SCCP.cpp revision 79066fa6acce02c97c714a5a6e151ed8a249721c
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18// Notice that: 19// * This pass has a habit of making definitions be dead. It is a good idea 20// to to run a DCE pass sometime after running this pass. 21// 22//===----------------------------------------------------------------------===// 23 24#define DEBUG_TYPE "sccp" 25#include "llvm/Transforms/Scalar.h" 26#include "llvm/Transforms/IPO.h" 27#include "llvm/Constants.h" 28#include "llvm/DerivedTypes.h" 29#include "llvm/Instructions.h" 30#include "llvm/Pass.h" 31#include "llvm/Analysis/ConstantFolding.h" 32#include "llvm/Transforms/Utils/Local.h" 33#include "llvm/Support/CallSite.h" 34#include "llvm/Support/Debug.h" 35#include "llvm/Support/InstVisitor.h" 36#include "llvm/ADT/hash_map" 37#include "llvm/ADT/SmallVector.h" 38#include "llvm/ADT/Statistic.h" 39#include "llvm/ADT/STLExtras.h" 40#include <algorithm> 41#include <set> 42using namespace llvm; 43 44STATISTIC(NumInstRemoved, "Number of instructions removed"); 45STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 46 47STATISTIC(IPNumInstRemoved, "Number ofinstructions removed by IPSCCP"); 48STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP"); 49STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 50STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 51 52namespace { 53/// LatticeVal class - This class represents the different lattice values that 54/// an LLVM value may occupy. It is a simple class with value semantics. 55/// 56class LatticeVal { 57 enum { 58 /// undefined - This LLVM Value has no known value yet. 59 undefined, 60 61 /// constant - This LLVM Value has a specific constant value. 62 constant, 63 64 /// forcedconstant - This LLVM Value was thought to be undef until 65 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 66 /// with another (different) constant, it goes to overdefined, instead of 67 /// asserting. 68 forcedconstant, 69 70 /// overdefined - This instruction is not known to be constant, and we know 71 /// it has a value. 72 overdefined 73 } LatticeValue; // The current lattice position 74 75 Constant *ConstantVal; // If Constant value, the current value 76public: 77 inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {} 78 79 // markOverdefined - Return true if this is a new status to be in... 80 inline bool markOverdefined() { 81 if (LatticeValue != overdefined) { 82 LatticeValue = overdefined; 83 return true; 84 } 85 return false; 86 } 87 88 // markConstant - Return true if this is a new status for us. 89 inline bool markConstant(Constant *V) { 90 if (LatticeValue != constant) { 91 if (LatticeValue == undefined) { 92 LatticeValue = constant; 93 assert(V && "Marking constant with NULL"); 94 ConstantVal = V; 95 } else { 96 assert(LatticeValue == forcedconstant && 97 "Cannot move from overdefined to constant!"); 98 // Stay at forcedconstant if the constant is the same. 99 if (V == ConstantVal) return false; 100 101 // Otherwise, we go to overdefined. Assumptions made based on the 102 // forced value are possibly wrong. Assuming this is another constant 103 // could expose a contradiction. 104 LatticeValue = overdefined; 105 } 106 return true; 107 } else { 108 assert(ConstantVal == V && "Marking constant with different value"); 109 } 110 return false; 111 } 112 113 inline void markForcedConstant(Constant *V) { 114 assert(LatticeValue == undefined && "Can't force a defined value!"); 115 LatticeValue = forcedconstant; 116 ConstantVal = V; 117 } 118 119 inline bool isUndefined() const { return LatticeValue == undefined; } 120 inline bool isConstant() const { 121 return LatticeValue == constant || LatticeValue == forcedconstant; 122 } 123 inline bool isOverdefined() const { return LatticeValue == overdefined; } 124 125 inline Constant *getConstant() const { 126 assert(isConstant() && "Cannot get the constant of a non-constant!"); 127 return ConstantVal; 128 } 129}; 130 131} // end anonymous namespace 132 133 134//===----------------------------------------------------------------------===// 135// 136/// SCCPSolver - This class is a general purpose solver for Sparse Conditional 137/// Constant Propagation. 138/// 139class SCCPSolver : public InstVisitor<SCCPSolver> { 140 std::set<BasicBlock*> BBExecutable;// The basic blocks that are executable 141 hash_map<Value*, LatticeVal> ValueState; // The state each value is in... 142 143 /// GlobalValue - If we are tracking any values for the contents of a global 144 /// variable, we keep a mapping from the constant accessor to the element of 145 /// the global, to the currently known value. If the value becomes 146 /// overdefined, it's entry is simply removed from this map. 147 hash_map<GlobalVariable*, LatticeVal> TrackedGlobals; 148 149 /// TrackedFunctionRetVals - If we are tracking arguments into and the return 150 /// value out of a function, it will have an entry in this map, indicating 151 /// what the known return value for the function is. 152 hash_map<Function*, LatticeVal> TrackedFunctionRetVals; 153 154 // The reason for two worklists is that overdefined is the lowest state 155 // on the lattice, and moving things to overdefined as fast as possible 156 // makes SCCP converge much faster. 157 // By having a separate worklist, we accomplish this because everything 158 // possibly overdefined will become overdefined at the soonest possible 159 // point. 160 std::vector<Value*> OverdefinedInstWorkList; 161 std::vector<Value*> InstWorkList; 162 163 164 std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list 165 166 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not 167 /// overdefined, despite the fact that the PHI node is overdefined. 168 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; 169 170 /// KnownFeasibleEdges - Entries in this set are edges which have already had 171 /// PHI nodes retriggered. 172 typedef std::pair<BasicBlock*,BasicBlock*> Edge; 173 std::set<Edge> KnownFeasibleEdges; 174public: 175 176 /// MarkBlockExecutable - This method can be used by clients to mark all of 177 /// the blocks that are known to be intrinsically live in the processed unit. 178 void MarkBlockExecutable(BasicBlock *BB) { 179 DOUT << "Marking Block Executable: " << BB->getName() << "\n"; 180 BBExecutable.insert(BB); // Basic block is executable! 181 BBWorkList.push_back(BB); // Add the block to the work list! 182 } 183 184 /// TrackValueOfGlobalVariable - Clients can use this method to 185 /// inform the SCCPSolver that it should track loads and stores to the 186 /// specified global variable if it can. This is only legal to call if 187 /// performing Interprocedural SCCP. 188 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 189 const Type *ElTy = GV->getType()->getElementType(); 190 if (ElTy->isFirstClassType()) { 191 LatticeVal &IV = TrackedGlobals[GV]; 192 if (!isa<UndefValue>(GV->getInitializer())) 193 IV.markConstant(GV->getInitializer()); 194 } 195 } 196 197 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 198 /// and out of the specified function (which cannot have its address taken), 199 /// this method must be called. 200 void AddTrackedFunction(Function *F) { 201 assert(F->hasInternalLinkage() && "Can only track internal functions!"); 202 // Add an entry, F -> undef. 203 TrackedFunctionRetVals[F]; 204 } 205 206 /// Solve - Solve for constants and executable blocks. 207 /// 208 void Solve(); 209 210 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 211 /// that branches on undef values cannot reach any of their successors. 