 // not fully defined, propagate the information. 1319 Type *ITy = I->getType(); 1320 switch (I->getOpcode()) { 1321 case Instruction::Add: 1322 case Instruction::Sub: 1323 case Instruction::Trunc: 1324 case Instruction::FPTrunc: 1325 case Instruction::BitCast: 1326 break; // Any undef -> undef 1327 case Instruction::FSub: 1328 case Instruction::FAdd: 1329 case Instruction::FMul: 1330 case Instruction::FDiv: 1331 case Instruction::FRem: 1332 // Floating-point binary operation: be conservative. 1333 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1334 markForcedConstant(I, Constant::getNullValue(ITy)); 1335 else 1336 markOverdefined(I); 1337 return true; 1338 case Instruction::ZExt: 1339 case Instruction::SExt: 1340 case Instruction::FPToUI: 1341 case Instruction::FPToSI: 1342 case Instruction::FPExt: 1343 case Instruction::PtrToInt: 1344 case Instruction::IntToPtr: 1345 case Instruction::SIToFP: 1346 case Instruction::UIToFP: 1347 // undef -> 0; some outputs are impossible 1348 markForcedConstant(I, Constant::getNullValue(ITy)); 1349 return true; 1350 case Instruction::Mul: 1351 case Instruction::And: 1352 // Both operands undef -> undef 1353 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1354 break; 1355 // undef * X -> 0. X could be zero. 1356 // undef & X -> 0. X could be zero. 1357 markForcedConstant(I, Constant::getNullValue(ITy)); 1358 return true; 1359 1360 case Instruction::Or: 1361 // Both operands undef -> undef 1362 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1363 break; 1364 // undef | X -> -1. X could be -1. 1365 markForcedConstant(I, Constant::getAllOnesValue(ITy)); 1366 return true; 1367 1368 case Instruction::Xor: 1369 // undef ^ undef -> 0; strictly speaking, this is not strictly 1370 // necessary, but we try to be nice to people who expect this 1371 // behavior in simple cases 1372 if (Op0LV.isUndefined() && Op1LV.isUndefined()) { 1373 markForcedConstant(I, Constant::getNullValue(ITy)); 1374 return true; 1375 } 1376 // undef ^ X -> undef 1377 break; 1378 1379 case Instruction::SDiv: 1380 case Instruction::UDiv: 1381 case Instruction::SRem: 1382 case Instruction::URem: 1383 // X / undef -> undef. No change. 1384 // X % undef -> undef. No change. 1385 if (Op1LV.isUndefined()) break; 1386 1387 // undef / X -> 0. X could be maxint. 1388 // undef % X -> 0. X could be 1. 1389 markForcedConstant(I, Constant::getNullValue(ITy)); 1390 return true; 1391 1392 case Instruction::AShr: 1393 // X >>a undef -> undef. 1394 if (Op1LV.isUndefined()) break; 1395 1396 // undef >>a X -> all ones 1397 markForcedConstant(I, Constant::getAllOnesValue(ITy)); 1398 return true; 1399 case Instruction::LShr: 1400 case Instruction::Shl: 1401 // X << undef -> undef. 1402 // X >> undef -> undef. 1403 if (Op1LV.isUndefined()) break; 1404 1405 // undef << X -> 0 1406 // undef >> X -> 0 1407 markForcedConstant(I, Constant::getNullValue(ITy)); 1408 return true; 1409 case Instruction::Select: 1410 Op1LV = getValueState(I->getOperand(1)); 1411 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1412 if (Op0LV.isUndefined()) { 1413 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1414 Op1LV = getValueState(I->getOperand(2)); 1415 } else if (Op1LV.isUndefined()) { 1416 // c ? undef : undef -> undef. No change. 1417 Op1LV = getValueState(I->getOperand(2)); 1418 if (Op1LV.isUndefined()) 1419 break; 1420 // Otherwise, c ? undef : x -> x. 1421 } else { 1422 // Leave Op1LV as Operand(1)'s LatticeValue. 1423 } 1424 1425 if (Op1LV.isConstant()) 1426 markForcedConstant(I, Op1LV.getConstant()); 1427 else 1428 markOverdefined(I); 1429 return true; 1430 case Instruction::Load: 1431 // A load here means one of two things: a load of undef from a global, 1432 // a load from an unknown pointer. Either way, having it return undef 1433 // is okay. 1434 break; 1435 case Instruction::ICmp: 1436 // X == undef -> undef. Other comparisons get more complicated. 1437 if (cast<ICmpInst>(I)->isEquality()) 1438 break; 1439 markOverdefined(I); 1440 return true; 1441 case Instruction::Call: 1442 case Instruction::Invoke: { 1443 // There are two reasons a call can have an undef result 1444 // 1. It could be tracked. 1445 // 2. It could be constant-foldable. 1446 // Because of the way we solve return values, tracked calls must 1447 // never be marked overdefined in ResolvedUndefsIn. 1448 if (Function *F = CallSite(I).getCalledFunction()) 1449 if (TrackedRetVals.count(F)) 1450 break; 1451 1452 // If the call is constant-foldable, we mark it overdefined because 1453 // we do not know what return values are valid. 