SCCP.cpp revision 89112b608f50e2944619b320bd04d31bbd57b370
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18//===----------------------------------------------------------------------===// 19 20#define DEBUG_TYPE "sccp" 21#include "llvm/Transforms/Scalar.h" 22#include "llvm/Transforms/IPO.h" 23#include "llvm/Constants.h" 24#include "llvm/DerivedTypes.h" 25#include "llvm/Instructions.h" 26#include "llvm/Pass.h" 27#include "llvm/Analysis/ConstantFolding.h" 28#include "llvm/Analysis/MemoryBuiltins.h" 29#include "llvm/Analysis/ValueTracking.h" 30#include "llvm/Transforms/Utils/Local.h" 31#include "llvm/Support/CallSite.h" 32#include "llvm/Support/Debug.h" 33#include "llvm/Support/ErrorHandling.h" 34#include "llvm/Support/InstVisitor.h" 35#include "llvm/Support/raw_ostream.h" 36#include "llvm/ADT/DenseMap.h" 37#include "llvm/ADT/DenseSet.h" 38#include "llvm/ADT/PointerIntPair.h" 39#include "llvm/ADT/SmallVector.h" 40#include "llvm/ADT/Statistic.h" 41#include "llvm/ADT/STLExtras.h" 42#include <algorithm> 43#include <map> 44using namespace llvm; 45 46STATISTIC(NumInstRemoved, "Number of instructions removed"); 47STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 48 49STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); 50STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 51STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 52 53namespace { 54/// LatticeVal class - This class represents the different lattice values that 55/// an LLVM value may occupy. It is a simple class with value semantics. 56/// 57class LatticeVal { 58 enum LatticeValueTy { 59 /// undefined - This LLVM Value has no known value yet. 60 undefined, 61 62 /// constant - This LLVM Value has a specific constant value. 63 constant, 64 65 /// forcedconstant - This LLVM Value was thought to be undef until 66 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 67 /// with another (different) constant, it goes to overdefined, instead of 68 /// asserting. 69 forcedconstant, 70 71 /// overdefined - This instruction is not known to be constant, and we know 72 /// it has a value. 73 overdefined 74 }; 75 76 /// Val: This stores the current lattice value along with the Constant* for 77 /// the constant if this is a 'constant' or 'forcedconstant' value. 78 PointerIntPair<Constant *, 2, LatticeValueTy> Val; 79 80 LatticeValueTy getLatticeValue() const { 81 return Val.getInt(); 82 } 83 84public: 85 LatticeVal() : Val(0, undefined) {} 86 87 bool isUndefined() const { return getLatticeValue() == undefined; } 88 bool isConstant() const { 89 return getLatticeValue() == constant || getLatticeValue() == forcedconstant; 90 } 91 bool isOverdefined() const { return getLatticeValue() == overdefined; } 92 93 Constant *getConstant() const { 94 assert(isConstant() && "Cannot get the constant of a non-constant!"); 95 return Val.getPointer(); 96 } 97 98 /// markOverdefined - Return true if this is a change in status. 99 bool markOverdefined() { 100 if (isOverdefined()) 101 return false; 102 103 Val.setInt(overdefined); 104 return true; 105 } 106 107 /// markConstant - Return true if this is a change in status. 108 bool markConstant(Constant *V) { 109 if (isConstant()) { 110 assert(getConstant() == V && "Marking constant with different value"); 111 return false; 112 } 113 114 if (isUndefined()) { 115 Val.setInt(constant); 116 assert(V && "Marking constant with NULL"); 117 Val.setPointer(V); 118 } else { 119 assert(getLatticeValue() == forcedconstant && 120 "Cannot move from overdefined to constant!"); 121 // Stay at forcedconstant if the constant is the same. 122 if (V == getConstant()) return false; 123 124 // Otherwise, we go to overdefined. Assumptions made based on the 125 // forced value are possibly wrong. Assuming this is another constant 126 // could expose a contradiction. 127 Val.setInt(overdefined); 128 } 129 return true; 130 } 131 132 /// getConstantInt - If this is a constant with a ConstantInt value, return it 133 /// otherwise return null. 134 ConstantInt *getConstantInt() const { 135 if (isConstant()) 136 return dyn_cast<ConstantInt>(getConstant()); 137 return 0; 138 } 139 140 void markForcedConstant(Constant *V) { 141 assert(isUndefined() && "Can't force a defined value!"); 142 Val.setInt(forcedconstant); 143 Val.setPointer(V); 144 } 145}; 146} // end anonymous namespace. 147 148 149namespace { 150 151//===----------------------------------------------------------------------===// 152// 153/// SCCPSolver - This class is a general purpose solver for Sparse Conditional 154/// Constant Propagation. 155/// 156class SCCPSolver : public InstVisitor<SCCPSolver> { 157 DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable 158 std::map<Value*, LatticeVal> ValueState; // The state each value is in. 159 160 /// GlobalValue - If we are tracking any values for the contents of a global 161 /// variable, we keep a mapping from the constant accessor to the element of 162 /// the global, to the currently known value. If the value becomes 163 /// overdefined, it's entry is simply removed from this map. 164 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; 165 166 /// TrackedRetVals - If we are tracking arguments into and the return 167 /// value out of a function, it will have an entry in this map, indicating 168 /// what the known return value for the function is. 169 DenseMap<Function*, LatticeVal> TrackedRetVals; 170 171 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 172 /// that return multiple values. 173 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; 174 175 /// The reason for two worklists is that overdefined is the lowest state 176 /// on the lattice, and moving things to overdefined as fast as possible 177 /// makes SCCP converge much faster. 178 /// 179 /// By having a separate worklist, we accomplish this because everything 180 /// possibly overdefined will become overdefined at the soonest possible 181 /// point. 182 SmallVector<Value*, 64> OverdefinedInstWorkList; 183 SmallVector<Value*, 64> InstWorkList; 184 185 186 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list 187 188 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not 189 /// overdefined, despite the fact that the PHI node is overdefined. 190 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; 191 192 /// KnownFeasibleEdges - Entries in this set are edges which have already had 193 /// PHI nodes retriggered. 194 typedef std::pair<BasicBlock*, BasicBlock*> Edge; 195 DenseSet<Edge> KnownFeasibleEdges; 196public: 197 198 /// MarkBlockExecutable - This method can be used by clients to mark all of 199 /// the blocks that are known to be intrinsically live in the processed unit. 200 void MarkBlockExecutable(BasicBlock *BB) { 201 DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n"); 202 BBExecutable.insert(BB); // Basic block is executable! 203 BBWorkList.push_back(BB); // Add the block to the work list! 204 } 205 206 /// TrackValueOfGlobalVariable - Clients can use this method to 207 /// inform the SCCPSolver that it should track loads and stores to the 208 /// specified global variable if it can. This is only legal to call if 209 /// performing Interprocedural SCCP. 210 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 211 const Type *ElTy = GV->getType()->getElementType(); 212 if (ElTy->isFirstClassType()) { 213 LatticeVal &IV = TrackedGlobals[GV]; 214 if (!isa<UndefValue>(GV->getInitializer())) 215 IV.markConstant(GV->getInitializer()); 216 } 217 } 218 219 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 220 /// and out of the specified function (which cannot have its address taken), 221 /// this method must be called. 222 void AddTrackedFunction(Function *F) { 223 assert(F->hasLocalLinkage() && "Can only track internal functions!"); 224 // Add an entry, F -> undef. 225 if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 226 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 227 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), 228 LatticeVal())); 229 } else 230 TrackedRetVals.insert(std::make_pair(F, LatticeVal())); 231 } 232 233 /// Solve - Solve for constants and executable blocks. 234 /// 235 void Solve(); 236 237 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 238 /// that branches on undef values cannot reach any of their successors. 239 /// However, this is not a safe assumption. After we solve dataflow, this 240 /// method should be use to handle this. If this returns true, the solver 241 /// should be rerun. 