212 /// However, this is not a safe assumption. After we solve dataflow, this 213 /// method should be use to handle this. If this returns true, the solver 214 /// should be rerun. 215 bool ResolvedUndefsIn(Function &F); 216 217 /// getExecutableBlocks - Once we have solved for constants, return the set of 218 /// blocks that is known to be executable. 219 std::set<BasicBlock*> &getExecutableBlocks() { 220 return BBExecutable; 221 } 222 223 /// getValueMapping - Once we have solved for constants, return the mapping of 224 /// LLVM values to LatticeVals. 225 hash_map<Value*, LatticeVal> &getValueMapping() { 226 return ValueState; 227 } 228 229 /// getTrackedFunctionRetVals - Get the inferred return value map. 230 /// 231 const hash_map<Function*, LatticeVal> &getTrackedFunctionRetVals() { 232 return TrackedFunctionRetVals; 233 } 234 235 /// getTrackedGlobals - Get and return the set of inferred initializers for 236 /// global variables. 237 const hash_map<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 238 return TrackedGlobals; 239 } 240 241 242private: 243 // markConstant - Make a value be marked as "constant". If the value 244 // is not already a constant, add it to the instruction work list so that 245 // the users of the instruction are updated later. 246 // 247 inline void markConstant(LatticeVal &IV, Value *V, Constant *C) { 248 if (IV.markConstant(C)) { 249 DOUT << "markConstant: " << *C << ": " << *V; 250 InstWorkList.push_back(V); 251 } 252 } 253 254 inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) { 255 IV.markForcedConstant(C); 256 DOUT << "markForcedConstant: " << *C << ": " << *V; 257 InstWorkList.push_back(V); 258 } 259 260 inline void markConstant(Value *V, Constant *C) { 261 markConstant(ValueState[V], V, C); 262 } 263 264 // markOverdefined - Make a value be marked as "overdefined". If the 265 // value is not already overdefined, add it to the overdefined instruction 266 // work list so that the users of the instruction are updated later. 267 268 inline void markOverdefined(LatticeVal &IV, Value *V) { 269 if (IV.markOverdefined()) { 270 DEBUG(DOUT << "markOverdefined: "; 271 if (Function *F = dyn_cast<Function>(V)) 272 DOUT << "Function '" << F->getName() << "'\n"; 273 else 274 DOUT << *V); 275 // Only instructions go on the work list 276 OverdefinedInstWorkList.push_back(V); 277 } 278 } 279 inline void markOverdefined(Value *V) { 280 markOverdefined(ValueState[V], V); 281 } 282 283 inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) { 284 if (IV.isOverdefined() || MergeWithV.isUndefined()) 285 return; // Noop. 286 if (MergeWithV.isOverdefined()) 287 markOverdefined(IV, V); 288 else if (IV.isUndefined()) 289 markConstant(IV, V, MergeWithV.getConstant()); 290 else if (IV.getConstant() != MergeWithV.getConstant()) 291 markOverdefined(IV, V); 292 } 293 294 inline void mergeInValue(Value *V, LatticeVal &MergeWithV) { 295 return mergeInValue(ValueState[V], V, MergeWithV); 296 } 297 298 299 // getValueState - Return the LatticeVal object that corresponds to the value. 300 // This function is necessary because not all values should start out in the 301 // underdefined state... Argument's should be overdefined, and 302 // constants should be marked as constants. If a value is not known to be an 303 // Instruction object, then use this accessor to get its value from the map. 304 // 305 inline LatticeVal &getValueState(Value *V) { 306 hash_map<Value*, LatticeVal>::iterator I = ValueState.find(V); 307 if (I != ValueState.end()) return I->second; // Common case, in the map 308 309 if (Constant *C = dyn_cast<Constant>(V)) { 310 if (isa<UndefValue>(V)) { 311 // Nothing to do, remain undefined. 312 } else { 313 ValueState[C].markConstant(C); // Constants are constant 314 } 315 } 316 // All others are underdefined by default... 317 return ValueState[V]; 318 } 319 320 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB 321 // work list if it is not already executable... 322 // 323 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 324 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 325 return; // This edge is already known to be executable! 326 327 if (BBExecutable.count(Dest)) { 328 DOUT << "Marking Edge Executable: " << Source->getName() 329 << " -> " << Dest->getName() << "\n"; 330 331 // The destination is already executable, but we just made an edge 332 // feasible that wasn't before. Revisit the PHI nodes in the block 333 // because they have potentially new operands. 334 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) 335 visitPHINode(*cast<PHINode>(I)); 336 337 } else { 338 MarkBlockExecutable(Dest); 339 } 340 } 341 342 // getFeasibleSuccessors - Return a vector of booleans to indicate which 343 // successors are reachable from a given terminator instruction. 344 // 345 void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs); 346 347 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 348 // block to the 'To' basic block is currently feasible... 349 // 350 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 351 352 // OperandChangedState - This method is invoked on all of the users of an 353 // instruction that was just changed state somehow.... Based on this 354 // information, we need to update the specified user of this instruction. 355 // 356 void OperandChangedState(User *U) { 357 // Only instructions use other variable values! 358 Instruction &I = cast<Instruction>(*U); 359 if (BBExecutable.count(I.getParent())) // Inst is executable? 360 visit(I); 361 } 362 363private: 364 friend class InstVisitor<SCCPSolver>; 365 366 // visit implementations - Something changed in this instruction... Either an 367 // operand made a transition, or the instruction is newly executable. Change 368 // the value type of I to reflect these changes if appropriate. 369 // 370 void visitPHINode(PHINode &I); 371 372 // Terminators 373 void visitReturnInst(ReturnInst &I); 374 void visitTerminatorInst(TerminatorInst &TI); 375 376 void visitCastInst(CastInst &I); 377 void visitSelectInst(SelectInst &I); 378 void visitBinaryOperator(Instruction &I); 379 void visitCmpInst(CmpInst &I); 380 void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } 381 void visitExtractElementInst(ExtractElementInst &I); 382 void visitInsertElementInst(InsertElementInst &I); 383 void visitShuffleVectorInst(ShuffleVectorInst &I); 384 385 // Instructions that cannot be folded away... 386 void visitStoreInst (Instruction &I); 387 void visitLoadInst (LoadInst &I); 388 void visitGetElementPtrInst(GetElementPtrInst &I); 389 void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); } 390 void visitInvokeInst (InvokeInst &II) { 391 visitCallSite(CallSite::get(&II)); 392 visitTerminatorInst(II); 393 } 394 void visitCallSite (CallSite CS); 395 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 396 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 397 void visitAllocationInst(Instruction &I) { markOverdefined(&I); } 398 void visitVANextInst (Instruction &I) { markOverdefined(&I); } 399 void visitVAArgInst (Instruction &I) { markOverdefined(&I); } 400 void visitFreeInst (Instruction &I) { /*returns void*/ } 401 402 void visitInstruction(Instruction &I) { 403 // If a new instruction is added to LLVM that we don't handle... 404 cerr << "SCCP: Don't know how to handle: " << I; 405 markOverdefined(&I); // Just in case 406 } 407}; 408 409// getFeasibleSuccessors - Return a vector of booleans to indicate which 410// successors are reachable from a given terminator instruction. 