SCCP.cpp revision 79066fa6acce02c97c714a5a6e151ed8a249721c
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18// Notice that:
19//   * This pass has a habit of making definitions be dead.  It is a good idea
20//     to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "sccp"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/IPO.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Instructions.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/ConstantFolding.h"
32#include "llvm/Transforms/Utils/Local.h"
33#include "llvm/Support/CallSite.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/InstVisitor.h"
36#include "llvm/ADT/hash_map"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/ADT/STLExtras.h"
40#include <algorithm>
41#include <set>
42using namespace llvm;
43
44STATISTIC(NumInstRemoved, "Number of instructions removed");
45STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
46
47STATISTIC(IPNumInstRemoved, "Number ofinstructions removed by IPSCCP");
48STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
49STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
50STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
51
52namespace {
53/// LatticeVal class - This class represents the different lattice values that
54/// an LLVM value may occupy.  It is a simple class with value semantics.
55///
56class LatticeVal {
57  enum {
58    /// undefined - This LLVM Value has no known value yet.
59    undefined,
60
61    /// constant - This LLVM Value has a specific constant value.
62    constant,
63
64    /// forcedconstant - This LLVM Value was thought to be undef until
65    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
66    /// with another (different) constant, it goes to overdefined, instead of
67    /// asserting.
68    forcedconstant,
69
70    /// overdefined - This instruction is not known to be constant, and we know
71    /// it has a value.
72    overdefined
73  } LatticeValue;    // The current lattice position
74
75  Constant *ConstantVal; // If Constant value, the current value
76public:
77  inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
78
79  // markOverdefined - Return true if this is a new status to be in...
80  inline bool markOverdefined() {
81    if (LatticeValue != overdefined) {
82      LatticeValue = overdefined;
83      return true;
84    }
85    return false;
86  }
87
88  // markConstant - Return true if this is a new status for us.
89  inline bool markConstant(Constant *V) {
90    if (LatticeValue != constant) {
91      if (LatticeValue == undefined) {
92        LatticeValue = constant;
93        assert(V && "Marking constant with NULL");
94        ConstantVal = V;
95      } else {
96        assert(LatticeValue == forcedconstant &&
97               "Cannot move from overdefined to constant!");
98        // Stay at forcedconstant if the constant is the same.
99        if (V == ConstantVal) return false;
100
101        // Otherwise, we go to overdefined.  Assumptions made based on the
102        // forced value are possibly wrong.  Assuming this is another constant
103        // could expose a contradiction.
104        LatticeValue = overdefined;
105      }
106      return true;
107    } else {
108      assert(ConstantVal == V && "Marking constant with different value");
109    }
110    return false;
111  }
112
113  inline void markForcedConstant(Constant *V) {
114    assert(LatticeValue == undefined && "Can't force a defined value!");
115    LatticeValue = forcedconstant;
116    ConstantVal = V;
117  }
118
119  inline bool isUndefined() const { return LatticeValue == undefined; }
120  inline bool isConstant() const {
121    return LatticeValue == constant || LatticeValue == forcedconstant;
122  }
123  inline bool isOverdefined() const { return LatticeValue == overdefined; }
124
125  inline Constant *getConstant() const {
126    assert(isConstant() && "Cannot get the constant of a non-constant!");
127    return ConstantVal;
128  }
129};
130
131} // end anonymous namespace
132
133
134//===----------------------------------------------------------------------===//
135//
136/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
137/// Constant Propagation.
138///
139class SCCPSolver : public InstVisitor<SCCPSolver> {
140  std::set<BasicBlock*>     BBExecutable;// The basic blocks that are executable
141  hash_map<Value*, LatticeVal> ValueState;  // The state each value is in...
142
143  /// GlobalValue - If we are tracking any values for the contents of a global
144  /// variable, we keep a mapping from the constant accessor to the element of
145  /// the global, to the currently known value.  If the value becomes
146  /// overdefined, it's entry is simply removed from this map.
147  hash_map<GlobalVariable*, LatticeVal> TrackedGlobals;
148
149  /// TrackedFunctionRetVals - If we are tracking arguments into and the return
150  /// value out of a function, it will have an entry in this map, indicating
151  /// what the known return value for the function is.
152  hash_map<Function*, LatticeVal> TrackedFunctionRetVals;
153
154  // The reason for two worklists is that overdefined is the lowest state
155  // on the lattice, and moving things to overdefined as fast as possible
156  // makes SCCP converge much faster.
157  // By having a separate worklist, we accomplish this because everything
158  // possibly overdefined will become overdefined at the soonest possible
159  // point.
160  std::vector<Value*> OverdefinedInstWorkList;
161  std::vector<Value*> InstWorkList;
162
163
164  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
165
166  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
167  /// overdefined, despite the fact that the PHI node is overdefined.
168  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
169
170  /// KnownFeasibleEdges - Entries in this set are edges which have already had
171  /// PHI nodes retriggered.
172  typedef std::pair<BasicBlock*,BasicBlock*> Edge;
173  std::set<Edge> KnownFeasibleEdges;
174public:
175
176  /// MarkBlockExecutable - This method can be used by clients to mark all of
177  /// the blocks that are known to be intrinsically live in the processed unit.
178  void MarkBlockExecutable(BasicBlock *BB) {
179    DOUT << "Marking Block Executable: " << BB->getName() << "\n";
180    BBExecutable.insert(BB);   // Basic block is executable!
181    BBWorkList.push_back(BB);  // Add the block to the work list!
182  }
183
184  /// TrackValueOfGlobalVariable - Clients can use this method to
185  /// inform the SCCPSolver that it should track loads and stores to the
186  /// specified global variable if it can.  This is only legal to call if
187  /// performing Interprocedural SCCP.
188  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
189    const Type *ElTy = GV->getType()->getElementType();
190    if (ElTy->isFirstClassType()) {
191      LatticeVal &IV = TrackedGlobals[GV];
192      if (!isa<UndefValue>(GV->getInitializer()))
193        IV.markConstant(GV->getInitializer());
194    }
195  }
196
197  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
198  /// and out of the specified function (which cannot have its address taken),
199  /// this method must be called.
200  void AddTrackedFunction(Function *F) {
201    assert(F->hasInternalLinkage() && "Can only track internal functions!");
202    // Add an entry, F -> undef.
203    TrackedFunctionRetVals[F];
204  }
205
206  /// Solve - Solve for constants and executable blocks.
207  ///
208  void Solve();
209
210  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
211  /// that branches on undef values cannot reach any of their successors.
212  /// However, this is not a safe assumption.  After we solve dataflow, this
213  /// method should be use to handle this.  If this returns true, the solver
214  /// should be rerun.
215  bool ResolvedUndefsIn(Function &F);
216
217  /// getExecutableBlocks - Once we have solved for constants, return the set of
218  /// blocks that is known to be executable.
219  std::set<BasicBlock*> &getExecutableBlocks() {
220    return BBExecutable;
221  }
222
223  /// getValueMapping - Once we have solved for constants, return the mapping of
224  /// LLVM values to LatticeVals.
225  hash_map<Value*, LatticeVal> &getValueMapping() {
226    return ValueState;
227  }
228
229  /// getTrackedFunctionRetVals - Get the inferred return value map.
