SCCP.cpp revision 89112b608f50e2944619b320bd04d31bbd57b370
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "sccp"
21#include "llvm/Transforms/Scalar.h"
22#include "llvm/Transforms/IPO.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/Pass.h"
27#include "llvm/Analysis/ConstantFolding.h"
28#include "llvm/Analysis/MemoryBuiltins.h"
29#include "llvm/Analysis/ValueTracking.h"
30#include "llvm/Transforms/Utils/Local.h"
31#include "llvm/Support/CallSite.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/InstVisitor.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/DenseSet.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/Statistic.h"
41#include "llvm/ADT/STLExtras.h"
42#include <algorithm>
43#include <map>
44using namespace llvm;
45
46STATISTIC(NumInstRemoved, "Number of instructions removed");
47STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
48
49STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
50STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
51STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
52
53namespace {
54/// LatticeVal class - This class represents the different lattice values that
55/// an LLVM value may occupy.  It is a simple class with value semantics.
56///
57class LatticeVal {
58  enum LatticeValueTy {
59    /// undefined - This LLVM Value has no known value yet.
60    undefined,
61
62    /// constant - This LLVM Value has a specific constant value.
63    constant,
64
65    /// forcedconstant - This LLVM Value was thought to be undef until
66    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
67    /// with another (different) constant, it goes to overdefined, instead of
68    /// asserting.
69    forcedconstant,
70
71    /// overdefined - This instruction is not known to be constant, and we know
72    /// it has a value.
73    overdefined
74  };
75
76  /// Val: This stores the current lattice value along with the Constant* for
77  /// the constant if this is a 'constant' or 'forcedconstant' value.
78  PointerIntPair<Constant *, 2, LatticeValueTy> Val;
79
80  LatticeValueTy getLatticeValue() const {
81    return Val.getInt();
82  }
83
84public:
85  LatticeVal() : Val(0, undefined) {}
86
87  bool isUndefined() const { return getLatticeValue() == undefined; }
88  bool isConstant() const {
89    return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
90  }
91  bool isOverdefined() const { return getLatticeValue() == overdefined; }
92
93  Constant *getConstant() const {
94    assert(isConstant() && "Cannot get the constant of a non-constant!");
95    return Val.getPointer();
96  }
97
98  /// markOverdefined - Return true if this is a change in status.
99  bool markOverdefined() {
100    if (isOverdefined())
101      return false;
102
103    Val.setInt(overdefined);
104    return true;
105  }
106
107  /// markConstant - Return true if this is a change in status.
108  bool markConstant(Constant *V) {
109    if (isConstant()) {
110      assert(getConstant() == V && "Marking constant with different value");
111      return false;
112    }
113
114    if (isUndefined()) {
115      Val.setInt(constant);
116      assert(V && "Marking constant with NULL");
117      Val.setPointer(V);
118    } else {
119      assert(getLatticeValue() == forcedconstant &&
120             "Cannot move from overdefined to constant!");
121      // Stay at forcedconstant if the constant is the same.
122      if (V == getConstant()) return false;
123
124      // Otherwise, we go to overdefined.  Assumptions made based on the
125      // forced value are possibly wrong.  Assuming this is another constant
126      // could expose a contradiction.
127      Val.setInt(overdefined);
128    }
129    return true;
130  }
131
132  /// getConstantInt - If this is a constant with a ConstantInt value, return it
133  /// otherwise return null.
134  ConstantInt *getConstantInt() const {
135    if (isConstant())
136      return dyn_cast<ConstantInt>(getConstant());
137    return 0;
138  }
139
140  void markForcedConstant(Constant *V) {
141    assert(isUndefined() && "Can't force a defined value!");
142    Val.setInt(forcedconstant);
143    Val.setPointer(V);
144  }
145};
146} // end anonymous namespace.
147
148
149namespace {
150
151//===----------------------------------------------------------------------===//
152//
153/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
154/// Constant Propagation.
155///
156class SCCPSolver : public InstVisitor<SCCPSolver> {
157  DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable
158  std::map<Value*, LatticeVal> ValueState;  // The state each value is in.
159
160  /// GlobalValue - If we are tracking any values for the contents of a global
161  /// variable, we keep a mapping from the constant accessor to the element of
162  /// the global, to the currently known value.  If the value becomes
163  /// overdefined, it's entry is simply removed from this map.
164  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
165
166  /// TrackedRetVals - If we are tracking arguments into and the return
167  /// value out of a function, it will have an entry in this map, indicating
168  /// what the known return value for the function is.
169  DenseMap<Function*, LatticeVal> TrackedRetVals;
170
171  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
172  /// that return multiple values.
173  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
174
175  /// The reason for two worklists is that overdefined is the lowest state
176  /// on the lattice, and moving things to overdefined as fast as possible
177  /// makes SCCP converge much faster.
178  ///
179  /// By having a separate worklist, we accomplish this because everything
180  /// possibly overdefined will become overdefined at the soonest possible
181  /// point.
182  SmallVector<Value*, 64> OverdefinedInstWorkList;
183  SmallVector<Value*, 64> InstWorkList;
184
185
186  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
187
188  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
189  /// overdefined, despite the fact that the PHI node is overdefined.
190  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
191
192  /// KnownFeasibleEdges - Entries in this set are edges which have already had
193  /// PHI nodes retriggered.
194  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
195  DenseSet<Edge> KnownFeasibleEdges;
196public:
197
198  /// MarkBlockExecutable - This method can be used by clients to mark all of
199  /// the blocks that are known to be intrinsically live in the processed unit.
200  void MarkBlockExecutable(BasicBlock *BB) {
201    DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n");
202    BBExecutable.insert(BB);   // Basic block is executable!
203    BBWorkList.push_back(BB);  // Add the block to the work list!
204  }
205
206  /// TrackValueOfGlobalVariable - Clients can use this method to
207  /// inform the SCCPSolver that it should track loads and stores to the
208  /// specified global variable if it can.  This is only legal to call if
209  /// performing Interprocedural SCCP.
210  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
211    const Type *ElTy = GV->getType()->getElementType();
212    if (ElTy->isFirstClassType()) {
213      LatticeVal &IV = TrackedGlobals[GV];
214      if (!isa<UndefValue>(GV->getInitializer()))
215        IV.markConstant(GV->getInitializer());
216    }
217  }
218
219  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
220  /// and out of the specified function (which cannot have its address taken),
221  /// this method must be called.
222  void AddTrackedFunction(Function *F) {
223    assert(F->hasLocalLinkage() && "Can only track internal functions!");
224    // Add an entry, F -> undef.
225    if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
226      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
227        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
228                                                     LatticeVal()));
229    } else
230      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
231  }
232
233  /// Solve - Solve for constants and executable blocks.
234  ///
235  void Solve();
236
237  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
238  /// that branches on undef values cannot reach any of their successors.
239  /// However, this is not a safe assumption.  After we solve dataflow, this
240  /// method should be use to handle this.  If this returns true, the solver
241  /// should be rerun.
242  bool ResolvedUndefsIn(Function &F);
243
244  bool isBlockExecutable(BasicBlock *BB) const {
245    return BBExecutable.count(BB);
246  }
247
248  LatticeVal getLatticeValueFor(Value *V) const {
249    std::map<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
250    assert(I != ValueState.end() && "V is not in valuemap!");
251    return I->second;
252  }
253
254  /// getTrackedRetVals - Get the inferred return value map.
255  ///
256  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
257    return TrackedRetVals;
258  }
259
260  /// getTrackedGlobals - Get and return the set of inferred initializers for
261  /// global variables.
262  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
263    return TrackedGlobals;
264  }
265
266  void markOverdefined(Value *V) {
267    markOverdefined(ValueState[V], V);
268  }
269
270private:
271  // markConstant - Make a value be marked as "constant".  If the value
272  // is not already a constant, add it to the instruction work list so that
273  // the users of the instruction are updated later.
