SCCP.cpp revision 7927220aef34e056c87b066d4bd87c81e6b0c225
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "sccp"
21#include "llvm/Transforms/Scalar.h"
22#include "llvm/Transforms/IPO.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Pass.h"
28#include "llvm/Analysis/ConstantFolding.h"
29#include "llvm/Analysis/MemoryBuiltins.h"
30#include "llvm/Analysis/ValueTracking.h"
31#include "llvm/Transforms/Utils/Local.h"
32#include "llvm/Support/CallSite.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/InstVisitor.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/DenseSet.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/STLExtras.h"
43#include <algorithm>
44#include <map>
45using namespace llvm;
46
47STATISTIC(NumInstRemoved, "Number of instructions removed");
48STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
49
50STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
51STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
52STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
53STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
54
55namespace {
56/// LatticeVal class - This class represents the different lattice values that
57/// an LLVM value may occupy.  It is a simple class with value semantics.
58///
59class LatticeVal {
60  enum LatticeValueTy {
61    /// undefined - This LLVM Value has no known value yet.
62    undefined,
63
64    /// constant - This LLVM Value has a specific constant value.
65    constant,
66
67    /// forcedconstant - This LLVM Value was thought to be undef until
68    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
69    /// with another (different) constant, it goes to overdefined, instead of
70    /// asserting.
71    forcedconstant,
72
73    /// overdefined - This instruction is not known to be constant, and we know
74    /// it has a value.
75    overdefined
76  };
77
78  /// Val: This stores the current lattice value along with the Constant* for
79  /// the constant if this is a 'constant' or 'forcedconstant' value.
80  PointerIntPair<Constant *, 2, LatticeValueTy> Val;
81
82  LatticeValueTy getLatticeValue() const {
83    return Val.getInt();
84  }
85
86public:
87  inline LatticeVal() : Val(0, undefined) {}
88
89  inline bool isUndefined() const { return getLatticeValue() == undefined; }
90  inline bool isConstant() const {
91    return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
92  }
93  inline bool isOverdefined() const { return getLatticeValue() == overdefined; }
94
95  inline Constant *getConstant() const {
96    assert(isConstant() && "Cannot get the constant of a non-constant!");
97    return Val.getPointer();
98  }
99
100  /// markOverdefined - Return true if this is a change in status.
101  inline bool markOverdefined() {
102    if (isOverdefined())
103      return false;
104
105    Val.setInt(overdefined);
106    return true;
107  }
108
109  /// markConstant - Return true if this is a change in status.
110  inline bool markConstant(Constant *V) {
111    if (isConstant()) {
112      assert(getConstant() == V && "Marking constant with different value");
113      return false;
114    }
115
116    if (isUndefined()) {
117      Val.setInt(constant);
118      assert(V && "Marking constant with NULL");
119      Val.setPointer(V);
120    } else {
121      assert(getLatticeValue() == forcedconstant &&
122             "Cannot move from overdefined to constant!");
123      // Stay at forcedconstant if the constant is the same.
124      if (V == getConstant()) return false;
125
126      // Otherwise, we go to overdefined.  Assumptions made based on the
127      // forced value are possibly wrong.  Assuming this is another constant
128      // could expose a contradiction.
129      Val.setInt(overdefined);
130    }
131    return true;
132  }
133
134  inline void markForcedConstant(Constant *V) {
135    assert(isUndefined() && "Can't force a defined value!");
136    Val.setInt(forcedconstant);
137    Val.setPointer(V);
138  }
139};
140
141//===----------------------------------------------------------------------===//
142//
143/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
144/// Constant Propagation.
145///
146class SCCPSolver : public InstVisitor<SCCPSolver> {
147  LLVMContext *Context;
148  DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable
149  std::map<Value*, LatticeVal> ValueState;  // The state each value is in.
150
151  /// GlobalValue - If we are tracking any values for the contents of a global
152  /// variable, we keep a mapping from the constant accessor to the element of
153  /// the global, to the currently known value.  If the value becomes
154  /// overdefined, it's entry is simply removed from this map.
155  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
156
157  /// TrackedRetVals - If we are tracking arguments into and the return
158  /// value out of a function, it will have an entry in this map, indicating
159  /// what the known return value for the function is.
160  DenseMap<Function*, LatticeVal> TrackedRetVals;
161
162  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
163  /// that return multiple values.
164  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
165
166  // The reason for two worklists is that overdefined is the lowest state
167  // on the lattice, and moving things to overdefined as fast as possible
168  // makes SCCP converge much faster.
169  // By having a separate worklist, we accomplish this because everything
170  // possibly overdefined will become overdefined at the soonest possible
171  // point.
172  SmallVector<Value*, 64> OverdefinedInstWorkList;
173  SmallVector<Value*, 64> InstWorkList;
174
175
176  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
177
178  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
179  /// overdefined, despite the fact that the PHI node is overdefined.
180  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
181
182  /// KnownFeasibleEdges - Entries in this set are edges which have already had
183  /// PHI nodes retriggered.
184  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
185  DenseSet<Edge> KnownFeasibleEdges;
186public:
187  void setContext(LLVMContext *C) { Context = C; }
188
189  /// MarkBlockExecutable - This method can be used by clients to mark all of
190  /// the blocks that are known to be intrinsically live in the processed unit.
191  void MarkBlockExecutable(BasicBlock *BB) {
192    DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n");
193    BBExecutable.insert(BB);   // Basic block is executable!
194    BBWorkList.push_back(BB);  // Add the block to the work list!
195  }
196
197  /// TrackValueOfGlobalVariable - Clients can use this method to
198  /// inform the SCCPSolver that it should track loads and stores to the
199  /// specified global variable if it can.  This is only legal to call if
200  /// performing Interprocedural SCCP.
201  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
202    const Type *ElTy = GV->getType()->getElementType();
203    if (ElTy->isFirstClassType()) {
204      LatticeVal &IV = TrackedGlobals[GV];
205      if (!isa<UndefValue>(GV->getInitializer()))
206        IV.markConstant(GV->getInitializer());
207    }
208  }
209
210  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
211  /// and out of the specified function (which cannot have its address taken),
212  /// this method must be called.
213  void AddTrackedFunction(Function *F) {
214    assert(F->hasLocalLinkage() && "Can only track internal functions!");
215    // Add an entry, F -> undef.
216    if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
217      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
218        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
219                                                     LatticeVal()));
220    } else
221      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
222  }
223
224  /// Solve - Solve for constants and executable blocks.
225  ///
226  void Solve();
227
228  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
229  /// that branches on undef values cannot reach any of their successors.
230  /// However, this is not a safe assumption.  After we solve dataflow, this
231  /// method should be use to handle this.  If this returns true, the solver
232  /// should be rerun.
233  bool ResolvedUndefsIn(Function &F);
234
235  bool isBlockExecutable(BasicBlock *BB) const {
236    return BBExecutable.count(BB);
237  }
238
239  /// getValueMapping - Once we have solved for constants, return the mapping of
240  /// LLVM values to LatticeVals.
241  std::map<Value*, LatticeVal> &getValueMapping() {
242    return ValueState;
243  }
244
245  /// getTrackedRetVals - Get the inferred return value map.
246  ///
247  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
248    return TrackedRetVals;
249  }
250
251  /// getTrackedGlobals - Get and return the set of inferred initializers for
252  /// global variables.
253  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
254    return TrackedGlobals;
255  }
256
257  inline void markOverdefined(Value *V) {
258    markOverdefined(ValueState[V], V);
259  }
260
261private:
262  // markConstant - Make a value be marked as "constant".  If the value
263  // is not already a constant, add it to the instruction work list so that
264  // the users of the instruction are updated later.
