SCCP.cpp revision 80b2d6c8c4d6ee060bce6d3e8e899c62a31c4c8c
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18// Notice that: 19// * This pass has a habit of making definitions be dead. It is a good idea 20// to to run a DCE pass sometime after running this pass. 21// 22//===----------------------------------------------------------------------===// 23 24#include "llvm/Transforms/Scalar.h" 25#include "llvm/Constants.h" 26#include "llvm/Function.h" 27#include "llvm/GlobalVariable.h" 28#include "llvm/Instructions.h" 29#include "llvm/Pass.h" 30#include "llvm/Type.h" 31#include "llvm/Support/InstVisitor.h" 32#include "llvm/Transforms/Utils/Local.h" 33#include "Support/Debug.h" 34#include "Support/hash_map" 35#include "Support/Statistic.h" 36#include "Support/STLExtras.h" 37#include <algorithm> 38#include <set> 39using namespace llvm; 40 41// InstVal class - This class represents the different lattice values that an 42// instruction may occupy. It is a simple class with value semantics. 43// 44namespace { 45 Statistic<> NumInstRemoved("sccp", "Number of instructions removed"); 46 47class InstVal { 48 enum { 49 undefined, // This instruction has no known value 50 constant, // This instruction has a constant value 51 overdefined // This instruction has an unknown value 52 } LatticeValue; // The current lattice position 53 Constant *ConstantVal; // If Constant value, the current value 54public: 55 inline InstVal() : LatticeValue(undefined), ConstantVal(0) {} 56 57 // markOverdefined - Return true if this is a new status to be in... 58 inline bool markOverdefined() { 59 if (LatticeValue != overdefined) { 60 LatticeValue = overdefined; 61 return true; 62 } 63 return false; 64 } 65 66 // markConstant - Return true if this is a new status for us... 67 inline bool markConstant(Constant *V) { 68 if (LatticeValue != constant) { 69 LatticeValue = constant; 70 ConstantVal = V; 71 return true; 72 } else { 73 assert(ConstantVal == V && "Marking constant with different value"); 74 } 75 return false; 76 } 77 78 inline bool isUndefined() const { return LatticeValue == undefined; } 79 inline bool isConstant() const { return LatticeValue == constant; } 80 inline bool isOverdefined() const { return LatticeValue == overdefined; } 81 82 inline Constant *getConstant() const { 83 assert(isConstant() && "Cannot get the constant of a non-constant!"); 84 return ConstantVal; 85 } 86}; 87 88} // end anonymous namespace 89 90 91//===----------------------------------------------------------------------===// 92// SCCP Class 93// 94// This class does all of the work of Sparse Conditional Constant Propagation. 95// 96namespace { 97class SCCP : public FunctionPass, public InstVisitor<SCCP> { 98 std::set<BasicBlock*> BBExecutable;// The basic blocks that are executable 99 hash_map<Value*, InstVal> ValueState; // The state each value is in... 100 101 // The reason for two worklists is that overdefined is the lowest state 102 // on the lattice, and moving things to overdefined as fast as possible 103 // makes SCCP converge much faster. 104 // By having a separate worklist, we accomplish this because everything 105 // possibly overdefined will become overdefined at the soonest possible 106 // point. 107 std::vector<Instruction*> OverdefinedInstWorkList;// The overdefined 108 // instruction work list 109 std::vector<Instruction*> InstWorkList;// The instruction work list 110 111 112 std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list 113 114 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not 115 /// overdefined, despite the fact that the PHI node is overdefined. 116 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; 117 118 /// KnownFeasibleEdges - Entries in this set are edges which have already had 119 /// PHI nodes retriggered. 120 typedef std::pair<BasicBlock*,BasicBlock*> Edge; 121 std::set<Edge> KnownFeasibleEdges; 122public: 123 124 // runOnFunction - Run the Sparse Conditional Constant Propagation algorithm, 125 // and return true if the function was modified. 126 // 127 bool runOnFunction(Function &F); 128 129 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 130 AU.setPreservesCFG(); 131 } 132 133 134 //===--------------------------------------------------------------------===// 135 // The implementation of this class 136 // 137private: 138 friend class InstVisitor<SCCP>; // Allow callbacks from visitor 139 140 // markConstant - Make a value be marked as "constant". If the value 141 // is not already a constant, add it to the instruction work list so that 142 // the users of the instruction are updated later. 