SCCP.cpp revision a2f652d420ef3023fe105602481f750cbbbf88c5
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18// Notice that:
19//   * This pass has a habit of making definitions be dead.  It is a good idea
20//     to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/Pass.h"
30#include "llvm/Type.h"
31#include "llvm/Support/InstVisitor.h"
32#include "Support/Debug.h"
33#include "Support/Statistic.h"
34#include "Support/STLExtras.h"
35#include <algorithm>
36#include <set>
37using namespace llvm;
38
39// InstVal class - This class represents the different lattice values that an
40// instruction may occupy.  It is a simple class with value semantics.
41//
42namespace {
43  Statistic<> NumInstRemoved("sccp", "Number of instructions removed");
44
45class InstVal {
46  enum {
47    undefined,           // This instruction has no known value
48    constant,            // This instruction has a constant value
49    overdefined          // This instruction has an unknown value
50  } LatticeValue;        // The current lattice position
51  Constant *ConstantVal; // If Constant value, the current value
52public:
53  inline InstVal() : LatticeValue(undefined), ConstantVal(0) {}
54
55  // markOverdefined - Return true if this is a new status to be in...
56  inline bool markOverdefined() {
57    if (LatticeValue != overdefined) {
58      LatticeValue = overdefined;
59      return true;
60    }
61    return false;
62  }
63
64  // markConstant - Return true if this is a new status for us...
65  inline bool markConstant(Constant *V) {
66    if (LatticeValue != constant) {
67      LatticeValue = constant;
68      ConstantVal = V;
69      return true;
70    } else {
71      assert(ConstantVal == V && "Marking constant with different value");
72    }
73    return false;
74  }
75
76  inline bool isUndefined()   const { return LatticeValue == undefined; }
77  inline bool isConstant()    const { return LatticeValue == constant; }
78  inline bool isOverdefined() const { return LatticeValue == overdefined; }
79
80  inline Constant *getConstant() const {
81    assert(isConstant() && "Cannot get the constant of a non-constant!");
82    return ConstantVal;
83  }
84};
85
86} // end anonymous namespace
87
88
89//===----------------------------------------------------------------------===//
90// SCCP Class
91//
92// This class does all of the work of Sparse Conditional Constant Propagation.
93//
94namespace {
95class SCCP : public FunctionPass, public InstVisitor<SCCP> {
96  std::set<BasicBlock*>     BBExecutable;// The basic blocks that are executable
97  std::map<Value*, InstVal> ValueState;  // The state each value is in...
98
99  std::vector<Instruction*> InstWorkList;// The instruction work list
100  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
101
102  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
103  /// overdefined, despite the fact that the PHI node is overdefined.
104  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
105
106  /// KnownFeasibleEdges - Entries in this set are edges which have already had
107  /// PHI nodes retriggered.
108  typedef std::pair<BasicBlock*,BasicBlock*> Edge;
109  std::set<Edge> KnownFeasibleEdges;
110public:
111
112  // runOnFunction - Run the Sparse Conditional Constant Propagation algorithm,
113  // and return true if the function was modified.
114  //
115  bool runOnFunction(Function &F);
116
117  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
118    AU.setPreservesCFG();
119  }
120
121
122  //===--------------------------------------------------------------------===//
123  // The implementation of this class
124  //
125private:
126  friend class InstVisitor<SCCP>;        // Allow callbacks from visitor
127
128  // markValueOverdefined - Make a value be marked as "constant".  If the value
129  // is not already a constant, add it to the instruction work list so that
130  // the users of the instruction are updated later.
131  //
132  inline void markConstant(InstVal &IV, Instruction *I, Constant *C) {
133    if (IV.markConstant(C)) {
134      DEBUG(std::cerr << "markConstant: " << *C << ": " << *I);
135      InstWorkList.push_back(I);
136    }
137  }
138  inline void markConstant(Instruction *I, Constant *C) {
139    markConstant(ValueState[I], I, C);
140  }
141
142  // markValueOverdefined - Make a value be marked as "overdefined". If the
143  // value is not already overdefined, add it to the instruction work list so
144  // that the users of the instruction are updated later.
145  //
146  inline void markOverdefined(InstVal &IV, Instruction *I) {
147    if (IV.markOverdefined()) {
148      DEBUG(std::cerr << "markOverdefined: " << *I);
149      InstWorkList.push_back(I);  // Only instructions go on the work list
150    }
151  }
152  inline void markOverdefined(Instruction *I) {
153    markOverdefined(ValueState[I], I);
154  }
155
156  // getValueState - Return the InstVal object that corresponds to the value.
157  // This function is necessary because not all values should start out in the
158  // underdefined state... Argument's should be overdefined, and
159  // constants should be marked as constants.  If a value is not known to be an
160  // Instruction object, then use this accessor to get its value from the map.