265  //
266  inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
267    if (IV.markConstant(C)) {
268      DEBUG(errs() << "markConstant: " << *C << ": " << *V << '\n');
269      InstWorkList.push_back(V);
270    }
271  }
272
273  inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
274    IV.markForcedConstant(C);
275    DEBUG(errs() << "markForcedConstant: " << *C << ": " << *V << '\n');
276    InstWorkList.push_back(V);
277  }
278
279  inline void markConstant(Value *V, Constant *C) {
280    markConstant(ValueState[V], V, C);
281  }
282
283  // markOverdefined - Make a value be marked as "overdefined". If the
284  // value is not already overdefined, add it to the overdefined instruction
285  // work list so that the users of the instruction are updated later.
286  inline void markOverdefined(LatticeVal &IV, Value *V) {
287    if (IV.markOverdefined()) {
288      DEBUG(errs() << "markOverdefined: ";
289            if (Function *F = dyn_cast<Function>(V))
290              errs() << "Function '" << F->getName() << "'\n";
291            else
292              errs() << *V << '\n');
293      // Only instructions go on the work list
294      OverdefinedInstWorkList.push_back(V);
295    }
296  }
297
298  inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
299    if (IV.isOverdefined() || MergeWithV.isUndefined())
300      return;  // Noop.
301    if (MergeWithV.isOverdefined())
302      markOverdefined(IV, V);
303    else if (IV.isUndefined())
304      markConstant(IV, V, MergeWithV.getConstant());
305    else if (IV.getConstant() != MergeWithV.getConstant())
306      markOverdefined(IV, V);
307  }
308
309  inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
310    return mergeInValue(ValueState[V], V, MergeWithV);
311  }
312
313
314  // getValueState - Return the LatticeVal object that corresponds to the value.
315  // This function is necessary because not all values should start out in the
316  // underdefined state... Argument's should be overdefined, and
317  // constants should be marked as constants.  If a value is not known to be an
318  // Instruction object, then use this accessor to get its value from the map.
319  //
320  inline LatticeVal &getValueState(Value *V) {
321    std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
322    if (I != ValueState.end()) return I->second;  // Common case, in the map
323
324    if (Constant *C = dyn_cast<Constant>(V)) {
325      if (isa<UndefValue>(V)) {
326        // Nothing to do, remain undefined.
327      } else {
328        LatticeVal &LV = ValueState[C];
329        LV.markConstant(C);          // Constants are constant
330        return LV;
331      }
332    }
333    // All others are underdefined by default...
334    return ValueState[V];
335  }
336
337  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
338  // work list if it is not already executable...
339  //
340  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
341    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
342      return;  // This edge is already known to be executable!
343
344    if (BBExecutable.count(Dest)) {
345      DEBUG(errs() << "Marking Edge Executable: " << Source->getName()
346            << " -> " << Dest->getName() << "\n");
347
348      // The destination is already executable, but we just made an edge
349      // feasible that wasn't before.  Revisit the PHI nodes in the block
350      // because they have potentially new operands.
351      for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
352        visitPHINode(*cast<PHINode>(I));
353
354    } else {
355      MarkBlockExecutable(Dest);
356    }
357  }
358
359  // getFeasibleSuccessors - Return a vector of booleans to indicate which
360  // successors are reachable from a given terminator instruction.
361  //
362  void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
363
364  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
365  // block to the 'To' basic block is currently feasible...
366  //
367  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
368
369  // OperandChangedState - This method is invoked on all of the users of an
370  // instruction that was just changed state somehow....  Based on this
371  // information, we need to update the specified user of this instruction.
372  //
373  void OperandChangedState(User *U) {
374    // Only instructions use other variable values!
375    Instruction &I = cast<Instruction>(*U);
376    if (BBExecutable.count(I.getParent()))   // Inst is executable?
377      visit(I);
378  }
379
380private:
381  friend class InstVisitor<SCCPSolver>;
382
383  // visit implementations - Something changed in this instruction... Either an
384  // operand made a transition, or the instruction is newly executable.  Change
385  // the value type of I to reflect these changes if appropriate.
386  //
387  void visitPHINode(PHINode &I);
388
389  // Terminators
390  void visitReturnInst(ReturnInst &I);
391  void visitTerminatorInst(TerminatorInst &TI);
392
393  void visitCastInst(CastInst &I);
394  void visitSelectInst(SelectInst &I);
395  void visitBinaryOperator(Instruction &I);
396  void visitCmpInst(CmpInst &I);
397  void visitExtractElementInst(ExtractElementInst &I);
398  void visitInsertElementInst(InsertElementInst &I);
399  void visitShuffleVectorInst(ShuffleVectorInst &I);
400  void visitExtractValueInst(ExtractValueInst &EVI);
401  void visitInsertValueInst(InsertValueInst &IVI);
402
403  // Instructions that cannot be folded away...
404  void visitStoreInst     (Instruction &I);
405  void visitLoadInst      (LoadInst &I);
406  void visitGetElementPtrInst(GetElementPtrInst &I);
407  void visitCallInst      (CallInst &I) {
408    if (isFreeCall(&I))
409      return;
410    visitCallSite(CallSite::get(&I));
411  }
412  void visitInvokeInst    (InvokeInst &II) {
413    visitCallSite(CallSite::get(&II));
414    visitTerminatorInst(II);
415  }
416  void visitCallSite      (CallSite CS);
417  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
418  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
419  void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
420  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
421  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
422
423  void visitInstruction(Instruction &I) {
424    // If a new instruction is added to LLVM that we don't handle...
425    errs() << "SCCP: Don't know how to handle: " << I;
426    markOverdefined(&I);   // Just in case
427  }
428};
429
430} // end anonymous namespace
431
432
433// getFeasibleSuccessors - Return a vector of booleans to indicate which
434// successors are reachable from a given terminator instruction.
435//
436void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
437                                       SmallVector<bool, 16> &Succs) {
438  Succs.resize(TI.getNumSuccessors());
439  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
440    if (BI->isUnconditional()) {
441      Succs[0] = true;
442    } else {
443      LatticeVal &BCValue = getValueState(BI->getCondition());
444      if (BCValue.isOverdefined() ||
445          (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
446        // Overdefined condition variables, and branches on unfoldable constant
447        // conditions, mean the branch could go either way.
448        Succs[0] = Succs[1] = true;
449      } else if (BCValue.isConstant()) {
450        // Constant condition variables mean the branch can only go a single way
451        Succs[BCValue.getConstant() == ConstantInt::getFalse(*Context)] = true;
452      }
453    }
454    return;
455  }
456
457  if (isa<InvokeInst>(&TI)) {
458    // Invoke instructions successors are always executable.
459    Succs[0] = Succs[1] = true;
460    return;
461  }
462
463  if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
464    LatticeVal &SCValue = getValueState(SI->getCondition());
465    if (SCValue.isOverdefined() ||   // Overdefined condition?
466        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
467      // All destinations are executable!
468      Succs.assign(TI.getNumSuccessors(), true);
469    } else if (SCValue.isConstant())
470      Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true;
471    return;
472  }
473
474  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
475  if (isa<IndirectBrInst>(&TI)) {
476    // Just mark all destinations executable!
477    Succs.assign(TI.getNumSuccessors(), true);
478    return;
479  }
480
481#ifndef NDEBUG
482  errs() << "Unknown terminator instruction: " << TI << '\n';
483#endif
484  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
485}
486
487
488// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
489// block to the 'To' basic block is currently feasible...
490//
491bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
492  assert(BBExecutable.count(To) && "Dest should always be alive!");
493
494  // Make sure the source basic block is executable!!
495  if (!BBExecutable.count(From)) return false;
496
497  // Check to make sure this edge itself is actually feasible now...
498  TerminatorInst *TI = From->getTerminator();
499  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
500    if (BI->isUnconditional())
501      return true;
502
503    LatticeVal &BCValue = getValueState(BI->getCondition());
504    if (BCValue.isOverdefined()) {
505      // Overdefined condition variables mean the branch could go either way.
506      return true;
507    } else if (BCValue.isConstant()) {
508      // Not branching on an evaluatable constant?
