SCCP.cpp revision a2f652d420ef3023fe105602481f750cbbbf88c5
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18// Notice that: 19// * This pass has a habit of making definitions be dead. It is a good idea 20// to to run a DCE pass sometime after running this pass. 21// 22//===----------------------------------------------------------------------===// 23 24#include "llvm/Transforms/Scalar.h" 25#include "llvm/Constants.h" 26#include "llvm/Function.h" 27#include "llvm/GlobalVariable.h" 28#include "llvm/Instructions.h" 29#include "llvm/Pass.h" 30#include "llvm/Type.h" 31#include "llvm/Support/InstVisitor.h" 32#include "Support/Debug.h" 33#include "Support/Statistic.h" 34#include "Support/STLExtras.h" 35#include <algorithm> 36#include <set> 37using namespace llvm; 38 39// InstVal class - This class represents the different lattice values that an 40// instruction may occupy. It is a simple class with value semantics. 41// 42namespace { 43 Statistic<> NumInstRemoved("sccp", "Number of instructions removed"); 44 45class InstVal { 46 enum { 47 undefined, // This instruction has no known value 48 constant, // This instruction has a constant value 49 overdefined // This instruction has an unknown value 50 } LatticeValue; // The current lattice position 51 Constant *ConstantVal; // If Constant value, the current value 52public: 53 inline InstVal() : LatticeValue(undefined), ConstantVal(0) {} 54 55 // markOverdefined - Return true if this is a new status to be in... 56 inline bool markOverdefined() { 57 if (LatticeValue != overdefined) { 58 LatticeValue = overdefined; 59 return true; 60 } 61 return false; 62 } 63 64 // markConstant - Return true if this is a new status for us... 65 inline bool markConstant(Constant *V) { 66 if (LatticeValue != constant) { 67 LatticeValue = constant; 68 ConstantVal = V; 69 return true; 70 } else { 71 assert(ConstantVal == V && "Marking constant with different value"); 72 } 73 return false; 74 } 75 76 inline bool isUndefined() const { return LatticeValue == undefined; } 77 inline bool isConstant() const { return LatticeValue == constant; } 78 inline bool isOverdefined() const { return LatticeValue == overdefined; } 79 80 inline Constant *getConstant() const { 81 assert(isConstant() && "Cannot get the constant of a non-constant!"); 82 return ConstantVal; 83 } 84}; 85 86} // end anonymous namespace 87 88 89//===----------------------------------------------------------------------===// 90// SCCP Class 91// 92// This class does all of the work of Sparse Conditional Constant Propagation. 93// 94namespace { 95class SCCP : public FunctionPass, public InstVisitor<SCCP> { 96 std::set<BasicBlock*> BBExecutable;// The basic blocks that are executable 97 std::map<Value*, InstVal> ValueState; // The state each value is in... 98 99 std::vector<Instruction*> InstWorkList;// The instruction work list 100 std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list 101 102 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not 103 /// overdefined, despite the fact that the PHI node is overdefined. 104 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; 105 106 /// KnownFeasibleEdges - Entries in this set are edges which have already had 107 /// PHI nodes retriggered. 108 typedef std::pair<BasicBlock*,BasicBlock*> Edge; 109 std::set<Edge> KnownFeasibleEdges; 110public: 111 112 // runOnFunction - Run the Sparse Conditional Constant Propagation algorithm, 113 // and return true if the function was modified. 114 // 115 bool runOnFunction(Function &F); 116 117 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 118 AU.setPreservesCFG(); 119 } 120 121 122 //===--------------------------------------------------------------------===// 123 // The implementation of this class 124 // 125private: 126 friend class InstVisitor<SCCP>; // Allow callbacks from visitor 127 128 // markValueOverdefined - Make a value be marked as "constant". If the value 129 // is not already a constant, add it to the instruction work list so that 130 // the users of the instruction are updated later. 