SCCP.cpp revision 7927220aef34e056c87b066d4bd87c81e6b0c225
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18//===----------------------------------------------------------------------===// 19 20#define DEBUG_TYPE "sccp" 21#include "llvm/Transforms/Scalar.h" 22#include "llvm/Transforms/IPO.h" 23#include "llvm/Constants.h" 24#include "llvm/DerivedTypes.h" 25#include "llvm/Instructions.h" 26#include "llvm/LLVMContext.h" 27#include "llvm/Pass.h" 28#include "llvm/Analysis/ConstantFolding.h" 29#include "llvm/Analysis/MemoryBuiltins.h" 30#include "llvm/Analysis/ValueTracking.h" 31#include "llvm/Transforms/Utils/Local.h" 32#include "llvm/Support/CallSite.h" 33#include "llvm/Support/Debug.h" 34#include "llvm/Support/ErrorHandling.h" 35#include "llvm/Support/InstVisitor.h" 36#include "llvm/Support/raw_ostream.h" 37#include "llvm/ADT/DenseMap.h" 38#include "llvm/ADT/DenseSet.h" 39#include "llvm/ADT/PointerIntPair.h" 40#include "llvm/ADT/SmallVector.h" 41#include "llvm/ADT/Statistic.h" 42#include "llvm/ADT/STLExtras.h" 43#include <algorithm> 44#include <map> 45using namespace llvm; 46 47STATISTIC(NumInstRemoved, "Number of instructions removed"); 48STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 49 50STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); 51STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP"); 52STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 53STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 54 55namespace { 56/// LatticeVal class - This class represents the different lattice values that 57/// an LLVM value may occupy. It is a simple class with value semantics. 58/// 59class LatticeVal { 60 enum LatticeValueTy { 61 /// undefined - This LLVM Value has no known value yet. 62 undefined, 63 64 /// constant - This LLVM Value has a specific constant value. 65 constant, 66 67 /// forcedconstant - This LLVM Value was thought to be undef until 68 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 69 /// with another (different) constant, it goes to overdefined, instead of 70 /// asserting. 71 forcedconstant, 72 73 /// overdefined - This instruction is not known to be constant, and we know 74 /// it has a value. 75 overdefined 76 }; 77 78 /// Val: This stores the current lattice value along with the Constant* for 79 /// the constant if this is a 'constant' or 'forcedconstant' value. 80 PointerIntPair<Constant *, 2, LatticeValueTy> Val; 81 82 LatticeValueTy getLatticeValue() const { 83 return Val.getInt(); 84 } 85 86public: 87 inline LatticeVal() : Val(0, undefined) {} 88 89 inline bool isUndefined() const { return getLatticeValue() == undefined; } 90 inline bool isConstant() const { 91 return getLatticeValue() == constant || getLatticeValue() == forcedconstant; 92 } 93 inline bool isOverdefined() const { return getLatticeValue() == overdefined; } 94 95 inline Constant *getConstant() const { 96 assert(isConstant() && "Cannot get the constant of a non-constant!"); 97 return Val.getPointer(); 98 } 99 100 /// markOverdefined - Return true if this is a change in status. 101 inline bool markOverdefined() { 102 if (isOverdefined()) 103 return false; 104 105 Val.setInt(overdefined); 106 return true; 107 } 108 109 /// markConstant - Return true if this is a change in status. 110 inline bool markConstant(Constant *V) { 111 if (isConstant()) { 112 assert(getConstant() == V && "Marking constant with different value"); 113 return false; 114 } 115 116 if (isUndefined()) { 117 Val.setInt(constant); 118 assert(V && "Marking constant with NULL"); 119 Val.setPointer(V); 120 } else { 121 assert(getLatticeValue() == forcedconstant && 122 "Cannot move from overdefined to constant!"); 123 // Stay at forcedconstant if the constant is the same. 124 if (V == getConstant()) return false; 125 126 // Otherwise, we go to overdefined. Assumptions made based on the 127 // forced value are possibly wrong. Assuming this is another constant 128 // could expose a contradiction. 129 Val.setInt(overdefined); 130 } 131 return true; 132 } 133 134 inline void markForcedConstant(Constant *V) { 135 assert(isUndefined() && "Can't force a defined value!"); 136 Val.setInt(forcedconstant); 137 Val.setPointer(V); 138 } 139}; 140 141//===----------------------------------------------------------------------===// 142// 143/// SCCPSolver - This class is a general purpose solver for Sparse Conditional 144/// Constant Propagation. 145/// 146class SCCPSolver : public InstVisitor<SCCPSolver> { 147 LLVMContext *Context; 148 DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable 149 std::map<Value*, LatticeVal> ValueState; // The state each value is in. 150 151 /// GlobalValue - If we are tracking any values for the contents of a global 152 /// variable, we keep a mapping from the constant accessor to the element of 153 /// the global, to the currently known value. If the value becomes 154 /// overdefined, it's entry is simply removed from this map. 155 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; 156 157 /// TrackedRetVals - If we are tracking arguments into and the return 158 /// value out of a function, it will have an entry in this map, indicating 159 /// what the known return value for the function is. 160 DenseMap<Function*, LatticeVal> TrackedRetVals; 161 162 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 163 /// that return multiple values. 164 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; 165 166 // The reason for two worklists is that overdefined is the lowest state 167 // on the lattice, and moving things to overdefined as fast as possible 168 // makes SCCP converge much faster. 169 // By having a separate worklist, we accomplish this because everything 170 // possibly overdefined will become overdefined at the soonest possible 171 // point. 172 SmallVector<Value*, 64> OverdefinedInstWorkList; 173 SmallVector<Value*, 64> InstWorkList; 174 175 176 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list 177 178 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not 179 /// overdefined, despite the fact that the PHI node is overdefined. 180 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; 181 182 /// KnownFeasibleEdges - Entries in this set are edges which have already had 183 /// PHI nodes retriggered. 184 typedef std::pair<BasicBlock*, BasicBlock*> Edge; 185 DenseSet<Edge> KnownFeasibleEdges; 186public: 187 void setContext(LLVMContext *C) { Context = C; } 188 189 /// MarkBlockExecutable - This method can be used by clients to mark all of 190 /// the blocks that are known to be intrinsically live in the processed unit. 191 void MarkBlockExecutable(BasicBlock *BB) { 192 DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n"); 193 BBExecutable.insert(BB); // Basic block is executable! 194 BBWorkList.push_back(BB); // Add the block to the work list! 195 } 196 197 /// TrackValueOfGlobalVariable - Clients can use this method to 198 /// inform the SCCPSolver that it should track loads and stores to the 199 /// specified global variable if it can. This is only legal to call if 200 /// performing Interprocedural SCCP. 201 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 202 const Type *ElTy = GV->getType()->getElementType(); 203 if (ElTy->isFirstClassType()) { 204 LatticeVal &IV = TrackedGlobals[GV]; 205 if (!isa<UndefValue>(GV->getInitializer())) 206 IV.markConstant(GV->getInitializer()); 207 } 208 } 209 210 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 211 /// and out of the specified function (which cannot have its address taken), 212 /// this method must be called. 213 void AddTrackedFunction(Function *F) { 214 assert(F->hasLocalLinkage() && "Can only track internal functions!"); 215 // Add an entry, F -> undef. 216 if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 217 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 218 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), 219 LatticeVal())); 220 } else 221 TrackedRetVals.insert(std::make_pair(F, LatticeVal())); 222 } 223 224 /// Solve - Solve for constants and executable blocks. 225 /// 226 void Solve(); 227 228 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 229 /// that branches on undef values cannot reach any of their successors. 230 /// However, this is not a safe assumption. After we solve dataflow, this 231 /// method should be use to handle this. If this returns true, the solver 232 /// should be rerun. 233 bool ResolvedUndefsIn(Function &F); 234 235 bool isBlockExecutable(BasicBlock *BB) const { 236 return BBExecutable.count(BB); 237 } 238 239 /// getValueMapping - Once we have solved for constants, return the mapping of 240 /// LLVM values to LatticeVals. 