509      if (!isa<ConstantInt>(BCValue.getConstant())) return true;
510
511      // Constant condition variables mean the branch can only go a single way
512      return BI->getSuccessor(BCValue.getConstant() ==
513                                     ConstantInt::getFalse(*Context)) == To;
514    }
515    return false;
516  }
517
518  // Invoke instructions successors are always executable.
519  if (isa<InvokeInst>(TI))
520    return true;
521
522  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
523    LatticeVal &SCValue = getValueState(SI->getCondition());
524    if (SCValue.isOverdefined()) {  // Overdefined condition?
525      // All destinations are executable!
526      return true;
527    } else if (SCValue.isConstant()) {
528      Constant *CPV = SCValue.getConstant();
529      if (!isa<ConstantInt>(CPV))
530        return true;  // not a foldable constant?
531
532      // Make sure to skip the "default value" which isn't a value
533      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
534        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
535          return SI->getSuccessor(i) == To;
536
537      // Constant value not equal to any of the branches... must execute
538      // default branch then...
539      return SI->getDefaultDest() == To;
540    }
541    return false;
542  }
543
544  // Just mark all destinations executable!
545  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
546  if (isa<IndirectBrInst>(&TI))
547    return true;
548
549#ifndef NDEBUG
550  errs() << "Unknown terminator instruction: " << *TI << '\n';
551#endif
552  llvm_unreachable(0);
553}
554
555// visit Implementations - Something changed in this instruction... Either an
556// operand made a transition, or the instruction is newly executable.  Change
557// the value type of I to reflect these changes if appropriate.  This method
558// makes sure to do the following actions:
559//
560// 1. If a phi node merges two constants in, and has conflicting value coming
561//    from different branches, or if the PHI node merges in an overdefined
562//    value, then the PHI node becomes overdefined.
563// 2. If a phi node merges only constants in, and they all agree on value, the
564//    PHI node becomes a constant value equal to that.
565// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
566// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
567// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
568// 6. If a conditional branch has a value that is constant, make the selected
569//    destination executable
570// 7. If a conditional branch has a value that is overdefined, make all
571//    successors executable.
572//
573void SCCPSolver::visitPHINode(PHINode &PN) {
574  LatticeVal &PNIV = getValueState(&PN);
575  if (PNIV.isOverdefined()) {
576    // There may be instructions using this PHI node that are not overdefined
577    // themselves.  If so, make sure that they know that the PHI node operand
578    // changed.
579    std::multimap<PHINode*, Instruction*>::iterator I, E;
580    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
581    if (I != E) {
582      SmallVector<Instruction*, 16> Users;
583      for (; I != E; ++I) Users.push_back(I->second);
584      while (!Users.empty()) {
585        visit(Users.back());
586        Users.pop_back();
587      }
588    }
589    return;  // Quick exit
590  }
591
592  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
593  // and slow us down a lot.  Just mark them overdefined.
594  if (PN.getNumIncomingValues() > 64) {
595    markOverdefined(PNIV, &PN);
596    return;
597  }
598
599  // Look at all of the executable operands of the PHI node.  If any of them
600  // are overdefined, the PHI becomes overdefined as well.  If they are all
601  // constant, and they agree with each other, the PHI becomes the identical
602  // constant.  If they are constant and don't agree, the PHI is overdefined.
603  // If there are no executable operands, the PHI remains undefined.
604  //
605  Constant *OperandVal = 0;
606  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
607    LatticeVal &IV = getValueState(PN.getIncomingValue(i));
608    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
609
610    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
611      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
612        markOverdefined(&PN);
613        return;
614      }
615
616      if (OperandVal == 0) {   // Grab the first value...
617        OperandVal = IV.getConstant();
618      } else {                // Another value is being merged in!
619        // There is already a reachable operand.  If we conflict with it,
620        // then the PHI node becomes overdefined.  If we agree with it, we
621        // can continue on.
622
623        // Check to see if there are two different constants merging...
624        if (IV.getConstant() != OperandVal) {
625          // Yes there is.  This means the PHI node is not constant.
626          // You must be overdefined poor PHI.
627          //
628          markOverdefined(&PN);    // The PHI node now becomes overdefined
629          return;    // I'm done analyzing you
630        }
631      }
632    }
633  }
634
635  // If we exited the loop, this means that the PHI node only has constant
636  // arguments that agree with each other(and OperandVal is the constant) or
637  // OperandVal is null because there are no defined incoming arguments.  If
638  // this is the case, the PHI remains undefined.
639  //
640  if (OperandVal)
641    markConstant(&PN, OperandVal);      // Acquire operand value
642}
643
644void SCCPSolver::visitReturnInst(ReturnInst &I) {
645  if (I.getNumOperands() == 0) return;  // Ret void
646
647  Function *F = I.getParent()->getParent();
648  // If we are tracking the return value of this function, merge it in.
649  if (!F->hasLocalLinkage())
650    return;
651
652  if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
653    DenseMap<Function*, LatticeVal>::iterator TFRVI =
654      TrackedRetVals.find(F);
655    if (TFRVI != TrackedRetVals.end() &&
656        !TFRVI->second.isOverdefined()) {
657      LatticeVal &IV = getValueState(I.getOperand(0));
658      mergeInValue(TFRVI->second, F, IV);
659      return;
660    }
661  }
662
663  // Handle functions that return multiple values.
664  if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
665    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
666      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
667        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
668      if (It == TrackedMultipleRetVals.end()) break;
669      mergeInValue(It->second, F, getValueState(I.getOperand(i)));
670    }
671  } else if (!TrackedMultipleRetVals.empty() &&
672             I.getNumOperands() == 1 &&
673             isa<StructType>(I.getOperand(0)->getType())) {
674    for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
675         i != e; ++i) {
676      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
677        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
678      if (It == TrackedMultipleRetVals.end()) break;
679      if (Value *Val = FindInsertedValue(I.getOperand(0), i, I.getContext()))
680        mergeInValue(It->second, F, getValueState(Val));
681    }
682  }
683}
684
685void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
686  SmallVector<bool, 16> SuccFeasible;
687  getFeasibleSuccessors(TI, SuccFeasible);
688
689  BasicBlock *BB = TI.getParent();
690
691  // Mark all feasible successors executable...
692  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
693    if (SuccFeasible[i])
694      markEdgeExecutable(BB, TI.getSuccessor(i));
695}
696
697void SCCPSolver::visitCastInst(CastInst &I) {
698  Value *V = I.getOperand(0);
699  LatticeVal &VState = getValueState(V);
700  if (VState.isOverdefined())          // Inherit overdefinedness of operand
701    markOverdefined(&I);
702  else if (VState.isConstant())        // Propagate constant value
703    markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
704                                           VState.getConstant(), I.getType()));
705}
706
707void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
708  Value *Aggr = EVI.getAggregateOperand();
709
710  // If the operand to the extractvalue is an undef, the result is undef.
711  if (isa<UndefValue>(Aggr))
712    return;
713
714  // Currently only handle single-index extractvalues.
715  if (EVI.getNumIndices() != 1) {
716    markOverdefined(&EVI);
717    return;
718  }
719
720  Function *F = 0;
721  if (CallInst *CI = dyn_cast<CallInst>(Aggr))
722    F = CI->getCalledFunction();
723  else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
724    F = II->getCalledFunction();
725
726  // TODO: If IPSCCP resolves the callee of this function, we could propagate a
727  // result back!
728  if (F == 0 || TrackedMultipleRetVals.empty()) {
729    markOverdefined(&EVI);
730    return;
731  }
732
733  // See if we are tracking the result of the callee.  If not tracking this
734  // function (for example, it is a declaration) just move to overdefined.
735  if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) {
736    markOverdefined(&EVI);
737    return;
738  }
739
740  // Otherwise, the value will be merged in here as a result of CallSite
741  // handling.
742}
743
744void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
745  Value *Aggr = IVI.getAggregateOperand();
746  Value *Val = IVI.getInsertedValueOperand();
747
748  // If the operands to the insertvalue are undef, the result is undef.
749  if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val))
750    return;
751
752  // Currently only handle single-index insertvalues.