242 bool ResolvedUndefsIn(Function &F); 243 244 bool isBlockExecutable(BasicBlock *BB) const { 245 return BBExecutable.count(BB); 246 } 247 248 LatticeVal getLatticeValueFor(Value *V) const { 249 std::map<Value*, LatticeVal>::const_iterator I = ValueState.find(V); 250 assert(I != ValueState.end() && "V is not in valuemap!"); 251 return I->second; 252 } 253 254 /// getTrackedRetVals - Get the inferred return value map. 255 /// 256 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { 257 return TrackedRetVals; 258 } 259 260 /// getTrackedGlobals - Get and return the set of inferred initializers for 261 /// global variables. 262 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 263 return TrackedGlobals; 264 } 265 266 void markOverdefined(Value *V) { 267 markOverdefined(ValueState[V], V); 268 } 269 270private: 271 // markConstant - Make a value be marked as "constant". If the value 272 // is not already a constant, add it to the instruction work list so that 273 // the users of the instruction are updated later. 274 // 275 void markConstant(LatticeVal &IV, Value *V, Constant *C) { 276 if (!IV.markConstant(C)) return; 277 DEBUG(errs() << "markConstant: " << *C << ": " << *V << '\n'); 278 InstWorkList.push_back(V); 279 } 280 281 void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) { 282 IV.markForcedConstant(C); 283 DEBUG(errs() << "markForcedConstant: " << *C << ": " << *V << '\n'); 284 InstWorkList.push_back(V); 285 } 286 287 void markConstant(Value *V, Constant *C) { 288 markConstant(ValueState[V], V, C); 289 } 290 291 // markOverdefined - Make a value be marked as "overdefined". If the 292 // value is not already overdefined, add it to the overdefined instruction 293 // work list so that the users of the instruction are updated later. 294 void markOverdefined(LatticeVal &IV, Value *V) { 295 if (!IV.markOverdefined()) return; 296 297 DEBUG(errs() << "markOverdefined: "; 298 if (Function *F = dyn_cast<Function>(V)) 299 errs() << "Function '" << F->getName() << "'\n"; 300 else 301 errs() << *V << '\n'); 302 // Only instructions go on the work list 303 OverdefinedInstWorkList.push_back(V); 304 } 305 306 void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) { 307 if (IV.isOverdefined() || MergeWithV.isUndefined()) 308 return; // Noop. 309 if (MergeWithV.isOverdefined()) 310 markOverdefined(IV, V); 311 else if (IV.isUndefined()) 312 markConstant(IV, V, MergeWithV.getConstant()); 313 else if (IV.getConstant() != MergeWithV.getConstant()) 314 markOverdefined(IV, V); 315 } 316 317 void mergeInValue(Value *V, LatticeVal &MergeWithV) { 318 mergeInValue(ValueState[V], V, MergeWithV); 319 } 320 321 322 // getValueState - Return the LatticeVal object that corresponds to the value. 323 // This function is necessary because not all values should start out in the 324 // underdefined state. Argument's should be overdefined, and 325 // constants should be marked as constants. If a value is not known to be an 326 // Instruction object, then use this accessor to get its value from the map. 327 // 328 LatticeVal &getValueState(Value *V) { 329 std::map<Value*, LatticeVal>::iterator I = ValueState.find(V); 330 if (I != ValueState.end()) return I->second; // Common case, in the map 331 332 LatticeVal &LV = ValueState[V]; 333 334 if (Constant *C = dyn_cast<Constant>(V)) { 335 // Undef values remain undefined. 336 if (!isa<UndefValue>(V)) 337 LV.markConstant(C); // Constants are constant 338 } 339 340 // All others are underdefined by default. 341 return LV; 342 } 343 344 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB 345 // work list if it is not already executable. 346 // 347 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 348 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 349 return; // This edge is already known to be executable! 350 351 if (BBExecutable.count(Dest)) { 352 DEBUG(errs() << "Marking Edge Executable: " << Source->getName() 353 << " -> " << Dest->getName() << "\n"); 354 355 // The destination is already executable, but we just made an edge 356 // feasible that wasn't before. Revisit the PHI nodes in the block 357 // because they have potentially new operands. 358 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) 359 visitPHINode(*cast<PHINode>(I)); 360 361 } else { 362 MarkBlockExecutable(Dest); 363 } 364 } 365 366 // getFeasibleSuccessors - Return a vector of booleans to indicate which 367 // successors are reachable from a given terminator instruction. 368 // 369 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs); 370 371 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 372 // block to the 'To' basic block is currently feasible. 373 // 374 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 375 376 // OperandChangedState - This method is invoked on all of the users of an 377 // instruction that was just changed state somehow. Based on this 378 // information, we need to update the specified user of this instruction. 379 // 380 void OperandChangedState(User *U) { 381 // Only instructions use other variable values! 382 Instruction &I = cast<Instruction>(*U); 383 if (BBExecutable.count(I.getParent())) // Inst is executable? 384 visit(I); 385 } 386 387private: 388 friend class InstVisitor<SCCPSolver>; 389 390 // visit implementations - Something changed in this instruction. Either an 391 // operand made a transition, or the instruction is newly executable. Change 392 // the value type of I to reflect these changes if appropriate. 393 void visitPHINode(PHINode &I); 394 395 // Terminators 396 void visitReturnInst(ReturnInst &I); 397 void visitTerminatorInst(TerminatorInst &TI); 398 399 void visitCastInst(CastInst &I); 400 void visitSelectInst(SelectInst &I); 401 void visitBinaryOperator(Instruction &I); 402 void visitCmpInst(CmpInst &I); 403 void visitExtractElementInst(ExtractElementInst &I); 404 void visitInsertElementInst(InsertElementInst &I); 405 void visitShuffleVectorInst(ShuffleVectorInst &I); 406 void visitExtractValueInst(ExtractValueInst &EVI); 407 void visitInsertValueInst(InsertValueInst &IVI); 408 409 // Instructions that cannot be folded away. 410 void visitStoreInst (Instruction &I); 411 void visitLoadInst (LoadInst &I); 412 void visitGetElementPtrInst(GetElementPtrInst &I); 413 void visitCallInst (CallInst &I) { 414 if (isFreeCall(&I)) 415 return; 416 visitCallSite(CallSite::get(&I)); 417 } 418 void visitInvokeInst (InvokeInst &II) { 419 visitCallSite(CallSite::get(&II)); 420 visitTerminatorInst(II); 421 } 422 void visitCallSite (CallSite CS); 423 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 424 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 425 void visitAllocaInst (Instruction &I) { markOverdefined(&I); } 426 void visitVANextInst (Instruction &I) { markOverdefined(&I); } 427 void visitVAArgInst (Instruction &I) { markOverdefined(&I); } 428 429 void visitInstruction(Instruction &I) { 430 // If a new instruction is added to LLVM that we don't handle. 431 errs() << "SCCP: Don't know how to handle: " << I; 432 markOverdefined(&I); // Just in case 433 } 434}; 435 436} // end anonymous namespace 437 438 439// getFeasibleSuccessors - Return a vector of booleans to indicate which 440// successors are reachable from a given terminator instruction. 441// 442void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 443 SmallVector<bool, 16> &Succs) { 444 Succs.resize(TI.getNumSuccessors()); 445 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 446 if (BI->isUnconditional()) { 447 Succs[0] = true; 448 return; 449 } 450 451 LatticeVal &BCValue = getValueState(BI->getCondition()); 452 ConstantInt *CI = BCValue.getConstantInt(); 453 if (CI == 0) { 454 // Overdefined condition variables, and branches on unfoldable constant 455 // conditions, mean the branch could go either way. 456 if (!BCValue.isUndefined()) 457 Succs[0] = Succs[1] = true; 458 return; 459 } 460 461 // Constant condition variables mean the branch can only go a single way. 462 Succs[CI->isZero()] = true; 463 return; 464 } 465 466 if (isa<InvokeInst>(TI)) { 467 // Invoke instructions successors are always executable. 468 Succs[0] = Succs[1] = true; 469 return; 470 } 471 472 if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 473 LatticeVal &SCValue = getValueState(SI->getCondition()); 474 ConstantInt *CI = SCValue.getConstantInt(); 475 476 if (CI == 0) { // Overdefined or undefined condition? 