143 // 144 inline void markConstant(InstVal &IV, Instruction *I, Constant *C) { 145 if (IV.markConstant(C)) { 146 DEBUG(std::cerr << "markConstant: " << *C << ": " << *I); 147 InstWorkList.push_back(I); 148 } 149 } 150 inline void markConstant(Instruction *I, Constant *C) { 151 markConstant(ValueState[I], I, C); 152 } 153 154 // markOverdefined - Make a value be marked as "overdefined". If the 155 // value is not already overdefined, add it to the overdefined instruction 156 // work list so that the users of the instruction are updated later. 157 158 inline void markOverdefined(InstVal &IV, Instruction *I) { 159 if (IV.markOverdefined()) { 160 DEBUG(std::cerr << "markOverdefined: " << *I); 161 OverdefinedInstWorkList.push_back(I); // Only instructions go on the work list 162 } 163 } 164 inline void markOverdefined(Instruction *I) { 165 markOverdefined(ValueState[I], I); 166 } 167 168 // getValueState - Return the InstVal object that corresponds to the value. 169 // This function is necessary because not all values should start out in the 170 // underdefined state... Argument's should be overdefined, and 171 // constants should be marked as constants. If a value is not known to be an 172 // Instruction object, then use this accessor to get its value from the map. 173 // 174 inline InstVal &getValueState(Value *V) { 175 hash_map<Value*, InstVal>::iterator I = ValueState.find(V); 176 if (I != ValueState.end()) return I->second; // Common case, in the map 177 178 if (Constant *CPV = dyn_cast<Constant>(V)) { // Constants are constant 179 ValueState[CPV].markConstant(CPV); 180 } else if (isa<Argument>(V)) { // Arguments are overdefined 181 ValueState[V].markOverdefined(); 182 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 183 // The address of a global is a constant... 184 ValueState[V].markConstant(ConstantPointerRef::get(GV)); 185 } 186 // All others are underdefined by default... 187 return ValueState[V]; 188 } 189 190 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB 191 // work list if it is not already executable... 192 // 193 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 194 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 195 return; // This edge is already known to be executable! 196 197 if (BBExecutable.count(Dest)) { 198 DEBUG(std::cerr << "Marking Edge Executable: " << Source->getName() 199 << " -> " << Dest->getName() << "\n"); 200 201 // The destination is already executable, but we just made an edge 202 // feasible that wasn't before. Revisit the PHI nodes in the block 203 // because they have potentially new operands. 204 for (BasicBlock::iterator I = Dest->begin(); 205 PHINode *PN = dyn_cast<PHINode>(I); ++I) 206 visitPHINode(*PN); 207 208 } else { 209 DEBUG(std::cerr << "Marking Block Executable: " << Dest->getName()<<"\n"); 210 BBExecutable.insert(Dest); // Basic block is executable! 211 BBWorkList.push_back(Dest); // Add the block to the work list! 212 } 213 } 214 215 216 // visit implementations - Something changed in this instruction... Either an 217 // operand made a transition, or the instruction is newly executable. Change 218 // the value type of I to reflect these changes if appropriate. 219 // 220 void visitPHINode(PHINode &I); 221 222 // Terminators 223 void visitReturnInst(ReturnInst &I) { /*does not have an effect*/ } 224 void visitTerminatorInst(TerminatorInst &TI); 225 226 void visitCastInst(CastInst &I); 227 void visitSelectInst(SelectInst &I); 228 void visitBinaryOperator(Instruction &I); 229 void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } 230 231 // Instructions that cannot be folded away... 232 void visitStoreInst (Instruction &I) { /*returns void*/ } 233 void visitLoadInst (LoadInst &I); 234 void visitGetElementPtrInst(GetElementPtrInst &I); 235 void visitCallInst (CallInst &I); 236 void visitInvokeInst (TerminatorInst &I) { 237 if (I.getType() != Type::VoidTy) markOverdefined(&I); 238 visitTerminatorInst(I); 239 } 240 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 241 void visitAllocationInst(Instruction &I) { markOverdefined(&I); } 242 void visitVANextInst (Instruction &I) { markOverdefined(&I); } 243 void visitVAArgInst (Instruction &I) { markOverdefined(&I); } 244 void visitFreeInst (Instruction &I) { /*returns void*/ } 245 246 void visitInstruction(Instruction &I) { 247 // If a new instruction is added to LLVM that we don't handle... 