411// 412void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 413 std::vector<bool> &Succs) { 414 Succs.resize(TI.getNumSuccessors()); 415 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 416 if (BI->isUnconditional()) { 417 Succs[0] = true; 418 } else { 419 LatticeVal &BCValue = getValueState(BI->getCondition()); 420 if (BCValue.isOverdefined() || 421 (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) { 422 // Overdefined condition variables, and branches on unfoldable constant 423 // conditions, mean the branch could go either way. 424 Succs[0] = Succs[1] = true; 425 } else if (BCValue.isConstant()) { 426 // Constant condition variables mean the branch can only go a single way 427 Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true; 428 } 429 } 430 } else if (isa<InvokeInst>(&TI)) { 431 // Invoke instructions successors are always executable. 432 Succs[0] = Succs[1] = true; 433 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 434 LatticeVal &SCValue = getValueState(SI->getCondition()); 435 if (SCValue.isOverdefined() || // Overdefined condition? 436 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) { 437 // All destinations are executable! 438 Succs.assign(TI.getNumSuccessors(), true); 439 } else if (SCValue.isConstant()) { 440 Constant *CPV = SCValue.getConstant(); 441 // Make sure to skip the "default value" which isn't a value 442 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { 443 if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... 444 Succs[i] = true; 445 return; 446 } 447 } 448 449 // Constant value not equal to any of the branches... must execute 450 // default branch then... 451 Succs[0] = true; 452 } 453 } else { 454 cerr << "SCCP: Don't know how to handle: " << TI; 455 Succs.assign(TI.getNumSuccessors(), true); 456 } 457} 458 459 460// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 461// block to the 'To' basic block is currently feasible... 462// 463bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 464 assert(BBExecutable.count(To) && "Dest should always be alive!"); 465 466 // Make sure the source basic block is executable!! 467 if (!BBExecutable.count(From)) return false; 468 469 // Check to make sure this edge itself is actually feasible now... 470 TerminatorInst *TI = From->getTerminator(); 471 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 472 if (BI->isUnconditional()) 473 return true; 474 else { 475 LatticeVal &BCValue = getValueState(BI->getCondition()); 476 if (BCValue.isOverdefined()) { 477 // Overdefined condition variables mean the branch could go either way. 478 return true; 479 } else if (BCValue.isConstant()) { 480 // Not branching on an evaluatable constant? 481 if (!isa<ConstantInt>(BCValue.getConstant())) return true; 482 483 // Constant condition variables mean the branch can only go a single way 484 return BI->getSuccessor(BCValue.getConstant() == 485 ConstantInt::getFalse()) == To; 486 } 487 return false; 488 } 489 } else if (isa<InvokeInst>(TI)) { 490 // Invoke instructions successors are always executable. 491 return true; 492 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 493 LatticeVal &SCValue = getValueState(SI->getCondition()); 494 if (SCValue.isOverdefined()) { // Overdefined condition? 495 // All destinations are executable! 496 return true; 497 } else if (SCValue.isConstant()) { 498 Constant *CPV = SCValue.getConstant(); 499 if (!isa<ConstantInt>(CPV)) 500 return true; // not a foldable constant? 501 502 // Make sure to skip the "default value" which isn't a value 503 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 504 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... 505 return SI->getSuccessor(i) == To; 506 507 // Constant value not equal to any of the branches... must execute 508 // default branch then... 509 return SI->getDefaultDest() == To; 510 } 511 return false; 512 } else { 513 cerr << "Unknown terminator instruction: " << *TI; 514 abort(); 515 } 516} 517 518// visit Implementations - Something changed in this instruction... Either an 519// operand made a transition, or the instruction is newly executable. Change 520// the value type of I to reflect these changes if appropriate. This method 521// makes sure to do the following actions: 522// 523// 1. If a phi node merges two constants in, and has conflicting value coming 524// from different branches, or if the PHI node merges in an overdefined 525// value, then the PHI node becomes overdefined. 526// 2. If a phi node merges only constants in, and they all agree on value, the 527// PHI node becomes a constant value equal to that. 528// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 529// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 530// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 531// 6. If a conditional branch has a value that is constant, make the selected 532// destination executable 533// 7. If a conditional branch has a value that is overdefined, make all 534// successors executable. 535// 536void SCCPSolver::visitPHINode(PHINode &PN) { 537 LatticeVal &PNIV = getValueState(&PN); 538 if (PNIV.isOverdefined()) { 539 // There may be instructions using this PHI node that are not overdefined 540 // themselves. If so, make sure that they know that the PHI node operand 541 // changed. 542 std::multimap<PHINode*, Instruction*>::iterator I, E; 543 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); 544 if (I != E) { 545 std::vector<Instruction*> Users; 546 Users.reserve(std::distance(I, E)); 547 for (; I != E; ++I) Users.push_back(I->second); 548 while (!Users.empty()) { 549 visit(Users.back()); 550 Users.pop_back(); 551 } 552 } 553 return; // Quick exit 554 } 555 556 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 557 // and slow us down a lot. Just mark them overdefined. 558 if (PN.getNumIncomingValues() > 64) { 559 markOverdefined(PNIV, &PN); 560 return; 561 } 562 563 // Look at all of the executable operands of the PHI node. If any of them 564 // are overdefined, the PHI becomes overdefined as well. If they are all 565 // constant, and they agree with each other, the PHI becomes the identical 566 // constant. If they are constant and don't agree, the PHI is overdefined. 567 // If there are no executable operands, the PHI remains undefined. 568 // 569 Constant *OperandVal = 0; 570 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 571 LatticeVal &IV = getValueState(PN.getIncomingValue(i)); 572 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 573 574 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { 575 if (IV.isOverdefined()) { // PHI node becomes overdefined! 576 markOverdefined(PNIV, &PN); 577 return; 578 } 579 580 if (OperandVal == 0) { // Grab the first value... 581 OperandVal = IV.getConstant(); 582 } else { // Another value is being merged in! 583 // There is already a reachable operand. If we conflict with it, 584 // then the PHI node becomes overdefined. If we agree with it, we 585 // can continue on. 586 587 // Check to see if there are two different constants merging... 588 if (IV.getConstant() != OperandVal) { 589 // Yes there is. This means the PHI node is not constant. 590 // You must be overdefined poor PHI. 591 // 592 markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined 593 return; // I'm done analyzing you 594 } 595 } 596 } 597 } 598 599 // If we exited the loop, this means that the PHI node only has constant 600 // arguments that agree with each other(and OperandVal is the constant) or 601 // OperandVal is null because there are no defined incoming arguments. If 602 // this is the case, the PHI remains undefined. 