SCCP.cpp revision 7d27fc0252cb03b61c59b8a1e3307455c410266b
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18// Notice that:
19//   * This pass has a habit of making definitions be dead.  It is a good idea
20//     to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "sccp"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/IPO.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Instructions.h"
30#include "llvm/Pass.h"
31#include "llvm/Support/InstVisitor.h"
32#include "llvm/Transforms/Utils/Local.h"
33#include "llvm/Support/CallSite.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/ADT/hash_map"
36#include "llvm/ADT/Statistic.h"
37#include "llvm/ADT/STLExtras.h"
38#include <algorithm>
39#include <set>
40using namespace llvm;
41
42// LatticeVal class - This class represents the different lattice values that an
43// instruction may occupy.  It is a simple class with value semantics.
44//
45namespace {
46
47class LatticeVal {
48  enum {
49    undefined,           // This instruction has no known value
50    constant,            // This instruction has a constant value
51    overdefined          // This instruction has an unknown value
52  } LatticeValue;        // The current lattice position
53  Constant *ConstantVal; // If Constant value, the current value
54public:
55  inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
56
57  // markOverdefined - Return true if this is a new status to be in...
58  inline bool markOverdefined() {
59    if (LatticeValue != overdefined) {
60      LatticeValue = overdefined;
61      return true;
62    }
63    return false;
64  }
65
66  // markConstant - Return true if this is a new status for us...
67  inline bool markConstant(Constant *V) {
68    if (LatticeValue != constant) {
69      LatticeValue = constant;
70      ConstantVal = V;
71      return true;
72    } else {
73      assert(ConstantVal == V && "Marking constant with different value");
74    }
75    return false;
76  }
77
78  inline bool isUndefined()   const { return LatticeValue == undefined; }
79  inline bool isConstant()    const { return LatticeValue == constant; }
80  inline bool isOverdefined() const { return LatticeValue == overdefined; }
81
82  inline Constant *getConstant() const {
83    assert(isConstant() && "Cannot get the constant of a non-constant!");
84    return ConstantVal;
85  }
86};
87
88} // end anonymous namespace
89
90
91//===----------------------------------------------------------------------===//
92//
93/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
94/// Constant Propagation.
95///
96class SCCPSolver : public InstVisitor<SCCPSolver> {
97  std::set<BasicBlock*>     BBExecutable;// The basic blocks that are executable
98  hash_map<Value*, LatticeVal> ValueState;  // The state each value is in...
99
100  /// GlobalValue - If we are tracking any values for the contents of a global
101  /// variable, we keep a mapping from the constant accessor to the element of
102  /// the global, to the currently known value.  If the value becomes
103  /// overdefined, it's entry is simply removed from this map.
104  hash_map<GlobalVariable*, LatticeVal> TrackedGlobals;
105
106  /// TrackedFunctionRetVals - If we are tracking arguments into and the return
107  /// value out of a function, it will have an entry in this map, indicating
108  /// what the known return value for the function is.
109  hash_map<Function*, LatticeVal> TrackedFunctionRetVals;
110
111  // The reason for two worklists is that overdefined is the lowest state
112  // on the lattice, and moving things to overdefined as fast as possible
113  // makes SCCP converge much faster.
114  // By having a separate worklist, we accomplish this because everything
115  // possibly overdefined will become overdefined at the soonest possible
116  // point.
117  std::vector<Value*> OverdefinedInstWorkList;
118  std::vector<Value*> InstWorkList;
119
120
121  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
122
123  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
124  /// overdefined, despite the fact that the PHI node is overdefined.
125  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
126
127  /// KnownFeasibleEdges - Entries in this set are edges which have already had
128  /// PHI nodes retriggered.
129  typedef std::pair<BasicBlock*,BasicBlock*> Edge;
130  std::set<Edge> KnownFeasibleEdges;
131public:
132
133  /// MarkBlockExecutable - This method can be used by clients to mark all of
134  /// the blocks that are known to be intrinsically live in the processed unit.
135  void MarkBlockExecutable(BasicBlock *BB) {
136    DEBUG(std::cerr << "Marking Block Executable: " << BB->getName() << "\n");
137    BBExecutable.insert(BB);   // Basic block is executable!
138    BBWorkList.push_back(BB);  // Add the block to the work list!
139  }
140
141  /// TrackValueOfGlobalVariable - Clients can use this method to
142  /// inform the SCCPSolver that it should track loads and stores to the
143  /// specified global variable if it can.  This is only legal to call if
144  /// performing Interprocedural SCCP.
145  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
146    const Type *ElTy = GV->getType()->getElementType();
147    if (ElTy->isFirstClassType()) {
148      LatticeVal &IV = TrackedGlobals[GV];
149      if (!isa<UndefValue>(GV->getInitializer()))
150        IV.markConstant(GV->getInitializer());
151    }
152  }
153
154  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
155  /// and out of the specified function (which cannot have its address taken),
156  /// this method must be called.
157  void AddTrackedFunction(Function *F) {
158    assert(F->hasInternalLinkage() && "Can only track internal functions!");
159    // Add an entry, F -> undef.
160    TrackedFunctionRetVals[F];
161  }
162
163  /// Solve - Solve for constants and executable blocks.
164  ///
165  void Solve();
166
167  /// ResolveBranchesIn - While solving the dataflow for a function, we assume
168  /// that branches on undef values cannot reach any of their successors.
169  /// However, this is not a safe assumption.  After we solve dataflow, this
170  /// method should be use to handle this.  If this returns true, the solver
171  /// should be rerun.
172  bool ResolveBranchesIn(Function &F);
173
174  /// getExecutableBlocks - Once we have solved for constants, return the set of
175  /// blocks that is known to be executable.
176  std::set<BasicBlock*> &getExecutableBlocks() {
177    return BBExecutable;
178  }
179
180  /// getValueMapping - Once we have solved for constants, return the mapping of
181  /// LLVM values to LatticeVals.