230  ///
231  const hash_map<Function*, LatticeVal> &getTrackedFunctionRetVals() {
232    return TrackedFunctionRetVals;
233  }
234
235  /// getTrackedGlobals - Get and return the set of inferred initializers for
236  /// global variables.
237  const hash_map<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
238    return TrackedGlobals;
239  }
240
241
242private:
243  // markConstant - Make a value be marked as "constant".  If the value
244  // is not already a constant, add it to the instruction work list so that
245  // the users of the instruction are updated later.
246  //
247  inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
248    if (IV.markConstant(C)) {
249      DOUT << "markConstant: " << *C << ": " << *V;
250      InstWorkList.push_back(V);
251    }
252  }
253
254  inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
255    IV.markForcedConstant(C);
256    DOUT << "markForcedConstant: " << *C << ": " << *V;
257    InstWorkList.push_back(V);
258  }
259
260  inline void markConstant(Value *V, Constant *C) {
261    markConstant(ValueState[V], V, C);
262  }
263
264  // markOverdefined - Make a value be marked as "overdefined". If the
265  // value is not already overdefined, add it to the overdefined instruction
266  // work list so that the users of the instruction are updated later.
267
268  inline void markOverdefined(LatticeVal &IV, Value *V) {
269    if (IV.markOverdefined()) {
270      DEBUG(DOUT << "markOverdefined: ";
271            if (Function *F = dyn_cast<Function>(V))
272              DOUT << "Function '" << F->getName() << "'\n";
273            else
274              DOUT << *V);
275      // Only instructions go on the work list
276      OverdefinedInstWorkList.push_back(V);
277    }
278  }
279  inline void markOverdefined(Value *V) {
280    markOverdefined(ValueState[V], V);
281  }
282
283  inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
284    if (IV.isOverdefined() || MergeWithV.isUndefined())
285      return;  // Noop.
286    if (MergeWithV.isOverdefined())
287      markOverdefined(IV, V);
288    else if (IV.isUndefined())
289      markConstant(IV, V, MergeWithV.getConstant());
290    else if (IV.getConstant() != MergeWithV.getConstant())
291      markOverdefined(IV, V);
292  }
293
294  inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
295    return mergeInValue(ValueState[V], V, MergeWithV);
296  }
297
298
299  // getValueState - Return the LatticeVal object that corresponds to the value.
300  // This function is necessary because not all values should start out in the
301  // underdefined state... Argument's should be overdefined, and
302  // constants should be marked as constants.  If a value is not known to be an
303  // Instruction object, then use this accessor to get its value from the map.
304  //
305  inline LatticeVal &getValueState(Value *V) {
306    hash_map<Value*, LatticeVal>::iterator I = ValueState.find(V);
307    if (I != ValueState.end()) return I->second;  // Common case, in the map
308
309    if (Constant *C = dyn_cast<Constant>(V)) {
310      if (isa<UndefValue>(V)) {
311        // Nothing to do, remain undefined.
312      } else {
313        ValueState[C].markConstant(C);          // Constants are constant
314      }
315    }
316    // All others are underdefined by default...
317    return ValueState[V];
318  }
319
320  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
321  // work list if it is not already executable...
322  //
323  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
324    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
325      return;  // This edge is already known to be executable!
326
327    if (BBExecutable.count(Dest)) {
328      DOUT << "Marking Edge Executable: " << Source->getName()
329           << " -> " << Dest->getName() << "\n";
330
331      // The destination is already executable, but we just made an edge
332      // feasible that wasn't before.  Revisit the PHI nodes in the block
333      // because they have potentially new operands.
334      for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
335        visitPHINode(*cast<PHINode>(I));
336
337    } else {
338      MarkBlockExecutable(Dest);
339    }
340  }
341
342  // getFeasibleSuccessors - Return a vector of booleans to indicate which
343  // successors are reachable from a given terminator instruction.
344  //
345  void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs);
346
347  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
348  // block to the 'To' basic block is currently feasible...
349  //
350  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
351
352  // OperandChangedState - This method is invoked on all of the users of an
353  // instruction that was just changed state somehow....  Based on this
354  // information, we need to update the specified user of this instruction.
355  //
356  void OperandChangedState(User *U) {
357    // Only instructions use other variable values!
358    Instruction &I = cast<Instruction>(*U);
359    if (BBExecutable.count(I.getParent()))   // Inst is executable?
360      visit(I);
361  }
362
363private:
364  friend class InstVisitor<SCCPSolver>;
365
366  // visit implementations - Something changed in this instruction... Either an
367  // operand made a transition, or the instruction is newly executable.  Change
368  // the value type of I to reflect these changes if appropriate.
369  //
370  void visitPHINode(PHINode &I);
371
372  // Terminators
373  void visitReturnInst(ReturnInst &I);
374  void visitTerminatorInst(TerminatorInst &TI);
375
376  void visitCastInst(CastInst &I);
377  void visitSelectInst(SelectInst &I);
378  void visitBinaryOperator(Instruction &I);
379  void visitCmpInst(CmpInst &I);
380  void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
381  void visitExtractElementInst(ExtractElementInst &I);
382  void visitInsertElementInst(InsertElementInst &I);
383  void visitShuffleVectorInst(ShuffleVectorInst &I);
384
385  // Instructions that cannot be folded away...
386  void visitStoreInst     (Instruction &I);
387  void visitLoadInst      (LoadInst &I);
388  void visitGetElementPtrInst(GetElementPtrInst &I);
389  void visitCallInst      (CallInst &I) { visitCallSite(CallSite::get(&I)); }
390  void visitInvokeInst    (InvokeInst &II) {
391    visitCallSite(CallSite::get(&II));
392    visitTerminatorInst(II);
393  }
394  void visitCallSite      (CallSite CS);
395  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
396  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
397  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
398  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
399  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
400  void visitFreeInst      (Instruction &I) { /*returns void*/ }
401
402  void visitInstruction(Instruction &I) {
403    // If a new instruction is added to LLVM that we don't handle...
404    cerr << "SCCP: Don't know how to handle: " << I;
405    markOverdefined(&I);   // Just in case
406  }
407};
408
409// getFeasibleSuccessors - Return a vector of booleans to indicate which
410// successors are reachable from a given terminator instruction.
411//
412void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
413                                       std::vector<bool> &Succs) {
414  Succs.resize(TI.getNumSuccessors());
415  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
416    if (BI->isUnconditional()) {
417      Succs[0] = true;
418    } else {
419      LatticeVal &BCValue = getValueState(BI->getCondition());
420      if (BCValue.isOverdefined() ||
421          (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
422        // Overdefined condition variables, and branches on unfoldable constant
423        // conditions, mean the branch could go either way.
424        Succs[0] = Succs[1] = true;
425      } else if (BCValue.isConstant()) {
426        // Constant condition variables mean the branch can only go a single way
427        Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true;
428      }
429    }
430  } else if (isa<InvokeInst>(&TI)) {
431    // Invoke instructions successors are always executable.
432    Succs[0] = Succs[1] = true;
433  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
434    LatticeVal &SCValue = getValueState(SI->getCondition());
435    if (SCValue.isOverdefined() ||   // Overdefined condition?