248 std::cerr << "SCCP: Don't know how to handle: " << I; 249 markOverdefined(&I); // Just in case 250 } 251 252 // getFeasibleSuccessors - Return a vector of booleans to indicate which 253 // successors are reachable from a given terminator instruction. 254 // 255 void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs); 256 257 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 258 // block to the 'To' basic block is currently feasible... 259 // 260 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 261 262 // OperandChangedState - This method is invoked on all of the users of an 263 // instruction that was just changed state somehow.... Based on this 264 // information, we need to update the specified user of this instruction. 265 // 266 void OperandChangedState(User *U) { 267 // Only instructions use other variable values! 268 Instruction &I = cast<Instruction>(*U); 269 if (BBExecutable.count(I.getParent())) // Inst is executable? 270 visit(I); 271 } 272}; 273 274 RegisterOpt<SCCP> X("sccp", "Sparse Conditional Constant Propagation"); 275} // end anonymous namespace 276 277 278// createSCCPPass - This is the public interface to this file... 279Pass *llvm::createSCCPPass() { 280 return new SCCP(); 281} 282 283 284//===----------------------------------------------------------------------===// 285// SCCP Class Implementation 286 287 288// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 289// and return true if the function was modified. 290// 291bool SCCP::runOnFunction(Function &F) { 292 // Mark the first block of the function as being executable... 293 BBExecutable.insert(F.begin()); // Basic block is executable! 294 BBWorkList.push_back(F.begin()); // Add the block to the work list! 295 296 // Process the work lists until they are empty! 297 while (!BBWorkList.empty() || !InstWorkList.empty() || 298 !OverdefinedInstWorkList.empty()) { 299 // Process the instruction work list... 300 while (!OverdefinedInstWorkList.empty()) { 301 Instruction *I = OverdefinedInstWorkList.back(); 302 OverdefinedInstWorkList.pop_back(); 303 304 DEBUG(std::cerr << "\nPopped off OI-WL: " << I); 305 306 // "I" got into the work list because it either made the transition from 307 // bottom to constant 308 // 309 // Anything on this worklist that is overdefined need not be visited 310 // since all of its users will have already been marked as overdefined 311 // Update all of the users of this instruction's value... 312 // 313 for_each(I->use_begin(), I->use_end(), 314 bind_obj(this, &SCCP::OperandChangedState)); 315 } 316 // Process the instruction work list... 317 while (!InstWorkList.empty()) { 318 Instruction *I = InstWorkList.back(); 319 InstWorkList.pop_back(); 320 321 DEBUG(std::cerr << "\nPopped off I-WL: " << *I); 322 323 // "I" got into the work list because it either made the transition from 324 // bottom to constant 325 // 326 // Anything on this worklist that is overdefined need not be visited 327 // since all of its users will have already been marked as overdefined. 328 // Update all of the users of this instruction's value... 329 // 330 InstVal &Ival = getValueState (I); 331 if (!Ival.isOverdefined()) 332 for_each(I->use_begin(), I->use_end(), 333 bind_obj(this, &SCCP::OperandChangedState)); 334 } 335 336 // Process the basic block work list... 337 while (!BBWorkList.empty()) { 338 BasicBlock *BB = BBWorkList.back(); 339 BBWorkList.pop_back(); 340 341 DEBUG(std::cerr << "\nPopped off BBWL: " << *BB); 342 343 // Notify all instructions in this basic block that they are newly 344 // executable. 345 visit(BB); 346 } 347 } 348 349 if (DebugFlag) { 350 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) 351 if (!BBExecutable.count(I)) 352 std::cerr << "BasicBlock Dead:" << *I; 353 } 354 355 // Iterate over all of the instructions in a function, replacing them with 356 // constants if we have found them to be of constant values. 357 // 358 bool MadeChanges = false; 359 for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) 360 for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) { 361 Instruction &Inst = *BI; 362 InstVal &IV = ValueState[&Inst]; 363 if (IV.isConstant()) { 364 Constant *Const = IV.getConstant(); 365 DEBUG(std::cerr << "Constant: " << *Const << " = " << Inst); 366 367 // Replaces all of the uses of a variable with uses of the constant. 