274  //
275  void markConstant(LatticeVal &IV, Value *V, Constant *C) {
276    if (!IV.markConstant(C)) return;
277    DEBUG(errs() << "markConstant: " << *C << ": " << *V << '\n');
278    InstWorkList.push_back(V);
279  }
280
281  void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
282    IV.markForcedConstant(C);
283    DEBUG(errs() << "markForcedConstant: " << *C << ": " << *V << '\n');
284    InstWorkList.push_back(V);
285  }
286
287  void markConstant(Value *V, Constant *C) {
288    markConstant(ValueState[V], V, C);
289  }
290
291  // markOverdefined - Make a value be marked as "overdefined". If the
292  // value is not already overdefined, add it to the overdefined instruction
293  // work list so that the users of the instruction are updated later.
294  void markOverdefined(LatticeVal &IV, Value *V) {
295    if (!IV.markOverdefined()) return;
296
297    DEBUG(errs() << "markOverdefined: ";
298          if (Function *F = dyn_cast<Function>(V))
299            errs() << "Function '" << F->getName() << "'\n";
300          else
301            errs() << *V << '\n');
302    // Only instructions go on the work list
303    OverdefinedInstWorkList.push_back(V);
304  }
305
306  void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
307    if (IV.isOverdefined() || MergeWithV.isUndefined())
308      return;  // Noop.
309    if (MergeWithV.isOverdefined())
310      markOverdefined(IV, V);
311    else if (IV.isUndefined())
312      markConstant(IV, V, MergeWithV.getConstant());
313    else if (IV.getConstant() != MergeWithV.getConstant())
314      markOverdefined(IV, V);
315  }
316
317  void mergeInValue(Value *V, LatticeVal &MergeWithV) {
318    mergeInValue(ValueState[V], V, MergeWithV);
319  }
320
321
322  // getValueState - Return the LatticeVal object that corresponds to the value.
323  // This function is necessary because not all values should start out in the
324  // underdefined state.  Argument's should be overdefined, and
325  // constants should be marked as constants.  If a value is not known to be an
326  // Instruction object, then use this accessor to get its value from the map.
327  //
328  LatticeVal &getValueState(Value *V) {
329    std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
330    if (I != ValueState.end()) return I->second;  // Common case, in the map
331
332    LatticeVal &LV = ValueState[V];
333
334    if (Constant *C = dyn_cast<Constant>(V)) {
335      // Undef values remain undefined.
336      if (!isa<UndefValue>(V))
337        LV.markConstant(C);          // Constants are constant
338    }
339
340    // All others are underdefined by default.
341    return LV;
342  }
343
344  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
345  // work list if it is not already executable.
346  //
347  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
348    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
349      return;  // This edge is already known to be executable!
350
351    if (BBExecutable.count(Dest)) {
352      DEBUG(errs() << "Marking Edge Executable: " << Source->getName()
353            << " -> " << Dest->getName() << "\n");
354
355      // The destination is already executable, but we just made an edge
356      // feasible that wasn't before.  Revisit the PHI nodes in the block
357      // because they have potentially new operands.
358      for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
359        visitPHINode(*cast<PHINode>(I));
360
361    } else {
362      MarkBlockExecutable(Dest);
363    }
364  }
365
366  // getFeasibleSuccessors - Return a vector of booleans to indicate which
367  // successors are reachable from a given terminator instruction.
368  //
369  void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
370
371  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
372  // block to the 'To' basic block is currently feasible.
373  //
374  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
375
376  // OperandChangedState - This method is invoked on all of the users of an
377  // instruction that was just changed state somehow.  Based on this
378  // information, we need to update the specified user of this instruction.
379  //
380  void OperandChangedState(User *U) {
381    // Only instructions use other variable values!
382    Instruction &I = cast<Instruction>(*U);
383    if (BBExecutable.count(I.getParent()))   // Inst is executable?
384      visit(I);
385  }
386
387private:
388  friend class InstVisitor<SCCPSolver>;
389
390  // visit implementations - Something changed in this instruction.  Either an
391  // operand made a transition, or the instruction is newly executable.  Change
392  // the value type of I to reflect these changes if appropriate.
393  void visitPHINode(PHINode &I);
394
395  // Terminators
396  void visitReturnInst(ReturnInst &I);
397  void visitTerminatorInst(TerminatorInst &TI);
398
399  void visitCastInst(CastInst &I);
400  void visitSelectInst(SelectInst &I);
401  void visitBinaryOperator(Instruction &I);
402  void visitCmpInst(CmpInst &I);
403  void visitExtractElementInst(ExtractElementInst &I);
404  void visitInsertElementInst(InsertElementInst &I);
405  void visitShuffleVectorInst(ShuffleVectorInst &I);
406  void visitExtractValueInst(ExtractValueInst &EVI);
407  void visitInsertValueInst(InsertValueInst &IVI);
408
409  // Instructions that cannot be folded away.
410  void visitStoreInst     (Instruction &I);
411  void visitLoadInst      (LoadInst &I);
412  void visitGetElementPtrInst(GetElementPtrInst &I);
413  void visitCallInst      (CallInst &I) {
414    if (isFreeCall(&I))
415      return;
416    visitCallSite(CallSite::get(&I));
417  }
418  void visitInvokeInst    (InvokeInst &II) {
419    visitCallSite(CallSite::get(&II));
420    visitTerminatorInst(II);
421  }
422  void visitCallSite      (CallSite CS);
423  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
424  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
425  void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
426  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
427  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
428
429  void visitInstruction(Instruction &I) {
430    // If a new instruction is added to LLVM that we don't handle.
431    errs() << "SCCP: Don't know how to handle: " << I;
432    markOverdefined(&I);   // Just in case
433  }
434};
435
436} // end anonymous namespace
437
438
439// getFeasibleSuccessors - Return a vector of booleans to indicate which
440// successors are reachable from a given terminator instruction.
441//
442void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
443                                       SmallVector<bool, 16> &Succs) {
444  Succs.resize(TI.getNumSuccessors());
445  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
446    if (BI->isUnconditional()) {
447      Succs[0] = true;
448      return;
449    }
450
451    LatticeVal &BCValue = getValueState(BI->getCondition());
452    ConstantInt *CI = BCValue.getConstantInt();
453    if (CI == 0) {
454      // Overdefined condition variables, and branches on unfoldable constant
455      // conditions, mean the branch could go either way.
456      if (!BCValue.isUndefined())
457        Succs[0] = Succs[1] = true;
458      return;
459    }
460
461    // Constant condition variables mean the branch can only go a single way.
462    Succs[CI->isZero()] = true;
463    return;
464  }
465
466  if (isa<InvokeInst>(TI)) {
467    // Invoke instructions successors are always executable.
468    Succs[0] = Succs[1] = true;
469    return;
470  }
471
472  if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
473    LatticeVal &SCValue = getValueState(SI->getCondition());
474    ConstantInt *CI = SCValue.getConstantInt();
475
476    if (CI == 0) {   // Overdefined or undefined condition?
477      // All destinations are executable!
478      if (!SCValue.isUndefined())
479        Succs.assign(TI.getNumSuccessors(), true);
480      return;
481    }
482
483    Succs[SI->findCaseValue(CI)] = true;
484    return;
485  }
486
487  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
488  if (isa<IndirectBrInst>(&TI)) {
489    // Just mark all destinations executable!
490    Succs.assign(TI.getNumSuccessors(), true);
491    return;
492  }
493
494#ifndef NDEBUG
495  errs() << "Unknown terminator instruction: " << TI << '\n';
496#endif
497  llvm_unreachable("SCCP: Don't know how to handle this terminator!");
498}
499
500
501// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
502// block to the 'To' basic block is currently feasible.
503//
504bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
505  assert(BBExecutable.count(To) && "Dest should always be alive!");
506
507  // Make sure the source basic block is executable!!