241 std::map<Value*, LatticeVal> &getValueMapping() { 242 return ValueState; 243 } 244 245 /// getTrackedRetVals - Get the inferred return value map. 246 /// 247 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { 248 return TrackedRetVals; 249 } 250 251 /// getTrackedGlobals - Get and return the set of inferred initializers for 252 /// global variables. 253 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 254 return TrackedGlobals; 255 } 256 257 inline void markOverdefined(Value *V) { 258 markOverdefined(ValueState[V], V); 259 } 260 261private: 262 // markConstant - Make a value be marked as "constant". If the value 263 // is not already a constant, add it to the instruction work list so that 264 // the users of the instruction are updated later. 265 // 266 inline void markConstant(LatticeVal &IV, Value *V, Constant *C) { 267 if (IV.markConstant(C)) { 268 DEBUG(errs() << "markConstant: " << *C << ": " << *V << '\n'); 269 InstWorkList.push_back(V); 270 } 271 } 272 273 inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) { 274 IV.markForcedConstant(C); 275 DEBUG(errs() << "markForcedConstant: " << *C << ": " << *V << '\n'); 276 InstWorkList.push_back(V); 277 } 278 279 inline void markConstant(Value *V, Constant *C) { 280 markConstant(ValueState[V], V, C); 281 } 282 283 // markOverdefined - Make a value be marked as "overdefined". If the 284 // value is not already overdefined, add it to the overdefined instruction 285 // work list so that the users of the instruction are updated later. 286 inline void markOverdefined(LatticeVal &IV, Value *V) { 287 if (IV.markOverdefined()) { 288 DEBUG(errs() << "markOverdefined: "; 289 if (Function *F = dyn_cast<Function>(V)) 290 errs() << "Function '" << F->getName() << "'\n"; 291 else 292 errs() << *V << '\n'); 293 // Only instructions go on the work list 294 OverdefinedInstWorkList.push_back(V); 295 } 296 } 297 298 inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) { 299 if (IV.isOverdefined() || MergeWithV.isUndefined()) 300 return; // Noop. 301 if (MergeWithV.isOverdefined()) 302 markOverdefined(IV, V); 303 else if (IV.isUndefined()) 304 markConstant(IV, V, MergeWithV.getConstant()); 305 else if (IV.getConstant() != MergeWithV.getConstant()) 306 markOverdefined(IV, V); 307 } 308 309 inline void mergeInValue(Value *V, LatticeVal &MergeWithV) { 310 return mergeInValue(ValueState[V], V, MergeWithV); 311 } 312 313 314 // getValueState - Return the LatticeVal object that corresponds to the value. 315 // This function is necessary because not all values should start out in the 316 // underdefined state... Argument's should be overdefined, and 317 // constants should be marked as constants. If a value is not known to be an 318 // Instruction object, then use this accessor to get its value from the map. 319 // 320 inline LatticeVal &getValueState(Value *V) { 321 std::map<Value*, LatticeVal>::iterator I = ValueState.find(V); 322 if (I != ValueState.end()) return I->second; // Common case, in the map 323 324 if (Constant *C = dyn_cast<Constant>(V)) { 325 if (isa<UndefValue>(V)) { 326 // Nothing to do, remain undefined. 327 } else { 328 LatticeVal &LV = ValueState[C]; 329 LV.markConstant(C); // Constants are constant 330 return LV; 331 } 332 } 333 // All others are underdefined by default... 334 return ValueState[V]; 335 } 336 337 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB 338 // work list if it is not already executable... 339 // 340 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 341 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 342 return; // This edge is already known to be executable! 343 344 if (BBExecutable.count(Dest)) { 345 DEBUG(errs() << "Marking Edge Executable: " << Source->getName() 346 << " -> " << Dest->getName() << "\n"); 347 348 // The destination is already executable, but we just made an edge 349 // feasible that wasn't before. Revisit the PHI nodes in the block 350 // because they have potentially new operands. 351 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) 352 visitPHINode(*cast<PHINode>(I)); 353 354 } else { 355 MarkBlockExecutable(Dest); 356 } 357 } 358 359 // getFeasibleSuccessors - Return a vector of booleans to indicate which 360 // successors are reachable from a given terminator instruction. 361 // 362 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs); 363 364 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 365 // block to the 'To' basic block is currently feasible... 366 // 367 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 368 369 // OperandChangedState - This method is invoked on all of the users of an 370 // instruction that was just changed state somehow.... Based on this 371 // information, we need to update the specified user of this instruction. 372 // 373 void OperandChangedState(User *U) { 374 // Only instructions use other variable values! 375 Instruction &I = cast<Instruction>(*U); 376 if (BBExecutable.count(I.getParent())) // Inst is executable? 377 visit(I); 378 } 379 380private: 381 friend class InstVisitor<SCCPSolver>; 382 383 // visit implementations - Something changed in this instruction... Either an 384 // operand made a transition, or the instruction is newly executable. Change 385 // the value type of I to reflect these changes if appropriate. 386 // 387 void visitPHINode(PHINode &I); 388 389 // Terminators 390 void visitReturnInst(ReturnInst &I); 391 void visitTerminatorInst(TerminatorInst &TI); 392 393 void visitCastInst(CastInst &I); 394 void visitSelectInst(SelectInst &I); 395 void visitBinaryOperator(Instruction &I); 396 void visitCmpInst(CmpInst &I); 397 void visitExtractElementInst(ExtractElementInst &I); 398 void visitInsertElementInst(InsertElementInst &I); 399 void visitShuffleVectorInst(ShuffleVectorInst &I); 400 void visitExtractValueInst(ExtractValueInst &EVI); 401 void visitInsertValueInst(InsertValueInst &IVI); 402 403 // Instructions that cannot be folded away... 404 void visitStoreInst (Instruction &I); 405 void visitLoadInst (LoadInst &I); 406 void visitGetElementPtrInst(GetElementPtrInst &I); 407 void visitCallInst (CallInst &I) { 408 if (isFreeCall(&I)) 409 return; 410 visitCallSite(CallSite::get(&I)); 411 } 412 void visitInvokeInst (InvokeInst &II) { 413 visitCallSite(CallSite::get(&II)); 414 visitTerminatorInst(II); 415 } 416 void visitCallSite (CallSite CS); 417 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 418 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 419 void visitAllocaInst (Instruction &I) { markOverdefined(&I); } 420 void visitVANextInst (Instruction &I) { markOverdefined(&I); } 421 void visitVAArgInst (Instruction &I) { markOverdefined(&I); } 422 423 void visitInstruction(Instruction &I) { 424 // If a new instruction is added to LLVM that we don't handle... 425 errs() << "SCCP: Don't know how to handle: " << I; 426 markOverdefined(&I); // Just in case 427 } 428}; 429 430} // end anonymous namespace 431 432 433// getFeasibleSuccessors - Return a vector of booleans to indicate which 434// successors are reachable from a given terminator instruction. 435// 436void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 437 SmallVector<bool, 16> &Succs) { 438 Succs.resize(TI.getNumSuccessors()); 439 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 440 if (BI->isUnconditional()) { 441 Succs[0] = true; 442 } else { 443 LatticeVal &BCValue = getValueState(BI->getCondition()); 444 if (BCValue.isOverdefined() || 445 (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) { 446 // Overdefined condition variables, and branches on unfoldable constant 447 // conditions, mean the branch could go either way. 448 Succs[0] = Succs[1] = true; 449 } else if (BCValue.isConstant()) { 450 // Constant condition variables mean the branch can only go a single way 451 Succs[BCValue.getConstant() == ConstantInt::getFalse(*Context)] = true; 452 } 453 } 454 return; 455 } 456 457 if (isa<InvokeInst>(&TI)) { 458 // Invoke instructions successors are always executable. 459 Succs[0] = Succs[1] = true; 460 return; 461 } 462 463 if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 464 LatticeVal &SCValue = getValueState(SI->getCondition()); 465 if (SCValue.isOverdefined() || // Overdefined condition? 466 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) { 467 // All destinations are executable! 468 Succs.assign(TI.getNumSuccessors(), true); 469 } else if (SCValue.isConstant()) 470 Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true; 471 return; 472 } 473 474 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 475 if (isa<IndirectBrInst>(&TI)) { 476 // Just mark all destinations executable! 