368 Inst.replaceAllUsesWith(Const); 369 370 // Remove the operator from the list of definitions... and delete it. 371 BI = BB->getInstList().erase(BI); 372 373 // Hey, we just changed something! 374 MadeChanges = true; 375 ++NumInstRemoved; 376 } else { 377 ++BI; 378 } 379 } 380 381 // Reset state so that the next invocation will have empty data structures 382 BBExecutable.clear(); 383 ValueState.clear(); 384 std::vector<Instruction*>().swap(OverdefinedInstWorkList); 385 std::vector<Instruction*>().swap(InstWorkList); 386 std::vector<BasicBlock*>().swap(BBWorkList); 387 388 return MadeChanges; 389} 390 391 392// getFeasibleSuccessors - Return a vector of booleans to indicate which 393// successors are reachable from a given terminator instruction. 394// 395void SCCP::getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs) { 396 Succs.resize(TI.getNumSuccessors()); 397 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 398 if (BI->isUnconditional()) { 399 Succs[0] = true; 400 } else { 401 InstVal &BCValue = getValueState(BI->getCondition()); 402 if (BCValue.isOverdefined() || 403 (BCValue.isConstant() && !isa<ConstantBool>(BCValue.getConstant()))) { 404 // Overdefined condition variables, and branches on unfoldable constant 405 // conditions, mean the branch could go either way. 406 Succs[0] = Succs[1] = true; 407 } else if (BCValue.isConstant()) { 408 // Constant condition variables mean the branch can only go a single way 409 Succs[BCValue.getConstant() == ConstantBool::False] = true; 410 } 411 } 412 } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) { 413 // Invoke instructions successors are always executable. 414 Succs[0] = Succs[1] = true; 415 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 416 InstVal &SCValue = getValueState(SI->getCondition()); 417 if (SCValue.isOverdefined() || // Overdefined condition? 418 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) { 419 // All destinations are executable! 420 Succs.assign(TI.getNumSuccessors(), true); 421 } else if (SCValue.isConstant()) { 422 Constant *CPV = SCValue.getConstant(); 423 // Make sure to skip the "default value" which isn't a value 424 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { 425 if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... 426 Succs[i] = true; 427 return; 428 } 429 } 430 431 // Constant value not equal to any of the branches... must execute 432 // default branch then... 433 Succs[0] = true; 434 } 435 } else { 436 std::cerr << "SCCP: Don't know how to handle: " << TI; 437 Succs.assign(TI.getNumSuccessors(), true); 438 } 439} 440 441 442// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 443// block to the 'To' basic block is currently feasible... 444// 445bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 446 assert(BBExecutable.count(To) && "Dest should always be alive!"); 447 448 // Make sure the source basic block is executable!! 449 if (!BBExecutable.count(From)) return false; 450 451 // Check to make sure this edge itself is actually feasible now... 452 TerminatorInst *TI = From->getTerminator(); 453 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 454 if (BI->isUnconditional()) 455 return true; 456 else { 457 InstVal &BCValue = getValueState(BI->getCondition()); 458 if (BCValue.isOverdefined()) { 459 // Overdefined condition variables mean the branch could go either way. 460 return true; 461 } else if (BCValue.isConstant()) { 462 // Not branching on an evaluatable constant? 463 if (!isa<ConstantBool>(BCValue.getConstant())) return true; 464 465 // Constant condition variables mean the branch can only go a single way 466 return BI->getSuccessor(BCValue.getConstant() == 467 ConstantBool::False) == To; 468 } 469 return false; 470 } 471 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 472 // Invoke instructions successors are always executable. 473 return true; 474 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 475 InstVal &SCValue = getValueState(SI->getCondition()); 476 if (SCValue.isOverdefined()) { // Overdefined condition? 477 // All destinations are executable! 478 return true; 479 } else if (SCValue.isConstant()) { 480 Constant *CPV = SCValue.getConstant(); 481 if (!isa<ConstantInt>(CPV)) 482 return true; // not a foldable constant? 483 484 // Make sure to skip the "default value" which isn't a value 485 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 486 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... 