131 // 132 inline void markConstant(InstVal &IV, Instruction *I, Constant *C) { 133 if (IV.markConstant(C)) { 134 DEBUG(std::cerr << "markConstant: " << *C << ": " << *I); 135 InstWorkList.push_back(I); 136 } 137 } 138 inline void markConstant(Instruction *I, Constant *C) { 139 markConstant(ValueState[I], I, C); 140 } 141 142 // markValueOverdefined - Make a value be marked as "overdefined". If the 143 // value is not already overdefined, add it to the instruction work list so 144 // that the users of the instruction are updated later. 145 // 146 inline void markOverdefined(InstVal &IV, Instruction *I) { 147 if (IV.markOverdefined()) { 148 DEBUG(std::cerr << "markOverdefined: " << *I); 149 InstWorkList.push_back(I); // Only instructions go on the work list 150 } 151 } 152 inline void markOverdefined(Instruction *I) { 153 markOverdefined(ValueState[I], I); 154 } 155 156 // getValueState - Return the InstVal object that corresponds to the value. 157 // This function is necessary because not all values should start out in the 158 // underdefined state... Argument's should be overdefined, and 159 // constants should be marked as constants. If a value is not known to be an 160 // Instruction object, then use this accessor to get its value from the map. 161 // 162 inline InstVal &getValueState(Value *V) { 163 std::map<Value*, InstVal>::iterator I = ValueState.find(V); 164 if (I != ValueState.end()) return I->second; // Common case, in the map 165 166 if (Constant *CPV = dyn_cast<Constant>(V)) { // Constants are constant 167 ValueState[CPV].markConstant(CPV); 168 } else if (isa<Argument>(V)) { // Arguments are overdefined 169 ValueState[V].markOverdefined(); 170 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 171 // The address of a global is a constant... 172 ValueState[V].markConstant(ConstantPointerRef::get(GV)); 173 } 174 // All others are underdefined by default... 175 return ValueState[V]; 176 } 177 178 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB 179 // work list if it is not already executable... 180 // 181 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 182 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 183 return; // This edge is already known to be executable! 184 185 if (BBExecutable.count(Dest)) { 186 DEBUG(std::cerr << "Marking Edge Executable: " << Source->getName() 187 << " -> " << Dest->getName() << "\n"); 188 189 // The destination is already executable, but we just made an edge 190 // feasible that wasn't before. Revisit the PHI nodes in the block 191 // because they have potentially new operands. 192 for (BasicBlock::iterator I = Dest->begin(); 193 PHINode *PN = dyn_cast<PHINode>(I); ++I) 194 visitPHINode(*PN); 195 196 } else { 197 DEBUG(std::cerr << "Marking Block Executable: " << Dest->getName()<<"\n"); 198 BBExecutable.insert(Dest); // Basic block is executable! 199 BBWorkList.push_back(Dest); // Add the block to the work list! 200 } 201 } 202 203 204 // visit implementations - Something changed in this instruction... Either an 205 // operand made a transition, or the instruction is newly executable. Change 206 // the value type of I to reflect these changes if appropriate. 207 // 208 void visitPHINode(PHINode &I); 209 210 // Terminators 211 void visitReturnInst(ReturnInst &I) { /*does not have an effect*/ } 212 void visitTerminatorInst(TerminatorInst &TI); 213 214 void visitCastInst(CastInst &I); 215 void visitSelectInst(SelectInst &I); 216 void visitBinaryOperator(Instruction &I); 217 void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } 218 219 // Instructions that cannot be folded away... 220 void visitStoreInst (Instruction &I) { /*returns void*/ } 221 void visitLoadInst (LoadInst &I); 222 void visitGetElementPtrInst(GetElementPtrInst &I); 223 void visitCallInst (Instruction &I) { markOverdefined(&I); } 224 void visitInvokeInst (TerminatorInst &I) { 225 if (I.getType() != Type::VoidTy) markOverdefined(&I); 226 visitTerminatorInst(I); 227 } 228 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 229 void visitAllocationInst(Instruction &I) { markOverdefined(&I); } 230 void visitVANextInst (Instruction &I) { markOverdefined(&I); } 231 void visitVAArgInst (Instruction &I) { markOverdefined(&I); } 232 void visitFreeInst (Instruction &I) { /*returns void*/ } 233 234 void visitInstruction(Instruction &I) { 235 // If a new instruction is added to LLVM that we don't handle... 