477 Succs.assign(TI.getNumSuccessors(), true); 478 return; 479 } 480 481#ifndef NDEBUG 482 errs() << "Unknown terminator instruction: " << TI << '\n'; 483#endif 484 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 485} 486 487 488// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 489// block to the 'To' basic block is currently feasible... 490// 491bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 492 assert(BBExecutable.count(To) && "Dest should always be alive!"); 493 494 // Make sure the source basic block is executable!! 495 if (!BBExecutable.count(From)) return false; 496 497 // Check to make sure this edge itself is actually feasible now... 498 TerminatorInst *TI = From->getTerminator(); 499 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 500 if (BI->isUnconditional()) 501 return true; 502 503 LatticeVal &BCValue = getValueState(BI->getCondition()); 504 if (BCValue.isOverdefined()) { 505 // Overdefined condition variables mean the branch could go either way. 506 return true; 507 } else if (BCValue.isConstant()) { 508 // Not branching on an evaluatable constant? 509 if (!isa<ConstantInt>(BCValue.getConstant())) return true; 510 511 // Constant condition variables mean the branch can only go a single way 512 return BI->getSuccessor(BCValue.getConstant() == 513 ConstantInt::getFalse(*Context)) == To; 514 } 515 return false; 516 } 517 518 // Invoke instructions successors are always executable. 519 if (isa<InvokeInst>(TI)) 520 return true; 521 522 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 523 LatticeVal &SCValue = getValueState(SI->getCondition()); 524 if (SCValue.isOverdefined()) { // Overdefined condition? 525 // All destinations are executable! 526 return true; 527 } else if (SCValue.isConstant()) { 528 Constant *CPV = SCValue.getConstant(); 529 if (!isa<ConstantInt>(CPV)) 530 return true; // not a foldable constant? 531 532 // Make sure to skip the "default value" which isn't a value 533 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 534 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... 535 return SI->getSuccessor(i) == To; 536 537 // Constant value not equal to any of the branches... must execute 538 // default branch then... 539 return SI->getDefaultDest() == To; 540 } 541 return false; 542 } 543 544 // Just mark all destinations executable! 545 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 546 if (isa<IndirectBrInst>(&TI)) 547 return true; 548 549#ifndef NDEBUG 550 errs() << "Unknown terminator instruction: " << *TI << '\n'; 551#endif 552 llvm_unreachable(0); 553} 554 555// visit Implementations - Something changed in this instruction... Either an 556// operand made a transition, or the instruction is newly executable. Change 557// the value type of I to reflect these changes if appropriate. This method 558// makes sure to do the following actions: 559// 560// 1. If a phi node merges two constants in, and has conflicting value coming 561// from different branches, or if the PHI node merges in an overdefined 562// value, then the PHI node becomes overdefined. 563// 2. If a phi node merges only constants in, and they all agree on value, the 564// PHI node becomes a constant value equal to that. 565// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 566// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 567// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 568// 6. If a conditional branch has a value that is constant, make the selected 569// destination executable 570// 7. If a conditional branch has a value that is overdefined, make all 571// successors executable. 572// 573void SCCPSolver::visitPHINode(PHINode &PN) { 574 LatticeVal &PNIV = getValueState(&PN); 575 if (PNIV.isOverdefined()) { 576 // There may be instructions using this PHI node that are not overdefined 577 // themselves. If so, make sure that they know that the PHI node operand 578 // changed. 579 std::multimap<PHINode*, Instruction*>::iterator I, E; 580 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); 581 if (I != E) { 582 SmallVector<Instruction*, 16> Users; 583 for (; I != E; ++I) Users.push_back(I->second); 584 while (!Users.empty()) { 585 visit(Users.back()); 586 Users.pop_back(); 587 } 588 } 589 return; // Quick exit 590 } 591 592 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 593 // and slow us down a lot. Just mark them overdefined. 594 if (PN.getNumIncomingValues() > 64) { 595 markOverdefined(PNIV, &PN); 596 return; 597 } 598 599 // Look at all of the executable operands of the PHI node. If any of them 600 // are overdefined, the PHI becomes overdefined as well. If they are all 601 // constant, and they agree with each other, the PHI becomes the identical 602 // constant. If they are constant and don't agree, the PHI is overdefined. 603 // If there are no executable operands, the PHI remains undefined. 604 // 605 Constant *OperandVal = 0; 606 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 607 LatticeVal &IV = getValueState(PN.getIncomingValue(i)); 608 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 609 610 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { 611 if (IV.isOverdefined()) { // PHI node becomes overdefined! 612 markOverdefined(&PN); 613 return; 614 } 615 616 if (OperandVal == 0) { // Grab the first value... 617 OperandVal = IV.getConstant(); 618 } else { // Another value is being merged in! 619 // There is already a reachable operand. If we conflict with it, 620 // then the PHI node becomes overdefined. If we agree with it, we 621 // can continue on. 622 623 // Check to see if there are two different constants merging... 624 if (IV.getConstant() != OperandVal) { 625 // Yes there is. This means the PHI node is not constant. 626 // You must be overdefined poor PHI. 627 // 628 markOverdefined(&PN); // The PHI node now becomes overdefined 629 return; // I'm done analyzing you 630 } 631 } 632 } 633 } 634 635 // If we exited the loop, this means that the PHI node only has constant 636 // arguments that agree with each other(and OperandVal is the constant) or 637 // OperandVal is null because there are no defined incoming arguments. If 638 // this is the case, the PHI remains undefined. 639 // 640 if (OperandVal) 641 markConstant(&PN, OperandVal); // Acquire operand value 642} 643 644void SCCPSolver::visitReturnInst(ReturnInst &I) { 645 if (I.getNumOperands() == 0) return; // Ret void 646 647 Function *F = I.getParent()->getParent(); 648 // If we are tracking the return value of this function, merge it in. 649 if (!F->hasLocalLinkage()) 650 return; 651 652 if (!TrackedRetVals.empty() && I.getNumOperands() == 1) { 653 DenseMap<Function*, LatticeVal>::iterator TFRVI = 654 TrackedRetVals.find(F); 655 if (TFRVI != TrackedRetVals.end() && 656 !TFRVI->second.isOverdefined()) { 657 LatticeVal &IV = getValueState(I.getOperand(0)); 658 mergeInValue(TFRVI->second, F, IV); 659 return; 660 } 661 } 662 663 // Handle functions that return multiple values. 664 if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) { 665 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 666 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 667 It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 668 if (It == TrackedMultipleRetVals.end()) break; 669 mergeInValue(It->second, F, getValueState(I.getOperand(i))); 670 } 671 } else if (!TrackedMultipleRetVals.empty() && 672 I.getNumOperands() == 1 && 673 isa<StructType>(I.getOperand(0)->getType())) { 674 for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes(); 675 i != e; ++i) { 676 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 677 It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 678 if (It == TrackedMultipleRetVals.end()) break; 679 if (Value *Val = FindInsertedValue(I.getOperand(0), i, I.getContext())) 680 mergeInValue(It->second, F, getValueState(Val)); 681 } 682 } 683} 684 685void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 686 SmallVector<bool, 16> SuccFeasible; 687 getFeasibleSuccessors(TI, SuccFeasible); 688 689 BasicBlock *BB = TI.getParent(); 690 691 // Mark all feasible successors executable... 692 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 693 if (SuccFeasible[i]) 694 markEdgeExecutable(BB, TI.getSuccessor(i)); 695} 696 697void SCCPSolver::visitCastInst(CastInst &I) { 698 Value *V = I.getOperand(0); 699 LatticeVal &VState = getValueState(V); 700 if (VState.isOverdefined()) // Inherit overdefinedness of operand 701 markOverdefined(&I); 702 else if (VState.isConstant()) // Propagate constant value 703 markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 704 VState.getConstant(), I.getType())); 705} 706 707void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { 708 Value *Aggr = EVI.getAggregateOperand(); 709 710 // If the operand to the extractvalue is an undef, the result is undef. 