SCCP.cpp revision 80b2d6c8c4d6ee060bce6d3e8e899c62a31c4c8c
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18// Notice that:
19//   * This pass has a habit of making definitions be dead.  It is a good idea
20//     to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/Pass.h"
30#include "llvm/Type.h"
31#include "llvm/Support/InstVisitor.h"
32#include "llvm/Transforms/Utils/Local.h"
33#include "Support/Debug.h"
34#include "Support/hash_map"
35#include "Support/Statistic.h"
36#include "Support/STLExtras.h"
37#include <algorithm>
38#include <set>
39using namespace llvm;
40
41// InstVal class - This class represents the different lattice values that an
42// instruction may occupy.  It is a simple class with value semantics.
43//
44namespace {
45  Statistic<> NumInstRemoved("sccp", "Number of instructions removed");
46
47class InstVal {
48  enum {
49    undefined,           // This instruction has no known value
50    constant,            // This instruction has a constant value
51    overdefined          // This instruction has an unknown value
52  } LatticeValue;        // The current lattice position
53  Constant *ConstantVal; // If Constant value, the current value
54public:
55  inline InstVal() : LatticeValue(undefined), ConstantVal(0) {}
56
57  // markOverdefined - Return true if this is a new status to be in...
58  inline bool markOverdefined() {
59    if (LatticeValue != overdefined) {
60      LatticeValue = overdefined;
61      return true;
62    }
63    return false;
64  }
65
66  // markConstant - Return true if this is a new status for us...
67  inline bool markConstant(Constant *V) {
68    if (LatticeValue != constant) {
69      LatticeValue = constant;
70      ConstantVal = V;
71      return true;
72    } else {
73      assert(ConstantVal == V && "Marking constant with different value");
74    }
75    return false;
76  }
77
78  inline bool isUndefined()   const { return LatticeValue == undefined; }
79  inline bool isConstant()    const { return LatticeValue == constant; }
80  inline bool isOverdefined() const { return LatticeValue == overdefined; }
81
82  inline Constant *getConstant() const {
83    assert(isConstant() && "Cannot get the constant of a non-constant!");
84    return ConstantVal;
85  }
86};
87
88} // end anonymous namespace
89
90
91//===----------------------------------------------------------------------===//
92// SCCP Class
93//
94// This class does all of the work of Sparse Conditional Constant Propagation.
95//
96namespace {
97class SCCP : public FunctionPass, public InstVisitor<SCCP> {
98  std::set<BasicBlock*>     BBExecutable;// The basic blocks that are executable
99  hash_map<Value*, InstVal> ValueState;  // The state each value is in...
100
101  // The reason for two worklists is that overdefined is the lowest state
102  // on the lattice, and moving things to overdefined as fast as possible
103  // makes SCCP converge much faster.
104  // By having a separate worklist, we accomplish this because everything
105  // possibly overdefined will become overdefined at the soonest possible
106  // point.
107  std::vector<Instruction*> OverdefinedInstWorkList;// The overdefined
108                                                    // instruction work list
109  std::vector<Instruction*> InstWorkList;// The instruction work list
110
111
112  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
113
114  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
115  /// overdefined, despite the fact that the PHI node is overdefined.
116  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
117
118  /// KnownFeasibleEdges - Entries in this set are edges which have already had
119  /// PHI nodes retriggered.
120  typedef std::pair<BasicBlock*,BasicBlock*> Edge;
121  std::set<Edge> KnownFeasibleEdges;
122public:
123
124  // runOnFunction - Run the Sparse Conditional Constant Propagation algorithm,
125  // and return true if the function was modified.
126  //
127  bool runOnFunction(Function &F);
128
129  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
130    AU.setPreservesCFG();
131  }
132
133
134  //===--------------------------------------------------------------------===//
135  // The implementation of this class
136  //
137private:
138  friend class InstVisitor<SCCP>;        // Allow callbacks from visitor
139
140  // markConstant - Make a value be marked as "constant".  If the value
141  // is not already a constant, add it to the instruction work list so that
142  // the users of the instruction are updated later.