436        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
437      // All destinations are executable!
438      Succs.assign(TI.getNumSuccessors(), true);
439    } else if (SCValue.isConstant()) {
440      Constant *CPV = SCValue.getConstant();
441      // Make sure to skip the "default value" which isn't a value
442      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
443        if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
444          Succs[i] = true;
445          return;
446        }
447      }
448
449      // Constant value not equal to any of the branches... must execute
450      // default branch then...
451      Succs[0] = true;
452    }
453  } else {
454    cerr << "SCCP: Don't know how to handle: " << TI;
455    Succs.assign(TI.getNumSuccessors(), true);
456  }
457}
458
459
460// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
461// block to the 'To' basic block is currently feasible...
462//
463bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
464  assert(BBExecutable.count(To) && "Dest should always be alive!");
465
466  // Make sure the source basic block is executable!!
467  if (!BBExecutable.count(From)) return false;
468
469  // Check to make sure this edge itself is actually feasible now...
470  TerminatorInst *TI = From->getTerminator();
471  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
472    if (BI->isUnconditional())
473      return true;
474    else {
475      LatticeVal &BCValue = getValueState(BI->getCondition());
476      if (BCValue.isOverdefined()) {
477        // Overdefined condition variables mean the branch could go either way.
478        return true;
479      } else if (BCValue.isConstant()) {
480        // Not branching on an evaluatable constant?
481        if (!isa<ConstantInt>(BCValue.getConstant())) return true;
482
483        // Constant condition variables mean the branch can only go a single way
484        return BI->getSuccessor(BCValue.getConstant() ==
485                                       ConstantInt::getFalse()) == To;
486      }
487      return false;
488    }
489  } else if (isa<InvokeInst>(TI)) {
490    // Invoke instructions successors are always executable.
491    return true;
492  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
493    LatticeVal &SCValue = getValueState(SI->getCondition());
494    if (SCValue.isOverdefined()) {  // Overdefined condition?
495      // All destinations are executable!
496      return true;
497    } else if (SCValue.isConstant()) {
498      Constant *CPV = SCValue.getConstant();
499      if (!isa<ConstantInt>(CPV))
500        return true;  // not a foldable constant?
501
502      // Make sure to skip the "default value" which isn't a value
503      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
504        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
505          return SI->getSuccessor(i) == To;
506
507      // Constant value not equal to any of the branches... must execute
508      // default branch then...
509      return SI->getDefaultDest() == To;
510    }
511    return false;
512  } else {
513    cerr << "Unknown terminator instruction: " << *TI;
514    abort();
515  }
516}
517
518// visit Implementations - Something changed in this instruction... Either an
519// operand made a transition, or the instruction is newly executable.  Change
520// the value type of I to reflect these changes if appropriate.  This method
521// makes sure to do the following actions:
522//
523// 1. If a phi node merges two constants in, and has conflicting value coming
524//    from different branches, or if the PHI node merges in an overdefined
525//    value, then the PHI node becomes overdefined.
526// 2. If a phi node merges only constants in, and they all agree on value, the
527//    PHI node becomes a constant value equal to that.
528// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
529// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
530// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
531// 6. If a conditional branch has a value that is constant, make the selected
532//    destination executable
533// 7. If a conditional branch has a value that is overdefined, make all
534//    successors executable.
535//
536void SCCPSolver::visitPHINode(PHINode &PN) {
537  LatticeVal &PNIV = getValueState(&PN);
538  if (PNIV.isOverdefined()) {
539    // There may be instructions using this PHI node that are not overdefined
540    // themselves.  If so, make sure that they know that the PHI node operand
541    // changed.
542    std::multimap<PHINode*, Instruction*>::iterator I, E;
543    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
544    if (I != E) {
545      std::vector<Instruction*> Users;
546      Users.reserve(std::distance(I, E));
547      for (; I != E; ++I) Users.push_back(I->second);
548      while (!Users.empty()) {
549        visit(Users.back());
550        Users.pop_back();
551      }
552    }
553    return;  // Quick exit
554  }
555
556  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
557  // and slow us down a lot.  Just mark them overdefined.
558  if (PN.getNumIncomingValues() > 64) {
559    markOverdefined(PNIV, &PN);
560    return;
561  }
562
563  // Look at all of the executable operands of the PHI node.  If any of them
564  // are overdefined, the PHI becomes overdefined as well.  If they are all
565  // constant, and they agree with each other, the PHI becomes the identical
566  // constant.  If they are constant and don't agree, the PHI is overdefined.
567  // If there are no executable operands, the PHI remains undefined.
568  //
569  Constant *OperandVal = 0;
570  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
571    LatticeVal &IV = getValueState(PN.getIncomingValue(i));
572    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
573
574    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
575      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
576        markOverdefined(PNIV, &PN);
577        return;
578      }
579
580      if (OperandVal == 0) {   // Grab the first value...
581        OperandVal = IV.getConstant();
582      } else {                // Another value is being merged in!
583        // There is already a reachable operand.  If we conflict with it,
584        // then the PHI node becomes overdefined.  If we agree with it, we
585        // can continue on.
586
587        // Check to see if there are two different constants merging...
588        if (IV.getConstant() != OperandVal) {
589          // Yes there is.  This means the PHI node is not constant.
590          // You must be overdefined poor PHI.
591          //
592          markOverdefined(PNIV, &PN);    // The PHI node now becomes overdefined
593          return;    // I'm done analyzing you
594        }
595      }
596    }
597  }
598
599  // If we exited the loop, this means that the PHI node only has constant
600  // arguments that agree with each other(and OperandVal is the constant) or
601  // OperandVal is null because there are no defined incoming arguments.  If
602  // this is the case, the PHI remains undefined.
603  //
604  if (OperandVal)
605    markConstant(PNIV, &PN, OperandVal);      // Acquire operand value
606}
607
608void SCCPSolver::visitReturnInst(ReturnInst &I) {
609  if (I.getNumOperands() == 0) return;  // Ret void
610
611  // If we are tracking the return value of this function, merge it in.
612  Function *F = I.getParent()->getParent();
613  if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) {
614    hash_map<Function*, LatticeVal>::iterator TFRVI =
615      TrackedFunctionRetVals.find(F);
616    if (TFRVI != TrackedFunctionRetVals.end() &&
617        !TFRVI->second.isOverdefined()) {
618      LatticeVal &IV = getValueState(I.getOperand(0));
619      mergeInValue(TFRVI->second, F, IV);
620    }
621  }
622}
623
624
625void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
626  std::vector<bool> SuccFeasible;
627  getFeasibleSuccessors(TI, SuccFeasible);
628
629  BasicBlock *BB = TI.getParent();
630
631  // Mark all feasible successors executable...
632  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
633    if (SuccFeasible[i])
634      markEdgeExecutable(BB, TI.getSuccessor(i));
635}
636
637void SCCPSolver::visitCastInst(CastInst &I) {
638  Value *V = I.getOperand(0);
639  LatticeVal &VState = getValueState(V);
640  if (VState.isOverdefined())          // Inherit overdefinedness of operand
641    markOverdefined(&I);
642  else if (VState.isConstant())        // Propagate constant value
643    markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
644                                           VState.getConstant(), I.getType()));
645}
646
647void SCCPSolver::visitSelectInst(SelectInst &I) {
648  LatticeVal &CondValue = getValueState(I.getCondition());
649  if (CondValue.isUndefined())
650    return;
651  if (CondValue.isConstant()) {
652    if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
653      mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
654                                                          : I.getFalseValue()));
655      return;
656    }
657  }
658
659  // Otherwise, the condition is overdefined or a constant we can't evaluate.