711 if (isa<UndefValue>(Aggr)) 712 return; 713 714 // Currently only handle single-index extractvalues. 715 if (EVI.getNumIndices() != 1) { 716 markOverdefined(&EVI); 717 return; 718 } 719 720 Function *F = 0; 721 if (CallInst *CI = dyn_cast<CallInst>(Aggr)) 722 F = CI->getCalledFunction(); 723 else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr)) 724 F = II->getCalledFunction(); 725 726 // TODO: If IPSCCP resolves the callee of this function, we could propagate a 727 // result back! 728 if (F == 0 || TrackedMultipleRetVals.empty()) { 729 markOverdefined(&EVI); 730 return; 731 } 732 733 // See if we are tracking the result of the callee. If not tracking this 734 // function (for example, it is a declaration) just move to overdefined. 735 if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) { 736 markOverdefined(&EVI); 737 return; 738 } 739 740 // Otherwise, the value will be merged in here as a result of CallSite 741 // handling. 742} 743 744void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { 745 Value *Aggr = IVI.getAggregateOperand(); 746 Value *Val = IVI.getInsertedValueOperand(); 747 748 // If the operands to the insertvalue are undef, the result is undef. 749 if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val)) 750 return; 751 752 // Currently only handle single-index insertvalues. 753 if (IVI.getNumIndices() != 1) { 754 markOverdefined(&IVI); 755 return; 756 } 757 758 // Currently only handle insertvalue instructions that are in a single-use 759 // chain that builds up a return value. 760 for (const InsertValueInst *TmpIVI = &IVI; ; ) { 761 if (!TmpIVI->hasOneUse()) { 762 markOverdefined(&IVI); 763 return; 764 } 765 const Value *V = *TmpIVI->use_begin(); 766 if (isa<ReturnInst>(V)) 767 break; 768 TmpIVI = dyn_cast<InsertValueInst>(V); 769 if (!TmpIVI) { 770 markOverdefined(&IVI); 771 return; 772 } 773 } 774 775 // See if we are tracking the result of the callee. 776 Function *F = IVI.getParent()->getParent(); 777 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 778 It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin())); 779 780 // Merge in the inserted member value. 781 if (It != TrackedMultipleRetVals.end()) 782 mergeInValue(It->second, F, getValueState(Val)); 783 784 // Mark the aggregate result of the IVI overdefined; any tracking that we do 785 // will be done on the individual member values. 786 markOverdefined(&IVI); 787} 788 789void SCCPSolver::visitSelectInst(SelectInst &I) { 790 LatticeVal &CondValue = getValueState(I.getCondition()); 791 if (CondValue.isUndefined()) 792 return; 793 if (CondValue.isConstant()) { 794 if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){ 795 mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue() 796 : I.getFalseValue())); 797 return; 798 } 799 } 800 801 // Otherwise, the condition is overdefined or a constant we can't evaluate. 802 // See if we can produce something better than overdefined based on the T/F 803 // value. 804 LatticeVal &TVal = getValueState(I.getTrueValue()); 805 LatticeVal &FVal = getValueState(I.getFalseValue()); 806 807 // select ?, C, C -> C. 808 if (TVal.isConstant() && FVal.isConstant() && 809 TVal.getConstant() == FVal.getConstant()) { 810 markConstant(&I, FVal.getConstant()); 811 return; 812 } 813 814 if (TVal.isUndefined()) { // select ?, undef, X -> X. 815 mergeInValue(&I, FVal); 816 } else if (FVal.isUndefined()) { // select ?, X, undef -> X. 817 mergeInValue(&I, TVal); 818 } else { 819 markOverdefined(&I); 820 } 821} 822 823// Handle BinaryOperators and Shift Instructions... 824void SCCPSolver::visitBinaryOperator(Instruction &I) { 825 LatticeVal &IV = ValueState[&I]; 826 if (IV.isOverdefined()) return; 827 828 LatticeVal &V1State = getValueState(I.getOperand(0)); 829 LatticeVal &V2State = getValueState(I.getOperand(1)); 830 831 if (V1State.isOverdefined() || V2State.isOverdefined()) { 832 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 833 // operand is overdefined. 834 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 835 LatticeVal *NonOverdefVal = 0; 836 if (!V1State.isOverdefined()) { 837 NonOverdefVal = &V1State; 838 } else if (!V2State.isOverdefined()) { 839 NonOverdefVal = &V2State; 840 } 841 842 if (NonOverdefVal) { 843 if (NonOverdefVal->isUndefined()) { 844 // Could annihilate value. 845 if (I.getOpcode() == Instruction::And) 846 markConstant(IV, &I, Constant::getNullValue(I.getType())); 847 else if (const VectorType *PT = dyn_cast<VectorType>(I.getType())) 848 markConstant(IV, &I, Constant::getAllOnesValue(PT)); 849 else 850 markConstant(IV, &I, 851 Constant::getAllOnesValue(I.getType())); 852 return; 853 } else { 854 if (I.getOpcode() == Instruction::And) { 855 if (NonOverdefVal->getConstant()->isNullValue()) { 856 markConstant(IV, &I, NonOverdefVal->getConstant()); 857 return; // X and 0 = 0 858 } 859 } else { 860 if (ConstantInt *CI = 861 dyn_cast<ConstantInt>(NonOverdefVal->getConstant())) 862 if (CI->isAllOnesValue()) { 863 markConstant(IV, &I, NonOverdefVal->getConstant()); 864 return; // X or -1 = -1 865 } 866 } 867 } 868 } 869 } 870 871 872 // If both operands are PHI nodes, it is possible that this instruction has 873 // a constant value, despite the fact that the PHI node doesn't. Check for 874 // this condition now. 875 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 876 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 877 if (PN1->getParent() == PN2->getParent()) { 878 // Since the two PHI nodes are in the same basic block, they must have 879 // entries for the same predecessors. Walk the predecessor list, and 880 // if all of the incoming values are constants, and the result of 881 // evaluating this expression with all incoming value pairs is the 882 // same, then this expression is a constant even though the PHI node 883 // is not a constant! 884 LatticeVal Result; 885 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 886 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 887 BasicBlock *InBlock = PN1->getIncomingBlock(i); 888 LatticeVal &In2 = 889 getValueState(PN2->getIncomingValueForBlock(InBlock)); 890 891 if (In1.isOverdefined() || In2.isOverdefined()) { 892 Result.markOverdefined(); 893 break; // Cannot fold this operation over the PHI nodes! 894 } else if (In1.isConstant() && In2.isConstant()) { 895 Constant *V = 896 ConstantExpr::get(I.getOpcode(), In1.getConstant(), 897 In2.getConstant()); 898 if (Result.isUndefined()) 899 Result.markConstant(V); 900 else if (Result.isConstant() && Result.getConstant() != V) { 901 Result.markOverdefined(); 902 break; 903 } 904 } 905 } 906 907 // If we found a constant value here, then we know the instruction is 908 // constant despite the fact that the PHI nodes are overdefined. 909 if (Result.isConstant()) { 910 markConstant(IV, &I, Result.getConstant()); 911 // Remember that this instruction is virtually using the PHI node 912 // operands. 913 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 914 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 915 return; 916 } else if (Result.isUndefined()) { 917 return; 918 } 919 920 // Okay, this really is overdefined now. Since we might have 921 // speculatively thought that this was not overdefined before, and 922 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 923 // make sure to clean out any entries that we put there, for 924 // efficiency. 925 std::multimap<PHINode*, Instruction*>::iterator It, E; 926 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 927 while (It != E) { 928 if (It->second == &I) { 929 UsersOfOverdefinedPHIs.erase(It++); 930 } else 931 ++It; 932 } 933 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 934 while (It != E) { 935 if (It->second == &I) { 936 UsersOfOverdefinedPHIs.erase(It++); 937 } else 938 ++It; 939 } 940 } 941 942 markOverdefined(IV, &I); 943 } else if (V1State.isConstant() && V2State.isConstant()) { 944 markConstant(IV, &I, 945 ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 946 V2State.getConstant())); 947 } 948} 949 950// Handle ICmpInst instruction... 