508  if (!BBExecutable.count(From)) return false;
509
510  // Check to make sure this edge itself is actually feasible now.
511  TerminatorInst *TI = From->getTerminator();
512  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
513    if (BI->isUnconditional())
514      return true;
515
516    LatticeVal &BCValue = getValueState(BI->getCondition());
517
518    // Overdefined condition variables mean the branch could go either way,
519    // undef conditions mean that neither edge is feasible yet.
520    ConstantInt *CI = BCValue.getConstantInt();
521    if (CI == 0)
522      return !BCValue.isUndefined();
523
524    // Constant condition variables mean the branch can only go a single way.
525    return BI->getSuccessor(CI->isZero()) == To;
526  }
527
528  // Invoke instructions successors are always executable.
529  if (isa<InvokeInst>(TI))
530    return true;
531
532  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
533    LatticeVal &SCValue = getValueState(SI->getCondition());
534    ConstantInt *CI = SCValue.getConstantInt();
535
536    if (CI == 0)
537      return !SCValue.isUndefined();
538
539    // Make sure to skip the "default value" which isn't a value
540    for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
541      if (SI->getSuccessorValue(i) == CI) // Found the taken branch.
542        return SI->getSuccessor(i) == To;
543
544    // If the constant value is not equal to any of the branches, we must
545    // execute default branch.
546    return SI->getDefaultDest() == To;
547  }
548
549  // Just mark all destinations executable!
550  // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
551  if (isa<IndirectBrInst>(&TI))
552    return true;
553
554#ifndef NDEBUG
555  errs() << "Unknown terminator instruction: " << *TI << '\n';
556#endif
557  llvm_unreachable(0);
558}
559
560// visit Implementations - Something changed in this instruction, either an
561// operand made a transition, or the instruction is newly executable.  Change
562// the value type of I to reflect these changes if appropriate.  This method
563// makes sure to do the following actions:
564//
565// 1. If a phi node merges two constants in, and has conflicting value coming
566//    from different branches, or if the PHI node merges in an overdefined
567//    value, then the PHI node becomes overdefined.
568// 2. If a phi node merges only constants in, and they all agree on value, the
569//    PHI node becomes a constant value equal to that.
570// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
571// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
572// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
573// 6. If a conditional branch has a value that is constant, make the selected
574//    destination executable
575// 7. If a conditional branch has a value that is overdefined, make all
576//    successors executable.
577//
578void SCCPSolver::visitPHINode(PHINode &PN) {
579  LatticeVal &PNIV = getValueState(&PN);
580  if (PNIV.isOverdefined()) {
581    // There may be instructions using this PHI node that are not overdefined
582    // themselves.  If so, make sure that they know that the PHI node operand
583    // changed.
584    std::multimap<PHINode*, Instruction*>::iterator I, E;
585    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
586    if (I != E) {
587      SmallVector<Instruction*, 16> Users;
588      for (; I != E; ++I) Users.push_back(I->second);
589      while (!Users.empty()) {
590        visit(Users.back());
591        Users.pop_back();
592      }
593    }
594    return;  // Quick exit
595  }
596
597  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
598  // and slow us down a lot.  Just mark them overdefined.
599  if (PN.getNumIncomingValues() > 64)
600    return markOverdefined(PNIV, &PN);
601
602  // Look at all of the executable operands of the PHI node.  If any of them
603  // are overdefined, the PHI becomes overdefined as well.  If they are all
604  // constant, and they agree with each other, the PHI becomes the identical
605  // constant.  If they are constant and don't agree, the PHI is overdefined.
606  // If there are no executable operands, the PHI remains undefined.
607  //
608  Constant *OperandVal = 0;
609  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
610    LatticeVal &IV = getValueState(PN.getIncomingValue(i));
611    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
612
613    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
614      continue;
615
616    if (IV.isOverdefined())    // PHI node becomes overdefined!
617      return markOverdefined(&PN);
618
619    if (OperandVal == 0) {   // Grab the first value.
620      OperandVal = IV.getConstant();
621      continue;
622    }
623
624    // There is already a reachable operand.  If we conflict with it,
625    // then the PHI node becomes overdefined.  If we agree with it, we
626    // can continue on.
627
628    // Check to see if there are two different constants merging, if so, the PHI
629    // node is overdefined.
630    if (IV.getConstant() != OperandVal)
631      return markOverdefined(&PN);
632  }
633
634  // If we exited the loop, this means that the PHI node only has constant
635  // arguments that agree with each other(and OperandVal is the constant) or
636  // OperandVal is null because there are no defined incoming arguments.  If
637  // this is the case, the PHI remains undefined.
638  //
639  if (OperandVal)
640    markConstant(&PN, OperandVal);      // Acquire operand value
641}
642
643void SCCPSolver::visitReturnInst(ReturnInst &I) {
644  if (I.getNumOperands() == 0) return;  // Ret void
645
646  Function *F = I.getParent()->getParent();
647  // If we are tracking the return value of this function, merge it in.
648  if (!F->hasLocalLinkage())
649    return;
650
651  if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
652    DenseMap<Function*, LatticeVal>::iterator TFRVI =
653      TrackedRetVals.find(F);
654    if (TFRVI != TrackedRetVals.end() &&
655        !TFRVI->second.isOverdefined()) {
656      LatticeVal &IV = getValueState(I.getOperand(0));
657      mergeInValue(TFRVI->second, F, IV);
658      return;
659    }
660  }
661
662  // Handle functions that return multiple values.
663  if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
664    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
665      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
666        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
667      if (It == TrackedMultipleRetVals.end()) break;
668      mergeInValue(It->second, F, getValueState(I.getOperand(i)));
669    }
670  } else if (!TrackedMultipleRetVals.empty() &&
671             I.getNumOperands() == 1 &&
672             isa<StructType>(I.getOperand(0)->getType())) {
673    for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
674         i != e; ++i) {
675      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
676        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
677      if (It == TrackedMultipleRetVals.end()) break;
678      if (Value *Val = FindInsertedValue(I.getOperand(0), i, I.getContext()))
679        mergeInValue(It->second, F, getValueState(Val));
680    }
681  }
682}
683
684void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
685  SmallVector<bool, 16> SuccFeasible;
686  getFeasibleSuccessors(TI, SuccFeasible);
687
688  BasicBlock *BB = TI.getParent();
689
690  // Mark all feasible successors executable.
691  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
692    if (SuccFeasible[i])
693      markEdgeExecutable(BB, TI.getSuccessor(i));
694}
695
696void SCCPSolver::visitCastInst(CastInst &I) {
697  Value *V = I.getOperand(0);
698  LatticeVal &VState = getValueState(V);
699  if (VState.isOverdefined())          // Inherit overdefinedness of operand
700    markOverdefined(&I);
701  else if (VState.isConstant())        // Propagate constant value
702    markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
703                                           VState.getConstant(), I.getType()));
704}
705
706void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
707  Value *Aggr = EVI.getAggregateOperand();
708
709  // If the operand to the extractvalue is an undef, the result is undef.
710  if (isa<UndefValue>(Aggr))
711    return;
712
713  // Currently only handle single-index extractvalues.
714  if (EVI.getNumIndices() != 1)
715    return markOverdefined(&EVI);
716
717  Function *F = 0;
718  if (CallInst *CI = dyn_cast<CallInst>(Aggr))
719    F = CI->getCalledFunction();
720  else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
721    F = II->getCalledFunction();
722
723  // TODO: If IPSCCP resolves the callee of this function, we could propagate a
724  // result back!
725  if (F == 0 || TrackedMultipleRetVals.empty())
726    return markOverdefined(&EVI);
727
728  // See if we are tracking the result of the callee.  If not tracking this
729  // function (for example, it is a declaration) just move to overdefined.
730  if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin())))
731    return markOverdefined(&EVI);
732
733  // Otherwise, the value will be merged in here as a result of CallSite
734  // handling.