182  hash_map<Value*, LatticeVal> &getValueMapping() {
183    return ValueState;
184  }
185
186  /// getTrackedFunctionRetVals - Get the inferred return value map.
187  ///
188  const hash_map<Function*, LatticeVal> &getTrackedFunctionRetVals() {
189    return TrackedFunctionRetVals;
190  }
191
192  /// getTrackedGlobals - Get and return the set of inferred initializers for
193  /// global variables.
194  const hash_map<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
195    return TrackedGlobals;
196  }
197
198
199private:
200  // markConstant - Make a value be marked as "constant".  If the value
201  // is not already a constant, add it to the instruction work list so that
202  // the users of the instruction are updated later.
203  //
204  inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
205    if (IV.markConstant(C)) {
206      DEBUG(std::cerr << "markConstant: " << *C << ": " << *V);
207      InstWorkList.push_back(V);
208    }
209  }
210  inline void markConstant(Value *V, Constant *C) {
211    markConstant(ValueState[V], V, C);
212  }
213
214  // markOverdefined - Make a value be marked as "overdefined". If the
215  // value is not already overdefined, add it to the overdefined instruction
216  // work list so that the users of the instruction are updated later.
217
218  inline void markOverdefined(LatticeVal &IV, Value *V) {
219    if (IV.markOverdefined()) {
220      DEBUG(std::cerr << "markOverdefined: ";
221            if (Function *F = dyn_cast<Function>(V))
222              std::cerr << "Function '" << F->getName() << "'\n";
223            else
224              std::cerr << *V);
225      // Only instructions go on the work list
226      OverdefinedInstWorkList.push_back(V);
227    }
228  }
229  inline void markOverdefined(Value *V) {
230    markOverdefined(ValueState[V], V);
231  }
232
233  inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
234    if (IV.isOverdefined() || MergeWithV.isUndefined())
235      return;  // Noop.
236    if (MergeWithV.isOverdefined())
237      markOverdefined(IV, V);
238    else if (IV.isUndefined())
239      markConstant(IV, V, MergeWithV.getConstant());
240    else if (IV.getConstant() != MergeWithV.getConstant())
241      markOverdefined(IV, V);
242  }
243
244  // getValueState - Return the LatticeVal object that corresponds to the value.
245  // This function is necessary because not all values should start out in the
246  // underdefined state... Argument's should be overdefined, and
247  // constants should be marked as constants.  If a value is not known to be an
248  // Instruction object, then use this accessor to get its value from the map.
249  //
250  inline LatticeVal &getValueState(Value *V) {
251    hash_map<Value*, LatticeVal>::iterator I = ValueState.find(V);
252    if (I != ValueState.end()) return I->second;  // Common case, in the map
253
254    if (Constant *CPV = dyn_cast<Constant>(V)) {
255      if (isa<UndefValue>(V)) {
256        // Nothing to do, remain undefined.
257      } else {
258        ValueState[CPV].markConstant(CPV);          // Constants are constant
259      }
260    }
261    // All others are underdefined by default...
262    return ValueState[V];
263  }
264
265  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
266  // work list if it is not already executable...
267  //
268  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
269    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
270      return;  // This edge is already known to be executable!
271
272    if (BBExecutable.count(Dest)) {
273      DEBUG(std::cerr << "Marking Edge Executable: " << Source->getName()
274                      << " -> " << Dest->getName() << "\n");
275
276      // The destination is already executable, but we just made an edge
277      // feasible that wasn't before.  Revisit the PHI nodes in the block
278      // because they have potentially new operands.
279      for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
280        visitPHINode(*cast<PHINode>(I));
281
282    } else {
283      MarkBlockExecutable(Dest);
284    }
285  }
286
287  // getFeasibleSuccessors - Return a vector of booleans to indicate which
288  // successors are reachable from a given terminator instruction.
289  //
290  void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs);
291
292  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
293  // block to the 'To' basic block is currently feasible...
294  //
295  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
296
297  // OperandChangedState - This method is invoked on all of the users of an
298  // instruction that was just changed state somehow....  Based on this
299  // information, we need to update the specified user of this instruction.
300  //
301  void OperandChangedState(User *U) {
302    // Only instructions use other variable values!
303    Instruction &I = cast<Instruction>(*U);
304    if (BBExecutable.count(I.getParent()))   // Inst is executable?
305      visit(I);
306  }
307
308private:
309  friend class InstVisitor<SCCPSolver>;
310
311  // visit implementations - Something changed in this instruction... Either an
312  // operand made a transition, or the instruction is newly executable.  Change
313  // the value type of I to reflect these changes if appropriate.
314  //
315  void visitPHINode(PHINode &I);
316
317  // Terminators
318  void visitReturnInst(ReturnInst &I);
319  void visitTerminatorInst(TerminatorInst &TI);
320
321  void visitCastInst(CastInst &I);
322  void visitSelectInst(SelectInst &I);
323  void visitBinaryOperator(Instruction &I);
324  void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
325
326  // Instructions that cannot be folded away...
327  void visitStoreInst     (Instruction &I);
328  void visitLoadInst      (LoadInst &I);
329  void visitGetElementPtrInst(GetElementPtrInst &I);
330  void visitCallInst      (CallInst &I) { visitCallSite(CallSite::get(&I)); }
331  void visitInvokeInst    (InvokeInst &II) {
332    visitCallSite(CallSite::get(&II));
333    visitTerminatorInst(II);
334  }
335  void visitCallSite      (CallSite CS);
336  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
337  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
338  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
339  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
340  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
341  void visitFreeInst      (Instruction &I) { /*returns void*/ }
342
343  void visitInstruction(Instruction &I) {
344    // If a new instruction is added to LLVM that we don't handle...
345    std::cerr << "SCCP: Don't know how to handle: " << I;
346    markOverdefined(&I);   // Just in case
347  }
348};
349
350// getFeasibleSuccessors - Return a vector of booleans to indicate which
351// successors are reachable from a given terminator instruction.