951void SCCPSolver::visitCmpInst(CmpInst &I) { 952 LatticeVal &IV = ValueState[&I]; 953 if (IV.isOverdefined()) return; 954 955 LatticeVal &V1State = getValueState(I.getOperand(0)); 956 LatticeVal &V2State = getValueState(I.getOperand(1)); 957 958 if (V1State.isOverdefined() || V2State.isOverdefined()) { 959 // If both operands are PHI nodes, it is possible that this instruction has 960 // a constant value, despite the fact that the PHI node doesn't. Check for 961 // this condition now. 962 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 963 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 964 if (PN1->getParent() == PN2->getParent()) { 965 // Since the two PHI nodes are in the same basic block, they must have 966 // entries for the same predecessors. Walk the predecessor list, and 967 // if all of the incoming values are constants, and the result of 968 // evaluating this expression with all incoming value pairs is the 969 // same, then this expression is a constant even though the PHI node 970 // is not a constant! 971 LatticeVal Result; 972 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 973 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 974 BasicBlock *InBlock = PN1->getIncomingBlock(i); 975 LatticeVal &In2 = 976 getValueState(PN2->getIncomingValueForBlock(InBlock)); 977 978 if (In1.isOverdefined() || In2.isOverdefined()) { 979 Result.markOverdefined(); 980 break; // Cannot fold this operation over the PHI nodes! 981 } else if (In1.isConstant() && In2.isConstant()) { 982 Constant *V = ConstantExpr::getCompare(I.getPredicate(), 983 In1.getConstant(), 984 In2.getConstant()); 985 if (Result.isUndefined()) 986 Result.markConstant(V); 987 else if (Result.isConstant() && Result.getConstant() != V) { 988 Result.markOverdefined(); 989 break; 990 } 991 } 992 } 993 994 // If we found a constant value here, then we know the instruction is 995 // constant despite the fact that the PHI nodes are overdefined. 996 if (Result.isConstant()) { 997 markConstant(IV, &I, Result.getConstant()); 998 // Remember that this instruction is virtually using the PHI node 999 // operands. 1000 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 1001 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 1002 return; 1003 } else if (Result.isUndefined()) { 1004 return; 1005 } 1006 1007 // Okay, this really is overdefined now. Since we might have 1008 // speculatively thought that this was not overdefined before, and 1009 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 1010 // make sure to clean out any entries that we put there, for 1011 // efficiency. 1012 std::multimap<PHINode*, Instruction*>::iterator It, E; 1013 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 1014 while (It != E) { 1015 if (It->second == &I) { 1016 UsersOfOverdefinedPHIs.erase(It++); 1017 } else 1018 ++It; 1019 } 1020 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 1021 while (It != E) { 1022 if (It->second == &I) { 1023 UsersOfOverdefinedPHIs.erase(It++); 1024 } else 1025 ++It; 1026 } 1027 } 1028 1029 markOverdefined(IV, &I); 1030 } else if (V1State.isConstant() && V2State.isConstant()) { 1031 markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 1032 V1State.getConstant(), 1033 V2State.getConstant())); 1034 } 1035} 1036 1037void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 1038 // FIXME : SCCP does not handle vectors properly. 1039 markOverdefined(&I); 1040 return; 1041 1042#if 0 1043 LatticeVal &ValState = getValueState(I.getOperand(0)); 1044 LatticeVal &IdxState = getValueState(I.getOperand(1)); 1045 1046 if (ValState.isOverdefined() || IdxState.isOverdefined()) 1047 markOverdefined(&I); 1048 else if(ValState.isConstant() && IdxState.isConstant()) 1049 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 1050 IdxState.getConstant())); 1051#endif 1052} 1053 1054void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 1055 // FIXME : SCCP does not handle vectors properly. 1056 markOverdefined(&I); 1057 return; 1058#if 0 1059 LatticeVal &ValState = getValueState(I.getOperand(0)); 1060 LatticeVal &EltState = getValueState(I.getOperand(1)); 1061 LatticeVal &IdxState = getValueState(I.getOperand(2)); 1062 1063 if (ValState.isOverdefined() || EltState.isOverdefined() || 1064 IdxState.isOverdefined()) 1065 markOverdefined(&I); 1066 else if(ValState.isConstant() && EltState.isConstant() && 1067 IdxState.isConstant()) 1068 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 1069 EltState.getConstant(), 1070 IdxState.getConstant())); 1071 else if (ValState.isUndefined() && EltState.isConstant() && 1072 IdxState.isConstant()) 1073 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 1074 EltState.getConstant(), 1075 IdxState.getConstant())); 1076#endif 1077} 1078 1079void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 1080 // FIXME : SCCP does not handle vectors properly. 1081 markOverdefined(&I); 1082 return; 1083#if 0 1084 LatticeVal &V1State = getValueState(I.getOperand(0)); 1085 LatticeVal &V2State = getValueState(I.getOperand(1)); 1086 LatticeVal &MaskState = getValueState(I.getOperand(2)); 1087 1088 if (MaskState.isUndefined() || 1089 (V1State.isUndefined() && V2State.isUndefined())) 1090 return; // Undefined output if mask or both inputs undefined. 1091 1092 if (V1State.isOverdefined() || V2State.isOverdefined() || 1093 MaskState.isOverdefined()) { 1094 markOverdefined(&I); 1095 } else { 1096 // A mix of constant/undef inputs. 1097 Constant *V1 = V1State.isConstant() ? 1098 V1State.getConstant() : UndefValue::get(I.getType()); 1099 Constant *V2 = V2State.isConstant() ? 1100 V2State.getConstant() : UndefValue::get(I.getType()); 1101 Constant *Mask = MaskState.isConstant() ? 1102 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 1103 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 1104 } 1105#endif 1106} 1107 1108// Handle getelementptr instructions... if all operands are constants then we 1109// can turn this into a getelementptr ConstantExpr. 1110// 1111void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 1112 LatticeVal &IV = ValueState[&I]; 1113 if (IV.isOverdefined()) return; 1114 1115 SmallVector<Constant*, 8> Operands; 1116 Operands.reserve(I.getNumOperands()); 1117 1118 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1119 LatticeVal &State = getValueState(I.getOperand(i)); 1120 if (State.isUndefined()) 1121 return; // Operands are not resolved yet... 1122 else if (State.isOverdefined()) { 1123 markOverdefined(IV, &I); 1124 return; 1125 } 1126 assert(State.isConstant() && "Unknown state!"); 1127 Operands.push_back(State.getConstant()); 1128 } 1129 1130 Constant *Ptr = Operands[0]; 1131 Operands.erase(Operands.begin()); // Erase the pointer from idx list... 1132 1133 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0], 1134 Operands.size())); 1135} 1136 1137void SCCPSolver::visitStoreInst(Instruction &SI) { 1138 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1139 return; 1140 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1141 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 1142 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 1143 1144 // Get the value we are storing into the global. 1145 LatticeVal &PtrVal = getValueState(SI.getOperand(0)); 1146 1147 mergeInValue(I->second, GV, PtrVal); 1148 if (I->second.isOverdefined()) 1149 TrackedGlobals.erase(I); // No need to keep tracking this! 1150} 1151 1152 1153// Handle load instructions. If the operand is a constant pointer to a constant 1154// global, we can replace the load with the loaded constant value! 1155void SCCPSolver::visitLoadInst(LoadInst &I) { 1156 LatticeVal &IV = ValueState[&I]; 1157 if (IV.isOverdefined()) return; 1158 1159 LatticeVal &PtrVal = getValueState(I.getOperand(0)); 1160 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 1161 if (PtrVal.isConstant() && !I.isVolatile()) { 1162 Value *Ptr = PtrVal.getConstant(); 1163 // TODO: Consider a target hook for valid address spaces for this xform. 1164 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) { 1165 // load null -> null 1166 markConstant(IV, &I, Constant::getNullValue(I.getType())); 1167 return; 1168 } 1169 1170 // Transform load (constant global) into the value loaded. 1171 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 1172 if (GV->isConstant()) { 1173 if (GV->hasDefinitiveInitializer()) { 1174 markConstant(IV, &I, GV->getInitializer()); 1175 return; 1176 } 1177 } else if (!TrackedGlobals.empty()) { 1178 // If we are tracking this global, merge in the known value for it. 1179 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1180 TrackedGlobals.find(GV); 1181 if (It != TrackedGlobals.end()) { 1182 mergeInValue(IV, &I, It->second); 1183 return; 1184 } 1185 } 1186 } 1187 1188 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. 