477 // All destinations are executable! 478 if (!SCValue.isUndefined()) 479 Succs.assign(TI.getNumSuccessors(), true); 480 return; 481 } 482 483 Succs[SI->findCaseValue(CI)] = true; 484 return; 485 } 486 487 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 488 if (isa<IndirectBrInst>(&TI)) { 489 // Just mark all destinations executable! 490 Succs.assign(TI.getNumSuccessors(), true); 491 return; 492 } 493 494#ifndef NDEBUG 495 errs() << "Unknown terminator instruction: " << TI << '\n'; 496#endif 497 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 498} 499 500 501// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 502// block to the 'To' basic block is currently feasible. 503// 504bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 505 assert(BBExecutable.count(To) && "Dest should always be alive!"); 506 507 // Make sure the source basic block is executable!! 508 if (!BBExecutable.count(From)) return false; 509 510 // Check to make sure this edge itself is actually feasible now. 511 TerminatorInst *TI = From->getTerminator(); 512 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 513 if (BI->isUnconditional()) 514 return true; 515 516 LatticeVal &BCValue = getValueState(BI->getCondition()); 517 518 // Overdefined condition variables mean the branch could go either way, 519 // undef conditions mean that neither edge is feasible yet. 520 ConstantInt *CI = BCValue.getConstantInt(); 521 if (CI == 0) 522 return !BCValue.isUndefined(); 523 524 // Constant condition variables mean the branch can only go a single way. 525 return BI->getSuccessor(CI->isZero()) == To; 526 } 527 528 // Invoke instructions successors are always executable. 529 if (isa<InvokeInst>(TI)) 530 return true; 531 532 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 533 LatticeVal &SCValue = getValueState(SI->getCondition()); 534 ConstantInt *CI = SCValue.getConstantInt(); 535 536 if (CI == 0) 537 return !SCValue.isUndefined(); 538 539 // Make sure to skip the "default value" which isn't a value 540 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 541 if (SI->getSuccessorValue(i) == CI) // Found the taken branch. 542 return SI->getSuccessor(i) == To; 543 544 // If the constant value is not equal to any of the branches, we must 545 // execute default branch. 546 return SI->getDefaultDest() == To; 547 } 548 549 // Just mark all destinations executable! 550 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 551 if (isa<IndirectBrInst>(&TI)) 552 return true; 553 554#ifndef NDEBUG 555 errs() << "Unknown terminator instruction: " << *TI << '\n'; 556#endif 557 llvm_unreachable(0); 558} 559 560// visit Implementations - Something changed in this instruction, either an 561// operand made a transition, or the instruction is newly executable. Change 562// the value type of I to reflect these changes if appropriate. This method 563// makes sure to do the following actions: 564// 565// 1. If a phi node merges two constants in, and has conflicting value coming 566// from different branches, or if the PHI node merges in an overdefined 567// value, then the PHI node becomes overdefined. 568// 2. If a phi node merges only constants in, and they all agree on value, the 569// PHI node becomes a constant value equal to that. 570// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 571// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 572// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 573// 6. If a conditional branch has a value that is constant, make the selected 574// destination executable 575// 7. If a conditional branch has a value that is overdefined, make all 576// successors executable. 577// 578void SCCPSolver::visitPHINode(PHINode &PN) { 579 LatticeVal &PNIV = getValueState(&PN); 580 if (PNIV.isOverdefined()) { 581 // There may be instructions using this PHI node that are not overdefined 582 // themselves. If so, make sure that they know that the PHI node operand 583 // changed. 584 std::multimap<PHINode*, Instruction*>::iterator I, E; 585 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); 586 if (I != E) { 587 SmallVector<Instruction*, 16> Users; 588 for (; I != E; ++I) Users.push_back(I->second); 589 while (!Users.empty()) { 590 visit(Users.back()); 591 Users.pop_back(); 592 } 593 } 594 return; // Quick exit 595 } 596 597 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 598 // and slow us down a lot. Just mark them overdefined. 599 if (PN.getNumIncomingValues() > 64) 600 return markOverdefined(PNIV, &PN); 601 602 // Look at all of the executable operands of the PHI node. If any of them 603 // are overdefined, the PHI becomes overdefined as well. If they are all 604 // constant, and they agree with each other, the PHI becomes the identical 605 // constant. If they are constant and don't agree, the PHI is overdefined. 606 // If there are no executable operands, the PHI remains undefined. 607 // 608 Constant *OperandVal = 0; 609 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 610 LatticeVal &IV = getValueState(PN.getIncomingValue(i)); 611 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 612 613 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) 614 continue; 615 616 if (IV.isOverdefined()) // PHI node becomes overdefined! 617 return markOverdefined(&PN); 618 619 if (OperandVal == 0) { // Grab the first value. 620 OperandVal = IV.getConstant(); 621 continue; 622 } 623 624 // There is already a reachable operand. If we conflict with it, 625 // then the PHI node becomes overdefined. If we agree with it, we 626 // can continue on. 627 628 // Check to see if there are two different constants merging, if so, the PHI 629 // node is overdefined. 630 if (IV.getConstant() != OperandVal) 631 return markOverdefined(&PN); 632 } 633 634 // If we exited the loop, this means that the PHI node only has constant 635 // arguments that agree with each other(and OperandVal is the constant) or 636 // OperandVal is null because there are no defined incoming arguments. If 637 // this is the case, the PHI remains undefined. 638 // 639 if (OperandVal) 640 markConstant(&PN, OperandVal); // Acquire operand value 641} 642 643void SCCPSolver::visitReturnInst(ReturnInst &I) { 644 if (I.getNumOperands() == 0) return; // Ret void 645 646 Function *F = I.getParent()->getParent(); 647 // If we are tracking the return value of this function, merge it in. 648 if (!F->hasLocalLinkage()) 649 return; 650 651 if (!TrackedRetVals.empty() && I.getNumOperands() == 1) { 652 DenseMap<Function*, LatticeVal>::iterator TFRVI = 653 TrackedRetVals.find(F); 654 if (TFRVI != TrackedRetVals.end() && 655 !TFRVI->second.isOverdefined()) { 656 LatticeVal &IV = getValueState(I.getOperand(0)); 657 mergeInValue(TFRVI->second, F, IV); 658 return; 659 } 660 } 661 662 // Handle functions that return multiple values. 663 if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) { 664 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 665 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 666 It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 667 if (It == TrackedMultipleRetVals.end()) break; 668 mergeInValue(It->second, F, getValueState(I.getOperand(i))); 669 } 670 } else if (!TrackedMultipleRetVals.empty() && 671 I.getNumOperands() == 1 && 672 isa<StructType>(I.getOperand(0)->getType())) { 673 for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes(); 674 i != e; ++i) { 675 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 676 It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 677 if (It == TrackedMultipleRetVals.end()) break; 678 if (Value *Val = FindInsertedValue(I.getOperand(0), i, I.getContext())) 679 mergeInValue(It->second, F, getValueState(Val)); 680 } 681 } 682} 683 684void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 685 SmallVector<bool, 16> SuccFeasible; 686 getFeasibleSuccessors(TI, SuccFeasible); 687 688 BasicBlock *BB = TI.getParent(); 689 690 // Mark all feasible successors executable. 691 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 692 if (SuccFeasible[i]) 693 markEdgeExecutable(BB, TI.getSuccessor(i)); 694} 695 696void SCCPSolver::visitCastInst(CastInst &I) { 697 Value *V = I.getOperand(0); 698 LatticeVal &VState = getValueState(V); 699 if (VState.isOverdefined()) // Inherit overdefinedness of operand 700 markOverdefined(&I); 701 else if (VState.isConstant()) // Propagate constant value 702 markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 703 VState.getConstant(), I.getType())); 704} 705 706void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { 707 Value *Aggr = EVI.getAggregateOperand(); 708 709 // If the operand to the extractvalue is an undef, the result is undef. 