603 // 604 if (OperandVal) 605 markConstant(PNIV, &PN, OperandVal); // Acquire operand value 606} 607 608void SCCPSolver::visitReturnInst(ReturnInst &I) { 609 if (I.getNumOperands() == 0) return; // Ret void 610 611 // If we are tracking the return value of this function, merge it in. 612 Function *F = I.getParent()->getParent(); 613 if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) { 614 hash_map<Function*, LatticeVal>::iterator TFRVI = 615 TrackedFunctionRetVals.find(F); 616 if (TFRVI != TrackedFunctionRetVals.end() && 617 !TFRVI->second.isOverdefined()) { 618 LatticeVal &IV = getValueState(I.getOperand(0)); 619 mergeInValue(TFRVI->second, F, IV); 620 } 621 } 622} 623 624 625void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 626 std::vector<bool> SuccFeasible; 627 getFeasibleSuccessors(TI, SuccFeasible); 628 629 BasicBlock *BB = TI.getParent(); 630 631 // Mark all feasible successors executable... 632 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 633 if (SuccFeasible[i]) 634 markEdgeExecutable(BB, TI.getSuccessor(i)); 635} 636 637void SCCPSolver::visitCastInst(CastInst &I) { 638 Value *V = I.getOperand(0); 639 LatticeVal &VState = getValueState(V); 640 if (VState.isOverdefined()) // Inherit overdefinedness of operand 641 markOverdefined(&I); 642 else if (VState.isConstant()) // Propagate constant value 643 markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 644 VState.getConstant(), I.getType())); 645} 646 647void SCCPSolver::visitSelectInst(SelectInst &I) { 648 LatticeVal &CondValue = getValueState(I.getCondition()); 649 if (CondValue.isUndefined()) 650 return; 651 if (CondValue.isConstant()) { 652 if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){ 653 mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue() 654 : I.getFalseValue())); 655 return; 656 } 657 } 658 659 // Otherwise, the condition is overdefined or a constant we can't evaluate. 660 // See if we can produce something better than overdefined based on the T/F 661 // value. 662 LatticeVal &TVal = getValueState(I.getTrueValue()); 663 LatticeVal &FVal = getValueState(I.getFalseValue()); 664 665 // select ?, C, C -> C. 666 if (TVal.isConstant() && FVal.isConstant() && 667 TVal.getConstant() == FVal.getConstant()) { 668 markConstant(&I, FVal.getConstant()); 669 return; 670 } 671 672 if (TVal.isUndefined()) { // select ?, undef, X -> X. 673 mergeInValue(&I, FVal); 674 } else if (FVal.isUndefined()) { // select ?, X, undef -> X. 675 mergeInValue(&I, TVal); 676 } else { 677 markOverdefined(&I); 678 } 679} 680 681// Handle BinaryOperators and Shift Instructions... 682void SCCPSolver::visitBinaryOperator(Instruction &I) { 683 LatticeVal &IV = ValueState[&I]; 684 if (IV.isOverdefined()) return; 685 686 LatticeVal &V1State = getValueState(I.getOperand(0)); 687 LatticeVal &V2State = getValueState(I.getOperand(1)); 688 689 if (V1State.isOverdefined() || V2State.isOverdefined()) { 690 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 691 // operand is overdefined. 692 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 693 LatticeVal *NonOverdefVal = 0; 694 if (!V1State.isOverdefined()) { 695 NonOverdefVal = &V1State; 696 } else if (!V2State.isOverdefined()) { 697 NonOverdefVal = &V2State; 698 } 699 700 if (NonOverdefVal) { 701 if (NonOverdefVal->isUndefined()) { 702 // Could annihilate value. 703 if (I.getOpcode() == Instruction::And) 704 markConstant(IV, &I, Constant::getNullValue(I.getType())); 705 else if (const PackedType *PT = dyn_cast<PackedType>(I.getType())) 706 markConstant(IV, &I, ConstantPacked::getAllOnesValue(PT)); 707 else 708 markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType())); 709 return; 710 } else { 711 if (I.getOpcode() == Instruction::And) { 712 if (NonOverdefVal->getConstant()->isNullValue()) { 713 markConstant(IV, &I, NonOverdefVal->getConstant()); 714 return; // X and 0 = 0 715 } 716 } else { 717 if (ConstantInt *CI = 718 dyn_cast<ConstantInt>(NonOverdefVal->getConstant())) 719 if (CI->isAllOnesValue()) { 720 markConstant(IV, &I, NonOverdefVal->getConstant()); 721 return; // X or -1 = -1 722 } 723 } 724 } 725 } 726 } 727 728 729 // If both operands are PHI nodes, it is possible that this instruction has 730 // a constant value, despite the fact that the PHI node doesn't. Check for 731 // this condition now. 732 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 733 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 734 if (PN1->getParent() == PN2->getParent()) { 735 // Since the two PHI nodes are in the same basic block, they must have 736 // entries for the same predecessors. Walk the predecessor list, and 737 // if all of the incoming values are constants, and the result of 738 // evaluating this expression with all incoming value pairs is the 739 // same, then this expression is a constant even though the PHI node 740 // is not a constant! 741 LatticeVal Result; 742 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 743 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 744 BasicBlock *InBlock = PN1->getIncomingBlock(i); 745 LatticeVal &In2 = 746 getValueState(PN2->getIncomingValueForBlock(InBlock)); 747 748 if (In1.isOverdefined() || In2.isOverdefined()) { 749 Result.markOverdefined(); 750 break; // Cannot fold this operation over the PHI nodes! 751 } else if (In1.isConstant() && In2.isConstant()) { 752 Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), 753 In2.getConstant()); 754 if (Result.isUndefined()) 755 Result.markConstant(V); 756 else if (Result.isConstant() && Result.getConstant() != V) { 757 Result.markOverdefined(); 758 break; 759 } 760 } 761 } 762 763 // If we found a constant value here, then we know the instruction is 764 // constant despite the fact that the PHI nodes are overdefined. 765 if (Result.isConstant()) { 766 markConstant(IV, &I, Result.getConstant()); 767 // Remember that this instruction is virtually using the PHI node 768 // operands. 769 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 770 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 771 return; 772 } else if (Result.isUndefined()) { 773 return; 774 } 775 776 // Okay, this really is overdefined now. Since we might have 777 // speculatively thought that this was not overdefined before, and 778 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 779 // make sure to clean out any entries that we put there, for 780 // efficiency. 781 std::multimap<PHINode*, Instruction*>::iterator It, E; 782 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 783 while (It != E) { 784 if (It->second == &I) { 785 UsersOfOverdefinedPHIs.erase(It++); 786 } else 787 ++It; 788 } 789 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 790 while (It != E) { 791 if (It->second == &I) { 792 UsersOfOverdefinedPHIs.erase(It++); 793 } else 794 ++It; 795 } 796 } 797 798 markOverdefined(IV, &I); 799 } else if (V1State.isConstant() && V2State.isConstant()) { 800 markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 801 V2State.getConstant())); 802 } 803} 804 805// Handle ICmpInst instruction... 806void SCCPSolver::visitCmpInst(CmpInst &I) { 807 LatticeVal &IV = ValueState[&I]; 808 if (IV.isOverdefined()) return; 809 810 LatticeVal &V1State = getValueState(I.getOperand(0)); 811 LatticeVal &V2State = getValueState(I.getOperand(1)); 812 813 if (V1State.isOverdefined() || V2State.isOverdefined()) { 814 // If both operands are PHI nodes, it is possible that this instruction has 815 // a constant value, despite the fact that the PHI node doesn't. Check for 816 // this condition now. 817 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 818 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 819 if (PN1->getParent() == PN2->getParent()) { 820 // Since the two PHI nodes are in the same basic block, they must have 821 // entries for the same predecessors. Walk the predecessor list, and 822 // if all of the incoming values are constants, and the result of 823 // evaluating this expression with all incoming value pairs is the 824 // same, then this expression is a constant even though the PHI node 825 // is not a constant! 