1189 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 1190 if (CE->getOpcode() == Instruction::GetElementPtr) 1191 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) 1192 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1193 if (Constant *V = 1194 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) { 1195 markConstant(IV, &I, V); 1196 return; 1197 } 1198 } 1199 1200 // Otherwise we cannot say for certain what value this load will produce. 1201 // Bail out. 1202 markOverdefined(IV, &I); 1203} 1204 1205void SCCPSolver::visitCallSite(CallSite CS) { 1206 Function *F = CS.getCalledFunction(); 1207 Instruction *I = CS.getInstruction(); 1208 1209 // The common case is that we aren't tracking the callee, either because we 1210 // are not doing interprocedural analysis or the callee is indirect, or is 1211 // external. Handle these cases first. 1212 if (F == 0 || !F->hasLocalLinkage()) { 1213CallOverdefined: 1214 // Void return and not tracking callee, just bail. 1215 if (I->getType()->isVoidTy()) return; 1216 1217 // Otherwise, if we have a single return value case, and if the function is 1218 // a declaration, maybe we can constant fold it. 1219 if (!isa<StructType>(I->getType()) && F && F->isDeclaration() && 1220 canConstantFoldCallTo(F)) { 1221 1222 SmallVector<Constant*, 8> Operands; 1223 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1224 AI != E; ++AI) { 1225 LatticeVal &State = getValueState(*AI); 1226 if (State.isUndefined()) 1227 return; // Operands are not resolved yet. 1228 else if (State.isOverdefined()) { 1229 markOverdefined(I); 1230 return; 1231 } 1232 assert(State.isConstant() && "Unknown state!"); 1233 Operands.push_back(State.getConstant()); 1234 } 1235 1236 // If we can constant fold this, mark the result of the call as a 1237 // constant. 1238 if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) { 1239 markConstant(I, C); 1240 return; 1241 } 1242 } 1243 1244 // Otherwise, we don't know anything about this call, mark it overdefined. 1245 markOverdefined(I); 1246 return; 1247 } 1248 1249 // If this is a single/zero retval case, see if we're tracking the function. 1250 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); 1251 if (TFRVI != TrackedRetVals.end()) { 1252 // If so, propagate the return value of the callee into this call result. 1253 mergeInValue(I, TFRVI->second); 1254 } else if (isa<StructType>(I->getType())) { 1255 // Check to see if we're tracking this callee, if not, handle it in the 1256 // common path above. 1257 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 1258 TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0)); 1259 if (TMRVI == TrackedMultipleRetVals.end()) 1260 goto CallOverdefined; 1261 1262 // Need to mark as overdefined, otherwise it stays undefined which 1263 // creates extractvalue undef, <idx> 1264 markOverdefined(I); 1265 // If we are tracking this callee, propagate the return values of the call 1266 // into this call site. We do this by walking all the uses. Single-index 1267 // ExtractValueInst uses can be tracked; anything more complicated is 1268 // currently handled conservatively. 1269 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1270 UI != E; ++UI) { 1271 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) { 1272 if (EVI->getNumIndices() == 1) { 1273 mergeInValue(EVI, 1274 TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]); 1275 continue; 1276 } 1277 } 1278 // The aggregate value is used in a way not handled here. Assume nothing. 1279 markOverdefined(*UI); 1280 } 1281 } else { 1282 // Otherwise we're not tracking this callee, so handle it in the 1283 // common path above. 1284 goto CallOverdefined; 1285 } 1286 1287 // Finally, if this is the first call to the function hit, mark its entry 1288 // block executable. 1289 if (!BBExecutable.count(F->begin())) 1290 MarkBlockExecutable(F->begin()); 1291 1292 // Propagate information from this call site into the callee. 1293 CallSite::arg_iterator CAI = CS.arg_begin(); 1294 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1295 AI != E; ++AI, ++CAI) { 1296 LatticeVal &IV = ValueState[AI]; 1297 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1298 IV.markOverdefined(); 1299 continue; 1300 } 1301 if (!IV.isOverdefined()) 1302 mergeInValue(IV, AI, getValueState(*CAI)); 1303 } 1304} 1305 1306void SCCPSolver::Solve() { 1307 // Process the work lists until they are empty! 1308 while (!BBWorkList.empty() || !InstWorkList.empty() || 1309 !OverdefinedInstWorkList.empty()) { 1310 // Process the instruction work list... 1311 while (!OverdefinedInstWorkList.empty()) { 1312 Value *I = OverdefinedInstWorkList.back(); 1313 OverdefinedInstWorkList.pop_back(); 1314 1315 DEBUG(errs() << "\nPopped off OI-WL: " << *I << '\n'); 1316 1317 // "I" got into the work list because it either made the transition from 1318 // bottom to constant 1319 // 1320 // Anything on this worklist that is overdefined need not be visited 1321 // since all of its users will have already been marked as overdefined 1322 // Update all of the users of this instruction's value... 1323 // 1324 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1325 UI != E; ++UI) 1326 OperandChangedState(*UI); 1327 } 1328 // Process the instruction work list... 1329 while (!InstWorkList.empty()) { 1330 Value *I = InstWorkList.back(); 1331 InstWorkList.pop_back(); 1332 1333 DEBUG(errs() << "\nPopped off I-WL: " << *I << '\n'); 1334 1335 // "I" got into the work list because it either made the transition from 1336 // bottom to constant 1337 // 1338 // Anything on this worklist that is overdefined need not be visited 1339 // since all of its users will have already been marked as overdefined. 1340 // Update all of the users of this instruction's value... 1341 // 1342 if (!getValueState(I).isOverdefined()) 1343 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1344 UI != E; ++UI) 1345 OperandChangedState(*UI); 1346 } 1347 1348 // Process the basic block work list... 1349 while (!BBWorkList.empty()) { 1350 BasicBlock *BB = BBWorkList.back(); 1351 BBWorkList.pop_back(); 1352 1353 DEBUG(errs() << "\nPopped off BBWL: " << *BB << '\n'); 1354 1355 // Notify all instructions in this basic block that they are newly 1356 // executable. 1357 visit(BB); 1358 } 1359 } 1360} 1361 1362/// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1363/// that branches on undef values cannot reach any of their successors. 1364/// However, this is not a safe assumption. After we solve dataflow, this 1365/// method should be use to handle this. If this returns true, the solver 1366/// should be rerun. 1367/// 1368/// This method handles this by finding an unresolved branch and marking it one 1369/// of the edges from the block as being feasible, even though the condition 1370/// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1371/// CFG and only slightly pessimizes the analysis results (by marking one, 1372/// potentially infeasible, edge feasible). This cannot usefully modify the 1373/// constraints on the condition of the branch, as that would impact other users 1374/// of the value. 1375/// 1376/// This scan also checks for values that use undefs, whose results are actually 1377/// defined. For example, 'zext i8 undef to i32' should produce all zeros 1378/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1379/// even if X isn't defined. 1380bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1381 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1382 if (!BBExecutable.count(BB)) 1383 continue; 1384 1385 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1386 // Look for instructions which produce undef values. 1387 if (I->getType()->isVoidTy()) continue; 1388 1389 LatticeVal &LV = getValueState(I); 1390 if (!LV.isUndefined()) continue; 1391 1392 // Get the lattice values of the first two operands for use below. 1393 LatticeVal &Op0LV = getValueState(I->getOperand(0)); 1394 LatticeVal Op1LV; 1395 if (I->getNumOperands() == 2) { 1396 // If this is a two-operand instruction, and if both operands are 1397 // undefs, the result stays undef. 1398 Op1LV = getValueState(I->getOperand(1)); 1399 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1400 continue; 1401 } 1402 1403 // If this is an instructions whose result is defined even if the input is 1404 // not fully defined, propagate the information. 1405 const Type *ITy = I->getType(); 1406 switch (I->getOpcode()) { 1407 default: break; // Leave the instruction as an undef. 