487 return SI->getSuccessor(i) == To; 488 489 // Constant value not equal to any of the branches... must execute 490 // default branch then... 491 return SI->getDefaultDest() == To; 492 } 493 return false; 494 } else { 495 std::cerr << "Unknown terminator instruction: " << *TI; 496 abort(); 497 } 498} 499 500// visit Implementations - Something changed in this instruction... Either an 501// operand made a transition, or the instruction is newly executable. Change 502// the value type of I to reflect these changes if appropriate. This method 503// makes sure to do the following actions: 504// 505// 1. If a phi node merges two constants in, and has conflicting value coming 506// from different branches, or if the PHI node merges in an overdefined 507// value, then the PHI node becomes overdefined. 508// 2. If a phi node merges only constants in, and they all agree on value, the 509// PHI node becomes a constant value equal to that. 510// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 511// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 512// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 513// 6. If a conditional branch has a value that is constant, make the selected 514// destination executable 515// 7. If a conditional branch has a value that is overdefined, make all 516// successors executable. 517// 518void SCCP::visitPHINode(PHINode &PN) { 519 InstVal &PNIV = getValueState(&PN); 520 if (PNIV.isOverdefined()) { 521 // There may be instructions using this PHI node that are not overdefined 522 // themselves. If so, make sure that they know that the PHI node operand 523 // changed. 524 std::multimap<PHINode*, Instruction*>::iterator I, E; 525 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); 526 if (I != E) { 527 std::vector<Instruction*> Users; 528 Users.reserve(std::distance(I, E)); 529 for (; I != E; ++I) Users.push_back(I->second); 530 while (!Users.empty()) { 531 visit(Users.back()); 532 Users.pop_back(); 533 } 534 } 535 return; // Quick exit 536 } 537 538 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 539 // and slow us down a lot. Just mark them overdefined. 540 if (PN.getNumIncomingValues() > 64) { 541 markOverdefined(PNIV, &PN); 542 return; 543 } 544 545 // Look at all of the executable operands of the PHI node. If any of them 546 // are overdefined, the PHI becomes overdefined as well. If they are all 547 // constant, and they agree with each other, the PHI becomes the identical 548 // constant. If they are constant and don't agree, the PHI is overdefined. 549 // If there are no executable operands, the PHI remains undefined. 550 // 551 Constant *OperandVal = 0; 552 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 553 InstVal &IV = getValueState(PN.getIncomingValue(i)); 554 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 555 556 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { 557 if (IV.isOverdefined()) { // PHI node becomes overdefined! 558 markOverdefined(PNIV, &PN); 559 return; 560 } 561 562 if (OperandVal == 0) { // Grab the first value... 563 OperandVal = IV.getConstant(); 564 } else { // Another value is being merged in! 565 // There is already a reachable operand. If we conflict with it, 566 // then the PHI node becomes overdefined. If we agree with it, we 567 // can continue on. 568 569 // Check to see if there are two different constants merging... 570 if (IV.getConstant() != OperandVal) { 571 // Yes there is. This means the PHI node is not constant. 572 // You must be overdefined poor PHI. 573 // 574 markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined 575 return; // I'm done analyzing you 576 } 577 } 578 } 579 } 580 581 // If we exited the loop, this means that the PHI node only has constant 582 // arguments that agree with each other(and OperandVal is the constant) or 583 // OperandVal is null because there are no defined incoming arguments. If 584 // this is the case, the PHI remains undefined. 585 // 586 if (OperandVal) 587 markConstant(PNIV, &PN, OperandVal); // Acquire operand value 588} 589 590void SCCP::visitTerminatorInst(TerminatorInst &TI) { 591 std::vector<bool> SuccFeasible; 592 getFeasibleSuccessors(TI, SuccFeasible); 593 594 BasicBlock *BB = TI.getParent(); 595 596 // Mark all feasible successors executable... 