352//
353void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
354                                       std::vector<bool> &Succs) {
355  Succs.resize(TI.getNumSuccessors());
356  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
357    if (BI->isUnconditional()) {
358      Succs[0] = true;
359    } else {
360      LatticeVal &BCValue = getValueState(BI->getCondition());
361      if (BCValue.isOverdefined() ||
362          (BCValue.isConstant() && !isa<ConstantBool>(BCValue.getConstant()))) {
363        // Overdefined condition variables, and branches on unfoldable constant
364        // conditions, mean the branch could go either way.
365        Succs[0] = Succs[1] = true;
366      } else if (BCValue.isConstant()) {
367        // Constant condition variables mean the branch can only go a single way
368        Succs[BCValue.getConstant() == ConstantBool::False] = true;
369      }
370    }
371  } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) {
372    // Invoke instructions successors are always executable.
373    Succs[0] = Succs[1] = true;
374  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
375    LatticeVal &SCValue = getValueState(SI->getCondition());
376    if (SCValue.isOverdefined() ||   // Overdefined condition?
377        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
378      // All destinations are executable!
379      Succs.assign(TI.getNumSuccessors(), true);
380    } else if (SCValue.isConstant()) {
381      Constant *CPV = SCValue.getConstant();
382      // Make sure to skip the "default value" which isn't a value
383      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
384        if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
385          Succs[i] = true;
386          return;
387        }
388      }
389
390      // Constant value not equal to any of the branches... must execute
391      // default branch then...
392      Succs[0] = true;
393    }
394  } else {
395    std::cerr << "SCCP: Don't know how to handle: " << TI;
396    Succs.assign(TI.getNumSuccessors(), true);
397  }
398}
399
400
401// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
402// block to the 'To' basic block is currently feasible...
403//
404bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
405  assert(BBExecutable.count(To) && "Dest should always be alive!");
406
407  // Make sure the source basic block is executable!!
408  if (!BBExecutable.count(From)) return false;
409
410  // Check to make sure this edge itself is actually feasible now...
411  TerminatorInst *TI = From->getTerminator();
412  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
413    if (BI->isUnconditional())
414      return true;
415    else {
416      LatticeVal &BCValue = getValueState(BI->getCondition());
417      if (BCValue.isOverdefined()) {
418        // Overdefined condition variables mean the branch could go either way.
419        return true;
420      } else if (BCValue.isConstant()) {
421        // Not branching on an evaluatable constant?
422        if (!isa<ConstantBool>(BCValue.getConstant())) return true;
423
424        // Constant condition variables mean the branch can only go a single way
425        return BI->getSuccessor(BCValue.getConstant() ==
426                                       ConstantBool::False) == To;
427      }
428      return false;
429    }
430  } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
431    // Invoke instructions successors are always executable.
432    return true;
433  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
434    LatticeVal &SCValue = getValueState(SI->getCondition());
435    if (SCValue.isOverdefined()) {  // Overdefined condition?
436      // All destinations are executable!
437      return true;
438    } else if (SCValue.isConstant()) {
439      Constant *CPV = SCValue.getConstant();
440      if (!isa<ConstantInt>(CPV))
441        return true;  // not a foldable constant?
442
443      // Make sure to skip the "default value" which isn't a value
444      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
445        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
446          return SI->getSuccessor(i) == To;
447
448      // Constant value not equal to any of the branches... must execute
449      // default branch then...
450      return SI->getDefaultDest() == To;
451    }
452    return false;
453  } else {
454    std::cerr << "Unknown terminator instruction: " << *TI;
455    abort();
456  }
457}
458
459// visit Implementations - Something changed in this instruction... Either an
460// operand made a transition, or the instruction is newly executable.  Change
461// the value type of I to reflect these changes if appropriate.  This method
462// makes sure to do the following actions:
463//
464// 1. If a phi node merges two constants in, and has conflicting value coming
465//    from different branches, or if the PHI node merges in an overdefined
466//    value, then the PHI node becomes overdefined.
467// 2. If a phi node merges only constants in, and they all agree on value, the
468//    PHI node becomes a constant value equal to that.
469// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
470// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
471// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
472// 6. If a conditional branch has a value that is constant, make the selected
473//    destination executable
474// 7. If a conditional branch has a value that is overdefined, make all
475//    successors executable.
476//
477void SCCPSolver::visitPHINode(PHINode &PN) {
478  LatticeVal &PNIV = getValueState(&PN);
479  if (PNIV.isOverdefined()) {
480    // There may be instructions using this PHI node that are not overdefined
481    // themselves.  If so, make sure that they know that the PHI node operand
482    // changed.
483    std::multimap<PHINode*, Instruction*>::iterator I, E;
484    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
485    if (I != E) {
486      std::vector<Instruction*> Users;
487      Users.reserve(std::distance(I, E));
488      for (; I != E; ++I) Users.push_back(I->second);
489      while (!Users.empty()) {
490        visit(Users.back());
491        Users.pop_back();
492      }
493    }
494    return;  // Quick exit
495  }
496
497  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
498  // and slow us down a lot.  Just mark them overdefined.
499  if (PN.getNumIncomingValues() > 64) {
500    markOverdefined(PNIV, &PN);
501    return;
502  }
503
504  // Look at all of the executable operands of the PHI node.  If any of them
505  // are overdefined, the PHI becomes overdefined as well.  If they are all
506  // constant, and they agree with each other, the PHI becomes the identical
507  // constant.  If they are constant and don't agree, the PHI is overdefined.
508  // If there are no executable operands, the PHI remains undefined.
509  //
510  Constant *OperandVal = 0;
511  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
512    LatticeVal &IV = getValueState(PN.getIncomingValue(i));
513    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
514
515    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
516      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
517        markOverdefined(PNIV, &PN);
518        return;
519      }
520
521      if (OperandVal == 0) {   // Grab the first value...