1454 markOverdefined(I); 1455 return true; 1456 } 1457 default: 1458 // If we don't know what should happen here, conservatively mark it 1459 // overdefined. 1460 markOverdefined(I); 1461 return true; 1462 } 1463 } 1464 1465 // Check to see if we have a branch or switch on an undefined value. If so 1466 // we force the branch to go one way or the other to make the successor 1467 // values live. It doesn't really matter which way we force it. 1468 TerminatorInst *TI = BB->getTerminator(); 1469 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1470 if (!BI->isConditional()) continue; 1471 if (!getValueState(BI->getCondition()).isUndefined()) 1472 continue; 1473 1474 // If the input to SCCP is actually branch on undef, fix the undef to 1475 // false. 1476 if (isa<UndefValue>(BI->getCondition())) { 1477 BI->setCondition(ConstantInt::getFalse(BI->getContext())); 1478 markEdgeExecutable(BB, TI->getSuccessor(1)); 1479 return true; 1480 } 1481 1482 // Otherwise, it is a branch on a symbolic value which is currently 1483 // considered to be undef. Handle this by forcing the input value to the 1484 // branch to false. 1485 markForcedConstant(BI->getCondition(), 1486 ConstantInt::getFalse(TI->getContext())); 1487 return true; 1488 } 1489 1490 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1491 if (SI->getNumSuccessors() < 2) // no cases 1492 continue; 1493 if (!getValueState(SI->getCondition()).isUndefined()) 1494 continue; 1495 1496 // If the input to SCCP is actually switch on undef, fix the undef to 1497 // the first constant. 1498 if (isa<UndefValue>(SI->getCondition())) { 1499 SI->setCondition(SI->getCaseValue(1)); 1500 markEdgeExecutable(BB, TI->getSuccessor(1)); 1501 return true; 1502 } 1503 1504 markForcedConstant(SI->getCondition(), SI->getCaseValue(1)); 1505 return true; 1506 } 1507 } 1508 1509 return false; 1510} 1511 1512 1513namespace { 1514 //===--------------------------------------------------------------------===// 1515 // 1516 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1517 /// Sparse Conditional Constant Propagator. 1518 /// 1519 struct SCCP : public FunctionPass { 1520 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1521 AU.addRequired<TargetLibraryInfo>(); 1522 } 1523 static char ID; // Pass identification, replacement for typeid 1524 SCCP() : FunctionPass(ID) { 1525 initializeSCCPPass(*PassRegistry::getPassRegistry()); 1526 } 1527 1528 // runOnFunction - Run the Sparse Conditional Constant Propagation 1529 // algorithm, and return true if the function was modified. 1530 // 1531 bool runOnFunction(Function &F); 1532 }; 1533} // end anonymous namespace 1534 1535char SCCP::ID = 0; 1536INITIALIZE_PASS(SCCP, "sccp", 1537 "Sparse Conditional Constant Propagation", false, false) 1538 1539// createSCCPPass - This is the public interface to this file. 1540FunctionPass *llvm::createSCCPPass() { 1541 return new SCCP(); 1542} 1543 1544static void DeleteInstructionInBlock(BasicBlock *BB) { 1545 DEBUG(dbgs() << " BasicBlock Dead:" << *BB); 1546 ++NumDeadBlocks; 1547 1548 // Check to see if there are non-terminating instructions to delete. 1549 if (isa<TerminatorInst>(BB->begin())) 1550 return; 1551 1552 // Delete the instructions backwards, as it has a reduced likelihood of having 1553 // to update as many def-use and use-def chains. 1554 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1555 while (EndInst != BB->begin()) { 1556 // Delete the next to last instruction. 1557 BasicBlock::iterator I = EndInst; 1558 Instruction *Inst = --I; 1559 if (!Inst->use_empty()) 1560 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1561 if (isa<LandingPadInst>(Inst)) { 1562 EndInst = Inst; 1563 continue; 1564 } 1565 BB->getInstList().erase(Inst); 1566 ++NumInstRemoved; 1567 } 1568} 1569 1570// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1571// and return true if the function was modified. 1572// 1573bool SCCP::runOnFunction(Function &F) { 1574 DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); 1575 const TargetData *TD = getAnalysisIfAvailable<TargetData>(); 1576 const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>(); 1577 SCCPSolver Solver(TD, TLI); 1578 1579 // Mark the first block of the function as being executable. 1580 Solver.MarkBlockExecutable(F.begin()); 1581 1582 // Mark all arguments to the function as being overdefined. 