710 if (isa<UndefValue>(Aggr)) 711 return; 712 713 // Currently only handle single-index extractvalues. 714 if (EVI.getNumIndices() != 1) 715 return markOverdefined(&EVI); 716 717 Function *F = 0; 718 if (CallInst *CI = dyn_cast<CallInst>(Aggr)) 719 F = CI->getCalledFunction(); 720 else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr)) 721 F = II->getCalledFunction(); 722 723 // TODO: If IPSCCP resolves the callee of this function, we could propagate a 724 // result back! 725 if (F == 0 || TrackedMultipleRetVals.empty()) 726 return markOverdefined(&EVI); 727 728 // See if we are tracking the result of the callee. If not tracking this 729 // function (for example, it is a declaration) just move to overdefined. 730 if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) 731 return markOverdefined(&EVI); 732 733 // Otherwise, the value will be merged in here as a result of CallSite 734 // handling. 735} 736 737void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { 738 Value *Aggr = IVI.getAggregateOperand(); 739 Value *Val = IVI.getInsertedValueOperand(); 740 741 // If the operands to the insertvalue are undef, the result is undef. 742 if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val)) 743 return; 744 745 // Currently only handle single-index insertvalues. 746 if (IVI.getNumIndices() != 1) 747 return markOverdefined(&IVI); 748 749 // Currently only handle insertvalue instructions that are in a single-use 750 // chain that builds up a return value. 751 for (const InsertValueInst *TmpIVI = &IVI; ; ) { 752 if (!TmpIVI->hasOneUse()) 753 return markOverdefined(&IVI); 754 755 const Value *V = *TmpIVI->use_begin(); 756 if (isa<ReturnInst>(V)) 757 break; 758 TmpIVI = dyn_cast<InsertValueInst>(V); 759 if (!TmpIVI) 760 return markOverdefined(&IVI); 761 } 762 763 // See if we are tracking the result of the callee. 764 Function *F = IVI.getParent()->getParent(); 765 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 766 It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin())); 767 768 // Merge in the inserted member value. 769 if (It != TrackedMultipleRetVals.end()) 770 mergeInValue(It->second, F, getValueState(Val)); 771 772 // Mark the aggregate result of the IVI overdefined; any tracking that we do 773 // will be done on the individual member values. 774 markOverdefined(&IVI); 775} 776 777void SCCPSolver::visitSelectInst(SelectInst &I) { 778 LatticeVal &CondValue = getValueState(I.getCondition()); 779 if (CondValue.isUndefined()) 780 return; 781 782 if (ConstantInt *CondCB = CondValue.getConstantInt()) { 783 mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue() 784 : I.getFalseValue())); 785 return; 786 } 787 788 // Otherwise, the condition is overdefined or a constant we can't evaluate. 789 // See if we can produce something better than overdefined based on the T/F 790 // value. 791 LatticeVal &TVal = getValueState(I.getTrueValue()); 792 LatticeVal &FVal = getValueState(I.getFalseValue()); 793 794 // select ?, C, C -> C. 795 if (TVal.isConstant() && FVal.isConstant() && 796 TVal.getConstant() == FVal.getConstant()) 797 return markConstant(&I, FVal.getConstant()); 798 799 if (TVal.isUndefined()) { // select ?, undef, X -> X. 800 mergeInValue(&I, FVal); 801 } else if (FVal.isUndefined()) { // select ?, X, undef -> X. 802 mergeInValue(&I, TVal); 803 } else { 804 markOverdefined(&I); 805 } 806} 807 808// Handle BinaryOperators and Shift Instructions. 809void SCCPSolver::visitBinaryOperator(Instruction &I) { 810 LatticeVal &IV = ValueState[&I]; 811 if (IV.isOverdefined()) return; 812 813 LatticeVal &V1State = getValueState(I.getOperand(0)); 814 LatticeVal &V2State = getValueState(I.getOperand(1)); 815 816 if (V1State.isOverdefined() || V2State.isOverdefined()) { 817 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 818 // operand is overdefined. 819 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 820 LatticeVal *NonOverdefVal = 0; 821 if (!V1State.isOverdefined()) { 822 NonOverdefVal = &V1State; 823 } else if (!V2State.isOverdefined()) { 824 NonOverdefVal = &V2State; 825 } 826 827 if (NonOverdefVal) { 828 if (NonOverdefVal->isUndefined()) { 829 // Could annihilate value. 830 if (I.getOpcode() == Instruction::And) 831 markConstant(IV, &I, Constant::getNullValue(I.getType())); 832 else if (const VectorType *PT = dyn_cast<VectorType>(I.getType())) 833 markConstant(IV, &I, Constant::getAllOnesValue(PT)); 834 else 835 markConstant(IV, &I, 836 Constant::getAllOnesValue(I.getType())); 837 return; 838 } else { 839 if (I.getOpcode() == Instruction::And) { 840 // X and 0 = 0 841 if (NonOverdefVal->getConstant()->isNullValue()) 842 return markConstant(IV, &I, NonOverdefVal->getConstant()); 843 } else { 844 if (ConstantInt *CI = NonOverdefVal->getConstantInt()) 845 if (CI->isAllOnesValue()) // X or -1 = -1 846 return markConstant(IV, &I, NonOverdefVal->getConstant()); 847 } 848 } 849 } 850 } 851 852 853 // If both operands are PHI nodes, it is possible that this instruction has 854 // a constant value, despite the fact that the PHI node doesn't. Check for 855 // this condition now. 856 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 857 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 858 if (PN1->getParent() == PN2->getParent()) { 859 // Since the two PHI nodes are in the same basic block, they must have 860 // entries for the same predecessors. Walk the predecessor list, and 861 // if all of the incoming values are constants, and the result of 862 // evaluating this expression with all incoming value pairs is the 863 // same, then this expression is a constant even though the PHI node 864 // is not a constant! 865 LatticeVal Result; 866 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 867 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 868 BasicBlock *InBlock = PN1->getIncomingBlock(i); 869 LatticeVal &In2 = 870 getValueState(PN2->getIncomingValueForBlock(InBlock)); 871 872 if (In1.isOverdefined() || In2.isOverdefined()) { 873 Result.markOverdefined(); 874 break; // Cannot fold this operation over the PHI nodes! 875 } 876 877 if (In1.isConstant() && In2.isConstant()) { 878 Constant *V = 879 ConstantExpr::get(I.getOpcode(), In1.getConstant(), 880 In2.getConstant()); 881 if (Result.isUndefined()) 882 Result.markConstant(V); 883 else if (Result.isConstant() && Result.getConstant() != V) { 884 Result.markOverdefined(); 885 break; 886 } 887 } 888 } 889 890 // If we found a constant value here, then we know the instruction is 891 // constant despite the fact that the PHI nodes are overdefined. 892 if (Result.isConstant()) { 893 markConstant(IV, &I, Result.getConstant()); 894 // Remember that this instruction is virtually using the PHI node 895 // operands. 896 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 897 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 898 return; 899 } else if (Result.isUndefined()) { 900 return; 901 } 902 903 // Okay, this really is overdefined now. Since we might have 904 // speculatively thought that this was not overdefined before, and 905 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 906 // make sure to clean out any entries that we put there, for 907 // efficiency. 908 std::multimap<PHINode*, Instruction*>::iterator It, E; 909 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 910 while (It != E) { 911 if (It->second == &I) { 912 UsersOfOverdefinedPHIs.erase(It++); 913 } else 914 ++It; 915 } 916 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 917 while (It != E) { 918 if (It->second == &I) { 919 UsersOfOverdefinedPHIs.erase(It++); 920 } else 921 ++It; 922 } 923 } 924 925 markOverdefined(IV, &I); 926 } else if (V1State.isConstant() && V2State.isConstant()) { 927 markConstant(IV, &I, 928 ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 929 V2State.getConstant())); 930 } 931} 932 933// Handle ICmpInst instruction. 