522        OperandVal = IV.getConstant();
523      } else {                // Another value is being merged in!
524        // There is already a reachable operand.  If we conflict with it,
525        // then the PHI node becomes overdefined.  If we agree with it, we
526        // can continue on.
527
528        // Check to see if there are two different constants merging...
529        if (IV.getConstant() != OperandVal) {
530          // Yes there is.  This means the PHI node is not constant.
531          // You must be overdefined poor PHI.
532          //
533          markOverdefined(PNIV, &PN);    // The PHI node now becomes overdefined
534          return;    // I'm done analyzing you
535        }
536      }
537    }
538  }
539
540  // If we exited the loop, this means that the PHI node only has constant
541  // arguments that agree with each other(and OperandVal is the constant) or
542  // OperandVal is null because there are no defined incoming arguments.  If
543  // this is the case, the PHI remains undefined.
544  //
545  if (OperandVal)
546    markConstant(PNIV, &PN, OperandVal);      // Acquire operand value
547}
548
549void SCCPSolver::visitReturnInst(ReturnInst &I) {
550  if (I.getNumOperands() == 0) return;  // Ret void
551
552  // If we are tracking the return value of this function, merge it in.
553  Function *F = I.getParent()->getParent();
554  if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) {
555    hash_map<Function*, LatticeVal>::iterator TFRVI =
556      TrackedFunctionRetVals.find(F);
557    if (TFRVI != TrackedFunctionRetVals.end() &&
558        !TFRVI->second.isOverdefined()) {
559      LatticeVal &IV = getValueState(I.getOperand(0));
560      mergeInValue(TFRVI->second, F, IV);
561    }
562  }
563}
564
565
566void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
567  std::vector<bool> SuccFeasible;
568  getFeasibleSuccessors(TI, SuccFeasible);
569
570  BasicBlock *BB = TI.getParent();
571
572  // Mark all feasible successors executable...
573  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
574    if (SuccFeasible[i])
575      markEdgeExecutable(BB, TI.getSuccessor(i));
576}
577
578void SCCPSolver::visitCastInst(CastInst &I) {
579  Value *V = I.getOperand(0);
580  LatticeVal &VState = getValueState(V);
581  if (VState.isOverdefined())          // Inherit overdefinedness of operand
582    markOverdefined(&I);
583  else if (VState.isConstant())        // Propagate constant value
584    markConstant(&I, ConstantExpr::getCast(VState.getConstant(), I.getType()));
585}
586
587void SCCPSolver::visitSelectInst(SelectInst &I) {
588  LatticeVal &CondValue = getValueState(I.getCondition());
589  if (CondValue.isOverdefined())
590    markOverdefined(&I);
591  else if (CondValue.isConstant()) {
592    if (CondValue.getConstant() == ConstantBool::True) {
593      LatticeVal &Val = getValueState(I.getTrueValue());
594      if (Val.isOverdefined())
595        markOverdefined(&I);
596      else if (Val.isConstant())
597        markConstant(&I, Val.getConstant());
598    } else if (CondValue.getConstant() == ConstantBool::False) {
599      LatticeVal &Val = getValueState(I.getFalseValue());
600      if (Val.isOverdefined())
601        markOverdefined(&I);
602      else if (Val.isConstant())
603        markConstant(&I, Val.getConstant());
604    } else
605      markOverdefined(&I);
606  }
607}
608
609// Handle BinaryOperators and Shift Instructions...
610void SCCPSolver::visitBinaryOperator(Instruction &I) {
611  LatticeVal &IV = ValueState[&I];
612  if (IV.isOverdefined()) return;
613
614  LatticeVal &V1State = getValueState(I.getOperand(0));
615  LatticeVal &V2State = getValueState(I.getOperand(1));
616
617  if (V1State.isOverdefined() || V2State.isOverdefined()) {
618    // If this is an AND or OR with 0 or -1, it doesn't matter that the other
619    // operand is overdefined.
620    if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
621      LatticeVal *NonOverdefVal = 0;
622      if (!V1State.isOverdefined()) {
623        NonOverdefVal = &V1State;
624      } else if (!V2State.isOverdefined()) {
625        NonOverdefVal = &V2State;
626      }
627
628      if (NonOverdefVal) {
629        if (NonOverdefVal->isUndefined()) {
630          // Could annihilate value.
631          if (I.getOpcode() == Instruction::And)
632            markConstant(IV, &I, Constant::getNullValue(I.getType()));
633          else
634            markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType()));
635          return;
636        } else {
637          if (I.getOpcode() == Instruction::And) {
638            if (NonOverdefVal->getConstant()->isNullValue()) {
639              markConstant(IV, &I, NonOverdefVal->getConstant());
640              return;      // X or 0 = -1
641            }
642          } else {
643            if (ConstantIntegral *CI =
644                     dyn_cast<ConstantIntegral>(NonOverdefVal->getConstant()))
645              if (CI->isAllOnesValue()) {
646                markConstant(IV, &I, NonOverdefVal->getConstant());
647                return;    // X or -1 = -1
648              }
649          }
650        }
651      }
652    }
653
654
655    // If both operands are PHI nodes, it is possible that this instruction has
656    // a constant value, despite the fact that the PHI node doesn't.  Check for
657    // this condition now.
658    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
659      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
660        if (PN1->getParent() == PN2->getParent()) {
661          // Since the two PHI nodes are in the same basic block, they must have
662          // entries for the same predecessors.  Walk the predecessor list, and
663          // if all of the incoming values are constants, and the result of
664          // evaluating this expression with all incoming value pairs is the
665          // same, then this expression is a constant even though the PHI node
666          // is not a constant!
667          LatticeVal Result;
668          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
669            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
670            BasicBlock *InBlock = PN1->getIncomingBlock(i);
671            LatticeVal &In2 =
672              getValueState(PN2->getIncomingValueForBlock(InBlock));
673
674            if (In1.isOverdefined() || In2.isOverdefined()) {
675              Result.markOverdefined();
676              break;  // Cannot fold this operation over the PHI nodes!