1583 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) 1584 Solver.markAnythingOverdefined(AI); 1585 1586 // Solve for constants. 1587 bool ResolvedUndefs = true; 1588 while (ResolvedUndefs) { 1589 Solver.Solve(); 1590 DEBUG(dbgs() << "RESOLVING UNDEFs\n"); 1591 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1592 } 1593 1594 bool MadeChanges = false; 1595 1596 // If we decided that there are basic blocks that are dead in this function, 1597 // delete their contents now. Note that we cannot actually delete the blocks, 1598 // as we cannot modify the CFG of the function. 1599 1600 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1601 if (!Solver.isBlockExecutable(BB)) { 1602 DeleteInstructionInBlock(BB); 1603 MadeChanges = true; 1604 continue; 1605 } 1606 1607 // Iterate over all of the instructions in a function, replacing them with 1608 // constants if we have found them to be of constant values. 1609 // 1610 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1611 Instruction *Inst = BI++; 1612 if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst)) 1613 continue; 1614 1615 // TODO: Reconstruct structs from their elements. 1616 if (Inst->getType()->isStructTy()) 1617 continue; 1618 1619 LatticeVal IV = Solver.getLatticeValueFor(Inst); 1620 if (IV.isOverdefined()) 1621 continue; 1622 1623 Constant *Const = IV.isConstant() 1624 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1625 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst); 1626 1627 // Replaces all of the uses of a variable with uses of the constant. 1628 Inst->replaceAllUsesWith(Const); 1629 1630 // Delete the instruction. 1631 Inst->eraseFromParent(); 1632 1633 // Hey, we just changed something! 1634 MadeChanges = true; 1635 ++NumInstRemoved; 1636 } 1637 } 1638 1639 return MadeChanges; 1640} 1641 1642namespace { 1643 //===--------------------------------------------------------------------===// 1644 // 1645 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1646 /// Constant Propagation. 1647 /// 1648 struct IPSCCP : public ModulePass { 1649 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1650 AU.addRequired<TargetLibraryInfo>(); 1651 } 1652 static char ID; 1653 IPSCCP() : ModulePass(ID) { 1654 initializeIPSCCPPass(*PassRegistry::getPassRegistry()); 1655 } 1656 bool runOnModule(Module &M); 1657 }; 1658} // end anonymous namespace 1659 1660char IPSCCP::ID = 0; 1661INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp", 1662 "Interprocedural Sparse Conditional Constant Propagation", 1663 false, false) 1664INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 1665INITIALIZE_PASS_END(IPSCCP, "ipsccp", 1666 "Interprocedural Sparse Conditional Constant Propagation", 1667 false, false) 1668 1669// createIPSCCPPass - This is the public interface to this file. 1670ModulePass *llvm::createIPSCCPPass() { 1671 return new IPSCCP(); 1672} 1673 1674 1675static bool AddressIsTaken(const GlobalValue *GV) { 1676 // Delete any dead constantexpr klingons. 1677 GV->removeDeadConstantUsers(); 1678 1679 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); 1680 UI != E; ++UI) { 1681 const User *U = *UI; 1682 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 1683 if (SI->getOperand(0) == GV || SI->isVolatile()) 1684 return true; // Storing addr of GV. 1685 } else if (isa<InvokeInst>(U) || isa<CallInst>(U)) { 1686 // Make sure we are calling the function, not passing the address. 1687 ImmutableCallSite CS(cast<Instruction>(U)); 1688 if (!CS.isCallee(UI)) 1689 return true; 1690 } else if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1691 if (LI->isVolatile()) 1692 return true; 1693 } else if (isa<BlockAddress>(U)) { 1694 // blockaddress doesn't take the address of the function, it takes addr 1695 // of label. 1696 } else { 1697 return true; 1698 } 1699 } 1700 return false; 1701} 1702 1703bool IPSCCP::runOnModule(Module &M) { 1704 const TargetData *TD = getAnalysisIfAvailable<TargetData>(); 1705 const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>(); 1706 SCCPSolver Solver(TD, TLI); 1707 1708 // AddressTakenFunctions - This set keeps track of the address-taken functions 1709 // that are in the input. As IPSCCP runs through and simplifies code, 1710 // functions that were address taken can end up losing their 1711 // address-taken-ness. Because of this, we keep track of their addresses from 1712 // the first pass so we can use them for the later simplification pass. 1713 SmallPtrSet<Function*, 32> AddressTakenFunctions; 1714 1715 // Loop over all functions, marking arguments to those with their addresses 1716 // taken or that are external as overdefined. 