735}
736
737void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
738  Value *Aggr = IVI.getAggregateOperand();
739  Value *Val = IVI.getInsertedValueOperand();
740
741  // If the operands to the insertvalue are undef, the result is undef.
742  if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val))
743    return;
744
745  // Currently only handle single-index insertvalues.
746  if (IVI.getNumIndices() != 1)
747    return markOverdefined(&IVI);
748
749  // Currently only handle insertvalue instructions that are in a single-use
750  // chain that builds up a return value.
751  for (const InsertValueInst *TmpIVI = &IVI; ; ) {
752    if (!TmpIVI->hasOneUse())
753      return markOverdefined(&IVI);
754
755    const Value *V = *TmpIVI->use_begin();
756    if (isa<ReturnInst>(V))
757      break;
758    TmpIVI = dyn_cast<InsertValueInst>(V);
759    if (!TmpIVI)
760      return markOverdefined(&IVI);
761  }
762
763  // See if we are tracking the result of the callee.
764  Function *F = IVI.getParent()->getParent();
765  DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
766    It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
767
768  // Merge in the inserted member value.
769  if (It != TrackedMultipleRetVals.end())
770    mergeInValue(It->second, F, getValueState(Val));
771
772  // Mark the aggregate result of the IVI overdefined; any tracking that we do
773  // will be done on the individual member values.
774  markOverdefined(&IVI);
775}
776
777void SCCPSolver::visitSelectInst(SelectInst &I) {
778  LatticeVal &CondValue = getValueState(I.getCondition());
779  if (CondValue.isUndefined())
780    return;
781
782  if (ConstantInt *CondCB = CondValue.getConstantInt()) {
783    mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
784                                                          : I.getFalseValue()));
785    return;
786  }
787
788  // Otherwise, the condition is overdefined or a constant we can't evaluate.
789  // See if we can produce something better than overdefined based on the T/F
790  // value.
791  LatticeVal &TVal = getValueState(I.getTrueValue());
792  LatticeVal &FVal = getValueState(I.getFalseValue());
793
794  // select ?, C, C -> C.
795  if (TVal.isConstant() && FVal.isConstant() &&
796      TVal.getConstant() == FVal.getConstant())
797    return markConstant(&I, FVal.getConstant());
798
799  if (TVal.isUndefined()) {  // select ?, undef, X -> X.
800    mergeInValue(&I, FVal);
801  } else if (FVal.isUndefined()) {  // select ?, X, undef -> X.
802    mergeInValue(&I, TVal);
803  } else {
804    markOverdefined(&I);
805  }
806}
807
808// Handle BinaryOperators and Shift Instructions.
809void SCCPSolver::visitBinaryOperator(Instruction &I) {
810  LatticeVal &IV = ValueState[&I];
811  if (IV.isOverdefined()) return;
812
813  LatticeVal &V1State = getValueState(I.getOperand(0));
814  LatticeVal &V2State = getValueState(I.getOperand(1));
815
816  if (V1State.isOverdefined() || V2State.isOverdefined()) {
817    // If this is an AND or OR with 0 or -1, it doesn't matter that the other
818    // operand is overdefined.
819    if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
820      LatticeVal *NonOverdefVal = 0;
821      if (!V1State.isOverdefined()) {
822        NonOverdefVal = &V1State;
823      } else if (!V2State.isOverdefined()) {
824        NonOverdefVal = &V2State;
825      }
826
827      if (NonOverdefVal) {
828        if (NonOverdefVal->isUndefined()) {
829          // Could annihilate value.
830          if (I.getOpcode() == Instruction::And)
831            markConstant(IV, &I, Constant::getNullValue(I.getType()));
832          else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
833            markConstant(IV, &I, Constant::getAllOnesValue(PT));
834          else
835            markConstant(IV, &I,
836                         Constant::getAllOnesValue(I.getType()));
837          return;
838        } else {
839          if (I.getOpcode() == Instruction::And) {
840            // X and 0 = 0
841            if (NonOverdefVal->getConstant()->isNullValue())
842              return markConstant(IV, &I, NonOverdefVal->getConstant());
843          } else {
844            if (ConstantInt *CI = NonOverdefVal->getConstantInt())
845              if (CI->isAllOnesValue())     // X or -1 = -1
846                return markConstant(IV, &I, NonOverdefVal->getConstant());
847          }
848        }
849      }
850    }
851
852
853    // If both operands are PHI nodes, it is possible that this instruction has
854    // a constant value, despite the fact that the PHI node doesn't.  Check for
855    // this condition now.
856    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
857      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
858        if (PN1->getParent() == PN2->getParent()) {
859          // Since the two PHI nodes are in the same basic block, they must have
860          // entries for the same predecessors.  Walk the predecessor list, and
861          // if all of the incoming values are constants, and the result of
862          // evaluating this expression with all incoming value pairs is the
863          // same, then this expression is a constant even though the PHI node
864          // is not a constant!
865          LatticeVal Result;
866          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
867            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
868            BasicBlock *InBlock = PN1->getIncomingBlock(i);
869            LatticeVal &In2 =
870              getValueState(PN2->getIncomingValueForBlock(InBlock));
871
872            if (In1.isOverdefined() || In2.isOverdefined()) {
873              Result.markOverdefined();
874              break;  // Cannot fold this operation over the PHI nodes!
875            }
876
877            if (In1.isConstant() && In2.isConstant()) {
878              Constant *V =
879                     ConstantExpr::get(I.getOpcode(), In1.getConstant(),
880                                              In2.getConstant());
881              if (Result.isUndefined())
882                Result.markConstant(V);
883              else if (Result.isConstant() && Result.getConstant() != V) {
884                Result.markOverdefined();
885                break;
886              }
887            }
888          }
889
890          // If we found a constant value here, then we know the instruction is
891          // constant despite the fact that the PHI nodes are overdefined.
892          if (Result.isConstant()) {
893            markConstant(IV, &I, Result.getConstant());
894            // Remember that this instruction is virtually using the PHI node
895            // operands.
896            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
897            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
898            return;
899          } else if (Result.isUndefined()) {
900            return;
901          }
902
903          // Okay, this really is overdefined now.  Since we might have
904          // speculatively thought that this was not overdefined before, and
905          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
906          // make sure to clean out any entries that we put there, for
907          // efficiency.
908          std::multimap<PHINode*, Instruction*>::iterator It, E;
909          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
910          while (It != E) {
911            if (It->second == &I) {
912              UsersOfOverdefinedPHIs.erase(It++);
913            } else
914              ++It;
915          }
916          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
917          while (It != E) {
918            if (It->second == &I) {
919              UsersOfOverdefinedPHIs.erase(It++);
920            } else
921              ++It;
922          }
923        }
924
925    markOverdefined(IV, &I);
926  } else if (V1State.isConstant() && V2State.isConstant()) {
927    markConstant(IV, &I,
928                ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
929                                           V2State.getConstant()));
930  }
931}
932
933// Handle ICmpInst instruction.
934void SCCPSolver::visitCmpInst(CmpInst &I) {
935  LatticeVal &IV = ValueState[&I];
936  if (IV.isOverdefined()) return;
937
938  LatticeVal &V1State = getValueState(I.getOperand(0));
939  LatticeVal &V2State = getValueState(I.getOperand(1));
940
941  if (V1State.isOverdefined() || V2State.isOverdefined()) {
942    // If both operands are PHI nodes, it is possible that this instruction has
943    // a constant value, despite the fact that the PHI node doesn't.  Check for
944    // this condition now.
945    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
946      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
947        if (PN1->getParent() == PN2->getParent()) {
948          // Since the two PHI nodes are in the same basic block, they must have
949          // entries for the same predecessors.  Walk the predecessor list, and
950          // if all of the incoming values are constants, and the result of
951          // evaluating this expression with all incoming value pairs is the
952          // same, then this expression is a constant even though the PHI node
953          // is not a constant!