1408 case Instruction::ZExt: 1409 // After a zero extend, we know the top part is zero. SExt doesn't have 1410 // to be handled here, because we don't know whether the top part is 1's 1411 // or 0's. 1412 assert(Op0LV.isUndefined()); 1413 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1414 return true; 1415 case Instruction::Mul: 1416 case Instruction::And: 1417 // undef * X -> 0. X could be zero. 1418 // undef & X -> 0. X could be zero. 1419 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1420 return true; 1421 1422 case Instruction::Or: 1423 // undef | X -> -1. X could be -1. 1424 if (const VectorType *PTy = dyn_cast<VectorType>(ITy)) 1425 markForcedConstant(LV, I, 1426 Constant::getAllOnesValue(PTy)); 1427 else 1428 markForcedConstant(LV, I, Constant::getAllOnesValue(ITy)); 1429 return true; 1430 1431 case Instruction::SDiv: 1432 case Instruction::UDiv: 1433 case Instruction::SRem: 1434 case Instruction::URem: 1435 // X / undef -> undef. No change. 1436 // X % undef -> undef. No change. 1437 if (Op1LV.isUndefined()) break; 1438 1439 // undef / X -> 0. X could be maxint. 1440 // undef % X -> 0. X could be 1. 1441 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1442 return true; 1443 1444 case Instruction::AShr: 1445 // undef >>s X -> undef. No change. 1446 if (Op0LV.isUndefined()) break; 1447 1448 // X >>s undef -> X. X could be 0, X could have the high-bit known set. 1449 if (Op0LV.isConstant()) 1450 markForcedConstant(LV, I, Op0LV.getConstant()); 1451 else 1452 markOverdefined(LV, I); 1453 return true; 1454 case Instruction::LShr: 1455 case Instruction::Shl: 1456 // undef >> X -> undef. No change. 1457 // undef << X -> undef. No change. 1458 if (Op0LV.isUndefined()) break; 1459 1460 // X >> undef -> 0. X could be 0. 1461 // X << undef -> 0. X could be 0. 1462 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1463 return true; 1464 case Instruction::Select: 1465 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1466 if (Op0LV.isUndefined()) { 1467 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1468 Op1LV = getValueState(I->getOperand(2)); 1469 } else if (Op1LV.isUndefined()) { 1470 // c ? undef : undef -> undef. No change. 1471 Op1LV = getValueState(I->getOperand(2)); 1472 if (Op1LV.isUndefined()) 1473 break; 1474 // Otherwise, c ? undef : x -> x. 1475 } else { 1476 // Leave Op1LV as Operand(1)'s LatticeValue. 1477 } 1478 1479 if (Op1LV.isConstant()) 1480 markForcedConstant(LV, I, Op1LV.getConstant()); 1481 else 1482 markOverdefined(LV, I); 1483 return true; 1484 case Instruction::Call: 1485 // If a call has an undef result, it is because it is constant foldable 1486 // but one of the inputs was undef. Just force the result to 1487 // overdefined. 1488 markOverdefined(LV, I); 1489 return true; 1490 } 1491 } 1492 1493 TerminatorInst *TI = BB->getTerminator(); 1494 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1495 if (!BI->isConditional()) continue; 1496 if (!getValueState(BI->getCondition()).isUndefined()) 1497 continue; 1498 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1499 if (SI->getNumSuccessors()<2) // no cases 1500 continue; 1501 if (!getValueState(SI->getCondition()).isUndefined()) 1502 continue; 1503 } else { 1504 continue; 1505 } 1506 1507 // If the edge to the second successor isn't thought to be feasible yet, 1508 // mark it so now. We pick the second one so that this goes to some 1509 // enumerated value in a switch instead of going to the default destination. 1510 if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1)))) 1511 continue; 1512 1513 // Otherwise, it isn't already thought to be feasible. Mark it as such now 1514 // and return. This will make other blocks reachable, which will allow new 1515 // values to be discovered and existing ones to be moved in the lattice. 1516 markEdgeExecutable(BB, TI->getSuccessor(1)); 1517 1518 // This must be a conditional branch of switch on undef. At this point, 1519 // force the old terminator to branch to the first successor. This is 1520 // required because we are now influencing the dataflow of the function with 1521 // the assumption that this edge is taken. If we leave the branch condition 1522 // as undef, then further analysis could think the undef went another way 1523 // leading to an inconsistent set of conclusions. 1524 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1525 BI->setCondition(ConstantInt::getFalse(*Context)); 1526 } else { 1527 SwitchInst *SI = cast<SwitchInst>(TI); 1528 SI->setCondition(SI->getCaseValue(1)); 1529 } 1530 1531 return true; 1532 } 1533 1534 return false; 1535} 1536 1537 1538namespace { 1539 //===--------------------------------------------------------------------===// 1540 // 1541 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1542 /// Sparse Conditional Constant Propagator. 1543 /// 1544 struct SCCP : public FunctionPass { 1545 static char ID; // Pass identification, replacement for typeid 1546 SCCP() : FunctionPass(&ID) {} 1547 1548 // runOnFunction - Run the Sparse Conditional Constant Propagation 1549 // algorithm, and return true if the function was modified. 1550 // 1551 bool runOnFunction(Function &F); 1552 1553 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1554 AU.setPreservesCFG(); 1555 } 1556 }; 1557} // end anonymous namespace 1558 1559char SCCP::ID = 0; 1560static RegisterPass<SCCP> 1561X("sccp", "Sparse Conditional Constant Propagation"); 1562 1563// createSCCPPass - This is the public interface to this file... 1564FunctionPass *llvm::createSCCPPass() { 1565 return new SCCP(); 1566} 1567 1568 1569// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1570// and return true if the function was modified. 1571// 1572bool SCCP::runOnFunction(Function &F) { 1573 DEBUG(errs() << "SCCP on function '" << F.getName() << "'\n"); 1574 SCCPSolver Solver; 1575 Solver.setContext(&F.getContext()); 1576 1577 // Mark the first block of the function as being executable. 1578 Solver.MarkBlockExecutable(F.begin()); 1579 1580 // Mark all arguments to the function as being overdefined. 1581 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) 1582 Solver.markOverdefined(AI); 1583 1584 // Solve for constants. 1585 bool ResolvedUndefs = true; 1586 while (ResolvedUndefs) { 1587 Solver.Solve(); 1588 DEBUG(errs() << "RESOLVING UNDEFs\n"); 1589 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1590 } 1591 1592 bool MadeChanges = false; 1593 1594 // If we decided that there are basic blocks that are dead in this function, 1595 // delete their contents now. Note that we cannot actually delete the blocks, 1596 // as we cannot modify the CFG of the function. 1597 // 1598 SmallVector<Instruction*, 512> Insts; 1599 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1600 1601 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1602 if (!Solver.isBlockExecutable(BB)) { 1603 DEBUG(errs() << " BasicBlock Dead:" << *BB); 1604 ++NumDeadBlocks; 1605 1606 // Delete the instructions backwards, as it has a reduced likelihood of 1607 // having to update as many def-use and use-def chains. 1608 for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator(); 1609 I != E; ++I) 1610 Insts.push_back(I); 1611 while (!Insts.empty()) { 1612 Instruction *I = Insts.back(); 1613 Insts.pop_back(); 1614 if (!I->use_empty()) 1615 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1616 BB->getInstList().erase(I); 1617 MadeChanges = true; 1618 ++NumInstRemoved; 1619 } 1620 } else { 1621 // Iterate over all of the instructions in a function, replacing them with 1622 // constants if we have found them to be of constant values. 1623 // 1624 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1625 Instruction *Inst = BI++; 1626 if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst)) 1627 continue; 1628 1629 LatticeVal &IV = Values[Inst]; 1630 if (!IV.isConstant() && !IV.isUndefined()) 1631 continue; 1632 1633 Constant *Const = IV.isConstant() 1634 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1635 DEBUG(errs() << " Constant: " << *Const << " = " << *Inst); 1636 1637 // Replaces all of the uses of a variable with uses of the constant. 1638 Inst->replaceAllUsesWith(Const); 1639 1640 // Delete the instruction. 1641 Inst->eraseFromParent(); 1642 1643 // Hey, we just changed something! 1644 MadeChanges = true; 1645 ++NumInstRemoved; 1646 } 1647 } 1648 1649 return MadeChanges; 1650} 1651 1652namespace { 1653 //===--------------------------------------------------------------------===// 1654 // 1655 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1656 /// Constant Propagation. 1657 /// 1658 struct IPSCCP : public ModulePass { 1659 static char ID; 1660 IPSCCP() : ModulePass(&ID) {} 1661 bool runOnModule(Module &M); 1662 }; 1663} // end anonymous namespace 1664 1665char IPSCCP::ID = 0; 1666static RegisterPass<IPSCCP> 1667Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation"); 1668 1669// createIPSCCPPass - This is the public interface to this file... 1670ModulePass *llvm::createIPSCCPPass() { 1671 return new IPSCCP(); 1672} 1673 1674 1675static bool AddressIsTaken(GlobalValue *GV) { 1676 // Delete any dead constantexpr klingons. 