236 std::cerr << "SCCP: Don't know how to handle: " << I; 237 markOverdefined(&I); // Just in case 238 } 239 240 // getFeasibleSuccessors - Return a vector of booleans to indicate which 241 // successors are reachable from a given terminator instruction. 242 // 243 void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs); 244 245 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 246 // block to the 'To' basic block is currently feasible... 247 // 248 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 249 250 // OperandChangedState - This method is invoked on all of the users of an 251 // instruction that was just changed state somehow.... Based on this 252 // information, we need to update the specified user of this instruction. 253 // 254 void OperandChangedState(User *U) { 255 // Only instructions use other variable values! 256 Instruction &I = cast<Instruction>(*U); 257 if (BBExecutable.count(I.getParent())) // Inst is executable? 258 visit(I); 259 } 260}; 261 262 RegisterOpt<SCCP> X("sccp", "Sparse Conditional Constant Propagation"); 263} // end anonymous namespace 264 265 266// createSCCPPass - This is the public interface to this file... 267Pass *llvm::createSCCPPass() { 268 return new SCCP(); 269} 270 271 272//===----------------------------------------------------------------------===// 273// SCCP Class Implementation 274 275 276// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 277// and return true if the function was modified. 278// 279bool SCCP::runOnFunction(Function &F) { 280 // Mark the first block of the function as being executable... 281 BBExecutable.insert(F.begin()); // Basic block is executable! 282 BBWorkList.push_back(F.begin()); // Add the block to the work list! 283 284 // Process the work lists until their are empty! 285 while (!BBWorkList.empty() || !InstWorkList.empty()) { 286 // Process the instruction work list... 287 while (!InstWorkList.empty()) { 288 Instruction *I = InstWorkList.back(); 289 InstWorkList.pop_back(); 290 291 DEBUG(std::cerr << "\nPopped off I-WL: " << I); 292 293 // "I" got into the work list because it either made the transition from 294 // bottom to constant, or to Overdefined. 295 // 296 // Update all of the users of this instruction's value... 297 // 298 for_each(I->use_begin(), I->use_end(), 299 bind_obj(this, &SCCP::OperandChangedState)); 300 } 301 302 // Process the basic block work list... 303 while (!BBWorkList.empty()) { 304 BasicBlock *BB = BBWorkList.back(); 305 BBWorkList.pop_back(); 306 307 DEBUG(std::cerr << "\nPopped off BBWL: " << BB); 308 309 // Notify all instructions in this basic block that they are newly 310 // executable. 311 visit(BB); 312 } 313 } 314 315 if (DebugFlag) { 316 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) 317 if (!BBExecutable.count(I)) 318 std::cerr << "BasicBlock Dead:" << *I; 319 } 320 321 // Iterate over all of the instructions in a function, replacing them with 322 // constants if we have found them to be of constant values. 323 // 324 bool MadeChanges = false; 325 for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) 326 for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) { 327 Instruction &Inst = *BI; 328 InstVal &IV = ValueState[&Inst]; 329 if (IV.isConstant()) { 330 Constant *Const = IV.getConstant(); 331 DEBUG(std::cerr << "Constant: " << Const << " = " << Inst); 332 333 // Replaces all of the uses of a variable with uses of the constant. 334 Inst.replaceAllUsesWith(Const); 335 336 // Remove the operator from the list of definitions... and delete it. 337 BI = BB->getInstList().erase(BI); 338 339 // Hey, we just changed something! 