753  if (IVI.getNumIndices() != 1) {
754    markOverdefined(&IVI);
755    return;
756  }
757
758  // Currently only handle insertvalue instructions that are in a single-use
759  // chain that builds up a return value.
760  for (const InsertValueInst *TmpIVI = &IVI; ; ) {
761    if (!TmpIVI->hasOneUse()) {
762      markOverdefined(&IVI);
763      return;
764    }
765    const Value *V = *TmpIVI->use_begin();
766    if (isa<ReturnInst>(V))
767      break;
768    TmpIVI = dyn_cast<InsertValueInst>(V);
769    if (!TmpIVI) {
770      markOverdefined(&IVI);
771      return;
772    }
773  }
774
775  // See if we are tracking the result of the callee.
776  Function *F = IVI.getParent()->getParent();
777  DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
778    It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
779
780  // Merge in the inserted member value.
781  if (It != TrackedMultipleRetVals.end())
782    mergeInValue(It->second, F, getValueState(Val));
783
784  // Mark the aggregate result of the IVI overdefined; any tracking that we do
785  // will be done on the individual member values.
786  markOverdefined(&IVI);
787}
788
789void SCCPSolver::visitSelectInst(SelectInst &I) {
790  LatticeVal &CondValue = getValueState(I.getCondition());
791  if (CondValue.isUndefined())
792    return;
793  if (CondValue.isConstant()) {
794    if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
795      mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
796                                                          : I.getFalseValue()));
797      return;
798    }
799  }
800
801  // Otherwise, the condition is overdefined or a constant we can't evaluate.
802  // See if we can produce something better than overdefined based on the T/F
803  // value.
804  LatticeVal &TVal = getValueState(I.getTrueValue());
805  LatticeVal &FVal = getValueState(I.getFalseValue());
806
807  // select ?, C, C -> C.
808  if (TVal.isConstant() && FVal.isConstant() &&
809      TVal.getConstant() == FVal.getConstant()) {
810    markConstant(&I, FVal.getConstant());
811    return;
812  }
813
814  if (TVal.isUndefined()) {  // select ?, undef, X -> X.
815    mergeInValue(&I, FVal);
816  } else if (FVal.isUndefined()) {  // select ?, X, undef -> X.
817    mergeInValue(&I, TVal);
818  } else {
819    markOverdefined(&I);
820  }
821}
822
823// Handle BinaryOperators and Shift Instructions...
824void SCCPSolver::visitBinaryOperator(Instruction &I) {
825  LatticeVal &IV = ValueState[&I];
826  if (IV.isOverdefined()) return;
827
828  LatticeVal &V1State = getValueState(I.getOperand(0));
829  LatticeVal &V2State = getValueState(I.getOperand(1));
830
831  if (V1State.isOverdefined() || V2State.isOverdefined()) {
832    // If this is an AND or OR with 0 or -1, it doesn't matter that the other
833    // operand is overdefined.
834    if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
835      LatticeVal *NonOverdefVal = 0;
836      if (!V1State.isOverdefined()) {
837        NonOverdefVal = &V1State;
838      } else if (!V2State.isOverdefined()) {
839        NonOverdefVal = &V2State;
840      }
841
842      if (NonOverdefVal) {
843        if (NonOverdefVal->isUndefined()) {
844          // Could annihilate value.
845          if (I.getOpcode() == Instruction::And)
846            markConstant(IV, &I, Constant::getNullValue(I.getType()));
847          else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
848            markConstant(IV, &I, Constant::getAllOnesValue(PT));
849          else
850            markConstant(IV, &I,
851                         Constant::getAllOnesValue(I.getType()));
852          return;
853        } else {
854          if (I.getOpcode() == Instruction::And) {
855            if (NonOverdefVal->getConstant()->isNullValue()) {
856              markConstant(IV, &I, NonOverdefVal->getConstant());
857              return;      // X and 0 = 0
858            }
859          } else {
860            if (ConstantInt *CI =
861                     dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
862              if (CI->isAllOnesValue()) {
863                markConstant(IV, &I, NonOverdefVal->getConstant());
864                return;    // X or -1 = -1
865              }
866          }
867        }
868      }
869    }
870
871
872    // If both operands are PHI nodes, it is possible that this instruction has
873    // a constant value, despite the fact that the PHI node doesn't.  Check for
874    // this condition now.
875    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
876      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
877        if (PN1->getParent() == PN2->getParent()) {
878          // Since the two PHI nodes are in the same basic block, they must have
879          // entries for the same predecessors.  Walk the predecessor list, and
880          // if all of the incoming values are constants, and the result of
881          // evaluating this expression with all incoming value pairs is the
882          // same, then this expression is a constant even though the PHI node
883          // is not a constant!
884          LatticeVal Result;
885          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
886            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
887            BasicBlock *InBlock = PN1->getIncomingBlock(i);
888            LatticeVal &In2 =
889              getValueState(PN2->getIncomingValueForBlock(InBlock));
890
891            if (In1.isOverdefined() || In2.isOverdefined()) {
892              Result.markOverdefined();
893              break;  // Cannot fold this operation over the PHI nodes!
894            } else if (In1.isConstant() && In2.isConstant()) {
895              Constant *V =
896                     ConstantExpr::get(I.getOpcode(), In1.getConstant(),
897                                              In2.getConstant());
898              if (Result.isUndefined())
899                Result.markConstant(V);
900              else if (Result.isConstant() && Result.getConstant() != V) {
901                Result.markOverdefined();
902                break;
903              }
904            }
905          }
906
907          // If we found a constant value here, then we know the instruction is
908          // constant despite the fact that the PHI nodes are overdefined.
909          if (Result.isConstant()) {
910            markConstant(IV, &I, Result.getConstant());
911            // Remember that this instruction is virtually using the PHI node
912            // operands.
913            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
914            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
915            return;
916          } else if (Result.isUndefined()) {
917            return;
918          }
919
920          // Okay, this really is overdefined now.  Since we might have
921          // speculatively thought that this was not overdefined before, and
922          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
923          // make sure to clean out any entries that we put there, for
924          // efficiency.
925          std::multimap<PHINode*, Instruction*>::iterator It, E;
926          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
927          while (It != E) {
928            if (It->second == &I) {
929              UsersOfOverdefinedPHIs.erase(It++);
930            } else
931              ++It;
932          }
933          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
934          while (It != E) {
935            if (It->second == &I) {
936              UsersOfOverdefinedPHIs.erase(It++);
937            } else
938              ++It;
939          }
940        }
941
942    markOverdefined(IV, &I);
943  } else if (V1State.isConstant() && V2State.isConstant()) {
944    markConstant(IV, &I,
945                ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
946                                           V2State.getConstant()));
947  }
948}
949
950// Handle ICmpInst instruction...
951void SCCPSolver::visitCmpInst(CmpInst &I) {
952  LatticeVal &IV = ValueState[&I];
953  if (IV.isOverdefined()) return;
954
955  LatticeVal &V1State = getValueState(I.getOperand(0));
956  LatticeVal &V2State = getValueState(I.getOperand(1));
957
958  if (V1State.isOverdefined() || V2State.isOverdefined()) {
959    // If both operands are PHI nodes, it is possible that this instruction has
960    // a constant value, despite the fact that the PHI node doesn't.  Check for
961    // this condition now.
962    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
963      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
964        if (PN1->getParent() == PN2->getParent()) {
965          // Since the two PHI nodes are in the same basic block, they must have
966          // entries for the same predecessors.  Walk the predecessor list, and
967          // if all of the incoming values are constants, and the result of
968          // evaluating this expression with all incoming value pairs is the
969          // same, then this expression is a constant even though the PHI node
970          // is not a constant!
971          LatticeVal Result;
972          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
973            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
974            BasicBlock *InBlock = PN1->getIncomingBlock(i);
975            LatticeVal &In2 =
976              getValueState(PN2->getIncomingValueForBlock(InBlock));
977
978            if (In1.isOverdefined() || In2.isOverdefined()) {
979              Result.markOverdefined();
980              break;  // Cannot fold this operation over the PHI nodes!