934void SCCPSolver::visitCmpInst(CmpInst &I) { 935 LatticeVal &IV = ValueState[&I]; 936 if (IV.isOverdefined()) return; 937 938 LatticeVal &V1State = getValueState(I.getOperand(0)); 939 LatticeVal &V2State = getValueState(I.getOperand(1)); 940 941 if (V1State.isOverdefined() || V2State.isOverdefined()) { 942 // If both operands are PHI nodes, it is possible that this instruction has 943 // a constant value, despite the fact that the PHI node doesn't. Check for 944 // this condition now. 945 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 946 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 947 if (PN1->getParent() == PN2->getParent()) { 948 // Since the two PHI nodes are in the same basic block, they must have 949 // entries for the same predecessors. Walk the predecessor list, and 950 // if all of the incoming values are constants, and the result of 951 // evaluating this expression with all incoming value pairs is the 952 // same, then this expression is a constant even though the PHI node 953 // is not a constant! 954 LatticeVal Result; 955 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 956 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 957 BasicBlock *InBlock = PN1->getIncomingBlock(i); 958 LatticeVal &In2 = 959 getValueState(PN2->getIncomingValueForBlock(InBlock)); 960 961 if (In1.isOverdefined() || In2.isOverdefined()) { 962 Result.markOverdefined(); 963 break; // Cannot fold this operation over the PHI nodes! 964 } else if (In1.isConstant() && In2.isConstant()) { 965 Constant *V = ConstantExpr::getCompare(I.getPredicate(), 966 In1.getConstant(), 967 In2.getConstant()); 968 if (Result.isUndefined()) 969 Result.markConstant(V); 970 else if (Result.isConstant() && Result.getConstant() != V) { 971 Result.markOverdefined(); 972 break; 973 } 974 } 975 } 976 977 // If we found a constant value here, then we know the instruction is 978 // constant despite the fact that the PHI nodes are overdefined. 979 if (Result.isConstant()) { 980 markConstant(IV, &I, Result.getConstant()); 981 // Remember that this instruction is virtually using the PHI node 982 // operands. 983 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 984 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 985 return; 986 } else if (Result.isUndefined()) { 987 return; 988 } 989 990 // Okay, this really is overdefined now. Since we might have 991 // speculatively thought that this was not overdefined before, and 992 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 993 // make sure to clean out any entries that we put there, for 994 // efficiency. 995 std::multimap<PHINode*, Instruction*>::iterator It, E; 996 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 997 while (It != E) { 998 if (It->second == &I) { 999 UsersOfOverdefinedPHIs.erase(It++); 1000 } else 1001 ++It; 1002 } 1003 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 1004 while (It != E) { 1005 if (It->second == &I) { 1006 UsersOfOverdefinedPHIs.erase(It++); 1007 } else 1008 ++It; 1009 } 1010 } 1011 1012 markOverdefined(IV, &I); 1013 } else if (V1State.isConstant() && V2State.isConstant()) { 1014 markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 1015 V1State.getConstant(), 1016 V2State.getConstant())); 1017 } 1018} 1019 1020void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 1021 // FIXME : SCCP does not handle vectors properly. 1022 return markOverdefined(&I); 1023 1024#if 0 1025 LatticeVal &ValState = getValueState(I.getOperand(0)); 1026 LatticeVal &IdxState = getValueState(I.getOperand(1)); 1027 1028 if (ValState.isOverdefined() || IdxState.isOverdefined()) 1029 markOverdefined(&I); 1030 else if(ValState.isConstant() && IdxState.isConstant()) 1031 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 1032 IdxState.getConstant())); 1033#endif 1034} 1035 1036void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 1037 // FIXME : SCCP does not handle vectors properly. 1038 return markOverdefined(&I); 1039#if 0 1040 LatticeVal &ValState = getValueState(I.getOperand(0)); 1041 LatticeVal &EltState = getValueState(I.getOperand(1)); 1042 LatticeVal &IdxState = getValueState(I.getOperand(2)); 1043 1044 if (ValState.isOverdefined() || EltState.isOverdefined() || 1045 IdxState.isOverdefined()) 1046 markOverdefined(&I); 1047 else if(ValState.isConstant() && EltState.isConstant() && 1048 IdxState.isConstant()) 1049 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 1050 EltState.getConstant(), 1051 IdxState.getConstant())); 1052 else if (ValState.isUndefined() && EltState.isConstant() && 1053 IdxState.isConstant()) 1054 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 1055 EltState.getConstant(), 1056 IdxState.getConstant())); 1057#endif 1058} 1059 1060void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 1061 // FIXME : SCCP does not handle vectors properly. 1062 return markOverdefined(&I); 1063#if 0 1064 LatticeVal &V1State = getValueState(I.getOperand(0)); 1065 LatticeVal &V2State = getValueState(I.getOperand(1)); 1066 LatticeVal &MaskState = getValueState(I.getOperand(2)); 1067 1068 if (MaskState.isUndefined() || 1069 (V1State.isUndefined() && V2State.isUndefined())) 1070 return; // Undefined output if mask or both inputs undefined. 1071 1072 if (V1State.isOverdefined() || V2State.isOverdefined() || 1073 MaskState.isOverdefined()) { 1074 markOverdefined(&I); 1075 } else { 1076 // A mix of constant/undef inputs. 1077 Constant *V1 = V1State.isConstant() ? 1078 V1State.getConstant() : UndefValue::get(I.getType()); 1079 Constant *V2 = V2State.isConstant() ? 1080 V2State.getConstant() : UndefValue::get(I.getType()); 1081 Constant *Mask = MaskState.isConstant() ? 1082 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 1083 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 1084 } 1085#endif 1086} 1087 1088// Handle getelementptr instructions. If all operands are constants then we 1089// can turn this into a getelementptr ConstantExpr. 1090// 1091void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 1092 LatticeVal &IV = ValueState[&I]; 1093 if (IV.isOverdefined()) return; 1094 1095 SmallVector<Constant*, 8> Operands; 1096 Operands.reserve(I.getNumOperands()); 1097 1098 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1099 LatticeVal &State = getValueState(I.getOperand(i)); 1100 if (State.isUndefined()) 1101 return; // Operands are not resolved yet. 1102 1103 if (State.isOverdefined()) 1104 return markOverdefined(IV, &I); 1105 1106 assert(State.isConstant() && "Unknown state!"); 1107 Operands.push_back(State.getConstant()); 1108 } 1109 1110 Constant *Ptr = Operands[0]; 1111 Operands.erase(Operands.begin()); // Erase the pointer from idx list. 1112 1113 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0], 1114 Operands.size())); 1115} 1116 1117void SCCPSolver::visitStoreInst(Instruction &SI) { 1118 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1119 return; 1120 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1121 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 1122 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 1123 1124 // Get the value we are storing into the global. 1125 LatticeVal &PtrVal = getValueState(SI.getOperand(0)); 1126 1127 mergeInValue(I->second, GV, PtrVal); 1128 if (I->second.isOverdefined()) 1129 TrackedGlobals.erase(I); // No need to keep tracking this! 1130} 1131 1132 1133// Handle load instructions. If the operand is a constant pointer to a constant 1134// global, we can replace the load with the loaded constant value! 1135void SCCPSolver::visitLoadInst(LoadInst &I) { 1136 LatticeVal &IV = ValueState[&I]; 1137 if (IV.isOverdefined()) return; 1138 1139 LatticeVal &PtrVal = getValueState(I.getOperand(0)); 1140 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 1141 if (PtrVal.isConstant() && !I.isVolatile()) { 1142 Value *Ptr = PtrVal.getConstant(); 1143 // TODO: Consider a target hook for valid address spaces for this xform. 1144 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) { 1145 // load null -> null 1146 return markConstant(IV, &I, Constant::getNullValue(I.getType())); 1147 } 1148 1149 // Transform load (constant global) into the value loaded. 1150 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 1151 if (GV->isConstant()) { 1152 if (GV->hasDefinitiveInitializer()) 1153 return markConstant(IV, &I, GV->getInitializer()); 1154 1155 } else if (!TrackedGlobals.empty()) { 1156 // If we are tracking this global, merge in the known value for it. 1157 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1158 TrackedGlobals.find(GV); 1159 if (It != TrackedGlobals.end()) { 1160 mergeInValue(IV, &I, It->second); 1161 return; 1162 } 1163 } 1164 } 1165 1166 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. 