660  // See if we can produce something better than overdefined based on the T/F
661  // value.
662  LatticeVal &TVal = getValueState(I.getTrueValue());
663  LatticeVal &FVal = getValueState(I.getFalseValue());
664
665  // select ?, C, C -> C.
666  if (TVal.isConstant() && FVal.isConstant() &&
667      TVal.getConstant() == FVal.getConstant()) {
668    markConstant(&I, FVal.getConstant());
669    return;
670  }
671
672  if (TVal.isUndefined()) {  // select ?, undef, X -> X.
673    mergeInValue(&I, FVal);
674  } else if (FVal.isUndefined()) {  // select ?, X, undef -> X.
675    mergeInValue(&I, TVal);
676  } else {
677    markOverdefined(&I);
678  }
679}
680
681// Handle BinaryOperators and Shift Instructions...
682void SCCPSolver::visitBinaryOperator(Instruction &I) {
683  LatticeVal &IV = ValueState[&I];
684  if (IV.isOverdefined()) return;
685
686  LatticeVal &V1State = getValueState(I.getOperand(0));
687  LatticeVal &V2State = getValueState(I.getOperand(1));
688
689  if (V1State.isOverdefined() || V2State.isOverdefined()) {
690    // If this is an AND or OR with 0 or -1, it doesn't matter that the other
691    // operand is overdefined.
692    if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
693      LatticeVal *NonOverdefVal = 0;
694      if (!V1State.isOverdefined()) {
695        NonOverdefVal = &V1State;
696      } else if (!V2State.isOverdefined()) {
697        NonOverdefVal = &V2State;
698      }
699
700      if (NonOverdefVal) {
701        if (NonOverdefVal->isUndefined()) {
702          // Could annihilate value.
703          if (I.getOpcode() == Instruction::And)
704            markConstant(IV, &I, Constant::getNullValue(I.getType()));
705          else if (const PackedType *PT = dyn_cast<PackedType>(I.getType()))
706            markConstant(IV, &I, ConstantPacked::getAllOnesValue(PT));
707          else
708            markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType()));
709          return;
710        } else {
711          if (I.getOpcode() == Instruction::And) {
712            if (NonOverdefVal->getConstant()->isNullValue()) {
713              markConstant(IV, &I, NonOverdefVal->getConstant());
714              return;      // X and 0 = 0
715            }
716          } else {
717            if (ConstantInt *CI =
718                     dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
719              if (CI->isAllOnesValue()) {
720                markConstant(IV, &I, NonOverdefVal->getConstant());
721                return;    // X or -1 = -1
722              }
723          }
724        }
725      }
726    }
727
728
729    // If both operands are PHI nodes, it is possible that this instruction has
730    // a constant value, despite the fact that the PHI node doesn't.  Check for
731    // this condition now.
732    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
733      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
734        if (PN1->getParent() == PN2->getParent()) {
735          // Since the two PHI nodes are in the same basic block, they must have
736          // entries for the same predecessors.  Walk the predecessor list, and
737          // if all of the incoming values are constants, and the result of
738          // evaluating this expression with all incoming value pairs is the
739          // same, then this expression is a constant even though the PHI node
740          // is not a constant!
741          LatticeVal Result;
742          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
743            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
744            BasicBlock *InBlock = PN1->getIncomingBlock(i);
745            LatticeVal &In2 =
746              getValueState(PN2->getIncomingValueForBlock(InBlock));
747
748            if (In1.isOverdefined() || In2.isOverdefined()) {
749              Result.markOverdefined();
750              break;  // Cannot fold this operation over the PHI nodes!
751            } else if (In1.isConstant() && In2.isConstant()) {
752              Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
753                                              In2.getConstant());
754              if (Result.isUndefined())
755                Result.markConstant(V);
756              else if (Result.isConstant() && Result.getConstant() != V) {
757                Result.markOverdefined();
758                break;
759              }
760            }
761          }
762
763          // If we found a constant value here, then we know the instruction is
764          // constant despite the fact that the PHI nodes are overdefined.
765          if (Result.isConstant()) {
766            markConstant(IV, &I, Result.getConstant());
767            // Remember that this instruction is virtually using the PHI node
768            // operands.
769            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
770            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
771            return;
772          } else if (Result.isUndefined()) {
773            return;
774          }
775
776          // Okay, this really is overdefined now.  Since we might have
777          // speculatively thought that this was not overdefined before, and
778          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
779          // make sure to clean out any entries that we put there, for
780          // efficiency.
781          std::multimap<PHINode*, Instruction*>::iterator It, E;
782          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
783          while (It != E) {
784            if (It->second == &I) {
785              UsersOfOverdefinedPHIs.erase(It++);
786            } else
787              ++It;
788          }
789          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
790          while (It != E) {
791            if (It->second == &I) {
792              UsersOfOverdefinedPHIs.erase(It++);
793            } else
794              ++It;
795          }
796        }
797
798    markOverdefined(IV, &I);
799  } else if (V1State.isConstant() && V2State.isConstant()) {
800    markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
801                                           V2State.getConstant()));
802  }
803}
804
805// Handle ICmpInst instruction...
806void SCCPSolver::visitCmpInst(CmpInst &I) {
807  LatticeVal &IV = ValueState[&I];
808  if (IV.isOverdefined()) return;
809
810  LatticeVal &V1State = getValueState(I.getOperand(0));
811  LatticeVal &V2State = getValueState(I.getOperand(1));
812
813  if (V1State.isOverdefined() || V2State.isOverdefined()) {
814    // If both operands are PHI nodes, it is possible that this instruction has
815    // a constant value, despite the fact that the PHI node doesn't.  Check for
816    // this condition now.
817    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
818      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
819        if (PN1->getParent() == PN2->getParent()) {
820          // Since the two PHI nodes are in the same basic block, they must have
821          // entries for the same predecessors.  Walk the predecessor list, and
822          // if all of the incoming values are constants, and the result of
823          // evaluating this expression with all incoming value pairs is the
824          // same, then this expression is a constant even though the PHI node
825          // is not a constant!
826          LatticeVal Result;
827          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
828            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
829            BasicBlock *InBlock = PN1->getIncomingBlock(i);
830            LatticeVal &In2 =
831              getValueState(PN2->getIncomingValueForBlock(InBlock));
832
833            if (In1.isOverdefined() || In2.isOverdefined()) {
834              Result.markOverdefined();
835              break;  // Cannot fold this operation over the PHI nodes!
836            } else if (In1.isConstant() && In2.isConstant()) {
837              Constant *V = ConstantExpr::getCompare(I.getPredicate(),
838                                                     In1.getConstant(),
839                                                     In2.getConstant());
840              if (Result.isUndefined())
841                Result.markConstant(V);
842              else if (Result.isConstant() && Result.getConstant() != V) {
843                Result.markOverdefined();
844                break;
845              }
846            }
847          }
848
849          // If we found a constant value here, then we know the instruction is
850          // constant despite the fact that the PHI nodes are overdefined.