981            } else if (In1.isConstant() && In2.isConstant()) {
982              Constant *V = ConstantExpr::getCompare(I.getPredicate(),
983                                                     In1.getConstant(),
984                                                     In2.getConstant());
985              if (Result.isUndefined())
986                Result.markConstant(V);
987              else if (Result.isConstant() && Result.getConstant() != V) {
988                Result.markOverdefined();
989                break;
990              }
991            }
992          }
993
994          // If we found a constant value here, then we know the instruction is
995          // constant despite the fact that the PHI nodes are overdefined.
996          if (Result.isConstant()) {
997            markConstant(IV, &I, Result.getConstant());
998            // Remember that this instruction is virtually using the PHI node
999            // operands.
1000            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
1001            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
1002            return;
1003          } else if (Result.isUndefined()) {
1004            return;
1005          }
1006
1007          // Okay, this really is overdefined now.  Since we might have
1008          // speculatively thought that this was not overdefined before, and
1009          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
1010          // make sure to clean out any entries that we put there, for
1011          // efficiency.
1012          std::multimap<PHINode*, Instruction*>::iterator It, E;
1013          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
1014          while (It != E) {
1015            if (It->second == &I) {
1016              UsersOfOverdefinedPHIs.erase(It++);
1017            } else
1018              ++It;
1019          }
1020          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
1021          while (It != E) {
1022            if (It->second == &I) {
1023              UsersOfOverdefinedPHIs.erase(It++);
1024            } else
1025              ++It;
1026          }
1027        }
1028
1029    markOverdefined(IV, &I);
1030  } else if (V1State.isConstant() && V2State.isConstant()) {
1031    markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
1032                                                  V1State.getConstant(),
1033                                                  V2State.getConstant()));
1034  }
1035}
1036
1037void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1038  // FIXME : SCCP does not handle vectors properly.
1039  markOverdefined(&I);
1040  return;
1041
1042#if 0
1043  LatticeVal &ValState = getValueState(I.getOperand(0));
1044  LatticeVal &IdxState = getValueState(I.getOperand(1));
1045
1046  if (ValState.isOverdefined() || IdxState.isOverdefined())
1047    markOverdefined(&I);
1048  else if(ValState.isConstant() && IdxState.isConstant())
1049    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1050                                                     IdxState.getConstant()));
1051#endif
1052}
1053
1054void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1055  // FIXME : SCCP does not handle vectors properly.
1056  markOverdefined(&I);
1057  return;
1058#if 0
1059  LatticeVal &ValState = getValueState(I.getOperand(0));
1060  LatticeVal &EltState = getValueState(I.getOperand(1));
1061  LatticeVal &IdxState = getValueState(I.getOperand(2));
1062
1063  if (ValState.isOverdefined() || EltState.isOverdefined() ||
1064      IdxState.isOverdefined())
1065    markOverdefined(&I);
1066  else if(ValState.isConstant() && EltState.isConstant() &&
1067          IdxState.isConstant())
1068    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1069                                                    EltState.getConstant(),
1070                                                    IdxState.getConstant()));
1071  else if (ValState.isUndefined() && EltState.isConstant() &&
1072           IdxState.isConstant())
1073    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1074                                                   EltState.getConstant(),
1075                                                   IdxState.getConstant()));
1076#endif
1077}
1078
1079void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1080  // FIXME : SCCP does not handle vectors properly.
1081  markOverdefined(&I);
1082  return;
1083#if 0
1084  LatticeVal &V1State   = getValueState(I.getOperand(0));
1085  LatticeVal &V2State   = getValueState(I.getOperand(1));
1086  LatticeVal &MaskState = getValueState(I.getOperand(2));
1087
1088  if (MaskState.isUndefined() ||
1089      (V1State.isUndefined() && V2State.isUndefined()))
1090    return;  // Undefined output if mask or both inputs undefined.
1091
1092  if (V1State.isOverdefined() || V2State.isOverdefined() ||
1093      MaskState.isOverdefined()) {
1094    markOverdefined(&I);
1095  } else {
1096    // A mix of constant/undef inputs.
1097    Constant *V1 = V1State.isConstant() ?
1098        V1State.getConstant() : UndefValue::get(I.getType());
1099    Constant *V2 = V2State.isConstant() ?
1100        V2State.getConstant() : UndefValue::get(I.getType());
1101    Constant *Mask = MaskState.isConstant() ?
1102      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1103    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1104  }
1105#endif
1106}
1107
1108// Handle getelementptr instructions... if all operands are constants then we
1109// can turn this into a getelementptr ConstantExpr.
1110//
1111void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1112  LatticeVal &IV = ValueState[&I];
1113  if (IV.isOverdefined()) return;
1114
1115  SmallVector<Constant*, 8> Operands;
1116  Operands.reserve(I.getNumOperands());
1117
1118  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1119    LatticeVal &State = getValueState(I.getOperand(i));
1120    if (State.isUndefined())
1121      return;  // Operands are not resolved yet...
1122    else if (State.isOverdefined()) {
1123      markOverdefined(IV, &I);
1124      return;
1125    }
1126    assert(State.isConstant() && "Unknown state!");
1127    Operands.push_back(State.getConstant());
1128  }
1129
1130  Constant *Ptr = Operands[0];
1131  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
1132
1133  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
1134                                                      Operands.size()));
1135}
1136
1137void SCCPSolver::visitStoreInst(Instruction &SI) {
1138  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1139    return;
1140  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1141  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1142  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1143
1144  // Get the value we are storing into the global.
1145  LatticeVal &PtrVal = getValueState(SI.getOperand(0));
1146
1147  mergeInValue(I->second, GV, PtrVal);
1148  if (I->second.isOverdefined())
1149    TrackedGlobals.erase(I);      // No need to keep tracking this!
1150}
1151
1152
1153// Handle load instructions.  If the operand is a constant pointer to a constant
1154// global, we can replace the load with the loaded constant value!
1155void SCCPSolver::visitLoadInst(LoadInst &I) {
1156  LatticeVal &IV = ValueState[&I];
1157  if (IV.isOverdefined()) return;
1158
1159  LatticeVal &PtrVal = getValueState(I.getOperand(0));
1160  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1161  if (PtrVal.isConstant() && !I.isVolatile()) {
1162    Value *Ptr = PtrVal.getConstant();
1163    // TODO: Consider a target hook for valid address spaces for this xform.
1164    if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) {
1165      // load null -> null
1166      markConstant(IV, &I, Constant::getNullValue(I.getType()));
1167      return;
1168    }
1169
1170    // Transform load (constant global) into the value loaded.
1171    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1172      if (GV->isConstant()) {
1173        if (GV->hasDefinitiveInitializer()) {
1174          markConstant(IV, &I, GV->getInitializer());
1175          return;
1176        }
1177      } else if (!TrackedGlobals.empty()) {
1178        // If we are tracking this global, merge in the known value for it.
1179        DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1180          TrackedGlobals.find(GV);
1181        if (It != TrackedGlobals.end()) {
1182          mergeInValue(IV, &I, It->second);
1183          return;
1184        }
1185      }
1186    }
1187
1188    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1189    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1190      if (CE->getOpcode() == Instruction::GetElementPtr)
1191    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
1192      if (GV->isConstant() && GV->hasDefinitiveInitializer())
1193        if (Constant *V =
1194             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
1195          markConstant(IV, &I, V);
1196          return;
1197        }
1198  }
1199
1200  // Otherwise we cannot say for certain what value this load will produce.
1201  // Bail out.
1202  markOverdefined(IV, &I);
1203}
1204
1205void SCCPSolver::visitCallSite(CallSite CS) {
1206  Function *F = CS.getCalledFunction();
1207  Instruction *I = CS.getInstruction();
1208
1209  // The common case is that we aren't tracking the callee, either because we
1210  // are not doing interprocedural analysis or the callee is indirect, or is
1211  // external.  Handle these cases first.