954          LatticeVal Result;
955          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
956            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
957            BasicBlock *InBlock = PN1->getIncomingBlock(i);
958            LatticeVal &In2 =
959              getValueState(PN2->getIncomingValueForBlock(InBlock));
960
961            if (In1.isOverdefined() || In2.isOverdefined()) {
962              Result.markOverdefined();
963              break;  // Cannot fold this operation over the PHI nodes!
964            } else if (In1.isConstant() && In2.isConstant()) {
965              Constant *V = ConstantExpr::getCompare(I.getPredicate(),
966                                                     In1.getConstant(),
967                                                     In2.getConstant());
968              if (Result.isUndefined())
969                Result.markConstant(V);
970              else if (Result.isConstant() && Result.getConstant() != V) {
971                Result.markOverdefined();
972                break;
973              }
974            }
975          }
976
977          // If we found a constant value here, then we know the instruction is
978          // constant despite the fact that the PHI nodes are overdefined.
979          if (Result.isConstant()) {
980            markConstant(IV, &I, Result.getConstant());
981            // Remember that this instruction is virtually using the PHI node
982            // operands.
983            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
984            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
985            return;
986          } else if (Result.isUndefined()) {
987            return;
988          }
989
990          // Okay, this really is overdefined now.  Since we might have
991          // speculatively thought that this was not overdefined before, and
992          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
993          // make sure to clean out any entries that we put there, for
994          // efficiency.
995          std::multimap<PHINode*, Instruction*>::iterator It, E;
996          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
997          while (It != E) {
998            if (It->second == &I) {
999              UsersOfOverdefinedPHIs.erase(It++);
1000            } else
1001              ++It;
1002          }
1003          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
1004          while (It != E) {
1005            if (It->second == &I) {
1006              UsersOfOverdefinedPHIs.erase(It++);
1007            } else
1008              ++It;
1009          }
1010        }
1011
1012    markOverdefined(IV, &I);
1013  } else if (V1State.isConstant() && V2State.isConstant()) {
1014    markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
1015                                                  V1State.getConstant(),
1016                                                  V2State.getConstant()));
1017  }
1018}
1019
1020void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1021  // FIXME : SCCP does not handle vectors properly.
1022  return markOverdefined(&I);
1023
1024#if 0
1025  LatticeVal &ValState = getValueState(I.getOperand(0));
1026  LatticeVal &IdxState = getValueState(I.getOperand(1));
1027
1028  if (ValState.isOverdefined() || IdxState.isOverdefined())
1029    markOverdefined(&I);
1030  else if(ValState.isConstant() && IdxState.isConstant())
1031    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1032                                                     IdxState.getConstant()));
1033#endif
1034}
1035
1036void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1037  // FIXME : SCCP does not handle vectors properly.
1038  return markOverdefined(&I);
1039#if 0
1040  LatticeVal &ValState = getValueState(I.getOperand(0));
1041  LatticeVal &EltState = getValueState(I.getOperand(1));
1042  LatticeVal &IdxState = getValueState(I.getOperand(2));
1043
1044  if (ValState.isOverdefined() || EltState.isOverdefined() ||
1045      IdxState.isOverdefined())
1046    markOverdefined(&I);
1047  else if(ValState.isConstant() && EltState.isConstant() &&
1048          IdxState.isConstant())
1049    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1050                                                    EltState.getConstant(),
1051                                                    IdxState.getConstant()));
1052  else if (ValState.isUndefined() && EltState.isConstant() &&
1053           IdxState.isConstant())
1054    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1055                                                   EltState.getConstant(),
1056                                                   IdxState.getConstant()));
1057#endif
1058}
1059
1060void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1061  // FIXME : SCCP does not handle vectors properly.
1062  return markOverdefined(&I);
1063#if 0
1064  LatticeVal &V1State   = getValueState(I.getOperand(0));
1065  LatticeVal &V2State   = getValueState(I.getOperand(1));
1066  LatticeVal &MaskState = getValueState(I.getOperand(2));
1067
1068  if (MaskState.isUndefined() ||
1069      (V1State.isUndefined() && V2State.isUndefined()))
1070    return;  // Undefined output if mask or both inputs undefined.
1071
1072  if (V1State.isOverdefined() || V2State.isOverdefined() ||
1073      MaskState.isOverdefined()) {
1074    markOverdefined(&I);
1075  } else {
1076    // A mix of constant/undef inputs.
1077    Constant *V1 = V1State.isConstant() ?
1078        V1State.getConstant() : UndefValue::get(I.getType());
1079    Constant *V2 = V2State.isConstant() ?
1080        V2State.getConstant() : UndefValue::get(I.getType());
1081    Constant *Mask = MaskState.isConstant() ?
1082      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1083    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1084  }
1085#endif
1086}
1087
1088// Handle getelementptr instructions.  If all operands are constants then we
1089// can turn this into a getelementptr ConstantExpr.
1090//
1091void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1092  LatticeVal &IV = ValueState[&I];
1093  if (IV.isOverdefined()) return;
1094
1095  SmallVector<Constant*, 8> Operands;
1096  Operands.reserve(I.getNumOperands());
1097
1098  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1099    LatticeVal &State = getValueState(I.getOperand(i));
1100    if (State.isUndefined())
1101      return;  // Operands are not resolved yet.
1102
1103    if (State.isOverdefined())
1104      return markOverdefined(IV, &I);
1105
1106    assert(State.isConstant() && "Unknown state!");
1107    Operands.push_back(State.getConstant());
1108  }
1109
1110  Constant *Ptr = Operands[0];
1111  Operands.erase(Operands.begin());  // Erase the pointer from idx list.
1112
1113  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
1114                                                      Operands.size()));
1115}
1116
1117void SCCPSolver::visitStoreInst(Instruction &SI) {
1118  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1119    return;
1120  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1121  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1122  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1123
1124  // Get the value we are storing into the global.
1125  LatticeVal &PtrVal = getValueState(SI.getOperand(0));
1126
1127  mergeInValue(I->second, GV, PtrVal);
1128  if (I->second.isOverdefined())
1129    TrackedGlobals.erase(I);      // No need to keep tracking this!
1130}
1131
1132
1133// Handle load instructions.  If the operand is a constant pointer to a constant
1134// global, we can replace the load with the loaded constant value!
1135void SCCPSolver::visitLoadInst(LoadInst &I) {
1136  LatticeVal &IV = ValueState[&I];
1137  if (IV.isOverdefined()) return;
1138
1139  LatticeVal &PtrVal = getValueState(I.getOperand(0));
1140  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1141  if (PtrVal.isConstant() && !I.isVolatile()) {
1142    Value *Ptr = PtrVal.getConstant();
1143    // TODO: Consider a target hook for valid address spaces for this xform.
1144    if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) {
1145      // load null -> null
1146      return markConstant(IV, &I, Constant::getNullValue(I.getType()));
1147    }
1148
1149    // Transform load (constant global) into the value loaded.
1150    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1151      if (GV->isConstant()) {
1152        if (GV->hasDefinitiveInitializer())
1153          return markConstant(IV, &I, GV->getInitializer());
1154
1155      } else if (!TrackedGlobals.empty()) {
1156        // If we are tracking this global, merge in the known value for it.
1157        DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1158          TrackedGlobals.find(GV);
1159        if (It != TrackedGlobals.end()) {
1160          mergeInValue(IV, &I, It->second);
1161          return;
1162        }
1163      }
1164    }
1165
1166    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1167    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1168      if (CE->getOpcode() == Instruction::GetElementPtr)
1169    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
1170      if (GV->isConstant() && GV->hasDefinitiveInitializer())
1171        if (Constant *V =
1172             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
1173          return markConstant(IV, &I, V);
1174  }
1175
1176  // Otherwise we cannot say for certain what value this load will produce.