851          if (Result.isConstant()) {
852            markConstant(IV, &I, Result.getConstant());
853            // Remember that this instruction is virtually using the PHI node
854            // operands.
855            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
856            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
857            return;
858          } else if (Result.isUndefined()) {
859            return;
860          }
861
862          // Okay, this really is overdefined now.  Since we might have
863          // speculatively thought that this was not overdefined before, and
864          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
865          // make sure to clean out any entries that we put there, for
866          // efficiency.
867          std::multimap<PHINode*, Instruction*>::iterator It, E;
868          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
869          while (It != E) {
870            if (It->second == &I) {
871              UsersOfOverdefinedPHIs.erase(It++);
872            } else
873              ++It;
874          }
875          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
876          while (It != E) {
877            if (It->second == &I) {
878              UsersOfOverdefinedPHIs.erase(It++);
879            } else
880              ++It;
881          }
882        }
883
884    markOverdefined(IV, &I);
885  } else if (V1State.isConstant() && V2State.isConstant()) {
886    markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
887                                                  V1State.getConstant(),
888                                                  V2State.getConstant()));
889  }
890}
891
892void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
893  // FIXME : SCCP does not handle vectors properly.
894  markOverdefined(&I);
895  return;
896
897#if 0
898  LatticeVal &ValState = getValueState(I.getOperand(0));
899  LatticeVal &IdxState = getValueState(I.getOperand(1));
900
901  if (ValState.isOverdefined() || IdxState.isOverdefined())
902    markOverdefined(&I);
903  else if(ValState.isConstant() && IdxState.isConstant())
904    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
905                                                     IdxState.getConstant()));
906#endif
907}
908
909void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
910  // FIXME : SCCP does not handle vectors properly.
911  markOverdefined(&I);
912  return;
913#if 0
914  LatticeVal &ValState = getValueState(I.getOperand(0));
915  LatticeVal &EltState = getValueState(I.getOperand(1));
916  LatticeVal &IdxState = getValueState(I.getOperand(2));
917
918  if (ValState.isOverdefined() || EltState.isOverdefined() ||
919      IdxState.isOverdefined())
920    markOverdefined(&I);
921  else if(ValState.isConstant() && EltState.isConstant() &&
922          IdxState.isConstant())
923    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
924                                                    EltState.getConstant(),
925                                                    IdxState.getConstant()));
926  else if (ValState.isUndefined() && EltState.isConstant() &&
927           IdxState.isConstant())
928    markConstant(&I, ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
929                                                    EltState.getConstant(),
930                                                    IdxState.getConstant()));
931#endif
932}
933
934void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
935  // FIXME : SCCP does not handle vectors properly.
936  markOverdefined(&I);
937  return;
938#if 0
939  LatticeVal &V1State   = getValueState(I.getOperand(0));
940  LatticeVal &V2State   = getValueState(I.getOperand(1));
941  LatticeVal &MaskState = getValueState(I.getOperand(2));
942
943  if (MaskState.isUndefined() ||
944      (V1State.isUndefined() && V2State.isUndefined()))
945    return;  // Undefined output if mask or both inputs undefined.
946
947  if (V1State.isOverdefined() || V2State.isOverdefined() ||
948      MaskState.isOverdefined()) {
949    markOverdefined(&I);
950  } else {
951    // A mix of constant/undef inputs.
952    Constant *V1 = V1State.isConstant() ?
953        V1State.getConstant() : UndefValue::get(I.getType());
954    Constant *V2 = V2State.isConstant() ?
955        V2State.getConstant() : UndefValue::get(I.getType());
956    Constant *Mask = MaskState.isConstant() ?
957      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
958    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
959  }
960#endif
961}
962
963// Handle getelementptr instructions... if all operands are constants then we
964// can turn this into a getelementptr ConstantExpr.
965//
966void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
967  LatticeVal &IV = ValueState[&I];
968  if (IV.isOverdefined()) return;
969
970  std::vector<Constant*> Operands;
971  Operands.reserve(I.getNumOperands());
972
973  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
974    LatticeVal &State = getValueState(I.getOperand(i));
975    if (State.isUndefined())
976      return;  // Operands are not resolved yet...
977    else if (State.isOverdefined()) {
978      markOverdefined(IV, &I);
979      return;
980    }
981    assert(State.isConstant() && "Unknown state!");
982    Operands.push_back(State.getConstant());
983  }
984
985  Constant *Ptr = Operands[0];
986  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
987
988  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands));
989}
990
991void SCCPSolver::visitStoreInst(Instruction &SI) {
992  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
993    return;
994  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
995  hash_map<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
996  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
997
998  // Get the value we are storing into the global.
999  LatticeVal &PtrVal = getValueState(SI.getOperand(0));
1000
1001  mergeInValue(I->second, GV, PtrVal);
1002  if (I->second.isOverdefined())
1003    TrackedGlobals.erase(I);      // No need to keep tracking this!
1004}
1005
1006
1007// Handle load instructions.  If the operand is a constant pointer to a constant
1008// global, we can replace the load with the loaded constant value!
1009void SCCPSolver::visitLoadInst(LoadInst &I) {
1010  LatticeVal &IV = ValueState[&I];
1011  if (IV.isOverdefined()) return;
1012
1013  LatticeVal &PtrVal = getValueState(I.getOperand(0));
1014  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1015  if (PtrVal.isConstant() && !I.isVolatile()) {
1016    Value *Ptr = PtrVal.getConstant();
1017    if (isa<ConstantPointerNull>(Ptr)) {
1018      // load null -> null
1019      markConstant(IV, &I, Constant::getNullValue(I.getType()));
1020      return;
1021    }
1022
1023    // Transform load (constant global) into the value loaded.
1024    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1025      if (GV->isConstant()) {
1026        if (!GV->isDeclaration()) {
1027          markConstant(IV, &I, GV->getInitializer());
1028          return;
1029        }
1030      } else if (!TrackedGlobals.empty()) {
1031        // If we are tracking this global, merge in the known value for it.
1032        hash_map<GlobalVariable*, LatticeVal>::iterator It =
1033          TrackedGlobals.find(GV);
1034        if (It != TrackedGlobals.end()) {
1035          mergeInValue(IV, &I, It->second);
1036          return;
1037        }
1038      }
1039    }
1040
1041    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1042    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1043      if (CE->getOpcode() == Instruction::GetElementPtr)
1044    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
1045      if (GV->isConstant() && !GV->isDeclaration())
1046        if (Constant *V =
1047             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
1048          markConstant(IV, &I, V);
1049          return;
1050        }
1051  }
1052
1053  // Otherwise we cannot say for certain what value this load will produce.
1054  // Bail out.
1055  markOverdefined(IV, &I);
1056}
1057
1058void SCCPSolver::visitCallSite(CallSite CS) {
1059  Function *F = CS.getCalledFunction();
1060
1061  // If we are tracking this function, we must make sure to bind arguments as
1062  // appropriate.