1212  if (F == 0 || !F->hasLocalLinkage()) {
1213CallOverdefined:
1214    // Void return and not tracking callee, just bail.
1215    if (I->getType()->isVoidTy()) return;
1216
1217    // Otherwise, if we have a single return value case, and if the function is
1218    // a declaration, maybe we can constant fold it.
1219    if (!isa<StructType>(I->getType()) && F && F->isDeclaration() &&
1220        canConstantFoldCallTo(F)) {
1221
1222      SmallVector<Constant*, 8> Operands;
1223      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1224           AI != E; ++AI) {
1225        LatticeVal &State = getValueState(*AI);
1226        if (State.isUndefined())
1227          return;  // Operands are not resolved yet.
1228        else if (State.isOverdefined()) {
1229          markOverdefined(I);
1230          return;
1231        }
1232        assert(State.isConstant() && "Unknown state!");
1233        Operands.push_back(State.getConstant());
1234      }
1235
1236      // If we can constant fold this, mark the result of the call as a
1237      // constant.
1238      if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) {
1239        markConstant(I, C);
1240        return;
1241      }
1242    }
1243
1244    // Otherwise, we don't know anything about this call, mark it overdefined.
1245    markOverdefined(I);
1246    return;
1247  }
1248
1249  // If this is a single/zero retval case, see if we're tracking the function.
1250  DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1251  if (TFRVI != TrackedRetVals.end()) {
1252    // If so, propagate the return value of the callee into this call result.
1253    mergeInValue(I, TFRVI->second);
1254  } else if (isa<StructType>(I->getType())) {
1255    // Check to see if we're tracking this callee, if not, handle it in the
1256    // common path above.
1257    DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
1258    TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
1259    if (TMRVI == TrackedMultipleRetVals.end())
1260      goto CallOverdefined;
1261
1262    // Need to mark as overdefined, otherwise it stays undefined which
1263    // creates extractvalue undef, <idx>
1264    markOverdefined(I);
1265    // If we are tracking this callee, propagate the return values of the call
1266    // into this call site.  We do this by walking all the uses. Single-index
1267    // ExtractValueInst uses can be tracked; anything more complicated is
1268    // currently handled conservatively.
1269    for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1270         UI != E; ++UI) {
1271      if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
1272        if (EVI->getNumIndices() == 1) {
1273          mergeInValue(EVI,
1274                  TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
1275          continue;
1276        }
1277      }
1278      // The aggregate value is used in a way not handled here. Assume nothing.
1279      markOverdefined(*UI);
1280    }
1281  } else {
1282    // Otherwise we're not tracking this callee, so handle it in the
1283    // common path above.
1284    goto CallOverdefined;
1285  }
1286
1287  // Finally, if this is the first call to the function hit, mark its entry
1288  // block executable.
1289  if (!BBExecutable.count(F->begin()))
1290    MarkBlockExecutable(F->begin());
1291
1292  // Propagate information from this call site into the callee.
1293  CallSite::arg_iterator CAI = CS.arg_begin();
1294  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1295       AI != E; ++AI, ++CAI) {
1296    LatticeVal &IV = ValueState[AI];
1297    if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1298      IV.markOverdefined();
1299      continue;
1300    }
1301    if (!IV.isOverdefined())
1302      mergeInValue(IV, AI, getValueState(*CAI));
1303  }
1304}
1305
1306void SCCPSolver::Solve() {
1307  // Process the work lists until they are empty!
1308  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1309         !OverdefinedInstWorkList.empty()) {
1310    // Process the instruction work list...
1311    while (!OverdefinedInstWorkList.empty()) {
1312      Value *I = OverdefinedInstWorkList.back();
1313      OverdefinedInstWorkList.pop_back();
1314
1315      DEBUG(errs() << "\nPopped off OI-WL: " << *I << '\n');
1316
1317      // "I" got into the work list because it either made the transition from
1318      // bottom to constant
1319      //
1320      // Anything on this worklist that is overdefined need not be visited
1321      // since all of its users will have already been marked as overdefined
1322      // Update all of the users of this instruction's value...
1323      //
1324      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1325           UI != E; ++UI)
1326        OperandChangedState(*UI);
1327    }
1328    // Process the instruction work list...
1329    while (!InstWorkList.empty()) {
1330      Value *I = InstWorkList.back();
1331      InstWorkList.pop_back();
1332
1333      DEBUG(errs() << "\nPopped off I-WL: " << *I << '\n');
1334
1335      // "I" got into the work list because it either made the transition from
1336      // bottom to constant
1337      //
1338      // Anything on this worklist that is overdefined need not be visited
1339      // since all of its users will have already been marked as overdefined.
1340      // Update all of the users of this instruction's value...
1341      //
1342      if (!getValueState(I).isOverdefined())
1343        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1344             UI != E; ++UI)
1345          OperandChangedState(*UI);
1346    }
1347
1348    // Process the basic block work list...
1349    while (!BBWorkList.empty()) {
1350      BasicBlock *BB = BBWorkList.back();
1351      BBWorkList.pop_back();
1352
1353      DEBUG(errs() << "\nPopped off BBWL: " << *BB << '\n');
1354
1355      // Notify all instructions in this basic block that they are newly
1356      // executable.
1357      visit(BB);
1358    }
1359  }
1360}
1361
1362/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1363/// that branches on undef values cannot reach any of their successors.
1364/// However, this is not a safe assumption.  After we solve dataflow, this
1365/// method should be use to handle this.  If this returns true, the solver
1366/// should be rerun.
1367///
1368/// This method handles this by finding an unresolved branch and marking it one
1369/// of the edges from the block as being feasible, even though the condition
1370/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1371/// CFG and only slightly pessimizes the analysis results (by marking one,
1372/// potentially infeasible, edge feasible).  This cannot usefully modify the
1373/// constraints on the condition of the branch, as that would impact other users
1374/// of the value.
1375///
1376/// This scan also checks for values that use undefs, whose results are actually
1377/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1378/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1379/// even if X isn't defined.
1380bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1381  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1382    if (!BBExecutable.count(BB))
1383      continue;
1384
1385    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1386      // Look for instructions which produce undef values.
1387      if (I->getType()->isVoidTy()) continue;
1388
1389      LatticeVal &LV = getValueState(I);
1390      if (!LV.isUndefined()) continue;
1391
1392      // Get the lattice values of the first two operands for use below.
1393      LatticeVal &Op0LV = getValueState(I->getOperand(0));
1394      LatticeVal Op1LV;
1395      if (I->getNumOperands() == 2) {
1396        // If this is a two-operand instruction, and if both operands are
1397        // undefs, the result stays undef.
1398        Op1LV = getValueState(I->getOperand(1));
1399        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1400          continue;
1401      }
1402
1403      // If this is an instructions whose result is defined even if the input is
1404      // not fully defined, propagate the information.
1405      const Type *ITy = I->getType();
1406      switch (I->getOpcode()) {
1407      default: break;          // Leave the instruction as an undef.
1408      case Instruction::ZExt:
1409        // After a zero extend, we know the top part is zero.  SExt doesn't have
1410        // to be handled here, because we don't know whether the top part is 1's
1411        // or 0's.
1412        assert(Op0LV.isUndefined());
1413        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1414        return true;
1415      case Instruction::Mul:
1416      case Instruction::And:
1417        // undef * X -> 0.   X could be zero.
1418        // undef & X -> 0.   X could be zero.
1419        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1420        return true;
1421
1422      case Instruction::Or:
1423        // undef | X -> -1.   X could be -1.
1424        if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
1425          markForcedConstant(LV, I,
1426                             Constant::getAllOnesValue(PTy));
1427        else
1428          markForcedConstant(LV, I, Constant::getAllOnesValue(ITy));
1429        return true;
1430
1431      case Instruction::SDiv:
1432      case Instruction::UDiv:
1433      case Instruction::SRem:
1434      case Instruction::URem:
1435        // X / undef -> undef.  No change.