826 LatticeVal Result; 827 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 828 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 829 BasicBlock *InBlock = PN1->getIncomingBlock(i); 830 LatticeVal &In2 = 831 getValueState(PN2->getIncomingValueForBlock(InBlock)); 832 833 if (In1.isOverdefined() || In2.isOverdefined()) { 834 Result.markOverdefined(); 835 break; // Cannot fold this operation over the PHI nodes! 836 } else if (In1.isConstant() && In2.isConstant()) { 837 Constant *V = ConstantExpr::getCompare(I.getPredicate(), 838 In1.getConstant(), 839 In2.getConstant()); 840 if (Result.isUndefined()) 841 Result.markConstant(V); 842 else if (Result.isConstant() && Result.getConstant() != V) { 843 Result.markOverdefined(); 844 break; 845 } 846 } 847 } 848 849 // If we found a constant value here, then we know the instruction is 850 // constant despite the fact that the PHI nodes are overdefined. 851 if (Result.isConstant()) { 852 markConstant(IV, &I, Result.getConstant()); 853 // Remember that this instruction is virtually using the PHI node 854 // operands. 855 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 856 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 857 return; 858 } else if (Result.isUndefined()) { 859 return; 860 } 861 862 // Okay, this really is overdefined now. Since we might have 863 // speculatively thought that this was not overdefined before, and 864 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 865 // make sure to clean out any entries that we put there, for 866 // efficiency. 867 std::multimap<PHINode*, Instruction*>::iterator It, E; 868 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 869 while (It != E) { 870 if (It->second == &I) { 871 UsersOfOverdefinedPHIs.erase(It++); 872 } else 873 ++It; 874 } 875 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 876 while (It != E) { 877 if (It->second == &I) { 878 UsersOfOverdefinedPHIs.erase(It++); 879 } else 880 ++It; 881 } 882 } 883 884 markOverdefined(IV, &I); 885 } else if (V1State.isConstant() && V2State.isConstant()) { 886 markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 887 V1State.getConstant(), 888 V2State.getConstant())); 889 } 890} 891 892void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 893 // FIXME : SCCP does not handle vectors properly. 894 markOverdefined(&I); 895 return; 896 897#if 0 898 LatticeVal &ValState = getValueState(I.getOperand(0)); 899 LatticeVal &IdxState = getValueState(I.getOperand(1)); 900 901 if (ValState.isOverdefined() || IdxState.isOverdefined()) 902 markOverdefined(&I); 903 else if(ValState.isConstant() && IdxState.isConstant()) 904 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 905 IdxState.getConstant())); 906#endif 907} 908 909void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 910 // FIXME : SCCP does not handle vectors properly. 911 markOverdefined(&I); 912 return; 913#if 0 914 LatticeVal &ValState = getValueState(I.getOperand(0)); 915 LatticeVal &EltState = getValueState(I.getOperand(1)); 916 LatticeVal &IdxState = getValueState(I.getOperand(2)); 917 918 if (ValState.isOverdefined() || EltState.isOverdefined() || 919 IdxState.isOverdefined()) 920 markOverdefined(&I); 921 else if(ValState.isConstant() && EltState.isConstant() && 922 IdxState.isConstant()) 923 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 924 EltState.getConstant(), 925 IdxState.getConstant())); 926 else if (ValState.isUndefined() && EltState.isConstant() && 927 IdxState.isConstant()) 928 markConstant(&I, ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 929 EltState.getConstant(), 930 IdxState.getConstant())); 931#endif 932} 933 934void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 935 // FIXME : SCCP does not handle vectors properly. 936 markOverdefined(&I); 937 return; 938#if 0 939 LatticeVal &V1State = getValueState(I.getOperand(0)); 940 LatticeVal &V2State = getValueState(I.getOperand(1)); 941 LatticeVal &MaskState = getValueState(I.getOperand(2)); 942 943 if (MaskState.isUndefined() || 944 (V1State.isUndefined() && V2State.isUndefined())) 945 return; // Undefined output if mask or both inputs undefined. 946 947 if (V1State.isOverdefined() || V2State.isOverdefined() || 948 MaskState.isOverdefined()) { 949 markOverdefined(&I); 950 } else { 951 // A mix of constant/undef inputs. 952 Constant *V1 = V1State.isConstant() ? 953 V1State.getConstant() : UndefValue::get(I.getType()); 954 Constant *V2 = V2State.isConstant() ? 955 V2State.getConstant() : UndefValue::get(I.getType()); 956 Constant *Mask = MaskState.isConstant() ? 957 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 958 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 959 } 960#endif 961} 962 963// Handle getelementptr instructions... if all operands are constants then we 964// can turn this into a getelementptr ConstantExpr. 965// 966void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 967 LatticeVal &IV = ValueState[&I]; 968 if (IV.isOverdefined()) return; 969 970 std::vector<Constant*> Operands; 971 Operands.reserve(I.getNumOperands()); 972 973 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 974 LatticeVal &State = getValueState(I.getOperand(i)); 975 if (State.isUndefined()) 976 return; // Operands are not resolved yet... 977 else if (State.isOverdefined()) { 978 markOverdefined(IV, &I); 979 return; 980 } 981 assert(State.isConstant() && "Unknown state!"); 982 Operands.push_back(State.getConstant()); 983 } 984 985 Constant *Ptr = Operands[0]; 986 Operands.erase(Operands.begin()); // Erase the pointer from idx list... 987 988 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands)); 989} 990 991void SCCPSolver::visitStoreInst(Instruction &SI) { 992 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 993 return; 994 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 995 hash_map<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 996 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 997 998 // Get the value we are storing into the global. 999 LatticeVal &PtrVal = getValueState(SI.getOperand(0)); 1000 1001 mergeInValue(I->second, GV, PtrVal); 1002 if (I->second.isOverdefined()) 1003 TrackedGlobals.erase(I); // No need to keep tracking this! 1004} 1005 1006 1007// Handle load instructions. If the operand is a constant pointer to a constant 1008// global, we can replace the load with the loaded constant value! 1009void SCCPSolver::visitLoadInst(LoadInst &I) { 1010 LatticeVal &IV = ValueState[&I]; 1011 if (IV.isOverdefined()) return; 1012 1013 LatticeVal &PtrVal = getValueState(I.getOperand(0)); 1014 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 1015 if (PtrVal.isConstant() && !I.isVolatile()) { 1016 Value *Ptr = PtrVal.getConstant(); 1017 if (isa<ConstantPointerNull>(Ptr)) { 1018 // load null -> null 1019 markConstant(IV, &I, Constant::getNullValue(I.getType())); 1020 return; 1021 } 1022 1023 // Transform load (constant global) into the value loaded. 1024 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 1025 if (GV->isConstant()) { 1026 if (!GV->isDeclaration()) { 1027 markConstant(IV, &I, GV->getInitializer()); 1028 return; 1029 } 1030 } else if (!TrackedGlobals.empty()) { 1031 // If we are tracking this global, merge in the known value for it. 1032 hash_map<GlobalVariable*, LatticeVal>::iterator It = 1033 TrackedGlobals.find(GV); 1034 if (It != TrackedGlobals.end()) { 1035 mergeInValue(IV, &I, It->second); 1036 return; 1037 } 1038 } 1039 } 1040 1041 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. 