1177  // Bail out.
1178  markOverdefined(IV, &I);
1179}
1180
1181void SCCPSolver::visitCallSite(CallSite CS) {
1182  Function *F = CS.getCalledFunction();
1183  Instruction *I = CS.getInstruction();
1184
1185  // The common case is that we aren't tracking the callee, either because we
1186  // are not doing interprocedural analysis or the callee is indirect, or is
1187  // external.  Handle these cases first.
1188  if (F == 0 || !F->hasLocalLinkage()) {
1189CallOverdefined:
1190    // Void return and not tracking callee, just bail.
1191    if (I->getType()->isVoidTy()) return;
1192
1193    // Otherwise, if we have a single return value case, and if the function is
1194    // a declaration, maybe we can constant fold it.
1195    if (!isa<StructType>(I->getType()) && F && F->isDeclaration() &&
1196        canConstantFoldCallTo(F)) {
1197
1198      SmallVector<Constant*, 8> Operands;
1199      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1200           AI != E; ++AI) {
1201        LatticeVal &State = getValueState(*AI);
1202
1203        if (State.isUndefined())
1204          return;  // Operands are not resolved yet.
1205        if (State.isOverdefined())
1206          return markOverdefined(I);
1207        assert(State.isConstant() && "Unknown state!");
1208        Operands.push_back(State.getConstant());
1209      }
1210
1211      // If we can constant fold this, mark the result of the call as a
1212      // constant.
1213      if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size()))
1214        return markConstant(I, C);
1215    }
1216
1217    // Otherwise, we don't know anything about this call, mark it overdefined.
1218    return markOverdefined(I);
1219  }
1220
1221  // If this is a single/zero retval case, see if we're tracking the function.
1222  DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1223  if (TFRVI != TrackedRetVals.end()) {
1224    // If so, propagate the return value of the callee into this call result.
1225    mergeInValue(I, TFRVI->second);
1226  } else if (isa<StructType>(I->getType())) {
1227    // Check to see if we're tracking this callee, if not, handle it in the
1228    // common path above.
1229    DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
1230    TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
1231    if (TMRVI == TrackedMultipleRetVals.end())
1232      goto CallOverdefined;
1233
1234    // Need to mark as overdefined, otherwise it stays undefined which
1235    // creates extractvalue undef, <idx>
1236    markOverdefined(I);
1237
1238    // If we are tracking this callee, propagate the return values of the call
1239    // into this call site.  We do this by walking all the uses. Single-index
1240    // ExtractValueInst uses can be tracked; anything more complicated is
1241    // currently handled conservatively.
1242    for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1243         UI != E; ++UI) {
1244      if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
1245        if (EVI->getNumIndices() == 1) {
1246          mergeInValue(EVI,
1247                  TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
1248          continue;
1249        }
1250      }
1251      // The aggregate value is used in a way not handled here. Assume nothing.
1252      markOverdefined(*UI);
1253    }
1254  } else {
1255    // Otherwise we're not tracking this callee, so handle it in the
1256    // common path above.
1257    goto CallOverdefined;
1258  }
1259
1260  // Finally, if this is the first call to the function hit, mark its entry
1261  // block executable.
1262  if (!BBExecutable.count(F->begin()))
1263    MarkBlockExecutable(F->begin());
1264
1265  // Propagate information from this call site into the callee.
1266  CallSite::arg_iterator CAI = CS.arg_begin();
1267  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1268       AI != E; ++AI, ++CAI) {
1269    LatticeVal &IV = ValueState[AI];
1270    if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1271      IV.markOverdefined();
1272      continue;
1273    }
1274    if (!IV.isOverdefined())
1275      mergeInValue(IV, AI, getValueState(*CAI));
1276  }
1277}
1278
1279void SCCPSolver::Solve() {
1280  // Process the work lists until they are empty!
1281  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1282         !OverdefinedInstWorkList.empty()) {
1283    // Process the instruction work list.
1284    while (!OverdefinedInstWorkList.empty()) {
1285      Value *I = OverdefinedInstWorkList.back();
1286      OverdefinedInstWorkList.pop_back();
1287
1288      DEBUG(errs() << "\nPopped off OI-WL: " << *I << '\n');
1289
1290      // "I" got into the work list because it either made the transition from
1291      // bottom to constant
1292      //
1293      // Anything on this worklist that is overdefined need not be visited
1294      // since all of its users will have already been marked as overdefined
1295      // Update all of the users of this instruction's value.
1296      //
1297      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1298           UI != E; ++UI)
1299        OperandChangedState(*UI);
1300    }
1301
1302    // Process the instruction work list.
1303    while (!InstWorkList.empty()) {
1304      Value *I = InstWorkList.back();
1305      InstWorkList.pop_back();
1306
1307      DEBUG(errs() << "\nPopped off I-WL: " << *I << '\n');
1308
1309      // "I" got into the work list because it either made the transition from
1310      // bottom to constant
1311      //
1312      // Anything on this worklist that is overdefined need not be visited
1313      // since all of its users will have already been marked as overdefined.
1314      // Update all of the users of this instruction's value.
1315      //
1316      if (!getValueState(I).isOverdefined())
1317        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1318             UI != E; ++UI)
1319          OperandChangedState(*UI);
1320    }
1321
1322    // Process the basic block work list.
1323    while (!BBWorkList.empty()) {
1324      BasicBlock *BB = BBWorkList.back();
1325      BBWorkList.pop_back();
1326
1327      DEBUG(errs() << "\nPopped off BBWL: " << *BB << '\n');
1328
1329      // Notify all instructions in this basic block that they are newly
1330      // executable.
1331      visit(BB);
1332    }
1333  }
1334}
1335
1336/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1337/// that branches on undef values cannot reach any of their successors.
1338/// However, this is not a safe assumption.  After we solve dataflow, this
1339/// method should be use to handle this.  If this returns true, the solver
1340/// should be rerun.
1341///
1342/// This method handles this by finding an unresolved branch and marking it one
1343/// of the edges from the block as being feasible, even though the condition
1344/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1345/// CFG and only slightly pessimizes the analysis results (by marking one,
1346/// potentially infeasible, edge feasible).  This cannot usefully modify the
1347/// constraints on the condition of the branch, as that would impact other users
1348/// of the value.
1349///
1350/// This scan also checks for values that use undefs, whose results are actually
1351/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1352/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1353/// even if X isn't defined.
1354bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1355  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1356    if (!BBExecutable.count(BB))
1357      continue;
1358
1359    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1360      // Look for instructions which produce undef values.
1361      if (I->getType()->isVoidTy()) continue;
1362
1363      LatticeVal &LV = getValueState(I);
1364      if (!LV.isUndefined()) continue;
1365
1366      // Get the lattice values of the first two operands for use below.
1367      LatticeVal &Op0LV = getValueState(I->getOperand(0));
1368      LatticeVal Op1LV;
1369      if (I->getNumOperands() == 2) {
1370        // If this is a two-operand instruction, and if both operands are
1371        // undefs, the result stays undef.
1372        Op1LV = getValueState(I->getOperand(1));
1373        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1374          continue;
1375      }
1376
1377      // If this is an instructions whose result is defined even if the input is
1378      // not fully defined, propagate the information.
1379      const Type *ITy = I->getType();
1380      switch (I->getOpcode()) {
1381      default: break;          // Leave the instruction as an undef.
1382      case Instruction::ZExt:
1383        // After a zero extend, we know the top part is zero.  SExt doesn't have
1384        // to be handled here, because we don't know whether the top part is 1's
1385        // or 0's.
1386        assert(Op0LV.isUndefined());
1387        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1388        return true;
1389      case Instruction::Mul:
1390      case Instruction::And:
1391        // undef * X -> 0.   X could be zero.
1392        // undef & X -> 0.   X could be zero.