677            } else if (In1.isConstant() && In2.isConstant()) {
678              Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
679                                              In2.getConstant());
680              if (Result.isUndefined())
681                Result.markConstant(V);
682              else if (Result.isConstant() && Result.getConstant() != V) {
683                Result.markOverdefined();
684                break;
685              }
686            }
687          }
688
689          // If we found a constant value here, then we know the instruction is
690          // constant despite the fact that the PHI nodes are overdefined.
691          if (Result.isConstant()) {
692            markConstant(IV, &I, Result.getConstant());
693            // Remember that this instruction is virtually using the PHI node
694            // operands.
695            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
696            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
697            return;
698          } else if (Result.isUndefined()) {
699            return;
700          }
701
702          // Okay, this really is overdefined now.  Since we might have
703          // speculatively thought that this was not overdefined before, and
704          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
705          // make sure to clean out any entries that we put there, for
706          // efficiency.
707          std::multimap<PHINode*, Instruction*>::iterator It, E;
708          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
709          while (It != E) {
710            if (It->second == &I) {
711              UsersOfOverdefinedPHIs.erase(It++);
712            } else
713              ++It;
714          }
715          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
716          while (It != E) {
717            if (It->second == &I) {
718              UsersOfOverdefinedPHIs.erase(It++);
719            } else
720              ++It;
721          }
722        }
723
724    markOverdefined(IV, &I);
725  } else if (V1State.isConstant() && V2State.isConstant()) {
726    markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
727                                           V2State.getConstant()));
728  }
729}
730
731// Handle getelementptr instructions... if all operands are constants then we
732// can turn this into a getelementptr ConstantExpr.
733//
734void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
735  LatticeVal &IV = ValueState[&I];
736  if (IV.isOverdefined()) return;
737
738  std::vector<Constant*> Operands;
739  Operands.reserve(I.getNumOperands());
740
741  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
742    LatticeVal &State = getValueState(I.getOperand(i));
743    if (State.isUndefined())
744      return;  // Operands are not resolved yet...
745    else if (State.isOverdefined()) {
746      markOverdefined(IV, &I);
747      return;
748    }
749    assert(State.isConstant() && "Unknown state!");
750    Operands.push_back(State.getConstant());
751  }
752
753  Constant *Ptr = Operands[0];
754  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
755
756  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands));
757}
758
759/// GetGEPGlobalInitializer - Given a constant and a getelementptr constantexpr,
760/// return the constant value being addressed by the constant expression, or
761/// null if something is funny.
762///
763static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) {
764  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
765    return 0;  // Do not allow stepping over the value!
766
767  // Loop over all of the operands, tracking down which value we are
768  // addressing...
769  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i)
770    if (ConstantUInt *CU = dyn_cast<ConstantUInt>(CE->getOperand(i))) {
771      ConstantStruct *CS = dyn_cast<ConstantStruct>(C);
772      if (CS == 0) return 0;
773      if (CU->getValue() >= CS->getNumOperands()) return 0;
774      C = CS->getOperand((unsigned)CU->getValue());
775    } else if (ConstantSInt *CS = dyn_cast<ConstantSInt>(CE->getOperand(i))) {
776      ConstantArray *CA = dyn_cast<ConstantArray>(C);
777      if (CA == 0) return 0;
778      if ((uint64_t)CS->getValue() >= CA->getNumOperands()) return 0;
779      C = CA->getOperand((unsigned)CS->getValue());
780    } else
781      return 0;
782  return C;
783}
784
785void SCCPSolver::visitStoreInst(Instruction &SI) {
786  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
787    return;
788  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
789  hash_map<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
790  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
791
792  // Get the value we are storing into the global.
793  LatticeVal &PtrVal = getValueState(SI.getOperand(0));
794
795  mergeInValue(I->second, GV, PtrVal);
796  if (I->second.isOverdefined())
797    TrackedGlobals.erase(I);      // No need to keep tracking this!
798}
799
800
801// Handle load instructions.  If the operand is a constant pointer to a constant
802// global, we can replace the load with the loaded constant value!
803void SCCPSolver::visitLoadInst(LoadInst &I) {
804  LatticeVal &IV = ValueState[&I];
805  if (IV.isOverdefined()) return;
806
807  LatticeVal &PtrVal = getValueState(I.getOperand(0));
808  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
809  if (PtrVal.isConstant() && !I.isVolatile()) {
810    Value *Ptr = PtrVal.getConstant();
811    if (isa<ConstantPointerNull>(Ptr)) {
812      // load null -> null
813      markConstant(IV, &I, Constant::getNullValue(I.getType()));
814      return;
815    }
816
817    // Transform load (constant global) into the value loaded.
818    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
819      if (GV->isConstant()) {
820        if (!GV->isExternal()) {
821          markConstant(IV, &I, GV->getInitializer());
822          return;
823        }
824      } else if (!TrackedGlobals.empty()) {
825        // If we are tracking this global, merge in the known value for it.
826        hash_map<GlobalVariable*, LatticeVal>::iterator It =
827          TrackedGlobals.find(GV);
828        if (It != TrackedGlobals.end()) {
829          mergeInValue(IV, &I, It->second);
830          return;
831        }
832      }
833    }
834
835    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
836    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
837      if (CE->getOpcode() == Instruction::GetElementPtr)
838	if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
839	  if (GV->isConstant() && !GV->isExternal())
840	    if (Constant *V =
841		GetGEPGlobalInitializer(GV->getInitializer(), CE)) {
842	      markConstant(IV, &I, V);
843	      return;
844	    }
845  }
846
847  // Otherwise we cannot say for certain what value this load will produce.
848  // Bail out.
849  markOverdefined(IV, &I);
850}
851
852void SCCPSolver::visitCallSite(CallSite CS) {
853  Function *F = CS.getCalledFunction();
854
855  // If we are tracking this function, we must make sure to bind arguments as
856  // appropriate.