1042 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 1043 if (CE->getOpcode() == Instruction::GetElementPtr) 1044 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) 1045 if (GV->isConstant() && !GV->isDeclaration()) 1046 if (Constant *V = 1047 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) { 1048 markConstant(IV, &I, V); 1049 return; 1050 } 1051 } 1052 1053 // Otherwise we cannot say for certain what value this load will produce. 1054 // Bail out. 1055 markOverdefined(IV, &I); 1056} 1057 1058void SCCPSolver::visitCallSite(CallSite CS) { 1059 Function *F = CS.getCalledFunction(); 1060 1061 // If we are tracking this function, we must make sure to bind arguments as 1062 // appropriate. 1063 hash_map<Function*, LatticeVal>::iterator TFRVI =TrackedFunctionRetVals.end(); 1064 if (F && F->hasInternalLinkage()) 1065 TFRVI = TrackedFunctionRetVals.find(F); 1066 1067 if (TFRVI != TrackedFunctionRetVals.end()) { 1068 // If this is the first call to the function hit, mark its entry block 1069 // executable. 1070 if (!BBExecutable.count(F->begin())) 1071 MarkBlockExecutable(F->begin()); 1072 1073 CallSite::arg_iterator CAI = CS.arg_begin(); 1074 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1075 AI != E; ++AI, ++CAI) { 1076 LatticeVal &IV = ValueState[AI]; 1077 if (!IV.isOverdefined()) 1078 mergeInValue(IV, AI, getValueState(*CAI)); 1079 } 1080 } 1081 Instruction *I = CS.getInstruction(); 1082 if (I->getType() == Type::VoidTy) return; 1083 1084 LatticeVal &IV = ValueState[I]; 1085 if (IV.isOverdefined()) return; 1086 1087 // Propagate the return value of the function to the value of the instruction. 1088 if (TFRVI != TrackedFunctionRetVals.end()) { 1089 mergeInValue(IV, I, TFRVI->second); 1090 return; 1091 } 1092 1093 if (F == 0 || !F->isDeclaration() || !canConstantFoldCallTo(F)) { 1094 markOverdefined(IV, I); 1095 return; 1096 } 1097 1098 SmallVector<Constant*, 8> Operands; 1099 Operands.reserve(I->getNumOperands()-1); 1100 1101 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1102 AI != E; ++AI) { 1103 LatticeVal &State = getValueState(*AI); 1104 if (State.isUndefined()) 1105 return; // Operands are not resolved yet... 1106 else if (State.isOverdefined()) { 1107 markOverdefined(IV, I); 1108 return; 1109 } 1110 assert(State.isConstant() && "Unknown state!"); 1111 Operands.push_back(State.getConstant()); 1112 } 1113 1114 if (Constant *C = ConstantFoldCall(F, &Operands[0], Operands.size())) 1115 markConstant(IV, I, C); 1116 else 1117 markOverdefined(IV, I); 1118} 1119 1120 1121void SCCPSolver::Solve() { 1122 // Process the work lists until they are empty! 1123 while (!BBWorkList.empty() || !InstWorkList.empty() || 1124 !OverdefinedInstWorkList.empty()) { 1125 // Process the instruction work list... 1126 while (!OverdefinedInstWorkList.empty()) { 1127 Value *I = OverdefinedInstWorkList.back(); 1128 OverdefinedInstWorkList.pop_back(); 1129 1130 DOUT << "\nPopped off OI-WL: " << *I; 1131 1132 // "I" got into the work list because it either made the transition from 1133 // bottom to constant 1134 // 1135 // Anything on this worklist that is overdefined need not be visited 1136 // since all of its users will have already been marked as overdefined 1137 // Update all of the users of this instruction's value... 1138 // 1139 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1140 UI != E; ++UI) 1141 OperandChangedState(*UI); 1142 } 1143 // Process the instruction work list... 1144 while (!InstWorkList.empty()) { 1145 Value *I = InstWorkList.back(); 1146 InstWorkList.pop_back(); 1147 1148 DOUT << "\nPopped off I-WL: " << *I; 1149 1150 // "I" got into the work list because it either made the transition from 1151 // bottom to constant 1152 // 1153 // Anything on this worklist that is overdefined need not be visited 1154 // since all of its users will have already been marked as overdefined. 1155 // Update all of the users of this instruction's value... 1156 // 1157 if (!getValueState(I).isOverdefined()) 1158 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1159 UI != E; ++UI) 1160 OperandChangedState(*UI); 1161 } 1162 1163 // Process the basic block work list... 1164 while (!BBWorkList.empty()) { 1165 BasicBlock *BB = BBWorkList.back(); 1166 BBWorkList.pop_back(); 1167 1168 DOUT << "\nPopped off BBWL: " << *BB; 1169 1170 // Notify all instructions in this basic block that they are newly 1171 // executable. 1172 visit(BB); 1173 } 1174 } 1175} 1176 1177/// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1178/// that branches on undef values cannot reach any of their successors. 1179/// However, this is not a safe assumption. After we solve dataflow, this 1180/// method should be use to handle this. If this returns true, the solver 1181/// should be rerun. 1182/// 1183/// This method handles this by finding an unresolved branch and marking it one 1184/// of the edges from the block as being feasible, even though the condition 1185/// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1186/// CFG and only slightly pessimizes the analysis results (by marking one, 1187/// potentially infeasible, edge feasible). This cannot usefully modify the 1188/// constraints on the condition of the branch, as that would impact other users 1189/// of the value. 1190/// 1191/// This scan also checks for values that use undefs, whose results are actually 1192/// defined. For example, 'zext i8 undef to i32' should produce all zeros 1193/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1194/// even if X isn't defined. 1195bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1196 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1197 if (!BBExecutable.count(BB)) 1198 continue; 1199 1200 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1201 // Look for instructions which produce undef values. 1202 if (I->getType() == Type::VoidTy) continue; 1203 1204 LatticeVal &LV = getValueState(I); 1205 if (!LV.isUndefined()) continue; 1206 1207 // Get the lattice values of the first two operands for use below. 1208 LatticeVal &Op0LV = getValueState(I->getOperand(0)); 1209 LatticeVal Op1LV; 1210 if (I->getNumOperands() == 2) { 1211 // If this is a two-operand instruction, and if both operands are 1212 // undefs, the result stays undef. 1213 Op1LV = getValueState(I->getOperand(1)); 1214 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1215 continue; 1216 } 1217 1218 // If this is an instructions whose result is defined even if the input is 1219 // not fully defined, propagate the information. 1220 const Type *ITy = I->getType(); 1221 switch (I->getOpcode()) { 1222 default: break; // Leave the instruction as an undef. 1223 case Instruction::ZExt: 1224 // After a zero extend, we know the top part is zero. SExt doesn't have 1225 // to be handled here, because we don't know whether the top part is 1's 1226 // or 0's. 1227 assert(Op0LV.isUndefined()); 1228 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1229 return true; 1230 case Instruction::Mul: 1231 case Instruction::And: 1232 // undef * X -> 0. X could be zero. 1233 // undef & X -> 0. X could be zero. 1234 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1235 return true; 1236 1237 case Instruction::Or: 1238 // undef | X -> -1. X could be -1. 