1063  hash_map<Function*, LatticeVal>::iterator TFRVI =TrackedFunctionRetVals.end();
1064  if (F && F->hasInternalLinkage())
1065    TFRVI = TrackedFunctionRetVals.find(F);
1066
1067  if (TFRVI != TrackedFunctionRetVals.end()) {
1068    // If this is the first call to the function hit, mark its entry block
1069    // executable.
1070    if (!BBExecutable.count(F->begin()))
1071      MarkBlockExecutable(F->begin());
1072
1073    CallSite::arg_iterator CAI = CS.arg_begin();
1074    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1075         AI != E; ++AI, ++CAI) {
1076      LatticeVal &IV = ValueState[AI];
1077      if (!IV.isOverdefined())
1078        mergeInValue(IV, AI, getValueState(*CAI));
1079    }
1080  }
1081  Instruction *I = CS.getInstruction();
1082  if (I->getType() == Type::VoidTy) return;
1083
1084  LatticeVal &IV = ValueState[I];
1085  if (IV.isOverdefined()) return;
1086
1087  // Propagate the return value of the function to the value of the instruction.
1088  if (TFRVI != TrackedFunctionRetVals.end()) {
1089    mergeInValue(IV, I, TFRVI->second);
1090    return;
1091  }
1092
1093  if (F == 0 || !F->isDeclaration() || !canConstantFoldCallTo(F)) {
1094    markOverdefined(IV, I);
1095    return;
1096  }
1097
1098  SmallVector<Constant*, 8> Operands;
1099  Operands.reserve(I->getNumOperands()-1);
1100
1101  for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1102       AI != E; ++AI) {
1103    LatticeVal &State = getValueState(*AI);
1104    if (State.isUndefined())
1105      return;  // Operands are not resolved yet...
1106    else if (State.isOverdefined()) {
1107      markOverdefined(IV, I);
1108      return;
1109    }
1110    assert(State.isConstant() && "Unknown state!");
1111    Operands.push_back(State.getConstant());
1112  }
1113
1114  if (Constant *C = ConstantFoldCall(F, &Operands[0], Operands.size()))
1115    markConstant(IV, I, C);
1116  else
1117    markOverdefined(IV, I);
1118}
1119
1120
1121void SCCPSolver::Solve() {
1122  // Process the work lists until they are empty!
1123  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1124         !OverdefinedInstWorkList.empty()) {
1125    // Process the instruction work list...
1126    while (!OverdefinedInstWorkList.empty()) {
1127      Value *I = OverdefinedInstWorkList.back();
1128      OverdefinedInstWorkList.pop_back();
1129
1130      DOUT << "\nPopped off OI-WL: " << *I;
1131
1132      // "I" got into the work list because it either made the transition from
1133      // bottom to constant
1134      //
1135      // Anything on this worklist that is overdefined need not be visited
1136      // since all of its users will have already been marked as overdefined
1137      // Update all of the users of this instruction's value...
1138      //
1139      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1140           UI != E; ++UI)
1141        OperandChangedState(*UI);
1142    }
1143    // Process the instruction work list...
1144    while (!InstWorkList.empty()) {
1145      Value *I = InstWorkList.back();
1146      InstWorkList.pop_back();
1147
1148      DOUT << "\nPopped off I-WL: " << *I;
1149
1150      // "I" got into the work list because it either made the transition from
1151      // bottom to constant
1152      //
1153      // Anything on this worklist that is overdefined need not be visited
1154      // since all of its users will have already been marked as overdefined.
1155      // Update all of the users of this instruction's value...
1156      //
1157      if (!getValueState(I).isOverdefined())
1158        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1159             UI != E; ++UI)
1160          OperandChangedState(*UI);
1161    }
1162
1163    // Process the basic block work list...
1164    while (!BBWorkList.empty()) {
1165      BasicBlock *BB = BBWorkList.back();
1166      BBWorkList.pop_back();
1167
1168      DOUT << "\nPopped off BBWL: " << *BB;
1169
1170      // Notify all instructions in this basic block that they are newly
1171      // executable.
1172      visit(BB);
1173    }
1174  }
1175}
1176
1177/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1178/// that branches on undef values cannot reach any of their successors.
1179/// However, this is not a safe assumption.  After we solve dataflow, this
1180/// method should be use to handle this.  If this returns true, the solver
1181/// should be rerun.
1182///
1183/// This method handles this by finding an unresolved branch and marking it one
1184/// of the edges from the block as being feasible, even though the condition
1185/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1186/// CFG and only slightly pessimizes the analysis results (by marking one,
1187/// potentially infeasible, edge feasible).  This cannot usefully modify the
1188/// constraints on the condition of the branch, as that would impact other users
1189/// of the value.
1190///
1191/// This scan also checks for values that use undefs, whose results are actually
1192/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1193/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1194/// even if X isn't defined.
1195bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1196  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1197    if (!BBExecutable.count(BB))
1198      continue;
1199
1200    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1201      // Look for instructions which produce undef values.
1202      if (I->getType() == Type::VoidTy) continue;
1203
1204      LatticeVal &LV = getValueState(I);
1205      if (!LV.isUndefined()) continue;
1206
1207      // Get the lattice values of the first two operands for use below.
1208      LatticeVal &Op0LV = getValueState(I->getOperand(0));
1209      LatticeVal Op1LV;
1210      if (I->getNumOperands() == 2) {
1211        // If this is a two-operand instruction, and if both operands are
1212        // undefs, the result stays undef.
1213        Op1LV = getValueState(I->getOperand(1));
1214        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1215          continue;
1216      }
1217
1218      // If this is an instructions whose result is defined even if the input is
1219      // not fully defined, propagate the information.
1220      const Type *ITy = I->getType();
1221      switch (I->getOpcode()) {
1222      default: break;          // Leave the instruction as an undef.
1223      case Instruction::ZExt:
1224        // After a zero extend, we know the top part is zero.  SExt doesn't have
1225        // to be handled here, because we don't know whether the top part is 1's
1226        // or 0's.
1227        assert(Op0LV.isUndefined());
1228        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1229        return true;
1230      case Instruction::Mul:
1231      case Instruction::And:
1232        // undef * X -> 0.   X could be zero.
1233        // undef & X -> 0.   X could be zero.
1234        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1235        return true;
1236
1237      case Instruction::Or:
1238        // undef | X -> -1.   X could be -1.
1239        if (const PackedType *PTy = dyn_cast<PackedType>(ITy))
1240          markForcedConstant(LV, I, ConstantPacked::getAllOnesValue(PTy));
1241        else
1242          markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy));
1243        return true;
1244
1245      case Instruction::SDiv:
1246      case Instruction::UDiv:
1247      case Instruction::SRem:
1248      case Instruction::URem:
1249        // X / undef -> undef.  No change.
1250        // X % undef -> undef.  No change.
1251        if (Op1LV.isUndefined()) break;
1252
1253        // undef / X -> 0.   X could be maxint.
1254        // undef % X -> 0.   X could be 1.
1255        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1256        return true;
1257
1258      case Instruction::AShr:
1259        // undef >>s X -> undef.  No change.