597 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 598 if (SuccFeasible[i]) 599 markEdgeExecutable(BB, TI.getSuccessor(i)); 600} 601 602void SCCP::visitCastInst(CastInst &I) { 603 Value *V = I.getOperand(0); 604 InstVal &VState = getValueState(V); 605 if (VState.isOverdefined()) // Inherit overdefinedness of operand 606 markOverdefined(&I); 607 else if (VState.isConstant()) // Propagate constant value 608 markConstant(&I, ConstantExpr::getCast(VState.getConstant(), I.getType())); 609} 610 611void SCCP::visitSelectInst(SelectInst &I) { 612 InstVal &CondValue = getValueState(I.getCondition()); 613 if (CondValue.isOverdefined()) 614 markOverdefined(&I); 615 else if (CondValue.isConstant()) { 616 if (CondValue.getConstant() == ConstantBool::True) { 617 InstVal &Val = getValueState(I.getTrueValue()); 618 if (Val.isOverdefined()) 619 markOverdefined(&I); 620 else if (Val.isConstant()) 621 markConstant(&I, Val.getConstant()); 622 } else if (CondValue.getConstant() == ConstantBool::False) { 623 InstVal &Val = getValueState(I.getFalseValue()); 624 if (Val.isOverdefined()) 625 markOverdefined(&I); 626 else if (Val.isConstant()) 627 markConstant(&I, Val.getConstant()); 628 } else 629 markOverdefined(&I); 630 } 631} 632 633// Handle BinaryOperators and Shift Instructions... 634void SCCP::visitBinaryOperator(Instruction &I) { 635 InstVal &IV = ValueState[&I]; 636 if (IV.isOverdefined()) return; 637 638 InstVal &V1State = getValueState(I.getOperand(0)); 639 InstVal &V2State = getValueState(I.getOperand(1)); 640 641 if (V1State.isOverdefined() || V2State.isOverdefined()) { 642 // If both operands are PHI nodes, it is possible that this instruction has 643 // a constant value, despite the fact that the PHI node doesn't. Check for 644 // this condition now. 645 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 646 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 647 if (PN1->getParent() == PN2->getParent()) { 648 // Since the two PHI nodes are in the same basic block, they must have 649 // entries for the same predecessors. Walk the predecessor list, and 650 // if all of the incoming values are constants, and the result of 651 // evaluating this expression with all incoming value pairs is the 652 // same, then this expression is a constant even though the PHI node 653 // is not a constant! 654 InstVal Result; 655 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 656 InstVal &In1 = getValueState(PN1->getIncomingValue(i)); 657 BasicBlock *InBlock = PN1->getIncomingBlock(i); 658 InstVal &In2 =getValueState(PN2->getIncomingValueForBlock(InBlock)); 659 660 if (In1.isOverdefined() || In2.isOverdefined()) { 661 Result.markOverdefined(); 662 break; // Cannot fold this operation over the PHI nodes! 663 } else if (In1.isConstant() && In2.isConstant()) { 664 Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), 665 In2.getConstant()); 666 if (Result.isUndefined()) 667 Result.markConstant(V); 668 else if (Result.isConstant() && Result.getConstant() != V) { 669 Result.markOverdefined(); 670 break; 671 } 672 } 673 } 674 675 // If we found a constant value here, then we know the instruction is 676 // constant despite the fact that the PHI nodes are overdefined. 677 if (Result.isConstant()) { 678 markConstant(IV, &I, Result.getConstant()); 679 // Remember that this instruction is virtually using the PHI node 680 // operands. 681 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 682 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 683 return; 684 } else if (Result.isUndefined()) { 685 return; 686 } 687 688 // Okay, this really is overdefined now. Since we might have 689 // speculatively thought that this was not overdefined before, and 690 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 691 // make sure to clean out any entries that we put there, for 692 // efficiency. 693 std::multimap<PHINode*, Instruction*>::iterator It, E; 694 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 695 while (It != E) { 696 if (It->second == &I) { 697 UsersOfOverdefinedPHIs.erase(It++); 698 } else 699 ++It; 700 } 701 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 702 while (It != E) { 703 if (It->second == &I) { 704 UsersOfOverdefinedPHIs.erase(It++); 705 } else 706 ++It; 707 } 708 } 709 710 markOverdefined(IV, &I); 711 } else if (V1State.isConstant() && V2State.isConstant()) { 712 markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 713 V2State.getConstant())); 714 } 715} 716 717// Handle getelementptr instructions... if all operands are constants then we 718// can turn this into a getelementptr ConstantExpr. 