340 MadeChanges = true; 341 ++NumInstRemoved; 342 } else { 343 ++BI; 344 } 345 } 346 347 // Reset state so that the next invocation will have empty data structures 348 BBExecutable.clear(); 349 ValueState.clear(); 350 std::vector<Instruction*>().swap(InstWorkList); 351 std::vector<BasicBlock*>().swap(BBWorkList); 352 353 return MadeChanges; 354} 355 356 357// getFeasibleSuccessors - Return a vector of booleans to indicate which 358// successors are reachable from a given terminator instruction. 359// 360void SCCP::getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs) { 361 Succs.resize(TI.getNumSuccessors()); 362 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 363 if (BI->isUnconditional()) { 364 Succs[0] = true; 365 } else { 366 InstVal &BCValue = getValueState(BI->getCondition()); 367 if (BCValue.isOverdefined() || 368 (BCValue.isConstant() && !isa<ConstantBool>(BCValue.getConstant()))) { 369 // Overdefined condition variables, and branches on unfoldable constant 370 // conditions, mean the branch could go either way. 371 Succs[0] = Succs[1] = true; 372 } else if (BCValue.isConstant()) { 373 // Constant condition variables mean the branch can only go a single way 374 Succs[BCValue.getConstant() == ConstantBool::False] = true; 375 } 376 } 377 } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) { 378 // Invoke instructions successors are always executable. 379 Succs[0] = Succs[1] = true; 380 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 381 InstVal &SCValue = getValueState(SI->getCondition()); 382 if (SCValue.isOverdefined() || // Overdefined condition? 383 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) { 384 // All destinations are executable! 385 Succs.assign(TI.getNumSuccessors(), true); 386 } else if (SCValue.isConstant()) { 387 Constant *CPV = SCValue.getConstant(); 388 // Make sure to skip the "default value" which isn't a value 389 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { 390 if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... 391 Succs[i] = true; 392 return; 393 } 394 } 395 396 // Constant value not equal to any of the branches... must execute 397 // default branch then... 398 Succs[0] = true; 399 } 400 } else { 401 std::cerr << "SCCP: Don't know how to handle: " << TI; 402 Succs.assign(TI.getNumSuccessors(), true); 403 } 404} 405 406 407// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 408// block to the 'To' basic block is currently feasible... 409// 410bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 411 assert(BBExecutable.count(To) && "Dest should always be alive!"); 412 413 // Make sure the source basic block is executable!! 414 if (!BBExecutable.count(From)) return false; 415 416 // Check to make sure this edge itself is actually feasible now... 417 TerminatorInst *TI = From->getTerminator(); 418 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 419 if (BI->isUnconditional()) 420 return true; 421 else { 422 InstVal &BCValue = getValueState(BI->getCondition()); 423 if (BCValue.isOverdefined()) { 424 // Overdefined condition variables mean the branch could go either way. 425 return true; 426 } else if (BCValue.isConstant()) { 427 // Not branching on an evaluatable constant? 428 if (!isa<ConstantBool>(BCValue.getConstant())) return true; 429 430 // Constant condition variables mean the branch can only go a single way 431 return BI->getSuccessor(BCValue.getConstant() == 432 ConstantBool::False) == To; 433 } 434 return false; 435 } 436 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 437 // Invoke instructions successors are always executable. 438 return true; 439 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 440 InstVal &SCValue = getValueState(SI->getCondition()); 441 if (SCValue.isOverdefined()) { // Overdefined condition? 442 // All destinations are executable! 443 return true; 444 } else if (SCValue.isConstant()) { 445 Constant *CPV = SCValue.getConstant(); 446 if (!isa<ConstantInt>(CPV)) 447 return true; // not a foldable constant? 448 449 // Make sure to skip the "default value" which isn't a value 450 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 451 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... 