857  hash_map<Function*, LatticeVal>::iterator TFRVI =TrackedFunctionRetVals.end();
858  if (F && F->hasInternalLinkage())
859    TFRVI = TrackedFunctionRetVals.find(F);
860
861  if (TFRVI != TrackedFunctionRetVals.end()) {
862    // If this is the first call to the function hit, mark its entry block
863    // executable.
864    if (!BBExecutable.count(F->begin()))
865      MarkBlockExecutable(F->begin());
866
867    CallSite::arg_iterator CAI = CS.arg_begin();
868    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
869         AI != E; ++AI, ++CAI) {
870      LatticeVal &IV = ValueState[AI];
871      if (!IV.isOverdefined())
872        mergeInValue(IV, AI, getValueState(*CAI));
873    }
874  }
875  Instruction *I = CS.getInstruction();
876  if (I->getType() == Type::VoidTy) return;
877
878  LatticeVal &IV = ValueState[I];
879  if (IV.isOverdefined()) return;
880
881  // Propagate the return value of the function to the value of the instruction.
882  if (TFRVI != TrackedFunctionRetVals.end()) {
883    mergeInValue(IV, I, TFRVI->second);
884    return;
885  }
886
887  if (F == 0 || !F->isExternal() || !canConstantFoldCallTo(F)) {
888    markOverdefined(IV, I);
889    return;
890  }
891
892  std::vector<Constant*> Operands;
893  Operands.reserve(I->getNumOperands()-1);
894
895  for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
896       AI != E; ++AI) {
897    LatticeVal &State = getValueState(*AI);
898    if (State.isUndefined())
899      return;  // Operands are not resolved yet...
900    else if (State.isOverdefined()) {
901      markOverdefined(IV, I);
902      return;
903    }
904    assert(State.isConstant() && "Unknown state!");
905    Operands.push_back(State.getConstant());
906  }
907
908  if (Constant *C = ConstantFoldCall(F, Operands))
909    markConstant(IV, I, C);
910  else
911    markOverdefined(IV, I);
912}
913
914
915void SCCPSolver::Solve() {
916  // Process the work lists until they are empty!
917  while (!BBWorkList.empty() || !InstWorkList.empty() ||
918	 !OverdefinedInstWorkList.empty()) {
919    // Process the instruction work list...
920    while (!OverdefinedInstWorkList.empty()) {
921      Value *I = OverdefinedInstWorkList.back();
922      OverdefinedInstWorkList.pop_back();
923
924      DEBUG(std::cerr << "\nPopped off OI-WL: " << *I);
925
926      // "I" got into the work list because it either made the transition from
927      // bottom to constant
928      //
929      // Anything on this worklist that is overdefined need not be visited
930      // since all of its users will have already been marked as overdefined
931      // Update all of the users of this instruction's value...
932      //
933      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
934           UI != E; ++UI)
935        OperandChangedState(*UI);
936    }
937    // Process the instruction work list...
938    while (!InstWorkList.empty()) {
939      Value *I = InstWorkList.back();
940      InstWorkList.pop_back();
941
942      DEBUG(std::cerr << "\nPopped off I-WL: " << *I);
943
944      // "I" got into the work list because it either made the transition from
945      // bottom to constant
946      //
947      // Anything on this worklist that is overdefined need not be visited
948      // since all of its users will have already been marked as overdefined.
949      // Update all of the users of this instruction's value...
950      //
951      if (!getValueState(I).isOverdefined())
952        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
953             UI != E; ++UI)
954          OperandChangedState(*UI);
955    }
956
957    // Process the basic block work list...
958    while (!BBWorkList.empty()) {
959      BasicBlock *BB = BBWorkList.back();
960      BBWorkList.pop_back();
961
962      DEBUG(std::cerr << "\nPopped off BBWL: " << *BB);
963
964      // Notify all instructions in this basic block that they are newly
965      // executable.
966      visit(BB);
967    }
968  }
969}
970
971/// ResolveBranchesIn - While solving the dataflow for a function, we assume
972/// that branches on undef values cannot reach any of their successors.
973/// However, this is not a safe assumption.  After we solve dataflow, this
974/// method should be use to handle this.  If this returns true, the solver
975/// should be rerun.
976bool SCCPSolver::ResolveBranchesIn(Function &F) {
977  bool BranchesResolved = false;
978  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
979    if (BBExecutable.count(BB)) {
980      TerminatorInst *TI = BB->getTerminator();
981      if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
982        if (BI->isConditional()) {
983          LatticeVal &BCValue = getValueState(BI->getCondition());
984          if (BCValue.isUndefined()) {
985            BI->setCondition(ConstantBool::True);
986            BranchesResolved = true;
987            visit(BI);
988          }
989        }
990      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
991        LatticeVal &SCValue = getValueState(SI->getCondition());
992        if (SCValue.isUndefined()) {
993          const Type *CondTy = SI->getCondition()->getType();
994          SI->setCondition(Constant::getNullValue(CondTy));
995          BranchesResolved = true;
996          visit(SI);
997        }
998      }
999    }
1000
1001  return BranchesResolved;
1002}
1003
1004
1005namespace {
1006  Statistic<> NumInstRemoved("sccp", "Number of instructions removed");
1007  Statistic<> NumDeadBlocks ("sccp", "Number of basic blocks unreachable");
1008
1009  //===--------------------------------------------------------------------===//
1010  //
1011  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1012  /// Sparse Conditional COnstant Propagator.
1013  ///
1014  struct SCCP : public FunctionPass {
1015    // runOnFunction - Run the Sparse Conditional Constant Propagation
1016    // algorithm, and return true if the function was modified.
1017    //
1018    bool runOnFunction(Function &F);
1019
1020    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1021      AU.setPreservesCFG();
1022    }
1023  };
1024
1025  RegisterOpt<SCCP> X("sccp", "Sparse Conditional Constant Propagation");
1026} // end anonymous namespace
1027
1028
1029// createSCCPPass - This is the public interface to this file...