1717 // 1718 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1719 if (F->isDeclaration()) 1720 continue; 1721 1722 // If this is a strong or ODR definition of this function, then we can 1723 // propagate information about its result into callsites of it. 1724 if (!F->mayBeOverridden()) 1725 Solver.AddTrackedFunction(F); 1726 1727 // If this function only has direct calls that we can see, we can track its 1728 // arguments and return value aggressively, and can assume it is not called 1729 // unless we see evidence to the contrary. 1730 if (F->hasLocalLinkage()) { 1731 if (AddressIsTaken(F)) 1732 AddressTakenFunctions.insert(F); 1733 else { 1734 Solver.AddArgumentTrackedFunction(F); 1735 continue; 1736 } 1737 } 1738 1739 // Assume the function is called. 1740 Solver.MarkBlockExecutable(F->begin()); 1741 1742 // Assume nothing about the incoming arguments. 1743 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1744 AI != E; ++AI) 1745 Solver.markAnythingOverdefined(AI); 1746 } 1747 1748 // Loop over global variables. We inform the solver about any internal global 1749 // variables that do not have their 'addresses taken'. If they don't have 1750 // their addresses taken, we can propagate constants through them. 1751 for (Module::global_iterator G = M.global_begin(), E = M.global_end(); 1752 G != E; ++G) 1753 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G)) 1754 Solver.TrackValueOfGlobalVariable(G); 1755 1756 // Solve for constants. 1757 bool ResolvedUndefs = true; 1758 while (ResolvedUndefs) { 1759 Solver.Solve(); 1760 1761 DEBUG(dbgs() << "RESOLVING UNDEFS\n"); 1762 ResolvedUndefs = false; 1763 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1764 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); 1765 } 1766 1767 bool MadeChanges = false; 1768 1769 // Iterate over all of the instructions in the module, replacing them with 1770 // constants if we have found them to be of constant values. 1771 // 1772 SmallVector<BasicBlock*, 512> BlocksToErase; 1773 1774 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1775 if (Solver.isBlockExecutable(F->begin())) { 1776 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1777 AI != E; ++AI) { 1778 if (AI->use_empty() || AI->getType()->isStructTy()) continue; 1779 1780 // TODO: Could use getStructLatticeValueFor to find out if the entire 1781 // result is a constant and replace it entirely if so. 1782 1783 LatticeVal IV = Solver.getLatticeValueFor(AI); 1784 if (IV.isOverdefined()) continue; 1785 1786 Constant *CST = IV.isConstant() ? 1787 IV.getConstant() : UndefValue::get(AI->getType()); 1788 DEBUG(dbgs() << "*** Arg " << *AI << " = " << *CST <<"\n"); 1789 1790 // Replaces all of the uses of a variable with uses of the 1791 // constant. 1792 AI->replaceAllUsesWith(CST); 1793 ++IPNumArgsElimed; 1794 } 1795 } 1796 1797 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { 1798 if (!Solver.isBlockExecutable(BB)) { 1799 DeleteInstructionInBlock(BB); 1800 MadeChanges = true; 1801 1802 TerminatorInst *TI = BB->getTerminator(); 1803 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1804 BasicBlock *Succ = TI->getSuccessor(i); 1805 if (!Succ->empty() && isa<PHINode>(Succ->begin())) 1806 TI->getSuccessor(i)->removePredecessor(BB); 1807 } 1808 if (!TI->use_empty()) 1809 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1810 TI->eraseFromParent(); 1811 1812 if (&*BB != &F->front()) 1813 BlocksToErase.push_back(BB); 1814 else 1815 new UnreachableInst(M.getContext(), BB); 1816 continue; 1817 } 1818 1819 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1820 Instruction *Inst = BI++; 1821 if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy()) 1822 continue; 1823 1824 // TODO: Could use getStructLatticeValueFor to find out if the entire 1825 // result is a constant and replace it entirely if so. 1826 1827 LatticeVal IV = Solver.getLatticeValueFor(Inst); 1828 if (IV.isOverdefined()) 1829 continue; 1830 1831 Constant *Const = IV.isConstant() 1832 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1833 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst); 1834 1835 // Replaces all of the uses of a variable with uses of the 1836 // constant. 1837 Inst->replaceAllUsesWith(Const); 1838 1839 // Delete the instruction. 1840 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst)) 1841 Inst->eraseFromParent(); 1842 1843 // Hey, we just changed something! 