452 return SI->getSuccessor(i) == To; 453 454 // Constant value not equal to any of the branches... must execute 455 // default branch then... 456 return SI->getDefaultDest() == To; 457 } 458 return false; 459 } else { 460 std::cerr << "Unknown terminator instruction: " << *TI; 461 abort(); 462 } 463} 464 465// visit Implementations - Something changed in this instruction... Either an 466// operand made a transition, or the instruction is newly executable. Change 467// the value type of I to reflect these changes if appropriate. This method 468// makes sure to do the following actions: 469// 470// 1. If a phi node merges two constants in, and has conflicting value coming 471// from different branches, or if the PHI node merges in an overdefined 472// value, then the PHI node becomes overdefined. 473// 2. If a phi node merges only constants in, and they all agree on value, the 474// PHI node becomes a constant value equal to that. 475// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 476// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 477// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 478// 6. If a conditional branch has a value that is constant, make the selected 479// destination executable 480// 7. If a conditional branch has a value that is overdefined, make all 481// successors executable. 482// 483void SCCP::visitPHINode(PHINode &PN) { 484 InstVal &PNIV = getValueState(&PN); 485 if (PNIV.isOverdefined()) { 486 // There may be instructions using this PHI node that are not overdefined 487 // themselves. If so, make sure that they know that the PHI node operand 488 // changed. 489 std::multimap<PHINode*, Instruction*>::iterator I, E; 490 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); 491 if (I != E) { 492 std::vector<Instruction*> Users; 493 Users.reserve(std::distance(I, E)); 494 for (; I != E; ++I) Users.push_back(I->second); 495 while (!Users.empty()) { 496 visit(Users.back()); 497 Users.pop_back(); 498 } 499 } 500 return; // Quick exit 501 } 502 503 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 504 // and slow us down a lot. Just mark them overdefined. 505 if (PN.getNumIncomingValues() > 64) { 506 markOverdefined(PNIV, &PN); 507 return; 508 } 509 510 // Look at all of the executable operands of the PHI node. If any of them 511 // are overdefined, the PHI becomes overdefined as well. If they are all 512 // constant, and they agree with each other, the PHI becomes the identical 513 // constant. If they are constant and don't agree, the PHI is overdefined. 514 // If there are no executable operands, the PHI remains undefined. 515 // 516 Constant *OperandVal = 0; 517 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 518 InstVal &IV = getValueState(PN.getIncomingValue(i)); 519 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 520 521 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { 522 if (IV.isOverdefined()) { // PHI node becomes overdefined! 523 markOverdefined(PNIV, &PN); 524 return; 525 } 526 527 if (OperandVal == 0) { // Grab the first value... 528 OperandVal = IV.getConstant(); 529 } else { // Another value is being merged in! 530 // There is already a reachable operand. If we conflict with it, 531 // then the PHI node becomes overdefined. If we agree with it, we 532 // can continue on. 533 534 // Check to see if there are two different constants merging... 535 if (IV.getConstant() != OperandVal) { 536 // Yes there is. This means the PHI node is not constant. 537 // You must be overdefined poor PHI. 538 // 539 markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined 540 return; // I'm done analyzing you 541 } 542 } 543 } 544 } 545 546 // If we exited the loop, this means that the PHI node only has constant 547 // arguments that agree with each other(and OperandVal is the constant) or 548 // OperandVal is null because there are no defined incoming arguments. If 549 // this is the case, the PHI remains undefined. 550 // 551 if (OperandVal) 552 markConstant(PNIV, &PN, OperandVal); // Acquire operand value 553} 554 555void SCCP::visitTerminatorInst(TerminatorInst &TI) { 556 std::vector<bool> SuccFeasible; 557 getFeasibleSuccessors(TI, SuccFeasible); 558 559 BasicBlock *BB = TI.getParent(); 560 561 // Mark all feasible successors executable... 