1030FunctionPass *llvm::createSCCPPass() {
1031  return new SCCP();
1032}
1033
1034
1035// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1036// and return true if the function was modified.
1037//
1038bool SCCP::runOnFunction(Function &F) {
1039  DEBUG(std::cerr << "SCCP on function '" << F.getName() << "'\n");
1040  SCCPSolver Solver;
1041
1042  // Mark the first block of the function as being executable.
1043  Solver.MarkBlockExecutable(F.begin());
1044
1045  // Mark all arguments to the function as being overdefined.
1046  hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1047  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI)
1048    Values[AI].markOverdefined();
1049
1050  // Solve for constants.
1051  bool ResolvedBranches = true;
1052  while (ResolvedBranches) {
1053    Solver.Solve();
1054    DEBUG(std::cerr << "RESOLVING UNDEF BRANCHES\n");
1055    ResolvedBranches = Solver.ResolveBranchesIn(F);
1056  }
1057
1058  bool MadeChanges = false;
1059
1060  // If we decided that there are basic blocks that are dead in this function,
1061  // delete their contents now.  Note that we cannot actually delete the blocks,
1062  // as we cannot modify the CFG of the function.
1063  //
1064  std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks();
1065  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1066    if (!ExecutableBBs.count(BB)) {
1067      DEBUG(std::cerr << "  BasicBlock Dead:" << *BB);
1068      ++NumDeadBlocks;
1069
1070      // Delete the instructions backwards, as it has a reduced likelihood of
1071      // having to update as many def-use and use-def chains.
1072      std::vector<Instruction*> Insts;
1073      for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1074           I != E; ++I)
1075        Insts.push_back(I);
1076      while (!Insts.empty()) {
1077        Instruction *I = Insts.back();
1078        Insts.pop_back();
1079        if (!I->use_empty())
1080          I->replaceAllUsesWith(UndefValue::get(I->getType()));
1081        BB->getInstList().erase(I);
1082        MadeChanges = true;
1083        ++NumInstRemoved;
1084      }
1085    } else {
1086      // Iterate over all of the instructions in a function, replacing them with
1087      // constants if we have found them to be of constant values.
1088      //
1089      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1090        Instruction *Inst = BI++;
1091        if (Inst->getType() != Type::VoidTy) {
1092          LatticeVal &IV = Values[Inst];
1093          if (IV.isConstant() || IV.isUndefined() &&
1094              !isa<TerminatorInst>(Inst)) {
1095            Constant *Const = IV.isConstant()
1096              ? IV.getConstant() : UndefValue::get(Inst->getType());
1097            DEBUG(std::cerr << "  Constant: " << *Const << " = " << *Inst);
1098
1099            // Replaces all of the uses of a variable with uses of the constant.
1100            Inst->replaceAllUsesWith(Const);
1101
1102            // Delete the instruction.
1103            BB->getInstList().erase(Inst);
1104
1105            // Hey, we just changed something!
1106            MadeChanges = true;
1107            ++NumInstRemoved;
1108          }
1109        }
1110      }
1111    }
1112
1113  return MadeChanges;
1114}
1115
1116namespace {
1117  Statistic<> IPNumInstRemoved("ipsccp", "Number of instructions removed");
1118  Statistic<> IPNumDeadBlocks ("ipsccp", "Number of basic blocks unreachable");
1119  Statistic<> IPNumArgsElimed ("ipsccp",
1120                               "Number of arguments constant propagated");
1121  Statistic<> IPNumGlobalConst("ipsccp",
1122                               "Number of globals found to be constant");
1123
1124  //===--------------------------------------------------------------------===//
1125  //
1126  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1127  /// Constant Propagation.
1128  ///
1129  struct IPSCCP : public ModulePass {
1130    bool runOnModule(Module &M);
1131  };
1132
1133  RegisterOpt<IPSCCP>
1134  Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1135} // end anonymous namespace
1136
1137// createIPSCCPPass - This is the public interface to this file...
1138ModulePass *llvm::createIPSCCPPass() {
1139  return new IPSCCP();
1140}
1141
1142
1143static bool AddressIsTaken(GlobalValue *GV) {
1144  // Delete any dead constantexpr klingons.
1145  GV->removeDeadConstantUsers();
1146
1147  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1148       UI != E; ++UI)
1149    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1150      if (SI->getOperand(0) == GV || SI->isVolatile())
1151        return true;  // Storing addr of GV.
1152    } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1153      // Make sure we are calling the function, not passing the address.
1154      CallSite CS = CallSite::get(cast<Instruction>(*UI));
1155      for (CallSite::arg_iterator AI = CS.arg_begin(),
1156             E = CS.arg_end(); AI != E; ++AI)
1157        if (*AI == GV)
1158          return true;
1159    } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1160      if (LI->isVolatile())
1161        return true;
1162    } else {
1163      return true;
1164    }
1165  return false;
1166}
1167
1168bool IPSCCP::runOnModule(Module &M) {
1169  SCCPSolver Solver;
1170
1171  // Loop over all functions, marking arguments to those with their addresses
1172  // taken or that are external as overdefined.
1173  //
1174  hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1175  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1176    if (!F->hasInternalLinkage() || AddressIsTaken(F)) {
1177      if (!F->isExternal())
1178        Solver.MarkBlockExecutable(F->begin());
1179      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1180           AI != E; ++AI)
1181        Values[AI].markOverdefined();
1182    } else {
1183      Solver.AddTrackedFunction(F);
1184    }
1185
1186  // Loop over global variables.  We inform the solver about any internal global
1187  // variables that do not have their 'addresses taken'.  If they don't have
1188  // their addresses taken, we can propagate constants through them.
1189  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1190       G != E; ++G)
1191    if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G))
1192      Solver.TrackValueOfGlobalVariable(G);
1193
1194  // Solve for constants.