1167 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 1168 if (CE->getOpcode() == Instruction::GetElementPtr) 1169 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) 1170 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1171 if (Constant *V = 1172 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) 1173 return markConstant(IV, &I, V); 1174 } 1175 1176 // Otherwise we cannot say for certain what value this load will produce. 1177 // Bail out. 1178 markOverdefined(IV, &I); 1179} 1180 1181void SCCPSolver::visitCallSite(CallSite CS) { 1182 Function *F = CS.getCalledFunction(); 1183 Instruction *I = CS.getInstruction(); 1184 1185 // The common case is that we aren't tracking the callee, either because we 1186 // are not doing interprocedural analysis or the callee is indirect, or is 1187 // external. Handle these cases first. 1188 if (F == 0 || !F->hasLocalLinkage()) { 1189CallOverdefined: 1190 // Void return and not tracking callee, just bail. 1191 if (I->getType()->isVoidTy()) return; 1192 1193 // Otherwise, if we have a single return value case, and if the function is 1194 // a declaration, maybe we can constant fold it. 1195 if (!isa<StructType>(I->getType()) && F && F->isDeclaration() && 1196 canConstantFoldCallTo(F)) { 1197 1198 SmallVector<Constant*, 8> Operands; 1199 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1200 AI != E; ++AI) { 1201 LatticeVal &State = getValueState(*AI); 1202 1203 if (State.isUndefined()) 1204 return; // Operands are not resolved yet. 1205 if (State.isOverdefined()) 1206 return markOverdefined(I); 1207 assert(State.isConstant() && "Unknown state!"); 1208 Operands.push_back(State.getConstant()); 1209 } 1210 1211 // If we can constant fold this, mark the result of the call as a 1212 // constant. 1213 if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) 1214 return markConstant(I, C); 1215 } 1216 1217 // Otherwise, we don't know anything about this call, mark it overdefined. 1218 return markOverdefined(I); 1219 } 1220 1221 // If this is a single/zero retval case, see if we're tracking the function. 1222 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); 1223 if (TFRVI != TrackedRetVals.end()) { 1224 // If so, propagate the return value of the callee into this call result. 1225 mergeInValue(I, TFRVI->second); 1226 } else if (isa<StructType>(I->getType())) { 1227 // Check to see if we're tracking this callee, if not, handle it in the 1228 // common path above. 1229 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 1230 TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0)); 1231 if (TMRVI == TrackedMultipleRetVals.end()) 1232 goto CallOverdefined; 1233 1234 // Need to mark as overdefined, otherwise it stays undefined which 1235 // creates extractvalue undef, <idx> 1236 markOverdefined(I); 1237 1238 // If we are tracking this callee, propagate the return values of the call 1239 // into this call site. We do this by walking all the uses. Single-index 1240 // ExtractValueInst uses can be tracked; anything more complicated is 1241 // currently handled conservatively. 1242 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1243 UI != E; ++UI) { 1244 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) { 1245 if (EVI->getNumIndices() == 1) { 1246 mergeInValue(EVI, 1247 TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]); 1248 continue; 1249 } 1250 } 1251 // The aggregate value is used in a way not handled here. Assume nothing. 1252 markOverdefined(*UI); 1253 } 1254 } else { 1255 // Otherwise we're not tracking this callee, so handle it in the 1256 // common path above. 1257 goto CallOverdefined; 1258 } 1259 1260 // Finally, if this is the first call to the function hit, mark its entry 1261 // block executable. 1262 if (!BBExecutable.count(F->begin())) 1263 MarkBlockExecutable(F->begin()); 1264 1265 // Propagate information from this call site into the callee. 1266 CallSite::arg_iterator CAI = CS.arg_begin(); 1267 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1268 AI != E; ++AI, ++CAI) { 1269 LatticeVal &IV = ValueState[AI]; 1270 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1271 IV.markOverdefined(); 1272 continue; 1273 } 1274 if (!IV.isOverdefined()) 1275 mergeInValue(IV, AI, getValueState(*CAI)); 1276 } 1277} 1278 1279void SCCPSolver::Solve() { 1280 // Process the work lists until they are empty! 1281 while (!BBWorkList.empty() || !InstWorkList.empty() || 1282 !OverdefinedInstWorkList.empty()) { 1283 // Process the instruction work list. 1284 while (!OverdefinedInstWorkList.empty()) { 1285 Value *I = OverdefinedInstWorkList.back(); 1286 OverdefinedInstWorkList.pop_back(); 1287 1288 DEBUG(errs() << "\nPopped off OI-WL: " << *I << '\n'); 1289 1290 // "I" got into the work list because it either made the transition from 1291 // bottom to constant 1292 // 1293 // Anything on this worklist that is overdefined need not be visited 1294 // since all of its users will have already been marked as overdefined 1295 // Update all of the users of this instruction's value. 1296 // 1297 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1298 UI != E; ++UI) 1299 OperandChangedState(*UI); 1300 } 1301 1302 // Process the instruction work list. 1303 while (!InstWorkList.empty()) { 1304 Value *I = InstWorkList.back(); 1305 InstWorkList.pop_back(); 1306 1307 DEBUG(errs() << "\nPopped off I-WL: " << *I << '\n'); 1308 1309 // "I" got into the work list because it either made the transition from 1310 // bottom to constant 1311 // 1312 // Anything on this worklist that is overdefined need not be visited 1313 // since all of its users will have already been marked as overdefined. 1314 // Update all of the users of this instruction's value. 1315 // 1316 if (!getValueState(I).isOverdefined()) 1317 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1318 UI != E; ++UI) 1319 OperandChangedState(*UI); 1320 } 1321 1322 // Process the basic block work list. 1323 while (!BBWorkList.empty()) { 1324 BasicBlock *BB = BBWorkList.back(); 1325 BBWorkList.pop_back(); 1326 1327 DEBUG(errs() << "\nPopped off BBWL: " << *BB << '\n'); 1328 1329 // Notify all instructions in this basic block that they are newly 1330 // executable. 1331 visit(BB); 1332 } 1333 } 1334} 1335 1336/// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1337/// that branches on undef values cannot reach any of their successors. 1338/// However, this is not a safe assumption. After we solve dataflow, this 1339/// method should be use to handle this. If this returns true, the solver 1340/// should be rerun. 1341/// 1342/// This method handles this by finding an unresolved branch and marking it one 1343/// of the edges from the block as being feasible, even though the condition 1344/// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1345/// CFG and only slightly pessimizes the analysis results (by marking one, 1346/// potentially infeasible, edge feasible). This cannot usefully modify the 1347/// constraints on the condition of the branch, as that would impact other users 1348/// of the value. 1349/// 1350/// This scan also checks for values that use undefs, whose results are actually 1351/// defined. For example, 'zext i8 undef to i32' should produce all zeros 1352/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1353/// even if X isn't defined. 1354bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1355 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1356 if (!BBExecutable.count(BB)) 1357 continue; 1358 1359 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1360 // Look for instructions which produce undef values. 1361 if (I->getType()->isVoidTy()) continue; 1362 1363 LatticeVal &LV = getValueState(I); 1364 if (!LV.isUndefined()) continue; 1365 1366 // Get the lattice values of the first two operands for use below. 1367 LatticeVal &Op0LV = getValueState(I->getOperand(0)); 1368 LatticeVal Op1LV; 1369 if (I->getNumOperands() == 2) { 1370 // If this is a two-operand instruction, and if both operands are 1371 // undefs, the result stays undef. 1372 Op1LV = getValueState(I->getOperand(1)); 1373 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1374 continue; 1375 } 1376 1377 // If this is an instructions whose result is defined even if the input is 1378 // not fully defined, propagate the information. 