562 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 563 if (SuccFeasible[i]) 564 markEdgeExecutable(BB, TI.getSuccessor(i)); 565} 566 567void SCCP::visitCastInst(CastInst &I) { 568 Value *V = I.getOperand(0); 569 InstVal &VState = getValueState(V); 570 if (VState.isOverdefined()) // Inherit overdefinedness of operand 571 markOverdefined(&I); 572 else if (VState.isConstant()) // Propagate constant value 573 markConstant(&I, ConstantExpr::getCast(VState.getConstant(), I.getType())); 574} 575 576void SCCP::visitSelectInst(SelectInst &I) { 577 InstVal &CondValue = getValueState(I.getCondition()); 578 if (CondValue.isOverdefined()) 579 markOverdefined(&I); 580 else if (CondValue.isConstant()) { 581 if (CondValue.getConstant() == ConstantBool::True) { 582 InstVal &Val = getValueState(I.getTrueValue()); 583 if (Val.isOverdefined()) 584 markOverdefined(&I); 585 else if (Val.isConstant()) 586 markConstant(&I, Val.getConstant()); 587 } else if (CondValue.getConstant() == ConstantBool::False) { 588 InstVal &Val = getValueState(I.getFalseValue()); 589 if (Val.isOverdefined()) 590 markOverdefined(&I); 591 else if (Val.isConstant()) 592 markConstant(&I, Val.getConstant()); 593 } else 594 markOverdefined(&I); 595 } 596} 597 598// Handle BinaryOperators and Shift Instructions... 599void SCCP::visitBinaryOperator(Instruction &I) { 600 InstVal &IV = ValueState[&I]; 601 if (IV.isOverdefined()) return; 602 603 InstVal &V1State = getValueState(I.getOperand(0)); 604 InstVal &V2State = getValueState(I.getOperand(1)); 605 606 if (V1State.isOverdefined() || V2State.isOverdefined()) { 607 // If both operands are PHI nodes, it is possible that this instruction has 608 // a constant value, despite the fact that the PHI node doesn't. Check for 609 // this condition now. 610 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 611 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 612 if (PN1->getParent() == PN2->getParent()) { 613 // Since the two PHI nodes are in the same basic block, they must have 614 // entries for the same predecessors. Walk the predecessor list, and 615 // if all of the incoming values are constants, and the result of 616 // evaluating this expression with all incoming value pairs is the 617 // same, then this expression is a constant even though the PHI node 618 // is not a constant! 619 InstVal Result; 620 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 621 InstVal &In1 = getValueState(PN1->getIncomingValue(i)); 622 BasicBlock *InBlock = PN1->getIncomingBlock(i); 623 InstVal &In2 =getValueState(PN2->getIncomingValueForBlock(InBlock)); 624 625 if (In1.isOverdefined() || In2.isOverdefined()) { 626 Result.markOverdefined(); 627 break; // Cannot fold this operation over the PHI nodes! 628 } else if (In1.isConstant() && In2.isConstant()) { 629 Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), 630 In2.getConstant()); 631 if (Result.isUndefined()) 632 Result.markConstant(V); 633 else if (Result.isConstant() && Result.getConstant() != V) { 634 Result.markOverdefined(); 635 break; 636 } 637 } 638 } 639 640 // If we found a constant value here, then we know the instruction is 641 // constant despite the fact that the PHI nodes are overdefined. 642 if (Result.isConstant()) { 643 markConstant(IV, &I, Result.getConstant()); 644 // Remember that this instruction is virtually using the PHI node 645 // operands. 646 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 647 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 648 return; 649 } else if (Result.isUndefined()) { 650 return; 651 } 652 653 // Okay, this really is overdefined now. Since we might have 654 // speculatively thought that this was not overdefined before, and 655 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 656 // make sure to clean out any entries that we put there, for 657 // efficiency. 