1393        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1394        return true;
1395
1396      case Instruction::Or:
1397        // undef | X -> -1.   X could be -1.
1398        if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
1399          markForcedConstant(LV, I,
1400                             Constant::getAllOnesValue(PTy));
1401        else
1402          markForcedConstant(LV, I, Constant::getAllOnesValue(ITy));
1403        return true;
1404
1405      case Instruction::SDiv:
1406      case Instruction::UDiv:
1407      case Instruction::SRem:
1408      case Instruction::URem:
1409        // X / undef -> undef.  No change.
1410        // X % undef -> undef.  No change.
1411        if (Op1LV.isUndefined()) break;
1412
1413        // undef / X -> 0.   X could be maxint.
1414        // undef % X -> 0.   X could be 1.
1415        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1416        return true;
1417
1418      case Instruction::AShr:
1419        // undef >>s X -> undef.  No change.
1420        if (Op0LV.isUndefined()) break;
1421
1422        // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
1423        if (Op0LV.isConstant())
1424          markForcedConstant(LV, I, Op0LV.getConstant());
1425        else
1426          markOverdefined(LV, I);
1427        return true;
1428      case Instruction::LShr:
1429      case Instruction::Shl:
1430        // undef >> X -> undef.  No change.
1431        // undef << X -> undef.  No change.
1432        if (Op0LV.isUndefined()) break;
1433
1434        // X >> undef -> 0.  X could be 0.
1435        // X << undef -> 0.  X could be 0.
1436        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1437        return true;
1438      case Instruction::Select:
1439        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1440        if (Op0LV.isUndefined()) {
1441          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1442            Op1LV = getValueState(I->getOperand(2));
1443        } else if (Op1LV.isUndefined()) {
1444          // c ? undef : undef -> undef.  No change.
1445          Op1LV = getValueState(I->getOperand(2));
1446          if (Op1LV.isUndefined())
1447            break;
1448          // Otherwise, c ? undef : x -> x.
1449        } else {
1450          // Leave Op1LV as Operand(1)'s LatticeValue.
1451        }
1452
1453        if (Op1LV.isConstant())
1454          markForcedConstant(LV, I, Op1LV.getConstant());
1455        else
1456          markOverdefined(LV, I);
1457        return true;
1458      case Instruction::Call:
1459        // If a call has an undef result, it is because it is constant foldable
1460        // but one of the inputs was undef.  Just force the result to
1461        // overdefined.
1462        markOverdefined(LV, I);
1463        return true;
1464      }
1465    }
1466
1467    TerminatorInst *TI = BB->getTerminator();
1468    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1469      if (!BI->isConditional()) continue;
1470      if (!getValueState(BI->getCondition()).isUndefined())
1471        continue;
1472    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1473      if (SI->getNumSuccessors() < 2)   // no cases
1474        continue;
1475      if (!getValueState(SI->getCondition()).isUndefined())
1476        continue;
1477    } else {
1478      continue;
1479    }
1480
1481    // If the edge to the second successor isn't thought to be feasible yet,
1482    // mark it so now.  We pick the second one so that this goes to some
1483    // enumerated value in a switch instead of going to the default destination.
1484    if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
1485      continue;
1486
1487    // Otherwise, it isn't already thought to be feasible.  Mark it as such now
1488    // and return.  This will make other blocks reachable, which will allow new
1489    // values to be discovered and existing ones to be moved in the lattice.
1490    markEdgeExecutable(BB, TI->getSuccessor(1));
1491
1492    // This must be a conditional branch of switch on undef.  At this point,
1493    // force the old terminator to branch to the first successor.  This is
1494    // required because we are now influencing the dataflow of the function with
1495    // the assumption that this edge is taken.  If we leave the branch condition
1496    // as undef, then further analysis could think the undef went another way
1497    // leading to an inconsistent set of conclusions.
1498    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1499      BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1500    } else {
1501      SwitchInst *SI = cast<SwitchInst>(TI);
1502      SI->setCondition(SI->getCaseValue(1));
1503    }
1504
1505    return true;
1506  }
1507
1508  return false;
1509}
1510
1511
1512namespace {
1513  //===--------------------------------------------------------------------===//
1514  //
1515  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1516  /// Sparse Conditional Constant Propagator.
1517  ///
1518  struct SCCP : public FunctionPass {
1519    static char ID; // Pass identification, replacement for typeid
1520    SCCP() : FunctionPass(&ID) {}
1521
1522    // runOnFunction - Run the Sparse Conditional Constant Propagation
1523    // algorithm, and return true if the function was modified.
1524    //
1525    bool runOnFunction(Function &F);
1526
1527    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1528      AU.setPreservesCFG();
1529    }
1530  };
1531} // end anonymous namespace
1532
1533char SCCP::ID = 0;
1534static RegisterPass<SCCP>
1535X("sccp", "Sparse Conditional Constant Propagation");
1536
1537// createSCCPPass - This is the public interface to this file.
1538FunctionPass *llvm::createSCCPPass() {
1539  return new SCCP();
1540}
1541
1542static void DeleteInstructionInBlock(BasicBlock *BB) {
1543  DEBUG(errs() << "  BasicBlock Dead:" << *BB);
1544  ++NumDeadBlocks;
1545
1546  // Delete the instructions backwards, as it has a reduced likelihood of
1547  // having to update as many def-use and use-def chains.
1548  while (!isa<TerminatorInst>(BB->begin())) {
1549    Instruction *I = --BasicBlock::iterator(BB->getTerminator());
1550
1551    if (!I->use_empty())
1552      I->replaceAllUsesWith(UndefValue::get(I->getType()));
1553    BB->getInstList().erase(I);
1554    ++NumInstRemoved;
1555  }
1556}
1557
1558// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1559// and return true if the function was modified.
1560//
1561bool SCCP::runOnFunction(Function &F) {
1562  DEBUG(errs() << "SCCP on function '" << F.getName() << "'\n");
1563  SCCPSolver Solver;
1564
1565  // Mark the first block of the function as being executable.
1566  Solver.MarkBlockExecutable(F.begin());
1567
1568  // Mark all arguments to the function as being overdefined.
1569  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1570    Solver.markOverdefined(AI);
1571
1572  // Solve for constants.
1573  bool ResolvedUndefs = true;
1574  while (ResolvedUndefs) {
1575    Solver.Solve();
1576    DEBUG(errs() << "RESOLVING UNDEFs\n");
1577    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1578  }
1579
1580  bool MadeChanges = false;
1581
1582  // If we decided that there are basic blocks that are dead in this function,
1583  // delete their contents now.  Note that we cannot actually delete the blocks,
1584  // as we cannot modify the CFG of the function.
1585
1586  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1587    if (!Solver.isBlockExecutable(BB)) {
1588      DeleteInstructionInBlock(BB);
1589      MadeChanges = true;
1590      continue;
1591    }
1592
1593    // Iterate over all of the instructions in a function, replacing them with
1594    // constants if we have found them to be of constant values.
1595    //
1596    for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1597      Instruction *Inst = BI++;
1598      if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1599        continue;
1600
1601      LatticeVal IV = Solver.getLatticeValueFor(Inst);
1602      if (IV.isOverdefined())
1603        continue;
1604
1605      Constant *Const = IV.isConstant()
1606        ? IV.getConstant() : UndefValue::get(Inst->getType());
1607      DEBUG(errs() << "  Constant: " << *Const << " = " << *Inst);
1608
1609      // Replaces all of the uses of a variable with uses of the constant.
1610      Inst->replaceAllUsesWith(Const);
1611
1612      // Delete the instruction.
1613      Inst->eraseFromParent();
1614
1615      // Hey, we just changed something!
1616      MadeChanges = true;
1617      ++NumInstRemoved;
1618    }
1619  }
1620
1621  return MadeChanges;
1622}
1623
1624namespace {
1625  //===--------------------------------------------------------------------===//
1626  //
1627  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1628  /// Constant Propagation.