1260        if (Op0LV.isUndefined()) break;
1261
1262        // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
1263        if (Op0LV.isConstant())
1264          markForcedConstant(LV, I, Op0LV.getConstant());
1265        else
1266          markOverdefined(LV, I);
1267        return true;
1268      case Instruction::LShr:
1269      case Instruction::Shl:
1270        // undef >> X -> undef.  No change.
1271        // undef << X -> undef.  No change.
1272        if (Op0LV.isUndefined()) break;
1273
1274        // X >> undef -> 0.  X could be 0.
1275        // X << undef -> 0.  X could be 0.
1276        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1277        return true;
1278      case Instruction::Select:
1279        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1280        if (Op0LV.isUndefined()) {
1281          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1282            Op1LV = getValueState(I->getOperand(2));
1283        } else if (Op1LV.isUndefined()) {
1284          // c ? undef : undef -> undef.  No change.
1285          Op1LV = getValueState(I->getOperand(2));
1286          if (Op1LV.isUndefined())
1287            break;
1288          // Otherwise, c ? undef : x -> x.
1289        } else {
1290          // Leave Op1LV as Operand(1)'s LatticeValue.
1291        }
1292
1293        if (Op1LV.isConstant())
1294          markForcedConstant(LV, I, Op1LV.getConstant());
1295        else
1296          markOverdefined(LV, I);
1297        return true;
1298      }
1299    }
1300
1301    TerminatorInst *TI = BB->getTerminator();
1302    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1303      if (!BI->isConditional()) continue;
1304      if (!getValueState(BI->getCondition()).isUndefined())
1305        continue;
1306    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1307      if (!getValueState(SI->getCondition()).isUndefined())
1308        continue;
1309    } else {
1310      continue;
1311    }
1312
1313    // If the edge to the first successor isn't thought to be feasible yet, mark
1314    // it so now.
1315    if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(0))))
1316      continue;
1317
1318    // Otherwise, it isn't already thought to be feasible.  Mark it as such now
1319    // and return.  This will make other blocks reachable, which will allow new
1320    // values to be discovered and existing ones to be moved in the lattice.
1321    markEdgeExecutable(BB, TI->getSuccessor(0));
1322    return true;
1323  }
1324
1325  return false;
1326}
1327
1328
1329namespace {
1330  //===--------------------------------------------------------------------===//
1331  //
1332  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1333  /// Sparse Conditional Constant Propagator.
1334  ///
1335  struct SCCP : public FunctionPass {
1336    // runOnFunction - Run the Sparse Conditional Constant Propagation
1337    // algorithm, and return true if the function was modified.
1338    //
1339    bool runOnFunction(Function &F);
1340
1341    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1342      AU.setPreservesCFG();
1343    }
1344  };
1345
1346  RegisterPass<SCCP> X("sccp", "Sparse Conditional Constant Propagation");
1347} // end anonymous namespace
1348
1349
1350// createSCCPPass - This is the public interface to this file...
1351FunctionPass *llvm::createSCCPPass() {
1352  return new SCCP();
1353}
1354
1355
1356// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1357// and return true if the function was modified.
1358//
1359bool SCCP::runOnFunction(Function &F) {
1360  DOUT << "SCCP on function '" << F.getName() << "'\n";
1361  SCCPSolver Solver;
1362
1363  // Mark the first block of the function as being executable.
1364  Solver.MarkBlockExecutable(F.begin());
1365
1366  // Mark all arguments to the function as being overdefined.
1367  hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1368  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI)
1369    Values[AI].markOverdefined();
1370
1371  // Solve for constants.
1372  bool ResolvedUndefs = true;
1373  while (ResolvedUndefs) {
1374    Solver.Solve();
1375    DOUT << "RESOLVING UNDEFs\n";
1376    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1377  }
1378
1379  bool MadeChanges = false;
1380
1381  // If we decided that there are basic blocks that are dead in this function,
1382  // delete their contents now.  Note that we cannot actually delete the blocks,
1383  // as we cannot modify the CFG of the function.
1384  //
1385  std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks();
1386  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1387    if (!ExecutableBBs.count(BB)) {
1388      DOUT << "  BasicBlock Dead:" << *BB;
1389      ++NumDeadBlocks;
1390
1391      // Delete the instructions backwards, as it has a reduced likelihood of
1392      // having to update as many def-use and use-def chains.
1393      std::vector<Instruction*> Insts;
1394      for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1395           I != E; ++I)
1396        Insts.push_back(I);
1397      while (!Insts.empty()) {
1398        Instruction *I = Insts.back();
1399        Insts.pop_back();
1400        if (!I->use_empty())
1401          I->replaceAllUsesWith(UndefValue::get(I->getType()));
1402        BB->getInstList().erase(I);
1403        MadeChanges = true;
1404        ++NumInstRemoved;
1405      }
1406    } else {
1407      // Iterate over all of the instructions in a function, replacing them with
1408      // constants if we have found them to be of constant values.
1409      //
1410      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1411        Instruction *Inst = BI++;
1412        if (Inst->getType() != Type::VoidTy) {
1413          LatticeVal &IV = Values[Inst];
1414          if (IV.isConstant() || IV.isUndefined() &&
1415              !isa<TerminatorInst>(Inst)) {
1416            Constant *Const = IV.isConstant()
1417              ? IV.getConstant() : UndefValue::get(Inst->getType());
1418            DOUT << "  Constant: " << *Const << " = " << *Inst;
1419
1420            // Replaces all of the uses of a variable with uses of the constant.
1421            Inst->replaceAllUsesWith(Const);
1422
1423            // Delete the instruction.
1424            BB->getInstList().erase(Inst);
1425
1426            // Hey, we just changed something!
1427            MadeChanges = true;
1428            ++NumInstRemoved;
1429          }
1430        }
1431      }
1432    }
1433
1434  return MadeChanges;
1435}
1436
1437namespace {
1438  //===--------------------------------------------------------------------===//
1439  //
1440  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1441  /// Constant Propagation.
1442  ///
1443  struct IPSCCP : public ModulePass {
1444    bool runOnModule(Module &M);
1445  };
1446
1447  RegisterPass<IPSCCP>
1448  Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1449} // end anonymous namespace
1450
1451// createIPSCCPPass - This is the public interface to this file...
1452ModulePass *llvm::createIPSCCPPass() {
1453  return new IPSCCP();
1454}
1455
1456
1457static bool AddressIsTaken(GlobalValue *GV) {
1458  // Delete any dead constantexpr klingons.
1459  GV->removeDeadConstantUsers();
1460
1461  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1462       UI != E; ++UI)
1463    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1464      if (SI->getOperand(0) == GV || SI->isVolatile())
1465        return true;  // Storing addr of GV.
1466    } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1467      // Make sure we are calling the function, not passing the address.
1468      CallSite CS = CallSite::get(cast<Instruction>(*UI));
1469      for (CallSite::arg_iterator AI = CS.arg_begin(),
1470             E = CS.arg_end(); AI != E; ++AI)
1471        if (*AI == GV)
1472          return true;
1473    } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1474      if (LI->isVolatile())
1475        return true;
1476    } else {
1477      return true;
1478    }
1479  return false;
1480}
1481
1482bool IPSCCP::runOnModule(Module &M) {
1483  SCCPSolver Solver;
1484
1485  // Loop over all functions, marking arguments to those with their addresses
1486  // taken or that are external as overdefined.