143  //
144  inline void markConstant(InstVal &IV, Instruction *I, Constant *C) {
145    if (IV.markConstant(C)) {
146      DEBUG(std::cerr << "markConstant: " << *C << ": " << *I);
147      InstWorkList.push_back(I);
148    }
149  }
150  inline void markConstant(Instruction *I, Constant *C) {
151    markConstant(ValueState[I], I, C);
152  }
153
154  // markOverdefined - Make a value be marked as "overdefined". If the
155  // value is not already overdefined, add it to the overdefined instruction
156  // work list so that the users of the instruction are updated later.
157
158  inline void markOverdefined(InstVal &IV, Instruction *I) {
159    if (IV.markOverdefined()) {
160      DEBUG(std::cerr << "markOverdefined: " << *I);
161      OverdefinedInstWorkList.push_back(I);  // Only instructions go on the work list
162    }
163  }
164  inline void markOverdefined(Instruction *I) {
165    markOverdefined(ValueState[I], I);
166  }
167
168  // getValueState - Return the InstVal object that corresponds to the value.
169  // This function is necessary because not all values should start out in the
170  // underdefined state... Argument's should be overdefined, and
171  // constants should be marked as constants.  If a value is not known to be an
172  // Instruction object, then use this accessor to get its value from the map.
173  //
174  inline InstVal &getValueState(Value *V) {
175    hash_map<Value*, InstVal>::iterator I = ValueState.find(V);
176    if (I != ValueState.end()) return I->second;  // Common case, in the map
177
178    if (Constant *CPV = dyn_cast<Constant>(V)) {  // Constants are constant
179      ValueState[CPV].markConstant(CPV);
180    } else if (isa<Argument>(V)) {                // Arguments are overdefined
181      ValueState[V].markOverdefined();
182    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
183      // The address of a global is a constant...
184      ValueState[V].markConstant(ConstantPointerRef::get(GV));
185    }
186    // All others are underdefined by default...
187    return ValueState[V];
188  }
189
190  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
191  // work list if it is not already executable...
192  //
193  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
194    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
195      return;  // This edge is already known to be executable!
196
197    if (BBExecutable.count(Dest)) {
198      DEBUG(std::cerr << "Marking Edge Executable: " << Source->getName()
199                      << " -> " << Dest->getName() << "\n");
200
201      // The destination is already executable, but we just made an edge
202      // feasible that wasn't before.  Revisit the PHI nodes in the block
203      // because they have potentially new operands.
204      for (BasicBlock::iterator I = Dest->begin();
205           PHINode *PN = dyn_cast<PHINode>(I); ++I)
206        visitPHINode(*PN);
207
208    } else {
209      DEBUG(std::cerr << "Marking Block Executable: " << Dest->getName()<<"\n");
210      BBExecutable.insert(Dest);   // Basic block is executable!
211      BBWorkList.push_back(Dest);  // Add the block to the work list!
212    }
213  }
214
215
216  // visit implementations - Something changed in this instruction... Either an
217  // operand made a transition, or the instruction is newly executable.  Change
218  // the value type of I to reflect these changes if appropriate.
219  //
220  void visitPHINode(PHINode &I);
221
222  // Terminators
223  void visitReturnInst(ReturnInst &I) { /*does not have an effect*/ }
224  void visitTerminatorInst(TerminatorInst &TI);
225
226  void visitCastInst(CastInst &I);
227  void visitSelectInst(SelectInst &I);
228  void visitBinaryOperator(Instruction &I);
229  void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
230
231  // Instructions that cannot be folded away...
232  void visitStoreInst     (Instruction &I) { /*returns void*/ }
233  void visitLoadInst      (LoadInst &I);
234  void visitGetElementPtrInst(GetElementPtrInst &I);
235  void visitCallInst      (CallInst &I);
236  void visitInvokeInst    (TerminatorInst &I) {
237    if (I.getType() != Type::VoidTy) markOverdefined(&I);
238    visitTerminatorInst(I);
239  }
240  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
241  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
242  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
243  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
244  void visitFreeInst      (Instruction &I) { /*returns void*/ }
245
246  void visitInstruction(Instruction &I) {
247    // If a new instruction is added to LLVM that we don't handle...