1629  ///
1630  struct IPSCCP : public ModulePass {
1631    static char ID;
1632    IPSCCP() : ModulePass(&ID) {}
1633    bool runOnModule(Module &M);
1634  };
1635} // end anonymous namespace
1636
1637char IPSCCP::ID = 0;
1638static RegisterPass<IPSCCP>
1639Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1640
1641// createIPSCCPPass - This is the public interface to this file.
1642ModulePass *llvm::createIPSCCPPass() {
1643  return new IPSCCP();
1644}
1645
1646
1647static bool AddressIsTaken(GlobalValue *GV) {
1648  // Delete any dead constantexpr klingons.
1649  GV->removeDeadConstantUsers();
1650
1651  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1652       UI != E; ++UI)
1653    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1654      if (SI->getOperand(0) == GV || SI->isVolatile())
1655        return true;  // Storing addr of GV.
1656    } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1657      // Make sure we are calling the function, not passing the address.
1658      if (UI.getOperandNo() != 0)
1659        return true;
1660    } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1661      if (LI->isVolatile())
1662        return true;
1663    } else if (isa<BlockAddress>(*UI)) {
1664      // blockaddress doesn't take the address of the function, it takes addr
1665      // of label.
1666    } else {
1667      return true;
1668    }
1669  return false;
1670}
1671
1672bool IPSCCP::runOnModule(Module &M) {
1673  SCCPSolver Solver;
1674
1675  // Loop over all functions, marking arguments to those with their addresses
1676  // taken or that are external as overdefined.
1677  //
1678  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1679    if (!F->hasLocalLinkage() || AddressIsTaken(F)) {
1680      if (!F->isDeclaration())
1681        Solver.MarkBlockExecutable(F->begin());
1682      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1683           AI != E; ++AI)
1684        Solver.markOverdefined(AI);
1685    } else {
1686      Solver.AddTrackedFunction(F);
1687    }
1688
1689  // Loop over global variables.  We inform the solver about any internal global
1690  // variables that do not have their 'addresses taken'.  If they don't have
1691  // their addresses taken, we can propagate constants through them.
1692  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1693       G != E; ++G)
1694    if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1695      Solver.TrackValueOfGlobalVariable(G);
1696
1697  // Solve for constants.
1698  bool ResolvedUndefs = true;
1699  while (ResolvedUndefs) {
1700    Solver.Solve();
1701
1702    DEBUG(errs() << "RESOLVING UNDEFS\n");
1703    ResolvedUndefs = false;
1704    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1705      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1706  }
1707
1708  bool MadeChanges = false;
1709
1710  // Iterate over all of the instructions in the module, replacing them with
1711  // constants if we have found them to be of constant values.
1712  //
1713  SmallVector<BasicBlock*, 512> BlocksToErase;
1714
1715  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1716    if (Solver.isBlockExecutable(F->begin())) {
1717      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1718           AI != E; ++AI) {
1719        if (AI->use_empty()) continue;
1720
1721        LatticeVal IV = Solver.getLatticeValueFor(AI);
1722        if (IV.isOverdefined()) continue;
1723
1724        Constant *CST = IV.isConstant() ?
1725        IV.getConstant() : UndefValue::get(AI->getType());
1726        DEBUG(errs() << "***  Arg " << *AI << " = " << *CST <<"\n");
1727
1728        // Replaces all of the uses of a variable with uses of the
1729        // constant.
1730        AI->replaceAllUsesWith(CST);
1731        ++IPNumArgsElimed;
1732      }
1733    }
1734
1735    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
1736      if (!Solver.isBlockExecutable(BB)) {
1737        DeleteInstructionInBlock(BB);
1738        MadeChanges = true;
1739
1740        TerminatorInst *TI = BB->getTerminator();
1741        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1742          BasicBlock *Succ = TI->getSuccessor(i);
1743          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1744            TI->getSuccessor(i)->removePredecessor(BB);
1745        }
1746        if (!TI->use_empty())
1747          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1748        TI->eraseFromParent();
1749
1750        if (&*BB != &F->front())
1751          BlocksToErase.push_back(BB);
1752        else
1753          new UnreachableInst(M.getContext(), BB);
1754        continue;
1755      }
1756
1757      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1758        Instruction *Inst = BI++;
1759        if (Inst->getType()->isVoidTy())
1760          continue;
1761
1762        LatticeVal IV = Solver.getLatticeValueFor(Inst);
1763        if (IV.isOverdefined())
1764          continue;
1765
1766        Constant *Const = IV.isConstant()
1767          ? IV.getConstant() : UndefValue::get(Inst->getType());
1768        DEBUG(errs() << "  Constant: " << *Const << " = " << *Inst);
1769
1770        // Replaces all of the uses of a variable with uses of the
1771        // constant.
1772        Inst->replaceAllUsesWith(Const);
1773
1774        // Delete the instruction.
1775        if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1776          Inst->eraseFromParent();
1777
1778        // Hey, we just changed something!
1779        MadeChanges = true;
1780        ++IPNumInstRemoved;
1781      }
1782    }
1783
1784    // Now that all instructions in the function are constant folded, erase dead
1785    // blocks, because we can now use ConstantFoldTerminator to get rid of
1786    // in-edges.
1787    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1788      // If there are any PHI nodes in this successor, drop entries for BB now.
1789      BasicBlock *DeadBB = BlocksToErase[i];
1790      while (!DeadBB->use_empty()) {
1791        Instruction *I = cast<Instruction>(DeadBB->use_back());
1792        bool Folded = ConstantFoldTerminator(I->getParent());
1793        if (!Folded) {
1794          // The constant folder may not have been able to fold the terminator
1795          // if this is a branch or switch on undef.  Fold it manually as a
1796          // branch to the first successor.
1797#ifndef NDEBUG
1798          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1799            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1800                   "Branch should be foldable!");
1801          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1802            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1803          } else {
1804            llvm_unreachable("Didn't fold away reference to block!");
1805          }
1806#endif
1807
1808          // Make this an uncond branch to the first successor.
1809          TerminatorInst *TI = I->getParent()->getTerminator();
1810          BranchInst::Create(TI->getSuccessor(0), TI);
1811
1812          // Remove entries in successor phi nodes to remove edges.
1813          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1814            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1815
1816          // Remove the old terminator.
1817          TI->eraseFromParent();
1818        }
1819      }
1820
1821      // Finally, delete the basic block.
1822      F->getBasicBlockList().erase(DeadBB);
1823    }
1824    BlocksToErase.clear();
1825  }
1826
1827  // If we inferred constant or undef return values for a function, we replaced
1828  // all call uses with the inferred value.  This means we don't need to bother
1829  // actually returning anything from the function.  Replace all return
1830  // instructions with return undef.
1831  // TODO: Process multiple value ret instructions also.
1832  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1833  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1834         E = RV.end(); I != E; ++I)
1835    if (!I->second.isOverdefined() &&
1836        !I->first->getReturnType()->isVoidTy()) {
1837      Function *F = I->first;
1838      for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1839        if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1840          if (!isa<UndefValue>(RI->getOperand(0)))
1841            RI->setOperand(0, UndefValue::get(F->getReturnType()));
1842    }
1843
1844  // If we infered constant or undef values for globals variables, we can delete
1845  // the global and any stores that remain to it.
1846  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1847  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1848         E = TG.end(); I != E; ++I) {
1849    GlobalVariable *GV = I->first;
1850    assert(!I->second.isOverdefined() &&
1851           "Overdefined values should have been taken out of the map!");
1852    DEBUG(errs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1853    while (!GV->use_empty()) {
1854      StoreInst *SI = cast<StoreInst>(GV->use_back());
1855      SI->eraseFromParent();
1856    }
1857    M.getGlobalList().erase(GV);
1858    ++IPNumGlobalConst;
1859  }
1860
1861  return MadeChanges;
1862}
1863