161  //
162  inline InstVal &getValueState(Value *V) {
163    std::map<Value*, InstVal>::iterator I = ValueState.find(V);
164    if (I != ValueState.end()) return I->second;  // Common case, in the map
165
166    if (Constant *CPV = dyn_cast<Constant>(V)) {  // Constants are constant
167      ValueState[CPV].markConstant(CPV);
168    } else if (isa<Argument>(V)) {                // Arguments are overdefined
169      ValueState[V].markOverdefined();
170    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
171      // The address of a global is a constant...
172      ValueState[V].markConstant(ConstantPointerRef::get(GV));
173    }
174    // All others are underdefined by default...
175    return ValueState[V];
176  }
177
178  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
179  // work list if it is not already executable...
180  //
181  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
182    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
183      return;  // This edge is already known to be executable!
184
185    if (BBExecutable.count(Dest)) {
186      DEBUG(std::cerr << "Marking Edge Executable: " << Source->getName()
187                      << " -> " << Dest->getName() << "\n");
188
189      // The destination is already executable, but we just made an edge
190      // feasible that wasn't before.  Revisit the PHI nodes in the block
191      // because they have potentially new operands.
192      for (BasicBlock::iterator I = Dest->begin();
193           PHINode *PN = dyn_cast<PHINode>(I); ++I)
194        visitPHINode(*PN);
195
196    } else {
197      DEBUG(std::cerr << "Marking Block Executable: " << Dest->getName()<<"\n");
198      BBExecutable.insert(Dest);   // Basic block is executable!
199      BBWorkList.push_back(Dest);  // Add the block to the work list!
200    }
201  }
202
203
204  // visit implementations - Something changed in this instruction... Either an
205  // operand made a transition, or the instruction is newly executable.  Change
206  // the value type of I to reflect these changes if appropriate.
207  //
208  void visitPHINode(PHINode &I);
209
210  // Terminators
211  void visitReturnInst(ReturnInst &I) { /*does not have an effect*/ }
212  void visitTerminatorInst(TerminatorInst &TI);
213
214  void visitCastInst(CastInst &I);
215  void visitSelectInst(SelectInst &I);
216  void visitBinaryOperator(Instruction &I);
217  void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
218
219  // Instructions that cannot be folded away...
220  void visitStoreInst     (Instruction &I) { /*returns void*/ }
221  void visitLoadInst      (LoadInst &I);
222  void visitGetElementPtrInst(GetElementPtrInst &I);
223  void visitCallInst      (Instruction &I) { markOverdefined(&I); }
224  void visitInvokeInst    (TerminatorInst &I) {
225    if (I.getType() != Type::VoidTy) markOverdefined(&I);
226    visitTerminatorInst(I);
227  }
228  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
229  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
230  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
231  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
232  void visitFreeInst      (Instruction &I) { /*returns void*/ }
233
234  void visitInstruction(Instruction &I) {
235    // If a new instruction is added to LLVM that we don't handle...
236    std::cerr << "SCCP: Don't know how to handle: " << I;
237    markOverdefined(&I);   // Just in case
238  }
239
240  // getFeasibleSuccessors - Return a vector of booleans to indicate which
241  // successors are reachable from a given terminator instruction.
242  //
243  void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs);
244
245  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
246  // block to the 'To' basic block is currently feasible...
247  //
248  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
249
250  // OperandChangedState - This method is invoked on all of the users of an
251  // instruction that was just changed state somehow....  Based on this
252  // information, we need to update the specified user of this instruction.
253  //
254  void OperandChangedState(User *U) {
255    // Only instructions use other variable values!
256    Instruction &I = cast<Instruction>(*U);
257    if (BBExecutable.count(I.getParent()))   // Inst is executable?
258      visit(I);
259  }
260};
261
262  RegisterOpt<SCCP> X("sccp", "Sparse Conditional Constant Propagation");
263} // end anonymous namespace
264
265
266// createSCCPPass - This is the public interface to this file...
267Pass *llvm::createSCCPPass() {
268  return new SCCP();
269}
270
271
272//===----------------------------------------------------------------------===//
273// SCCP Class Implementation
274
275
276// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
277// and return true if the function was modified.
278//
279bool SCCP::runOnFunction(Function &F) {
280  // Mark the first block of the function as being executable...
281  BBExecutable.insert(F.begin());   // Basic block is executable!
282  BBWorkList.push_back(F.begin());  // Add the block to the work list!
283
284  // Process the work lists until their are empty!
285  while (!BBWorkList.empty() || !InstWorkList.empty()) {
286    // Process the instruction work list...
287    while (!InstWorkList.empty()) {
288      Instruction *I = InstWorkList.back();
289      InstWorkList.pop_back();
290
291      DEBUG(std::cerr << "\nPopped off I-WL: " << I);
292
293      // "I" got into the work list because it either made the transition from
294      // bottom to constant, or to Overdefined.
295      //
296      // Update all of the users of this instruction's value...
297      //
298      for_each(I->use_begin(), I->use_end(),
299	       bind_obj(this, &SCCP::OperandChangedState));
300    }
301
302    // Process the basic block work list...