248    std::cerr << "SCCP: Don't know how to handle: " << I;
249    markOverdefined(&I);   // Just in case
250  }
251
252  // getFeasibleSuccessors - Return a vector of booleans to indicate which
253  // successors are reachable from a given terminator instruction.
254  //
255  void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs);
256
257  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
258  // block to the 'To' basic block is currently feasible...
259  //
260  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
261
262  // OperandChangedState - This method is invoked on all of the users of an
263  // instruction that was just changed state somehow....  Based on this
264  // information, we need to update the specified user of this instruction.
265  //
266  void OperandChangedState(User *U) {
267    // Only instructions use other variable values!
268    Instruction &I = cast<Instruction>(*U);
269    if (BBExecutable.count(I.getParent()))   // Inst is executable?
270      visit(I);
271  }
272};
273
274  RegisterOpt<SCCP> X("sccp", "Sparse Conditional Constant Propagation");
275} // end anonymous namespace
276
277
278// createSCCPPass - This is the public interface to this file...
279Pass *llvm::createSCCPPass() {
280  return new SCCP();
281}
282
283
284//===----------------------------------------------------------------------===//
285// SCCP Class Implementation
286
287
288// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
289// and return true if the function was modified.
290//
291bool SCCP::runOnFunction(Function &F) {
292  // Mark the first block of the function as being executable...
293  BBExecutable.insert(F.begin());   // Basic block is executable!
294  BBWorkList.push_back(F.begin());  // Add the block to the work list!
295
296  // Process the work lists until they are empty!
297  while (!BBWorkList.empty() || !InstWorkList.empty() ||
298	 !OverdefinedInstWorkList.empty()) {
299    // Process the instruction work list...
300    while (!OverdefinedInstWorkList.empty()) {
301      Instruction *I = OverdefinedInstWorkList.back();
302      OverdefinedInstWorkList.pop_back();
303
304      DEBUG(std::cerr << "\nPopped off OI-WL: " << I);
305
306      // "I" got into the work list because it either made the transition from
307      // bottom to constant
308      //
309      // Anything on this worklist that is overdefined need not be visited
310      // since all of its users will have already been marked as overdefined
311      // Update all of the users of this instruction's value...
312      //
313      for_each(I->use_begin(), I->use_end(),
314	       bind_obj(this, &SCCP::OperandChangedState));
315    }
316    // Process the instruction work list...
317    while (!InstWorkList.empty()) {
318      Instruction *I = InstWorkList.back();
319      InstWorkList.pop_back();
320
321      DEBUG(std::cerr << "\nPopped off I-WL: " << *I);
322
323      // "I" got into the work list because it either made the transition from
324      // bottom to constant
325      //
326      // Anything on this worklist that is overdefined need not be visited
327      // since all of its users will have already been marked as overdefined.
328      // Update all of the users of this instruction's value...
329      //
330      InstVal &Ival = getValueState (I);
331      if (!Ival.isOverdefined())
332	for_each(I->use_begin(), I->use_end(),
333		 bind_obj(this, &SCCP::OperandChangedState));
334    }
335
336    // Process the basic block work list...
337    while (!BBWorkList.empty()) {
338      BasicBlock *BB = BBWorkList.back();
339      BBWorkList.pop_back();
340
341      DEBUG(std::cerr << "\nPopped off BBWL: " << *BB);
342
343      // Notify all instructions in this basic block that they are newly
344      // executable.
345      visit(BB);
346    }
347  }
348
349  if (DebugFlag) {
350    for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
351      if (!BBExecutable.count(I))
352        std::cerr << "BasicBlock Dead:" << *I;
353  }
354
355  // Iterate over all of the instructions in a function, replacing them with
356  // constants if we have found them to be of constant values.
357  //
358  bool MadeChanges = false;
359  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB)
360    for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) {
361      Instruction &Inst = *BI;
362      InstVal &IV = ValueState[&Inst];
363      if (IV.isConstant()) {
364        Constant *Const = IV.getConstant();
365        DEBUG(std::cerr << "Constant: " << *Const << " = " << Inst);
366
367        // Replaces all of the uses of a variable with uses of the constant.
368        Inst.replaceAllUsesWith(Const);
369
370        // Remove the operator from the list of definitions... and delete it.