1677 GV->removeDeadConstantUsers(); 1678 1679 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 1680 UI != E; ++UI) 1681 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 1682 if (SI->getOperand(0) == GV || SI->isVolatile()) 1683 return true; // Storing addr of GV. 1684 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) { 1685 // Make sure we are calling the function, not passing the address. 1686 if (UI.getOperandNo() != 0) 1687 return true; 1688 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1689 if (LI->isVolatile()) 1690 return true; 1691 } else if (isa<BlockAddress>(*UI)) { 1692 // blockaddress doesn't take the address of the function, it takes addr 1693 // of label. 1694 } else { 1695 return true; 1696 } 1697 return false; 1698} 1699 1700bool IPSCCP::runOnModule(Module &M) { 1701 LLVMContext *Context = &M.getContext(); 1702 1703 SCCPSolver Solver; 1704 Solver.setContext(Context); 1705 1706 // Loop over all functions, marking arguments to those with their addresses 1707 // taken or that are external as overdefined. 1708 // 1709 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1710 if (!F->hasLocalLinkage() || AddressIsTaken(F)) { 1711 if (!F->isDeclaration()) 1712 Solver.MarkBlockExecutable(F->begin()); 1713 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1714 AI != E; ++AI) 1715 Solver.markOverdefined(AI); 1716 } else { 1717 Solver.AddTrackedFunction(F); 1718 } 1719 1720 // Loop over global variables. We inform the solver about any internal global 1721 // variables that do not have their 'addresses taken'. If they don't have 1722 // their addresses taken, we can propagate constants through them. 1723 for (Module::global_iterator G = M.global_begin(), E = M.global_end(); 1724 G != E; ++G) 1725 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G)) 1726 Solver.TrackValueOfGlobalVariable(G); 1727 1728 // Solve for constants. 1729 bool ResolvedUndefs = true; 1730 while (ResolvedUndefs) { 1731 Solver.Solve(); 1732 1733 DEBUG(errs() << "RESOLVING UNDEFS\n"); 1734 ResolvedUndefs = false; 1735 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1736 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); 1737 } 1738 1739 bool MadeChanges = false; 1740 1741 // Iterate over all of the instructions in the module, replacing them with 1742 // constants if we have found them to be of constant values. 1743 // 1744 SmallVector<Instruction*, 512> Insts; 1745 SmallVector<BasicBlock*, 512> BlocksToErase; 1746 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1747 1748 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1749 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1750 AI != E; ++AI) 1751 if (!AI->use_empty()) { 1752 LatticeVal &IV = Values[AI]; 1753 if (IV.isConstant() || IV.isUndefined()) { 1754 Constant *CST = IV.isConstant() ? 1755 IV.getConstant() : UndefValue::get(AI->getType()); 1756 DEBUG(errs() << "*** Arg " << *AI << " = " << *CST <<"\n"); 1757 1758 // Replaces all of the uses of a variable with uses of the 1759 // constant. 1760 AI->replaceAllUsesWith(CST); 1761 ++IPNumArgsElimed; 1762 } 1763 } 1764 1765 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1766 if (!Solver.isBlockExecutable(BB)) { 1767 DEBUG(errs() << " BasicBlock Dead:" << *BB); 1768 ++IPNumDeadBlocks; 1769 1770 // Delete the instructions backwards, as it has a reduced likelihood of 1771 // having to update as many def-use and use-def chains. 1772 TerminatorInst *TI = BB->getTerminator(); 1773 for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I) 1774 Insts.push_back(I); 1775 1776 while (!Insts.empty()) { 1777 Instruction *I = Insts.back(); 1778 Insts.pop_back(); 1779 if (!I->use_empty()) 1780 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1781 BB->getInstList().erase(I); 1782 MadeChanges = true; 1783 ++IPNumInstRemoved; 1784 } 1785 1786 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1787 BasicBlock *Succ = TI->getSuccessor(i); 1788 if (!Succ->empty() && isa<PHINode>(Succ->begin())) 1789 TI->getSuccessor(i)->removePredecessor(BB); 1790 } 1791 if (!TI->use_empty()) 1792 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1793 BB->getInstList().erase(TI); 1794 1795 if (&*BB != &F->front()) 1796 BlocksToErase.push_back(BB); 1797 else 1798 new UnreachableInst(M.getContext(), BB); 1799 1800 } else { 1801 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1802 Instruction *Inst = BI++; 1803 if (Inst->getType()->isVoidTy()) 1804 continue; 1805 1806 LatticeVal &IV = Values[Inst]; 1807 if (!IV.isConstant() && !IV.isUndefined()) 1808 continue; 1809 1810 Constant *Const = IV.isConstant() 1811 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1812 DEBUG(errs() << " Constant: " << *Const << " = " << *Inst); 1813 1814 // Replaces all of the uses of a variable with uses of the 1815 // constant. 1816 Inst->replaceAllUsesWith(Const); 1817 1818 // Delete the instruction. 1819 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst)) 1820 Inst->eraseFromParent(); 1821 1822 // Hey, we just changed something! 1823 MadeChanges = true; 1824 ++IPNumInstRemoved; 1825 } 1826 } 1827 1828 // Now that all instructions in the function are constant folded, erase dead 1829 // blocks, because we can now use ConstantFoldTerminator to get rid of 1830 // in-edges. 1831 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1832 // If there are any PHI nodes in this successor, drop entries for BB now. 1833 BasicBlock *DeadBB = BlocksToErase[i]; 1834 while (!DeadBB->use_empty()) { 1835 Instruction *I = cast<Instruction>(DeadBB->use_back()); 1836 bool Folded = ConstantFoldTerminator(I->getParent()); 1837 if (!Folded) { 1838 // The constant folder may not have been able to fold the terminator 1839 // if this is a branch or switch on undef. Fold it manually as a 1840 // branch to the first successor. 1841#ifndef NDEBUG 1842 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1843 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1844 "Branch should be foldable!"); 1845 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1846 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1847 } else { 1848 llvm_unreachable("Didn't fold away reference to block!"); 1849 } 1850#endif 1851 1852 // Make this an uncond branch to the first successor. 1853 TerminatorInst *TI = I->getParent()->getTerminator(); 1854 BranchInst::Create(TI->getSuccessor(0), TI); 1855 1856 // Remove entries in successor phi nodes to remove edges. 1857 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1858 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1859 1860 // Remove the old terminator. 1861 TI->eraseFromParent(); 1862 } 1863 } 1864 1865 // Finally, delete the basic block. 1866 F->getBasicBlockList().erase(DeadBB); 1867 } 1868 BlocksToErase.clear(); 1869 } 1870 1871 // If we inferred constant or undef return values for a function, we replaced 1872 // all call uses with the inferred value. This means we don't need to bother 1873 // actually returning anything from the function. Replace all return 1874 // instructions with return undef. 1875 // TODO: Process multiple value ret instructions also. 1876 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); 1877 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), 1878 E = RV.end(); I != E; ++I) 1879 if (!I->second.isOverdefined() && 1880 !I->first->getReturnType()->isVoidTy()) { 1881 Function *F = I->first; 1882 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1883 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1884 if (!isa<UndefValue>(RI->getOperand(0))) 1885 RI->setOperand(0, UndefValue::get(F->getReturnType())); 1886 } 1887 1888 // If we infered constant or undef values for globals variables, we can delete 1889 // the global and any stores that remain to it. 1890 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1891 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1892 E = TG.end(); I != E; ++I) { 1893 GlobalVariable *GV = I->first; 1894 assert(!I->second.isOverdefined() && 1895 "Overdefined values should have been taken out of the map!"); 1896 DEBUG(errs() << "Found that GV '" << GV->getName() << "' is constant!\n"); 1897 while (!GV->use_empty()) { 1898 StoreInst *SI = cast<StoreInst>(GV->use_back()); 1899 SI->eraseFromParent(); 1900 } 1901 M.getGlobalList().erase(GV); 1902 ++IPNumGlobalConst; 1903 } 1904 1905 return MadeChanges; 1906} 1907