658 std::multimap<PHINode*, Instruction*>::iterator It, E; 659 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 660 while (It != E) { 661 if (It->second == &I) { 662 UsersOfOverdefinedPHIs.erase(It++); 663 } else 664 ++It; 665 } 666 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 667 while (It != E) { 668 if (It->second == &I) { 669 UsersOfOverdefinedPHIs.erase(It++); 670 } else 671 ++It; 672 } 673 } 674 675 markOverdefined(IV, &I); 676 } else if (V1State.isConstant() && V2State.isConstant()) { 677 markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 678 V2State.getConstant())); 679 } 680} 681 682// Handle getelementptr instructions... if all operands are constants then we 683// can turn this into a getelementptr ConstantExpr. 684// 685void SCCP::visitGetElementPtrInst(GetElementPtrInst &I) { 686 InstVal &IV = ValueState[&I]; 687 if (IV.isOverdefined()) return; 688 689 std::vector<Constant*> Operands; 690 Operands.reserve(I.getNumOperands()); 691 692 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 693 InstVal &State = getValueState(I.getOperand(i)); 694 if (State.isUndefined()) 695 return; // Operands are not resolved yet... 696 else if (State.isOverdefined()) { 697 markOverdefined(IV, &I); 698 return; 699 } 700 assert(State.isConstant() && "Unknown state!"); 701 Operands.push_back(State.getConstant()); 702 } 703 704 Constant *Ptr = Operands[0]; 705 Operands.erase(Operands.begin()); // Erase the pointer from idx list... 706 707 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands)); 708} 709 710/// GetGEPGlobalInitializer - Given a constant and a getelementptr constantexpr, 711/// return the constant value being addressed by the constant expression, or 712/// null if something is funny. 713/// 714static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) { 715 if (CE->getOperand(1) != Constant::getNullValue(Type::LongTy)) 716 return 0; // Do not allow stepping over the value! 717 718 // Loop over all of the operands, tracking down which value we are 719 // addressing... 720 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) 721 if (ConstantUInt *CU = dyn_cast<ConstantUInt>(CE->getOperand(i))) { 722 ConstantStruct *CS = dyn_cast<ConstantStruct>(C); 723 if (CS == 0) return 0; 724 if (CU->getValue() >= CS->getValues().size()) return 0; 725 C = cast<Constant>(CS->getValues()[CU->getValue()]); 726 } else if (ConstantSInt *CS = dyn_cast<ConstantSInt>(CE->getOperand(i))) { 727 ConstantArray *CA = dyn_cast<ConstantArray>(C); 728 if (CA == 0) return 0; 729 if ((uint64_t)CS->getValue() >= CA->getValues().size()) return 0; 730 C = cast<Constant>(CA->getValues()[CS->getValue()]); 731 } else 732 return 0; 733 return C; 734} 735 736// Handle load instructions. If the operand is a constant pointer to a constant 737// global, we can replace the load with the loaded constant value! 738void SCCP::visitLoadInst(LoadInst &I) { 739 InstVal &IV = ValueState[&I]; 740 if (IV.isOverdefined()) return; 741 742 InstVal &PtrVal = getValueState(I.getOperand(0)); 743 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 744 if (PtrVal.isConstant() && !I.isVolatile()) { 745 Value *Ptr = PtrVal.getConstant(); 746 if (isa<ConstantPointerNull>(Ptr)) { 747 // load null -> null 748 markConstant(IV, &I, Constant::getNullValue(I.getType())); 749 return; 750 } 751 752 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Ptr)) 753 Ptr = CPR->getValue(); 754 755 // Transform load (constant global) into the value loaded. 756 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) 757 if (GV->isConstant() && !GV->isExternal()) { 758 markConstant(IV, &I, GV->getInitializer()); 759 return; 760 } 761 762 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. 763 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 764 if (CE->getOpcode() == Instruction::GetElementPtr) 765 if (ConstantPointerRef *G 766 = dyn_cast<ConstantPointerRef>(CE->getOperand(0))) 767 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getValue())) 768 if (GV->isConstant() && !GV->isExternal()) 769 if (Constant *V = 770 GetGEPGlobalInitializer(GV->getInitializer(), CE)) { 771 markConstant(IV, &I, V); 772 return; 773 } 774 } 775 776 // Otherwise we cannot say for certain what value this load will produce. 777 // Bail out. 778 markOverdefined(IV, &I); 779} 780