371        BI = BB->getInstList().erase(BI);
372
373        // Hey, we just changed something!
374        MadeChanges = true;
375        ++NumInstRemoved;
376      } else {
377        ++BI;
378      }
379    }
380
381  // Reset state so that the next invocation will have empty data structures
382  BBExecutable.clear();
383  ValueState.clear();
384  std::vector<Instruction*>().swap(OverdefinedInstWorkList);
385  std::vector<Instruction*>().swap(InstWorkList);
386  std::vector<BasicBlock*>().swap(BBWorkList);
387
388  return MadeChanges;
389}
390
391
392// getFeasibleSuccessors - Return a vector of booleans to indicate which
393// successors are reachable from a given terminator instruction.
394//
395void SCCP::getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs) {
396  Succs.resize(TI.getNumSuccessors());
397  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
398    if (BI->isUnconditional()) {
399      Succs[0] = true;
400    } else {
401      InstVal &BCValue = getValueState(BI->getCondition());
402      if (BCValue.isOverdefined() ||
403          (BCValue.isConstant() && !isa<ConstantBool>(BCValue.getConstant()))) {
404        // Overdefined condition variables, and branches on unfoldable constant
405        // conditions, mean the branch could go either way.
406        Succs[0] = Succs[1] = true;
407      } else if (BCValue.isConstant()) {
408        // Constant condition variables mean the branch can only go a single way
409        Succs[BCValue.getConstant() == ConstantBool::False] = true;
410      }
411    }
412  } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) {
413    // Invoke instructions successors are always executable.
414    Succs[0] = Succs[1] = true;
415  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
416    InstVal &SCValue = getValueState(SI->getCondition());
417    if (SCValue.isOverdefined() ||   // Overdefined condition?
418        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
419      // All destinations are executable!
420      Succs.assign(TI.getNumSuccessors(), true);
421    } else if (SCValue.isConstant()) {
422      Constant *CPV = SCValue.getConstant();
423      // Make sure to skip the "default value" which isn't a value
424      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
425        if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
426          Succs[i] = true;
427          return;
428        }
429      }
430
431      // Constant value not equal to any of the branches... must execute
432      // default branch then...
433      Succs[0] = true;
434    }
435  } else {
436    std::cerr << "SCCP: Don't know how to handle: " << TI;
437    Succs.assign(TI.getNumSuccessors(), true);
438  }
439}
440
441
442// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
443// block to the 'To' basic block is currently feasible...
444//
445bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
446  assert(BBExecutable.count(To) && "Dest should always be alive!");
447
448  // Make sure the source basic block is executable!!
449  if (!BBExecutable.count(From)) return false;
450
451  // Check to make sure this edge itself is actually feasible now...
452  TerminatorInst *TI = From->getTerminator();
453  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
454    if (BI->isUnconditional())
455      return true;
456    else {
457      InstVal &BCValue = getValueState(BI->getCondition());
458      if (BCValue.isOverdefined()) {
459        // Overdefined condition variables mean the branch could go either way.
460        return true;
461      } else if (BCValue.isConstant()) {
462        // Not branching on an evaluatable constant?
463        if (!isa<ConstantBool>(BCValue.getConstant())) return true;
464
465        // Constant condition variables mean the branch can only go a single way
466        return BI->getSuccessor(BCValue.getConstant() ==
467                                       ConstantBool::False) == To;
468      }
469      return false;
470    }
471  } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
472    // Invoke instructions successors are always executable.
473    return true;
474  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
475    InstVal &SCValue = getValueState(SI->getCondition());
476    if (SCValue.isOverdefined()) {  // Overdefined condition?
477      // All destinations are executable!
478      return true;
479    } else if (SCValue.isConstant()) {
480      Constant *CPV = SCValue.getConstant();
481      if (!isa<ConstantInt>(CPV))
482        return true;  // not a foldable constant?
483
484      // Make sure to skip the "default value" which isn't a value
485      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
486        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
487          return SI->getSuccessor(i) == To;
488
489      // Constant value not equal to any of the branches... must execute
490      // default branch then...