1487  //
1488  hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1489  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1490    if (!F->hasInternalLinkage() || AddressIsTaken(F)) {
1491      if (!F->isDeclaration())
1492        Solver.MarkBlockExecutable(F->begin());
1493      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1494           AI != E; ++AI)
1495        Values[AI].markOverdefined();
1496    } else {
1497      Solver.AddTrackedFunction(F);
1498    }
1499
1500  // Loop over global variables.  We inform the solver about any internal global
1501  // variables that do not have their 'addresses taken'.  If they don't have
1502  // their addresses taken, we can propagate constants through them.
1503  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1504       G != E; ++G)
1505    if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G))
1506      Solver.TrackValueOfGlobalVariable(G);
1507
1508  // Solve for constants.
1509  bool ResolvedUndefs = true;
1510  while (ResolvedUndefs) {
1511    Solver.Solve();
1512
1513    DOUT << "RESOLVING UNDEFS\n";
1514    ResolvedUndefs = false;
1515    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1516      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1517  }
1518
1519  bool MadeChanges = false;
1520
1521  // Iterate over all of the instructions in the module, replacing them with
1522  // constants if we have found them to be of constant values.
1523  //
1524  std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks();
1525  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1526    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1527         AI != E; ++AI)
1528      if (!AI->use_empty()) {
1529        LatticeVal &IV = Values[AI];
1530        if (IV.isConstant() || IV.isUndefined()) {
1531          Constant *CST = IV.isConstant() ?
1532            IV.getConstant() : UndefValue::get(AI->getType());
1533          DOUT << "***  Arg " << *AI << " = " << *CST <<"\n";
1534
1535          // Replaces all of the uses of a variable with uses of the
1536          // constant.
1537          AI->replaceAllUsesWith(CST);
1538          ++IPNumArgsElimed;
1539        }
1540      }
1541
1542    std::vector<BasicBlock*> BlocksToErase;
1543    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1544      if (!ExecutableBBs.count(BB)) {
1545        DOUT << "  BasicBlock Dead:" << *BB;
1546        ++IPNumDeadBlocks;
1547
1548        // Delete the instructions backwards, as it has a reduced likelihood of
1549        // having to update as many def-use and use-def chains.
1550        std::vector<Instruction*> Insts;
1551        TerminatorInst *TI = BB->getTerminator();
1552        for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1553          Insts.push_back(I);
1554
1555        while (!Insts.empty()) {
1556          Instruction *I = Insts.back();
1557          Insts.pop_back();
1558          if (!I->use_empty())
1559            I->replaceAllUsesWith(UndefValue::get(I->getType()));
1560          BB->getInstList().erase(I);
1561          MadeChanges = true;
1562          ++IPNumInstRemoved;
1563        }
1564
1565        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1566          BasicBlock *Succ = TI->getSuccessor(i);
1567          if (Succ->begin() != Succ->end() && isa<PHINode>(Succ->begin()))
1568            TI->getSuccessor(i)->removePredecessor(BB);
1569        }
1570        if (!TI->use_empty())
1571          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1572        BB->getInstList().erase(TI);
1573
1574        if (&*BB != &F->front())
1575          BlocksToErase.push_back(BB);
1576        else
1577          new UnreachableInst(BB);
1578
1579      } else {
1580        for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1581          Instruction *Inst = BI++;
1582          if (Inst->getType() != Type::VoidTy) {
1583            LatticeVal &IV = Values[Inst];
1584            if (IV.isConstant() || IV.isUndefined() &&
1585                !isa<TerminatorInst>(Inst)) {
1586              Constant *Const = IV.isConstant()
1587                ? IV.getConstant() : UndefValue::get(Inst->getType());
1588              DOUT << "  Constant: " << *Const << " = " << *Inst;
1589
1590              // Replaces all of the uses of a variable with uses of the
1591              // constant.
1592              Inst->replaceAllUsesWith(Const);
1593
1594              // Delete the instruction.
1595              if (!isa<TerminatorInst>(Inst) && !isa<CallInst>(Inst))
1596                BB->getInstList().erase(Inst);
1597
1598              // Hey, we just changed something!
1599              MadeChanges = true;
1600              ++IPNumInstRemoved;
1601            }
1602          }
1603        }
1604      }
1605
1606    // Now that all instructions in the function are constant folded, erase dead
1607    // blocks, because we can now use ConstantFoldTerminator to get rid of
1608    // in-edges.
1609    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1610      // If there are any PHI nodes in this successor, drop entries for BB now.
1611      BasicBlock *DeadBB = BlocksToErase[i];
1612      while (!DeadBB->use_empty()) {
1613        Instruction *I = cast<Instruction>(DeadBB->use_back());
1614        bool Folded = ConstantFoldTerminator(I->getParent());
1615        if (!Folded) {
1616          // The constant folder may not have been able to fold the terminator
1617          // if this is a branch or switch on undef.  Fold it manually as a
1618          // branch to the first successor.
1619          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1620            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1621                   "Branch should be foldable!");
1622          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1623            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1624          } else {
1625            assert(0 && "Didn't fold away reference to block!");
1626          }
1627
1628          // Make this an uncond branch to the first successor.
1629          TerminatorInst *TI = I->getParent()->getTerminator();
1630          new BranchInst(TI->getSuccessor(0), TI);
1631
1632          // Remove entries in successor phi nodes to remove edges.
1633          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1634            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1635
1636          // Remove the old terminator.
1637          TI->eraseFromParent();
1638        }
1639      }
1640
1641      // Finally, delete the basic block.
1642      F->getBasicBlockList().erase(DeadBB);
1643    }
1644  }
1645
1646  // If we inferred constant or undef return values for a function, we replaced
1647  // all call uses with the inferred value.  This means we don't need to bother
1648  // actually returning anything from the function.  Replace all return
1649  // instructions with return undef.
1650  const hash_map<Function*, LatticeVal> &RV =Solver.getTrackedFunctionRetVals();
1651  for (hash_map<Function*, LatticeVal>::const_iterator I = RV.begin(),
1652         E = RV.end(); I != E; ++I)
1653    if (!I->second.isOverdefined() &&
1654        I->first->getReturnType() != Type::VoidTy) {
1655      Function *F = I->first;
1656      for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1657        if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1658          if (!isa<UndefValue>(RI->getOperand(0)))
1659            RI->setOperand(0, UndefValue::get(F->getReturnType()));
1660    }
1661
1662  // If we infered constant or undef values for globals variables, we can delete
1663  // the global and any stores that remain to it.
1664  const hash_map<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1665  for (hash_map<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1666         E = TG.end(); I != E; ++I) {
1667    GlobalVariable *GV = I->first;
1668    assert(!I->second.isOverdefined() &&
1669           "Overdefined values should have been taken out of the map!");
1670    DOUT << "Found that GV '" << GV->getName()<< "' is constant!\n";
1671    while (!GV->use_empty()) {
1672      StoreInst *SI = cast<StoreInst>(GV->use_back());
1673      SI->eraseFromParent();
1674    }
1675    M.getGlobalList().erase(GV);
1676    ++IPNumGlobalConst;
1677  }
1678
1679  return MadeChanges;
1680}
1681