719// 720void SCCP::visitGetElementPtrInst(GetElementPtrInst &I) { 721 InstVal &IV = ValueState[&I]; 722 if (IV.isOverdefined()) return; 723 724 std::vector<Constant*> Operands; 725 Operands.reserve(I.getNumOperands()); 726 727 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 728 InstVal &State = getValueState(I.getOperand(i)); 729 if (State.isUndefined()) 730 return; // Operands are not resolved yet... 731 else if (State.isOverdefined()) { 732 markOverdefined(IV, &I); 733 return; 734 } 735 assert(State.isConstant() && "Unknown state!"); 736 Operands.push_back(State.getConstant()); 737 } 738 739 Constant *Ptr = Operands[0]; 740 Operands.erase(Operands.begin()); // Erase the pointer from idx list... 741 742 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands)); 743} 744 745/// GetGEPGlobalInitializer - Given a constant and a getelementptr constantexpr, 746/// return the constant value being addressed by the constant expression, or 747/// null if something is funny. 748/// 749static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) { 750 if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType())) 751 return 0; // Do not allow stepping over the value! 752 753 // Loop over all of the operands, tracking down which value we are 754 // addressing... 755 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) 756 if (ConstantUInt *CU = dyn_cast<ConstantUInt>(CE->getOperand(i))) { 757 ConstantStruct *CS = dyn_cast<ConstantStruct>(C); 758 if (CS == 0) return 0; 759 if (CU->getValue() >= CS->getValues().size()) return 0; 760 C = cast<Constant>(CS->getValues()[CU->getValue()]); 761 } else if (ConstantSInt *CS = dyn_cast<ConstantSInt>(CE->getOperand(i))) { 762 ConstantArray *CA = dyn_cast<ConstantArray>(C); 763 if (CA == 0) return 0; 764 if ((uint64_t)CS->getValue() >= CA->getValues().size()) return 0; 765 C = cast<Constant>(CA->getValues()[CS->getValue()]); 766 } else 767 return 0; 768 return C; 769} 770 771// Handle load instructions. If the operand is a constant pointer to a constant 772// global, we can replace the load with the loaded constant value! 773void SCCP::visitLoadInst(LoadInst &I) { 774 InstVal &IV = ValueState[&I]; 775 if (IV.isOverdefined()) return; 776 777 InstVal &PtrVal = getValueState(I.getOperand(0)); 778 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 779 if (PtrVal.isConstant() && !I.isVolatile()) { 780 Value *Ptr = PtrVal.getConstant(); 781 if (isa<ConstantPointerNull>(Ptr)) { 782 // load null -> null 783 markConstant(IV, &I, Constant::getNullValue(I.getType())); 784 return; 785 } 786 787 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Ptr)) 788 Ptr = CPR->getValue(); 789 790 // Transform load (constant global) into the value loaded. 791 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) 792 if (GV->isConstant() && !GV->isExternal()) { 793 markConstant(IV, &I, GV->getInitializer()); 794 return; 795 } 796 797 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. 798 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 799 if (CE->getOpcode() == Instruction::GetElementPtr) 800 if (ConstantPointerRef *G 801 = dyn_cast<ConstantPointerRef>(CE->getOperand(0))) 802 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getValue())) 803 if (GV->isConstant() && !GV->isExternal()) 804 if (Constant *V = 805 GetGEPGlobalInitializer(GV->getInitializer(), CE)) { 806 markConstant(IV, &I, V); 807 return; 808 } 809 } 810 811 // Otherwise we cannot say for certain what value this load will produce. 812 // Bail out. 813 markOverdefined(IV, &I); 814} 815 816void SCCP::visitCallInst(CallInst &I) { 817 InstVal &IV = ValueState[&I]; 818 if (IV.isOverdefined()) return; 819 820 Function *F = I.getCalledFunction(); 821 if (F == 0 || !canConstantFoldCallTo(F)) { 822 markOverdefined(IV, &I); 823 return; 824 } 825 826 std::vector<Constant*> Operands; 827 Operands.reserve(I.getNumOperands()-1); 828 829 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 830 InstVal &State = getValueState(I.getOperand(i)); 831 if (State.isUndefined()) 832 return; // Operands are not resolved yet... 833 else if (State.isOverdefined()) { 834 markOverdefined(IV, &I); 835 return; 836 } 837 assert(State.isConstant() && "Unknown state!"); 838 Operands.push_back(State.getConstant()); 839 } 840 841 if (Constant *C = ConstantFoldCall(F, Operands)) 842 markConstant(IV, &I, C); 843 else 844 markOverdefined(IV, &I); 845} 846