1195  bool ResolvedBranches = true;
1196  while (ResolvedBranches) {
1197    Solver.Solve();
1198
1199    DEBUG(std::cerr << "RESOLVING UNDEF BRANCHES\n");
1200    ResolvedBranches = false;
1201    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1202      ResolvedBranches |= Solver.ResolveBranchesIn(*F);
1203  }
1204
1205  bool MadeChanges = false;
1206
1207  // Iterate over all of the instructions in the module, replacing them with
1208  // constants if we have found them to be of constant values.
1209  //
1210  std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks();
1211  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1212    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1213         AI != E; ++AI)
1214      if (!AI->use_empty()) {
1215        LatticeVal &IV = Values[AI];
1216        if (IV.isConstant() || IV.isUndefined()) {
1217          Constant *CST = IV.isConstant() ?
1218            IV.getConstant() : UndefValue::get(AI->getType());
1219          DEBUG(std::cerr << "***  Arg " << *AI << " = " << *CST <<"\n");
1220
1221          // Replaces all of the uses of a variable with uses of the
1222          // constant.
1223          AI->replaceAllUsesWith(CST);
1224          ++IPNumArgsElimed;
1225        }
1226      }
1227
1228    std::vector<BasicBlock*> BlocksToErase;
1229    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1230      if (!ExecutableBBs.count(BB)) {
1231        DEBUG(std::cerr << "  BasicBlock Dead:" << *BB);
1232        ++IPNumDeadBlocks;
1233
1234        // Delete the instructions backwards, as it has a reduced likelihood of
1235        // having to update as many def-use and use-def chains.
1236        std::vector<Instruction*> Insts;
1237        TerminatorInst *TI = BB->getTerminator();
1238        for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1239          Insts.push_back(I);
1240
1241        while (!Insts.empty()) {
1242          Instruction *I = Insts.back();
1243          Insts.pop_back();
1244          if (!I->use_empty())
1245            I->replaceAllUsesWith(UndefValue::get(I->getType()));
1246          BB->getInstList().erase(I);
1247          MadeChanges = true;
1248          ++IPNumInstRemoved;
1249        }
1250
1251        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1252          BasicBlock *Succ = TI->getSuccessor(i);
1253          if (Succ->begin() != Succ->end() && isa<PHINode>(Succ->begin()))
1254            TI->getSuccessor(i)->removePredecessor(BB);
1255        }
1256        if (!TI->use_empty())
1257          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1258        BB->getInstList().erase(TI);
1259
1260        if (&*BB != &F->front())
1261          BlocksToErase.push_back(BB);
1262        else
1263          new UnreachableInst(BB);
1264
1265      } else {
1266        for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1267          Instruction *Inst = BI++;
1268          if (Inst->getType() != Type::VoidTy) {
1269            LatticeVal &IV = Values[Inst];
1270            if (IV.isConstant() || IV.isUndefined() &&
1271                !isa<TerminatorInst>(Inst)) {
1272              Constant *Const = IV.isConstant()
1273                ? IV.getConstant() : UndefValue::get(Inst->getType());
1274              DEBUG(std::cerr << "  Constant: " << *Const << " = " << *Inst);
1275
1276              // Replaces all of the uses of a variable with uses of the
1277              // constant.
1278              Inst->replaceAllUsesWith(Const);
1279
1280              // Delete the instruction.
1281              if (!isa<TerminatorInst>(Inst) && !isa<CallInst>(Inst))
1282                BB->getInstList().erase(Inst);
1283
1284              // Hey, we just changed something!
1285              MadeChanges = true;
1286              ++IPNumInstRemoved;
1287            }
1288          }
1289        }
1290      }
1291
1292    // Now that all instructions in the function are constant folded, erase dead
1293    // blocks, because we can now use ConstantFoldTerminator to get rid of
1294    // in-edges.
1295    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1296      // If there are any PHI nodes in this successor, drop entries for BB now.
1297      BasicBlock *DeadBB = BlocksToErase[i];
1298      while (!DeadBB->use_empty()) {
1299        Instruction *I = cast<Instruction>(DeadBB->use_back());
1300        bool Folded = ConstantFoldTerminator(I->getParent());
1301        assert(Folded && "Didn't fold away reference to block!");
1302      }
1303
1304      // Finally, delete the basic block.
1305      F->getBasicBlockList().erase(DeadBB);
1306    }
1307  }
1308
1309  // If we inferred constant or undef return values for a function, we replaced
1310  // all call uses with the inferred value.  This means we don't need to bother
1311  // actually returning anything from the function.  Replace all return
1312  // instructions with return undef.
1313  const hash_map<Function*, LatticeVal> &RV =Solver.getTrackedFunctionRetVals();
1314  for (hash_map<Function*, LatticeVal>::const_iterator I = RV.begin(),
1315         E = RV.end(); I != E; ++I)
1316    if (!I->second.isOverdefined() &&
1317        I->first->getReturnType() != Type::VoidTy) {
1318      Function *F = I->first;
1319      for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1320        if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1321          if (!isa<UndefValue>(RI->getOperand(0)))
1322            RI->setOperand(0, UndefValue::get(F->getReturnType()));
1323    }
1324
1325  // If we infered constant or undef values for globals variables, we can delete
1326  // the global and any stores that remain to it.
1327  const hash_map<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1328  for (hash_map<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1329         E = TG.end(); I != E; ++I) {
1330    GlobalVariable *GV = I->first;
1331    assert(!I->second.isOverdefined() &&
1332           "Overdefined values should have been taken out of the map!");
1333    DEBUG(std::cerr << "Found that GV '" << GV->getName()<< "' is constant!\n");
1334    while (!GV->use_empty()) {
1335      StoreInst *SI = cast<StoreInst>(GV->use_back());
1336      SI->eraseFromParent();
1337    }
1338    M.getGlobalList().erase(GV);
1339    ++IPNumGlobalConst;
1340  }
1341
1342  return MadeChanges;
1343}
1344