491      return SI->getDefaultDest() == To;
492    }
493    return false;
494  } else {
495    std::cerr << "Unknown terminator instruction: " << *TI;
496    abort();
497  }
498}
499
500// visit Implementations - Something changed in this instruction... Either an
501// operand made a transition, or the instruction is newly executable.  Change
502// the value type of I to reflect these changes if appropriate.  This method
503// makes sure to do the following actions:
504//
505// 1. If a phi node merges two constants in, and has conflicting value coming
506//    from different branches, or if the PHI node merges in an overdefined
507//    value, then the PHI node becomes overdefined.
508// 2. If a phi node merges only constants in, and they all agree on value, the
509//    PHI node becomes a constant value equal to that.
510// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
511// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
512// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
513// 6. If a conditional branch has a value that is constant, make the selected
514//    destination executable
515// 7. If a conditional branch has a value that is overdefined, make all
516//    successors executable.
517//
518void SCCP::visitPHINode(PHINode &PN) {
519  InstVal &PNIV = getValueState(&PN);
520  if (PNIV.isOverdefined()) {
521    // There may be instructions using this PHI node that are not overdefined
522    // themselves.  If so, make sure that they know that the PHI node operand
523    // changed.
524    std::multimap<PHINode*, Instruction*>::iterator I, E;
525    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
526    if (I != E) {
527      std::vector<Instruction*> Users;
528      Users.reserve(std::distance(I, E));
529      for (; I != E; ++I) Users.push_back(I->second);
530      while (!Users.empty()) {
531        visit(Users.back());
532        Users.pop_back();
533      }
534    }
535    return;  // Quick exit
536  }
537
538  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
539  // and slow us down a lot.  Just mark them overdefined.
540  if (PN.getNumIncomingValues() > 64) {
541    markOverdefined(PNIV, &PN);
542    return;
543  }
544
545  // Look at all of the executable operands of the PHI node.  If any of them
546  // are overdefined, the PHI becomes overdefined as well.  If they are all
547  // constant, and they agree with each other, the PHI becomes the identical
548  // constant.  If they are constant and don't agree, the PHI is overdefined.
549  // If there are no executable operands, the PHI remains undefined.
550  //
551  Constant *OperandVal = 0;
552  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
553    InstVal &IV = getValueState(PN.getIncomingValue(i));
554    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
555
556    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
557      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
558        markOverdefined(PNIV, &PN);
559        return;
560      }
561
562      if (OperandVal == 0) {   // Grab the first value...
563        OperandVal = IV.getConstant();
564      } else {                // Another value is being merged in!
565        // There is already a reachable operand.  If we conflict with it,
566        // then the PHI node becomes overdefined.  If we agree with it, we
567        // can continue on.
568
569        // Check to see if there are two different constants merging...
570        if (IV.getConstant() != OperandVal) {
571          // Yes there is.  This means the PHI node is not constant.
572          // You must be overdefined poor PHI.
573          //
574          markOverdefined(PNIV, &PN);    // The PHI node now becomes overdefined
575          return;    // I'm done analyzing you
576        }
577      }
578    }
579  }
580
581  // If we exited the loop, this means that the PHI node only has constant
582  // arguments that agree with each other(and OperandVal is the constant) or
583  // OperandVal is null because there are no defined incoming arguments.  If
584  // this is the case, the PHI remains undefined.
585  //
586  if (OperandVal)
587    markConstant(PNIV, &PN, OperandVal);      // Acquire operand value
588}
589
590void SCCP::visitTerminatorInst(TerminatorInst &TI) {
591  std::vector<bool> SuccFeasible;
592  getFeasibleSuccessors(TI, SuccFeasible);
593
594  BasicBlock *BB = TI.getParent();
595
596  // Mark all feasible successors executable...