1239 if (const PackedType *PTy = dyn_cast<PackedType>(ITy)) 1240 markForcedConstant(LV, I, ConstantPacked::getAllOnesValue(PTy)); 1241 else 1242 markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy)); 1243 return true; 1244 1245 case Instruction::SDiv: 1246 case Instruction::UDiv: 1247 case Instruction::SRem: 1248 case Instruction::URem: 1249 // X / undef -> undef. No change. 1250 // X % undef -> undef. No change. 1251 if (Op1LV.isUndefined()) break; 1252 1253 // undef / X -> 0. X could be maxint. 1254 // undef % X -> 0. X could be 1. 1255 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1256 return true; 1257 1258 case Instruction::AShr: 1259 // undef >>s X -> undef. No change. 1260 if (Op0LV.isUndefined()) break; 1261 1262 // X >>s undef -> X. X could be 0, X could have the high-bit known set. 1263 if (Op0LV.isConstant()) 1264 markForcedConstant(LV, I, Op0LV.getConstant()); 1265 else 1266 markOverdefined(LV, I); 1267 return true; 1268 case Instruction::LShr: 1269 case Instruction::Shl: 1270 // undef >> X -> undef. No change. 1271 // undef << X -> undef. No change. 1272 if (Op0LV.isUndefined()) break; 1273 1274 // X >> undef -> 0. X could be 0. 1275 // X << undef -> 0. X could be 0. 1276 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1277 return true; 1278 case Instruction::Select: 1279 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1280 if (Op0LV.isUndefined()) { 1281 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1282 Op1LV = getValueState(I->getOperand(2)); 1283 } else if (Op1LV.isUndefined()) { 1284 // c ? undef : undef -> undef. No change. 1285 Op1LV = getValueState(I->getOperand(2)); 1286 if (Op1LV.isUndefined()) 1287 break; 1288 // Otherwise, c ? undef : x -> x. 1289 } else { 1290 // Leave Op1LV as Operand(1)'s LatticeValue. 1291 } 1292 1293 if (Op1LV.isConstant()) 1294 markForcedConstant(LV, I, Op1LV.getConstant()); 1295 else 1296 markOverdefined(LV, I); 1297 return true; 1298 } 1299 } 1300 1301 TerminatorInst *TI = BB->getTerminator(); 1302 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1303 if (!BI->isConditional()) continue; 1304 if (!getValueState(BI->getCondition()).isUndefined()) 1305 continue; 1306 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1307 if (!getValueState(SI->getCondition()).isUndefined()) 1308 continue; 1309 } else { 1310 continue; 1311 } 1312 1313 // If the edge to the first successor isn't thought to be feasible yet, mark 1314 // it so now. 1315 if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(0)))) 1316 continue; 1317 1318 // Otherwise, it isn't already thought to be feasible. Mark it as such now 1319 // and return. This will make other blocks reachable, which will allow new 1320 // values to be discovered and existing ones to be moved in the lattice. 1321 markEdgeExecutable(BB, TI->getSuccessor(0)); 1322 return true; 1323 } 1324 1325 return false; 1326} 1327 1328 1329namespace { 1330 //===--------------------------------------------------------------------===// 1331 // 1332 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1333 /// Sparse Conditional Constant Propagator. 1334 /// 1335 struct SCCP : public FunctionPass { 1336 // runOnFunction - Run the Sparse Conditional Constant Propagation 1337 // algorithm, and return true if the function was modified. 1338 // 1339 bool runOnFunction(Function &F); 1340 1341 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1342 AU.setPreservesCFG(); 1343 } 1344 }; 1345 1346 RegisterPass<SCCP> X("sccp", "Sparse Conditional Constant Propagation"); 1347} // end anonymous namespace 1348 1349 1350// createSCCPPass - This is the public interface to this file... 1351FunctionPass *llvm::createSCCPPass() { 1352 return new SCCP(); 1353} 1354 1355 1356// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1357// and return true if the function was modified. 1358// 1359bool SCCP::runOnFunction(Function &F) { 1360 DOUT << "SCCP on function '" << F.getName() << "'\n"; 1361 SCCPSolver Solver; 1362 1363 // Mark the first block of the function as being executable. 1364 Solver.MarkBlockExecutable(F.begin()); 1365 1366 // Mark all arguments to the function as being overdefined. 1367 hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1368 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI) 1369 Values[AI].markOverdefined(); 1370 1371 // Solve for constants. 1372 bool ResolvedUndefs = true; 1373 while (ResolvedUndefs) { 1374 Solver.Solve(); 1375 DOUT << "RESOLVING UNDEFs\n"; 1376 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1377 } 1378 1379 bool MadeChanges = false; 1380 1381 // If we decided that there are basic blocks that are dead in this function, 1382 // delete their contents now. Note that we cannot actually delete the blocks, 1383 // as we cannot modify the CFG of the function. 1384 // 1385 std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks(); 1386 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1387 if (!ExecutableBBs.count(BB)) { 1388 DOUT << " BasicBlock Dead:" << *BB; 1389 ++NumDeadBlocks; 1390 1391 // Delete the instructions backwards, as it has a reduced likelihood of 1392 // having to update as many def-use and use-def chains. 1393 std::vector<Instruction*> Insts; 1394 for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator(); 1395 I != E; ++I) 1396 Insts.push_back(I); 1397 while (!Insts.empty()) { 1398 Instruction *I = Insts.back(); 1399 Insts.pop_back(); 1400 if (!I->use_empty()) 1401 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1402 BB->getInstList().erase(I); 1403 MadeChanges = true; 1404 ++NumInstRemoved; 1405 } 1406 } else { 1407 // Iterate over all of the instructions in a function, replacing them with 1408 // constants if we have found them to be of constant values. 1409 // 1410 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1411 Instruction *Inst = BI++; 1412 if (Inst->getType() != Type::VoidTy) { 1413 LatticeVal &IV = Values[Inst]; 1414 if (IV.isConstant() || IV.isUndefined() && 1415 !isa<TerminatorInst>(Inst)) { 1416 Constant *Const = IV.isConstant() 1417 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1418 DOUT << " Constant: " << *Const << " = " << *Inst; 1419 1420 // Replaces all of the uses of a variable with uses of the constant. 1421 Inst->replaceAllUsesWith(Const); 1422 1423 // Delete the instruction. 1424 BB->getInstList().erase(Inst); 1425 1426 // Hey, we just changed something! 1427 MadeChanges = true; 1428 ++NumInstRemoved; 1429 } 1430 } 1431 } 1432 } 1433 1434 return MadeChanges; 1435} 1436 1437namespace { 1438 //===--------------------------------------------------------------------===// 1439 // 1440 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1441 /// Constant Propagation. 1442 /// 1443 struct IPSCCP : public ModulePass { 1444 bool runOnModule(Module &M); 1445 }; 1446 1447 RegisterPass<IPSCCP> 1448 Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation"); 1449} // end anonymous namespace 1450 1451// createIPSCCPPass - This is the public interface to this file... 1452ModulePass *llvm::createIPSCCPPass() { 1453 return new IPSCCP(); 1454} 1455 1456 1457static bool AddressIsTaken(GlobalValue *GV) { 1458 // Delete any dead constantexpr klingons. 1459 GV->removeDeadConstantUsers(); 1460 1461 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 1462 UI != E; ++UI) 1463 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 1464 if (SI->getOperand(0) == GV || SI->isVolatile()) 1465 return true; // Storing addr of GV. 1466 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) { 1467 // Make sure we are calling the function, not passing the address. 