1379 const Type *ITy = I->getType(); 1380 switch (I->getOpcode()) { 1381 default: break; // Leave the instruction as an undef. 1382 case Instruction::ZExt: 1383 // After a zero extend, we know the top part is zero. SExt doesn't have 1384 // to be handled here, because we don't know whether the top part is 1's 1385 // or 0's. 1386 assert(Op0LV.isUndefined()); 1387 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1388 return true; 1389 case Instruction::Mul: 1390 case Instruction::And: 1391 // undef * X -> 0. X could be zero. 1392 // undef & X -> 0. X could be zero. 1393 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1394 return true; 1395 1396 case Instruction::Or: 1397 // undef | X -> -1. X could be -1. 1398 if (const VectorType *PTy = dyn_cast<VectorType>(ITy)) 1399 markForcedConstant(LV, I, 1400 Constant::getAllOnesValue(PTy)); 1401 else 1402 markForcedConstant(LV, I, Constant::getAllOnesValue(ITy)); 1403 return true; 1404 1405 case Instruction::SDiv: 1406 case Instruction::UDiv: 1407 case Instruction::SRem: 1408 case Instruction::URem: 1409 // X / undef -> undef. No change. 1410 // X % undef -> undef. No change. 1411 if (Op1LV.isUndefined()) break; 1412 1413 // undef / X -> 0. X could be maxint. 1414 // undef % X -> 0. X could be 1. 1415 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1416 return true; 1417 1418 case Instruction::AShr: 1419 // undef >>s X -> undef. No change. 1420 if (Op0LV.isUndefined()) break; 1421 1422 // X >>s undef -> X. X could be 0, X could have the high-bit known set. 1423 if (Op0LV.isConstant()) 1424 markForcedConstant(LV, I, Op0LV.getConstant()); 1425 else 1426 markOverdefined(LV, I); 1427 return true; 1428 case Instruction::LShr: 1429 case Instruction::Shl: 1430 // undef >> X -> undef. No change. 1431 // undef << X -> undef. No change. 1432 if (Op0LV.isUndefined()) break; 1433 1434 // X >> undef -> 0. X could be 0. 1435 // X << undef -> 0. X could be 0. 1436 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1437 return true; 1438 case Instruction::Select: 1439 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1440 if (Op0LV.isUndefined()) { 1441 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1442 Op1LV = getValueState(I->getOperand(2)); 1443 } else if (Op1LV.isUndefined()) { 1444 // c ? undef : undef -> undef. No change. 1445 Op1LV = getValueState(I->getOperand(2)); 1446 if (Op1LV.isUndefined()) 1447 break; 1448 // Otherwise, c ? undef : x -> x. 1449 } else { 1450 // Leave Op1LV as Operand(1)'s LatticeValue. 1451 } 1452 1453 if (Op1LV.isConstant()) 1454 markForcedConstant(LV, I, Op1LV.getConstant()); 1455 else 1456 markOverdefined(LV, I); 1457 return true; 1458 case Instruction::Call: 1459 // If a call has an undef result, it is because it is constant foldable 1460 // but one of the inputs was undef. Just force the result to 1461 // overdefined. 1462 markOverdefined(LV, I); 1463 return true; 1464 } 1465 } 1466 1467 TerminatorInst *TI = BB->getTerminator(); 1468 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1469 if (!BI->isConditional()) continue; 1470 if (!getValueState(BI->getCondition()).isUndefined()) 1471 continue; 1472 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1473 if (SI->getNumSuccessors() < 2) // no cases 1474 continue; 1475 if (!getValueState(SI->getCondition()).isUndefined()) 1476 continue; 1477 } else { 1478 continue; 1479 } 1480 1481 // If the edge to the second successor isn't thought to be feasible yet, 1482 // mark it so now. We pick the second one so that this goes to some 1483 // enumerated value in a switch instead of going to the default destination. 1484 if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1)))) 1485 continue; 1486 1487 // Otherwise, it isn't already thought to be feasible. Mark it as such now 1488 // and return. This will make other blocks reachable, which will allow new 1489 // values to be discovered and existing ones to be moved in the lattice. 1490 markEdgeExecutable(BB, TI->getSuccessor(1)); 1491 1492 // This must be a conditional branch of switch on undef. At this point, 1493 // force the old terminator to branch to the first successor. This is 1494 // required because we are now influencing the dataflow of the function with 1495 // the assumption that this edge is taken. If we leave the branch condition 1496 // as undef, then further analysis could think the undef went another way 1497 // leading to an inconsistent set of conclusions. 1498 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1499 BI->setCondition(ConstantInt::getFalse(BI->getContext())); 1500 } else { 1501 SwitchInst *SI = cast<SwitchInst>(TI); 1502 SI->setCondition(SI->getCaseValue(1)); 1503 } 1504 1505 return true; 1506 } 1507 1508 return false; 1509} 1510 1511 1512namespace { 1513 //===--------------------------------------------------------------------===// 1514 // 1515 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1516 /// Sparse Conditional Constant Propagator. 1517 /// 1518 struct SCCP : public FunctionPass { 1519 static char ID; // Pass identification, replacement for typeid 1520 SCCP() : FunctionPass(&ID) {} 1521 1522 // runOnFunction - Run the Sparse Conditional Constant Propagation 1523 // algorithm, and return true if the function was modified. 1524 // 1525 bool runOnFunction(Function &F); 1526 1527 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1528 AU.setPreservesCFG(); 1529 } 1530 }; 1531} // end anonymous namespace 1532 1533char SCCP::ID = 0; 1534static RegisterPass<SCCP> 1535X("sccp", "Sparse Conditional Constant Propagation"); 1536 1537// createSCCPPass - This is the public interface to this file. 1538FunctionPass *llvm::createSCCPPass() { 1539 return new SCCP(); 1540} 1541 1542static void DeleteInstructionInBlock(BasicBlock *BB) { 1543 DEBUG(errs() << " BasicBlock Dead:" << *BB); 1544 ++NumDeadBlocks; 1545 1546 // Delete the instructions backwards, as it has a reduced likelihood of 1547 // having to update as many def-use and use-def chains. 1548 while (!isa<TerminatorInst>(BB->begin())) { 1549 Instruction *I = --BasicBlock::iterator(BB->getTerminator()); 1550 1551 if (!I->use_empty()) 1552 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1553 BB->getInstList().erase(I); 1554 ++NumInstRemoved; 1555 } 1556} 1557 1558// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1559// and return true if the function was modified. 1560// 1561bool SCCP::runOnFunction(Function &F) { 1562 DEBUG(errs() << "SCCP on function '" << F.getName() << "'\n"); 1563 SCCPSolver Solver; 1564 1565 // Mark the first block of the function as being executable. 1566 Solver.MarkBlockExecutable(F.begin()); 1567 1568 // Mark all arguments to the function as being overdefined. 1569 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) 1570 Solver.markOverdefined(AI); 1571 1572 // Solve for constants. 1573 bool ResolvedUndefs = true; 1574 while (ResolvedUndefs) { 1575 Solver.Solve(); 1576 DEBUG(errs() << "RESOLVING UNDEFs\n"); 1577 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1578 } 1579 1580 bool MadeChanges = false; 1581 1582 // If we decided that there are basic blocks that are dead in this function, 1583 // delete their contents now. Note that we cannot actually delete the blocks, 1584 // as we cannot modify the CFG of the function. 1585 1586 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1587 if (!Solver.isBlockExecutable(BB)) { 1588 DeleteInstructionInBlock(BB); 1589 MadeChanges = true; 1590 continue; 1591 } 1592 1593 // Iterate over all of the instructions in a function, replacing them with 1594 // constants if we have found them to be of constant values. 1595 // 1596 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1597 Instruction *Inst = BI++; 1598 if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst)) 1599 continue; 1600 1601 LatticeVal IV = Solver.getLatticeValueFor(Inst); 1602 if (IV.isOverdefined()) 1603 continue; 1604 1605 Constant *Const = IV.isConstant() 1606 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1607 DEBUG(errs() << " Constant: " << *Const << " = " << *Inst); 1608 1609 // Replaces all of the uses of a variable with uses of the constant. 1610 Inst->replaceAllUsesWith(Const); 1611 1612 // Delete the instruction. 1613 Inst->eraseFromParent(); 1614 1615 // Hey, we just changed something! 1616 MadeChanges = true; 1617 ++NumInstRemoved; 1618 } 1619 } 1620 1621 return MadeChanges; 1622} 1623 1624namespace { 1625 //===--------------------------------------------------------------------===// 1626 // 1627 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1628 /// Constant Propagation. 