597  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
598    if (SuccFeasible[i])
599      markEdgeExecutable(BB, TI.getSuccessor(i));
600}
601
602void SCCP::visitCastInst(CastInst &I) {
603  Value *V = I.getOperand(0);
604  InstVal &VState = getValueState(V);
605  if (VState.isOverdefined())          // Inherit overdefinedness of operand
606    markOverdefined(&I);
607  else if (VState.isConstant())        // Propagate constant value
608    markConstant(&I, ConstantExpr::getCast(VState.getConstant(), I.getType()));
609}
610
611void SCCP::visitSelectInst(SelectInst &I) {
612  InstVal &CondValue = getValueState(I.getCondition());
613  if (CondValue.isOverdefined())
614    markOverdefined(&I);
615  else if (CondValue.isConstant()) {
616    if (CondValue.getConstant() == ConstantBool::True) {
617      InstVal &Val = getValueState(I.getTrueValue());
618      if (Val.isOverdefined())
619        markOverdefined(&I);
620      else if (Val.isConstant())
621        markConstant(&I, Val.getConstant());
622    } else if (CondValue.getConstant() == ConstantBool::False) {
623      InstVal &Val = getValueState(I.getFalseValue());
624      if (Val.isOverdefined())
625        markOverdefined(&I);
626      else if (Val.isConstant())
627        markConstant(&I, Val.getConstant());
628    } else
629      markOverdefined(&I);
630  }
631}
632
633// Handle BinaryOperators and Shift Instructions...
634void SCCP::visitBinaryOperator(Instruction &I) {
635  InstVal &IV = ValueState[&I];
636  if (IV.isOverdefined()) return;
637
638  InstVal &V1State = getValueState(I.getOperand(0));
639  InstVal &V2State = getValueState(I.getOperand(1));
640
641  if (V1State.isOverdefined() || V2State.isOverdefined()) {
642    // If both operands are PHI nodes, it is possible that this instruction has
643    // a constant value, despite the fact that the PHI node doesn't.  Check for
644    // this condition now.
645    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
646      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
647        if (PN1->getParent() == PN2->getParent()) {
648          // Since the two PHI nodes are in the same basic block, they must have
649          // entries for the same predecessors.  Walk the predecessor list, and
650          // if all of the incoming values are constants, and the result of
651          // evaluating this expression with all incoming value pairs is the
652          // same, then this expression is a constant even though the PHI node
653          // is not a constant!
654          InstVal Result;
655          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
656            InstVal &In1 = getValueState(PN1->getIncomingValue(i));
657            BasicBlock *InBlock = PN1->getIncomingBlock(i);
658            InstVal &In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
659
660            if (In1.isOverdefined() || In2.isOverdefined()) {
661              Result.markOverdefined();
662              break;  // Cannot fold this operation over the PHI nodes!
663            } else if (In1.isConstant() && In2.isConstant()) {
664              Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
665                                              In2.getConstant());
666              if (Result.isUndefined())
667                Result.markConstant(V);
668              else if (Result.isConstant() && Result.getConstant() != V) {
669                Result.markOverdefined();
670                break;
671              }
672            }
673          }
674
675          // If we found a constant value here, then we know the instruction is
676          // constant despite the fact that the PHI nodes are overdefined.
677          if (Result.isConstant()) {
678            markConstant(IV, &I, Result.getConstant());
679            // Remember that this instruction is virtually using the PHI node
680            // operands.
681            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
682            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
683            return;
684          } else if (Result.isUndefined()) {
685            return;
686          }
687
688          // Okay, this really is overdefined now.  Since we might have
689          // speculatively thought that this was not overdefined before, and
690          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
691          // make sure to clean out any entries that we put there, for
692          // efficiency.
693          std::multimap<PHINode*, Instruction*>::iterator It, E;
694          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
695          while (It != E) {
696            if (It->second == &I) {
697              UsersOfOverdefinedPHIs.erase(It++);
698            } else
699              ++It;
700          }
701          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
702          while (It != E) {
703            if (It->second == &I) {
704              UsersOfOverdefinedPHIs.erase(It++);
705            } else
706              ++It;
707          }
708        }
709
710    markOverdefined(IV, &I);
711  } else if (V1State.isConstant() && V2State.isConstant()) {
712    markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
713                                           V2State.getConstant()));
714  }
715}
716
717// Handle getelementptr instructions... if all operands are constants then we
718// can turn this into a getelementptr ConstantExpr.
719//
720void SCCP::visitGetElementPtrInst(GetElementPtrInst &I) {
721  InstVal &IV = ValueState[&I];
722  if (IV.isOverdefined()) return;
723
724  std::vector<Constant*> Operands;
725  Operands.reserve(I.getNumOperands());
726
727  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
728    InstVal &State = getValueState(I.getOperand(i));
729    if (State.isUndefined())
730      return;  // Operands are not resolved yet...