1436        // X % undef -> undef.  No change.
1437        if (Op1LV.isUndefined()) break;
1438
1439        // undef / X -> 0.   X could be maxint.
1440        // undef % X -> 0.   X could be 1.
1441        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1442        return true;
1443
1444      case Instruction::AShr:
1445        // undef >>s X -> undef.  No change.
1446        if (Op0LV.isUndefined()) break;
1447
1448        // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
1449        if (Op0LV.isConstant())
1450          markForcedConstant(LV, I, Op0LV.getConstant());
1451        else
1452          markOverdefined(LV, I);
1453        return true;
1454      case Instruction::LShr:
1455      case Instruction::Shl:
1456        // undef >> X -> undef.  No change.
1457        // undef << X -> undef.  No change.
1458        if (Op0LV.isUndefined()) break;
1459
1460        // X >> undef -> 0.  X could be 0.
1461        // X << undef -> 0.  X could be 0.
1462        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1463        return true;
1464      case Instruction::Select:
1465        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1466        if (Op0LV.isUndefined()) {
1467          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1468            Op1LV = getValueState(I->getOperand(2));
1469        } else if (Op1LV.isUndefined()) {
1470          // c ? undef : undef -> undef.  No change.
1471          Op1LV = getValueState(I->getOperand(2));
1472          if (Op1LV.isUndefined())
1473            break;
1474          // Otherwise, c ? undef : x -> x.
1475        } else {
1476          // Leave Op1LV as Operand(1)'s LatticeValue.
1477        }
1478
1479        if (Op1LV.isConstant())
1480          markForcedConstant(LV, I, Op1LV.getConstant());
1481        else
1482          markOverdefined(LV, I);
1483        return true;
1484      case Instruction::Call:
1485        // If a call has an undef result, it is because it is constant foldable
1486        // but one of the inputs was undef.  Just force the result to
1487        // overdefined.
1488        markOverdefined(LV, I);
1489        return true;
1490      }
1491    }
1492
1493    TerminatorInst *TI = BB->getTerminator();
1494    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1495      if (!BI->isConditional()) continue;
1496      if (!getValueState(BI->getCondition()).isUndefined())
1497        continue;
1498    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1499      if (SI->getNumSuccessors()<2)   // no cases
1500        continue;
1501      if (!getValueState(SI->getCondition()).isUndefined())
1502        continue;
1503    } else {
1504      continue;
1505    }
1506
1507    // If the edge to the second successor isn't thought to be feasible yet,
1508    // mark it so now.  We pick the second one so that this goes to some
1509    // enumerated value in a switch instead of going to the default destination.
1510    if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
1511      continue;
1512
1513    // Otherwise, it isn't already thought to be feasible.  Mark it as such now
1514    // and return.  This will make other blocks reachable, which will allow new
1515    // values to be discovered and existing ones to be moved in the lattice.
1516    markEdgeExecutable(BB, TI->getSuccessor(1));
1517
1518    // This must be a conditional branch of switch on undef.  At this point,
1519    // force the old terminator to branch to the first successor.  This is
1520    // required because we are now influencing the dataflow of the function with
1521    // the assumption that this edge is taken.  If we leave the branch condition
1522    // as undef, then further analysis could think the undef went another way
1523    // leading to an inconsistent set of conclusions.
1524    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1525      BI->setCondition(ConstantInt::getFalse(*Context));
1526    } else {
1527      SwitchInst *SI = cast<SwitchInst>(TI);
1528      SI->setCondition(SI->getCaseValue(1));
1529    }
1530
1531    return true;
1532  }
1533
1534  return false;
1535}
1536
1537
1538namespace {
1539  //===--------------------------------------------------------------------===//
1540  //
1541  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1542  /// Sparse Conditional Constant Propagator.
1543  ///
1544  struct SCCP : public FunctionPass {
1545    static char ID; // Pass identification, replacement for typeid
1546    SCCP() : FunctionPass(&ID) {}
1547
1548    // runOnFunction - Run the Sparse Conditional Constant Propagation
1549    // algorithm, and return true if the function was modified.
1550    //
1551    bool runOnFunction(Function &F);
1552
1553    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1554      AU.setPreservesCFG();
1555    }
1556  };
1557} // end anonymous namespace
1558
1559char SCCP::ID = 0;
1560static RegisterPass<SCCP>
1561X("sccp", "Sparse Conditional Constant Propagation");
1562
1563// createSCCPPass - This is the public interface to this file...
1564FunctionPass *llvm::createSCCPPass() {
1565  return new SCCP();
1566}
1567
1568
1569// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1570// and return true if the function was modified.
1571//
1572bool SCCP::runOnFunction(Function &F) {
1573  DEBUG(errs() << "SCCP on function '" << F.getName() << "'\n");
1574  SCCPSolver Solver;
1575  Solver.setContext(&F.getContext());
1576
1577  // Mark the first block of the function as being executable.
1578  Solver.MarkBlockExecutable(F.begin());
1579
1580  // Mark all arguments to the function as being overdefined.
1581  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1582    Solver.markOverdefined(AI);
1583
1584  // Solve for constants.
1585  bool ResolvedUndefs = true;
1586  while (ResolvedUndefs) {
1587    Solver.Solve();
1588    DEBUG(errs() << "RESOLVING UNDEFs\n");
1589    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1590  }
1591
1592  bool MadeChanges = false;
1593
1594  // If we decided that there are basic blocks that are dead in this function,
1595  // delete their contents now.  Note that we cannot actually delete the blocks,
1596  // as we cannot modify the CFG of the function.
1597  //
1598  SmallVector<Instruction*, 512> Insts;
1599  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1600
1601  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1602    if (!Solver.isBlockExecutable(BB)) {
1603      DEBUG(errs() << "  BasicBlock Dead:" << *BB);
1604      ++NumDeadBlocks;
1605
1606      // Delete the instructions backwards, as it has a reduced likelihood of
1607      // having to update as many def-use and use-def chains.
1608      for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1609           I != E; ++I)
1610        Insts.push_back(I);
1611      while (!Insts.empty()) {
1612        Instruction *I = Insts.back();
1613        Insts.pop_back();
1614        if (!I->use_empty())
1615          I->replaceAllUsesWith(UndefValue::get(I->getType()));
1616        BB->getInstList().erase(I);
1617        MadeChanges = true;
1618        ++NumInstRemoved;
1619      }
1620    } else {
1621      // Iterate over all of the instructions in a function, replacing them with
1622      // constants if we have found them to be of constant values.
1623      //
1624      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1625        Instruction *Inst = BI++;
1626        if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1627          continue;
1628
1629        LatticeVal &IV = Values[Inst];
1630        if (!IV.isConstant() && !IV.isUndefined())
1631          continue;
1632
1633        Constant *Const = IV.isConstant()
1634          ? IV.getConstant() : UndefValue::get(Inst->getType());
1635        DEBUG(errs() << "  Constant: " << *Const << " = " << *Inst);
1636
1637        // Replaces all of the uses of a variable with uses of the constant.
1638        Inst->replaceAllUsesWith(Const);
1639
1640        // Delete the instruction.
1641        Inst->eraseFromParent();
1642
1643        // Hey, we just changed something!
1644        MadeChanges = true;
1645        ++NumInstRemoved;
1646      }
1647    }
1648
1649  return MadeChanges;
1650}
1651
1652namespace {
1653  //===--------------------------------------------------------------------===//
1654  //
1655  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1656  /// Constant Propagation.
1657  ///
1658  struct IPSCCP : public ModulePass {
1659    static char ID;
1660    IPSCCP() : ModulePass(&ID) {}
1661    bool runOnModule(Module &M);
1662  };
1663} // end anonymous namespace
1664
1665char IPSCCP::ID = 0;
1666static RegisterPass<IPSCCP>
1667Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1668
1669// createIPSCCPPass - This is the public interface to this file...