1844 MadeChanges = true; 1845 ++IPNumInstRemoved; 1846 } 1847 } 1848 1849 // Now that all instructions in the function are constant folded, erase dead 1850 // blocks, because we can now use ConstantFoldTerminator to get rid of 1851 // in-edges. 1852 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1853 // If there are any PHI nodes in this successor, drop entries for BB now. 1854 BasicBlock *DeadBB = BlocksToErase[i]; 1855 for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end(); 1856 UI != UE; ) { 1857 // Grab the user and then increment the iterator early, as the user 1858 // will be deleted. Step past all adjacent uses from the same user. 1859 Instruction *I = dyn_cast<Instruction>(*UI); 1860 do { ++UI; } while (UI != UE && *UI == I); 1861 1862 // Ignore blockaddress users; BasicBlock's dtor will handle them. 1863 if (!I) continue; 1864 1865 bool Folded = ConstantFoldTerminator(I->getParent()); 1866 if (!Folded) { 1867 // The constant folder may not have been able to fold the terminator 1868 // if this is a branch or switch on undef. Fold it manually as a 1869 // branch to the first successor. 1870#ifndef NDEBUG 1871 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1872 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1873 "Branch should be foldable!"); 1874 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1875 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1876 } else { 1877 llvm_unreachable("Didn't fold away reference to block!"); 1878 } 1879#endif 1880 1881 // Make this an uncond branch to the first successor. 1882 TerminatorInst *TI = I->getParent()->getTerminator(); 1883 BranchInst::Create(TI->getSuccessor(0), TI); 1884 1885 // Remove entries in successor phi nodes to remove edges. 1886 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1887 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1888 1889 // Remove the old terminator. 1890 TI->eraseFromParent(); 1891 } 1892 } 1893 1894 // Finally, delete the basic block. 1895 F->getBasicBlockList().erase(DeadBB); 1896 } 1897 BlocksToErase.clear(); 1898 } 1899 1900 // If we inferred constant or undef return values for a function, we replaced 1901 // all call uses with the inferred value. This means we don't need to bother 1902 // actually returning anything from the function. Replace all return 1903 // instructions with return undef. 1904 // 1905 // Do this in two stages: first identify the functions we should process, then 1906 // actually zap their returns. This is important because we can only do this 1907 // if the address of the function isn't taken. In cases where a return is the 1908 // last use of a function, the order of processing functions would affect 1909 // whether other functions are optimizable. 1910 SmallVector<ReturnInst*, 8> ReturnsToZap; 1911 1912 // TODO: Process multiple value ret instructions also. 1913 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); 1914 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), 1915 E = RV.end(); I != E; ++I) { 1916 Function *F = I->first; 1917 if (I->second.isOverdefined() || F->getReturnType()->isVoidTy()) 1918 continue; 1919 1920 // We can only do this if we know that nothing else can call the function. 1921 if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F)) 1922 continue; 1923 1924 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1925 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1926 if (!isa<UndefValue>(RI->getOperand(0))) 1927 ReturnsToZap.push_back(RI); 1928 } 1929 1930 // Zap all returns which we've identified as zap to change. 1931 for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { 1932 Function *F = ReturnsToZap[i]->getParent()->getParent(); 1933 ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); 1934 } 1935 1936 // If we inferred constant or undef values for globals variables, we can delete 1937 // the global and any stores that remain to it. 1938 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1939 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1940 E = TG.end(); I != E; ++I) { 1941 GlobalVariable *GV = I->first; 1942 assert(!I->second.isOverdefined() && 1943 "Overdefined values should have been taken out of the map!"); 1944 DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n"); 1945 while (!GV->use_empty()) { 1946 StoreInst *SI = cast<StoreInst>(GV->use_back()); 1947 SI->eraseFromParent(); 1948 } 1949 M.getGlobalList().erase(GV); 1950 ++IPNumGlobalConst; 1951 } 1952 1953 return MadeChanges; 1954} 1955