1629 /// 1630 struct IPSCCP : public ModulePass { 1631 static char ID; 1632 IPSCCP() : ModulePass(&ID) {} 1633 bool runOnModule(Module &M); 1634 }; 1635} // end anonymous namespace 1636 1637char IPSCCP::ID = 0; 1638static RegisterPass<IPSCCP> 1639Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation"); 1640 1641// createIPSCCPPass - This is the public interface to this file. 1642ModulePass *llvm::createIPSCCPPass() { 1643 return new IPSCCP(); 1644} 1645 1646 1647static bool AddressIsTaken(GlobalValue *GV) { 1648 // Delete any dead constantexpr klingons. 1649 GV->removeDeadConstantUsers(); 1650 1651 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 1652 UI != E; ++UI) 1653 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 1654 if (SI->getOperand(0) == GV || SI->isVolatile()) 1655 return true; // Storing addr of GV. 1656 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) { 1657 // Make sure we are calling the function, not passing the address. 1658 if (UI.getOperandNo() != 0) 1659 return true; 1660 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1661 if (LI->isVolatile()) 1662 return true; 1663 } else if (isa<BlockAddress>(*UI)) { 1664 // blockaddress doesn't take the address of the function, it takes addr 1665 // of label. 1666 } else { 1667 return true; 1668 } 1669 return false; 1670} 1671 1672bool IPSCCP::runOnModule(Module &M) { 1673 SCCPSolver Solver; 1674 1675 // Loop over all functions, marking arguments to those with their addresses 1676 // taken or that are external as overdefined. 1677 // 1678 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1679 if (!F->hasLocalLinkage() || AddressIsTaken(F)) { 1680 if (!F->isDeclaration()) 1681 Solver.MarkBlockExecutable(F->begin()); 1682 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1683 AI != E; ++AI) 1684 Solver.markOverdefined(AI); 1685 } else { 1686 Solver.AddTrackedFunction(F); 1687 } 1688 1689 // Loop over global variables. We inform the solver about any internal global 1690 // variables that do not have their 'addresses taken'. If they don't have 1691 // their addresses taken, we can propagate constants through them. 1692 for (Module::global_iterator G = M.global_begin(), E = M.global_end(); 1693 G != E; ++G) 1694 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G)) 1695 Solver.TrackValueOfGlobalVariable(G); 1696 1697 // Solve for constants. 1698 bool ResolvedUndefs = true; 1699 while (ResolvedUndefs) { 1700 Solver.Solve(); 1701 1702 DEBUG(errs() << "RESOLVING UNDEFS\n"); 1703 ResolvedUndefs = false; 1704 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1705 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); 1706 } 1707 1708 bool MadeChanges = false; 1709 1710 // Iterate over all of the instructions in the module, replacing them with 1711 // constants if we have found them to be of constant values. 1712 // 1713 SmallVector<BasicBlock*, 512> BlocksToErase; 1714 1715 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1716 if (Solver.isBlockExecutable(F->begin())) { 1717 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1718 AI != E; ++AI) { 1719 if (AI->use_empty()) continue; 1720 1721 LatticeVal IV = Solver.getLatticeValueFor(AI); 1722 if (IV.isOverdefined()) continue; 1723 1724 Constant *CST = IV.isConstant() ? 1725 IV.getConstant() : UndefValue::get(AI->getType()); 1726 DEBUG(errs() << "*** Arg " << *AI << " = " << *CST <<"\n"); 1727 1728 // Replaces all of the uses of a variable with uses of the 1729 // constant. 1730 AI->replaceAllUsesWith(CST); 1731 ++IPNumArgsElimed; 1732 } 1733 } 1734 1735 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { 1736 if (!Solver.isBlockExecutable(BB)) { 1737 DeleteInstructionInBlock(BB); 1738 MadeChanges = true; 1739 1740 TerminatorInst *TI = BB->getTerminator(); 1741 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1742 BasicBlock *Succ = TI->getSuccessor(i); 1743 if (!Succ->empty() && isa<PHINode>(Succ->begin())) 1744 TI->getSuccessor(i)->removePredecessor(BB); 1745 } 1746 if (!TI->use_empty()) 1747 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1748 TI->eraseFromParent(); 1749 1750 if (&*BB != &F->front()) 1751 BlocksToErase.push_back(BB); 1752 else 1753 new UnreachableInst(M.getContext(), BB); 1754 continue; 1755 } 1756 1757 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1758 Instruction *Inst = BI++; 1759 if (Inst->getType()->isVoidTy()) 1760 continue; 1761 1762 LatticeVal IV = Solver.getLatticeValueFor(Inst); 1763 if (IV.isOverdefined()) 1764 continue; 1765 1766 Constant *Const = IV.isConstant() 1767 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1768 DEBUG(errs() << " Constant: " << *Const << " = " << *Inst); 1769 1770 // Replaces all of the uses of a variable with uses of the 1771 // constant. 1772 Inst->replaceAllUsesWith(Const); 1773 1774 // Delete the instruction. 1775 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst)) 1776 Inst->eraseFromParent(); 1777 1778 // Hey, we just changed something! 1779 MadeChanges = true; 1780 ++IPNumInstRemoved; 1781 } 1782 } 1783 1784 // Now that all instructions in the function are constant folded, erase dead 1785 // blocks, because we can now use ConstantFoldTerminator to get rid of 1786 // in-edges. 1787 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1788 // If there are any PHI nodes in this successor, drop entries for BB now. 1789 BasicBlock *DeadBB = BlocksToErase[i]; 1790 while (!DeadBB->use_empty()) { 1791 Instruction *I = cast<Instruction>(DeadBB->use_back()); 1792 bool Folded = ConstantFoldTerminator(I->getParent()); 1793 if (!Folded) { 1794 // The constant folder may not have been able to fold the terminator 1795 // if this is a branch or switch on undef. Fold it manually as a 1796 // branch to the first successor. 1797#ifndef NDEBUG 1798 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1799 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1800 "Branch should be foldable!"); 1801 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1802 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1803 } else { 1804 llvm_unreachable("Didn't fold away reference to block!"); 1805 } 1806#endif 1807 1808 // Make this an uncond branch to the first successor. 1809 TerminatorInst *TI = I->getParent()->getTerminator(); 1810 BranchInst::Create(TI->getSuccessor(0), TI); 1811 1812 // Remove entries in successor phi nodes to remove edges. 1813 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1814 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1815 1816 // Remove the old terminator. 1817 TI->eraseFromParent(); 1818 } 1819 } 1820 1821 // Finally, delete the basic block. 1822 F->getBasicBlockList().erase(DeadBB); 1823 } 1824 BlocksToErase.clear(); 1825 } 1826 1827 // If we inferred constant or undef return values for a function, we replaced 1828 // all call uses with the inferred value. This means we don't need to bother 1829 // actually returning anything from the function. Replace all return 1830 // instructions with return undef. 1831 // TODO: Process multiple value ret instructions also. 1832 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); 1833 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), 1834 E = RV.end(); I != E; ++I) 1835 if (!I->second.isOverdefined() && 1836 !I->first->getReturnType()->isVoidTy()) { 1837 Function *F = I->first; 1838 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1839 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1840 if (!isa<UndefValue>(RI->getOperand(0))) 1841 RI->setOperand(0, UndefValue::get(F->getReturnType())); 1842 } 1843 1844 // If we infered constant or undef values for globals variables, we can delete 1845 // the global and any stores that remain to it. 1846 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1847 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1848 E = TG.end(); I != E; ++I) { 1849 GlobalVariable *GV = I->first; 1850 assert(!I->second.isOverdefined() && 1851 "Overdefined values should have been taken out of the map!"); 1852 DEBUG(errs() << "Found that GV '" << GV->getName() << "' is constant!\n"); 1853 while (!GV->use_empty()) { 1854 StoreInst *SI = cast<StoreInst>(GV->use_back()); 1855 SI->eraseFromParent(); 1856 } 1857 M.getGlobalList().erase(GV); 1858 ++IPNumGlobalConst; 1859 } 1860 1861 return MadeChanges; 1862} 1863