1670ModulePass *llvm::createIPSCCPPass() {
1671  return new IPSCCP();
1672}
1673
1674
1675static bool AddressIsTaken(GlobalValue *GV) {
1676  // Delete any dead constantexpr klingons.
1677  GV->removeDeadConstantUsers();
1678
1679  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1680       UI != E; ++UI)
1681    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1682      if (SI->getOperand(0) == GV || SI->isVolatile())
1683        return true;  // Storing addr of GV.
1684    } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1685      // Make sure we are calling the function, not passing the address.
1686      if (UI.getOperandNo() != 0)
1687        return true;
1688    } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1689      if (LI->isVolatile())
1690        return true;
1691    } else if (isa<BlockAddress>(*UI)) {
1692      // blockaddress doesn't take the address of the function, it takes addr
1693      // of label.
1694    } else {
1695      return true;
1696    }
1697  return false;
1698}
1699
1700bool IPSCCP::runOnModule(Module &M) {
1701  LLVMContext *Context = &M.getContext();
1702
1703  SCCPSolver Solver;
1704  Solver.setContext(Context);
1705
1706  // Loop over all functions, marking arguments to those with their addresses
1707  // taken or that are external as overdefined.
1708  //
1709  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1710    if (!F->hasLocalLinkage() || AddressIsTaken(F)) {
1711      if (!F->isDeclaration())
1712        Solver.MarkBlockExecutable(F->begin());
1713      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1714           AI != E; ++AI)
1715        Solver.markOverdefined(AI);
1716    } else {
1717      Solver.AddTrackedFunction(F);
1718    }
1719
1720  // Loop over global variables.  We inform the solver about any internal global
1721  // variables that do not have their 'addresses taken'.  If they don't have
1722  // their addresses taken, we can propagate constants through them.
1723  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1724       G != E; ++G)
1725    if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1726      Solver.TrackValueOfGlobalVariable(G);
1727
1728  // Solve for constants.
1729  bool ResolvedUndefs = true;
1730  while (ResolvedUndefs) {
1731    Solver.Solve();
1732
1733    DEBUG(errs() << "RESOLVING UNDEFS\n");
1734    ResolvedUndefs = false;
1735    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1736      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1737  }
1738
1739  bool MadeChanges = false;
1740
1741  // Iterate over all of the instructions in the module, replacing them with
1742  // constants if we have found them to be of constant values.
1743  //
1744  SmallVector<Instruction*, 512> Insts;
1745  SmallVector<BasicBlock*, 512> BlocksToErase;
1746  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1747
1748  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1749    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1750         AI != E; ++AI)
1751      if (!AI->use_empty()) {
1752        LatticeVal &IV = Values[AI];
1753        if (IV.isConstant() || IV.isUndefined()) {
1754          Constant *CST = IV.isConstant() ?
1755            IV.getConstant() : UndefValue::get(AI->getType());
1756          DEBUG(errs() << "***  Arg " << *AI << " = " << *CST <<"\n");
1757
1758          // Replaces all of the uses of a variable with uses of the
1759          // constant.
1760          AI->replaceAllUsesWith(CST);
1761          ++IPNumArgsElimed;
1762        }
1763      }
1764
1765    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1766      if (!Solver.isBlockExecutable(BB)) {
1767        DEBUG(errs() << "  BasicBlock Dead:" << *BB);
1768        ++IPNumDeadBlocks;
1769
1770        // Delete the instructions backwards, as it has a reduced likelihood of
1771        // having to update as many def-use and use-def chains.
1772        TerminatorInst *TI = BB->getTerminator();
1773        for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1774          Insts.push_back(I);
1775
1776        while (!Insts.empty()) {
1777          Instruction *I = Insts.back();
1778          Insts.pop_back();
1779          if (!I->use_empty())
1780            I->replaceAllUsesWith(UndefValue::get(I->getType()));
1781          BB->getInstList().erase(I);
1782          MadeChanges = true;
1783          ++IPNumInstRemoved;
1784        }
1785
1786        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1787          BasicBlock *Succ = TI->getSuccessor(i);
1788          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1789            TI->getSuccessor(i)->removePredecessor(BB);
1790        }
1791        if (!TI->use_empty())
1792          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1793        BB->getInstList().erase(TI);
1794
1795        if (&*BB != &F->front())
1796          BlocksToErase.push_back(BB);
1797        else
1798          new UnreachableInst(M.getContext(), BB);
1799
1800      } else {
1801        for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1802          Instruction *Inst = BI++;
1803          if (Inst->getType()->isVoidTy())
1804            continue;
1805
1806          LatticeVal &IV = Values[Inst];
1807          if (!IV.isConstant() && !IV.isUndefined())
1808            continue;
1809
1810          Constant *Const = IV.isConstant()
1811            ? IV.getConstant() : UndefValue::get(Inst->getType());
1812          DEBUG(errs() << "  Constant: " << *Const << " = " << *Inst);
1813
1814          // Replaces all of the uses of a variable with uses of the
1815          // constant.
1816          Inst->replaceAllUsesWith(Const);
1817
1818          // Delete the instruction.
1819          if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1820            Inst->eraseFromParent();
1821
1822          // Hey, we just changed something!
1823          MadeChanges = true;
1824          ++IPNumInstRemoved;
1825        }
1826      }
1827
1828    // Now that all instructions in the function are constant folded, erase dead
1829    // blocks, because we can now use ConstantFoldTerminator to get rid of
1830    // in-edges.
1831    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1832      // If there are any PHI nodes in this successor, drop entries for BB now.
1833      BasicBlock *DeadBB = BlocksToErase[i];
1834      while (!DeadBB->use_empty()) {
1835        Instruction *I = cast<Instruction>(DeadBB->use_back());
1836        bool Folded = ConstantFoldTerminator(I->getParent());
1837        if (!Folded) {
1838          // The constant folder may not have been able to fold the terminator
1839          // if this is a branch or switch on undef.  Fold it manually as a
1840          // branch to the first successor.
1841#ifndef NDEBUG
1842          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1843            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1844                   "Branch should be foldable!");
1845          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1846            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1847          } else {
1848            llvm_unreachable("Didn't fold away reference to block!");
1849          }
1850#endif
1851
1852          // Make this an uncond branch to the first successor.
1853          TerminatorInst *TI = I->getParent()->getTerminator();
1854          BranchInst::Create(TI->getSuccessor(0), TI);
1855
1856          // Remove entries in successor phi nodes to remove edges.
1857          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1858            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1859
1860          // Remove the old terminator.
1861          TI->eraseFromParent();
1862        }
1863      }
1864
1865      // Finally, delete the basic block.
1866      F->getBasicBlockList().erase(DeadBB);
1867    }
1868    BlocksToErase.clear();
1869  }
1870
1871  // If we inferred constant or undef return values for a function, we replaced
1872  // all call uses with the inferred value.  This means we don't need to bother
1873  // actually returning anything from the function.  Replace all return
1874  // instructions with return undef.
1875  // TODO: Process multiple value ret instructions also.
1876  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1877  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1878         E = RV.end(); I != E; ++I)
1879    if (!I->second.isOverdefined() &&
1880        !I->first->getReturnType()->isVoidTy()) {
1881      Function *F = I->first;
1882      for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1883        if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1884          if (!isa<UndefValue>(RI->getOperand(0)))
1885            RI->setOperand(0, UndefValue::get(F->getReturnType()));
1886    }
1887
1888  // If we infered constant or undef values for globals variables, we can delete
1889  // the global and any stores that remain to it.
1890  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1891  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1892         E = TG.end(); I != E; ++I) {
1893    GlobalVariable *GV = I->first;
1894    assert(!I->second.isOverdefined() &&
1895           "Overdefined values should have been taken out of the map!");
1896    DEBUG(errs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1897    while (!GV->use_empty()) {
1898      StoreInst *SI = cast<StoreInst>(GV->use_back());
1899      SI->eraseFromParent();
1900    }
1901    M.getGlobalList().erase(GV);
1902    ++IPNumGlobalConst;
1903  }
1904
1905  return MadeChanges;
1906}
1907