1468 CallSite CS = CallSite::get(cast<Instruction>(*UI)); 1469 for (CallSite::arg_iterator AI = CS.arg_begin(), 1470 E = CS.arg_end(); AI != E; ++AI) 1471 if (*AI == GV) 1472 return true; 1473 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1474 if (LI->isVolatile()) 1475 return true; 1476 } else { 1477 return true; 1478 } 1479 return false; 1480} 1481 1482bool IPSCCP::runOnModule(Module &M) { 1483 SCCPSolver Solver; 1484 1485 // Loop over all functions, marking arguments to those with their addresses 1486 // taken or that are external as overdefined. 1487 // 1488 hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1489 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1490 if (!F->hasInternalLinkage() || AddressIsTaken(F)) { 1491 if (!F->isDeclaration()) 1492 Solver.MarkBlockExecutable(F->begin()); 1493 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1494 AI != E; ++AI) 1495 Values[AI].markOverdefined(); 1496 } else { 1497 Solver.AddTrackedFunction(F); 1498 } 1499 1500 // Loop over global variables. We inform the solver about any internal global 1501 // variables that do not have their 'addresses taken'. If they don't have 1502 // their addresses taken, we can propagate constants through them. 1503 for (Module::global_iterator G = M.global_begin(), E = M.global_end(); 1504 G != E; ++G) 1505 if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G)) 1506 Solver.TrackValueOfGlobalVariable(G); 1507 1508 // Solve for constants. 1509 bool ResolvedUndefs = true; 1510 while (ResolvedUndefs) { 1511 Solver.Solve(); 1512 1513 DOUT << "RESOLVING UNDEFS\n"; 1514 ResolvedUndefs = false; 1515 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1516 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); 1517 } 1518 1519 bool MadeChanges = false; 1520 1521 // Iterate over all of the instructions in the module, replacing them with 1522 // constants if we have found them to be of constant values. 1523 // 1524 std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks(); 1525 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1526 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1527 AI != E; ++AI) 1528 if (!AI->use_empty()) { 1529 LatticeVal &IV = Values[AI]; 1530 if (IV.isConstant() || IV.isUndefined()) { 1531 Constant *CST = IV.isConstant() ? 1532 IV.getConstant() : UndefValue::get(AI->getType()); 1533 DOUT << "*** Arg " << *AI << " = " << *CST <<"\n"; 1534 1535 // Replaces all of the uses of a variable with uses of the 1536 // constant. 1537 AI->replaceAllUsesWith(CST); 1538 ++IPNumArgsElimed; 1539 } 1540 } 1541 1542 std::vector<BasicBlock*> BlocksToErase; 1543 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1544 if (!ExecutableBBs.count(BB)) { 1545 DOUT << " BasicBlock Dead:" << *BB; 1546 ++IPNumDeadBlocks; 1547 1548 // Delete the instructions backwards, as it has a reduced likelihood of 1549 // having to update as many def-use and use-def chains. 1550 std::vector<Instruction*> Insts; 1551 TerminatorInst *TI = BB->getTerminator(); 1552 for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I) 1553 Insts.push_back(I); 1554 1555 while (!Insts.empty()) { 1556 Instruction *I = Insts.back(); 1557 Insts.pop_back(); 1558 if (!I->use_empty()) 1559 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1560 BB->getInstList().erase(I); 1561 MadeChanges = true; 1562 ++IPNumInstRemoved; 1563 } 1564 1565 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1566 BasicBlock *Succ = TI->getSuccessor(i); 1567 if (Succ->begin() != Succ->end() && isa<PHINode>(Succ->begin())) 1568 TI->getSuccessor(i)->removePredecessor(BB); 1569 } 1570 if (!TI->use_empty()) 1571 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1572 BB->getInstList().erase(TI); 1573 1574 if (&*BB != &F->front()) 1575 BlocksToErase.push_back(BB); 1576 else 1577 new UnreachableInst(BB); 1578 1579 } else { 1580 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1581 Instruction *Inst = BI++; 1582 if (Inst->getType() != Type::VoidTy) { 1583 LatticeVal &IV = Values[Inst]; 1584 if (IV.isConstant() || IV.isUndefined() && 1585 !isa<TerminatorInst>(Inst)) { 1586 Constant *Const = IV.isConstant() 1587 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1588 DOUT << " Constant: " << *Const << " = " << *Inst; 1589 1590 // Replaces all of the uses of a variable with uses of the 1591 // constant. 1592 Inst->replaceAllUsesWith(Const); 1593 1594 // Delete the instruction. 1595 if (!isa<TerminatorInst>(Inst) && !isa<CallInst>(Inst)) 1596 BB->getInstList().erase(Inst); 1597 1598 // Hey, we just changed something! 1599 MadeChanges = true; 1600 ++IPNumInstRemoved; 1601 } 1602 } 1603 } 1604 } 1605 1606 // Now that all instructions in the function are constant folded, erase dead 1607 // blocks, because we can now use ConstantFoldTerminator to get rid of 1608 // in-edges. 1609 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1610 // If there are any PHI nodes in this successor, drop entries for BB now. 1611 BasicBlock *DeadBB = BlocksToErase[i]; 1612 while (!DeadBB->use_empty()) { 1613 Instruction *I = cast<Instruction>(DeadBB->use_back()); 1614 bool Folded = ConstantFoldTerminator(I->getParent()); 1615 if (!Folded) { 1616 // The constant folder may not have been able to fold the terminator 1617 // if this is a branch or switch on undef. Fold it manually as a 1618 // branch to the first successor. 1619 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1620 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1621 "Branch should be foldable!"); 1622 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1623 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1624 } else { 1625 assert(0 && "Didn't fold away reference to block!"); 1626 } 1627 1628 // Make this an uncond branch to the first successor. 1629 TerminatorInst *TI = I->getParent()->getTerminator(); 1630 new BranchInst(TI->getSuccessor(0), TI); 1631 1632 // Remove entries in successor phi nodes to remove edges. 1633 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1634 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1635 1636 // Remove the old terminator. 1637 TI->eraseFromParent(); 1638 } 1639 } 1640 1641 // Finally, delete the basic block. 1642 F->getBasicBlockList().erase(DeadBB); 1643 } 1644 } 1645 1646 // If we inferred constant or undef return values for a function, we replaced 1647 // all call uses with the inferred value. This means we don't need to bother 1648 // actually returning anything from the function. Replace all return 1649 // instructions with return undef. 1650 const hash_map<Function*, LatticeVal> &RV =Solver.getTrackedFunctionRetVals(); 1651 for (hash_map<Function*, LatticeVal>::const_iterator I = RV.begin(), 1652 E = RV.end(); I != E; ++I) 1653 if (!I->second.isOverdefined() && 1654 I->first->getReturnType() != Type::VoidTy) { 1655 Function *F = I->first; 1656 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1657 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1658 if (!isa<UndefValue>(RI->getOperand(0))) 1659 RI->setOperand(0, UndefValue::get(F->getReturnType())); 1660 } 1661 1662 // If we infered constant or undef values for globals variables, we can delete 1663 // the global and any stores that remain to it. 1664 const hash_map<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1665 for (hash_map<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1666 E = TG.end(); I != E; ++I) { 1667 GlobalVariable *GV = I->first; 1668 assert(!I->second.isOverdefined() && 1669 "Overdefined values should have been taken out of the map!"); 1670 DOUT << "Found that GV '" << GV->getName()<< "' is constant!\n"; 1671 while (!GV->use_empty()) { 1672 StoreInst *SI = cast<StoreInst>(GV->use_back()); 1673 SI->eraseFromParent(); 1674 } 1675 M.getGlobalList().erase(GV); 1676 ++IPNumGlobalConst; 1677 } 1678 1679 return MadeChanges; 1680} 1681