731    else if (State.isOverdefined()) {
732      markOverdefined(IV, &I);
733      return;
734    }
735    assert(State.isConstant() && "Unknown state!");
736    Operands.push_back(State.getConstant());
737  }
738
739  Constant *Ptr = Operands[0];
740  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
741
742  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands));
743}
744
745/// GetGEPGlobalInitializer - Given a constant and a getelementptr constantexpr,
746/// return the constant value being addressed by the constant expression, or
747/// null if something is funny.
748///
749static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) {
750  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
751    return 0;  // Do not allow stepping over the value!
752
753  // Loop over all of the operands, tracking down which value we are
754  // addressing...
755  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i)
756    if (ConstantUInt *CU = dyn_cast<ConstantUInt>(CE->getOperand(i))) {
757      ConstantStruct *CS = dyn_cast<ConstantStruct>(C);
758      if (CS == 0) return 0;
759      if (CU->getValue() >= CS->getValues().size()) return 0;
760      C = cast<Constant>(CS->getValues()[CU->getValue()]);
761    } else if (ConstantSInt *CS = dyn_cast<ConstantSInt>(CE->getOperand(i))) {
762      ConstantArray *CA = dyn_cast<ConstantArray>(C);
763      if (CA == 0) return 0;
764      if ((uint64_t)CS->getValue() >= CA->getValues().size()) return 0;
765      C = cast<Constant>(CA->getValues()[CS->getValue()]);
766    } else
767      return 0;
768  return C;
769}
770
771// Handle load instructions.  If the operand is a constant pointer to a constant
772// global, we can replace the load with the loaded constant value!
773void SCCP::visitLoadInst(LoadInst &I) {
774  InstVal &IV = ValueState[&I];
775  if (IV.isOverdefined()) return;
776
777  InstVal &PtrVal = getValueState(I.getOperand(0));
778  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
779  if (PtrVal.isConstant() && !I.isVolatile()) {
780    Value *Ptr = PtrVal.getConstant();
781    if (isa<ConstantPointerNull>(Ptr)) {
782      // load null -> null
783      markConstant(IV, &I, Constant::getNullValue(I.getType()));
784      return;
785    }
786
787    if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Ptr))
788      Ptr = CPR->getValue();
789
790    // Transform load (constant global) into the value loaded.
791    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr))
792      if (GV->isConstant() && !GV->isExternal()) {
793        markConstant(IV, &I, GV->getInitializer());
794        return;
795      }
796
797    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
798    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
799      if (CE->getOpcode() == Instruction::GetElementPtr)
800        if (ConstantPointerRef *G
801            = dyn_cast<ConstantPointerRef>(CE->getOperand(0)))
802          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getValue()))
803            if (GV->isConstant() && !GV->isExternal())
804              if (Constant *V =
805                  GetGEPGlobalInitializer(GV->getInitializer(), CE)) {
806                markConstant(IV, &I, V);
807                return;
808              }
809  }
810
811  // Otherwise we cannot say for certain what value this load will produce.
812  // Bail out.
813  markOverdefined(IV, &I);
814}
815
816void SCCP::visitCallInst(CallInst &I) {
817  InstVal &IV = ValueState[&I];
818  if (IV.isOverdefined()) return;
819
820  Function *F = I.getCalledFunction();
821  if (F == 0 || !canConstantFoldCallTo(F)) {
822    markOverdefined(IV, &I);
823    return;
824  }
825
826  std::vector<Constant*> Operands;
827  Operands.reserve(I.getNumOperands()-1);
828
829  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
830    InstVal &State = getValueState(I.getOperand(i));
831    if (State.isUndefined())
832      return;  // Operands are not resolved yet...
833    else if (State.isOverdefined()) {
834      markOverdefined(IV, &I);
835      return;
836    }
837    assert(State.isConstant() && "Unknown state!");
838    Operands.push_back(State.getConstant());
839  }
840
841  if (Constant *C = ConstantFoldCall(F, Operands))
842    markConstant(IV, &I, C);
843  else
844    markOverdefined(IV, &I);
845}
846