303    while (!BBWorkList.empty()) {
304      BasicBlock *BB = BBWorkList.back();
305      BBWorkList.pop_back();
306
307      DEBUG(std::cerr << "\nPopped off BBWL: " << BB);
308
309      // Notify all instructions in this basic block that they are newly
310      // executable.
311      visit(BB);
312    }
313  }
314
315  if (DebugFlag) {
316    for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
317      if (!BBExecutable.count(I))
318        std::cerr << "BasicBlock Dead:" << *I;
319  }
320
321  // Iterate over all of the instructions in a function, replacing them with
322  // constants if we have found them to be of constant values.
323  //
324  bool MadeChanges = false;
325  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB)
326    for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) {
327      Instruction &Inst = *BI;
328      InstVal &IV = ValueState[&Inst];
329      if (IV.isConstant()) {
330        Constant *Const = IV.getConstant();
331        DEBUG(std::cerr << "Constant: " << Const << " = " << Inst);
332
333        // Replaces all of the uses of a variable with uses of the constant.
334        Inst.replaceAllUsesWith(Const);
335
336        // Remove the operator from the list of definitions... and delete it.
337        BI = BB->getInstList().erase(BI);
338
339        // Hey, we just changed something!
340        MadeChanges = true;
341        ++NumInstRemoved;
342      } else {
343        ++BI;
344      }
345    }
346
347  // Reset state so that the next invocation will have empty data structures
348  BBExecutable.clear();
349  ValueState.clear();
350  std::vector<Instruction*>().swap(InstWorkList);
351  std::vector<BasicBlock*>().swap(BBWorkList);
352
353  return MadeChanges;
354}
355
356
357// getFeasibleSuccessors - Return a vector of booleans to indicate which
358// successors are reachable from a given terminator instruction.
359//
360void SCCP::getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs) {
361  Succs.resize(TI.getNumSuccessors());
362  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
363    if (BI->isUnconditional()) {
364      Succs[0] = true;
365    } else {
366      InstVal &BCValue = getValueState(BI->getCondition());
367      if (BCValue.isOverdefined() ||
368          (BCValue.isConstant() && !isa<ConstantBool>(BCValue.getConstant()))) {
369        // Overdefined condition variables, and branches on unfoldable constant
370        // conditions, mean the branch could go either way.
371        Succs[0] = Succs[1] = true;
372      } else if (BCValue.isConstant()) {
373        // Constant condition variables mean the branch can only go a single way
374        Succs[BCValue.getConstant() == ConstantBool::False] = true;
375      }
376    }
377  } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) {
378    // Invoke instructions successors are always executable.
379    Succs[0] = Succs[1] = true;
380  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
381    InstVal &SCValue = getValueState(SI->getCondition());
382    if (SCValue.isOverdefined() ||   // Overdefined condition?
383        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
384      // All destinations are executable!
385      Succs.assign(TI.getNumSuccessors(), true);
386    } else if (SCValue.isConstant()) {
387      Constant *CPV = SCValue.getConstant();
388      // Make sure to skip the "default value" which isn't a value
389      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
390        if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
391          Succs[i] = true;
392          return;
393        }
394      }
395
396      // Constant value not equal to any of the branches... must execute
397      // default branch then...
398      Succs[0] = true;
399    }
400  } else {
401    std::cerr << "SCCP: Don't know how to handle: " << TI;
402    Succs.assign(TI.getNumSuccessors(), true);
403  }
404}
405
406
407// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
408// block to the 'To' basic block is currently feasible...
409//
410bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
411  assert(BBExecutable.count(To) && "Dest should always be alive!");
412
413  // Make sure the source basic block is executable!!
414  if (!BBExecutable.count(From)) return false;
415
416  // Check to make sure this edge itself is actually feasible now...
417  TerminatorInst *TI = From->getTerminator();
418  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
419    if (BI->isUnconditional())
420      return true;
421    else {
422      InstVal &BCValue = getValueState(BI->getCondition());
423      if (BCValue.isOverdefined()) {
424        // Overdefined condition variables mean the branch could go either way.
425        return true;
426      } else if (BCValue.isConstant()) {
427        // Not branching on an evaluatable constant?
428        if (!isa<ConstantBool>(BCValue.getConstant())) return true;
429
430        // Constant condition variables mean the branch can only go a single way
431        return BI->getSuccessor(BCValue.getConstant() ==
432                                       ConstantBool::False) == To;
433      }
434      return false;
435    }
436  } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
437    // Invoke instructions successors are always executable.
438    return true;
439  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
440    InstVal &SCValue = getValueState(SI->getCondition());
441    if (SCValue.isOverdefined()) {  // Overdefined condition?
442      // All destinations are executable!
443      return true;
444    } else if (SCValue.isConstant()) {
445      Constant *CPV = SCValue.getConstant();
446      if (!isa<ConstantInt>(CPV))
447        return true;  // not a foldable constant?
448
449      // Make sure to skip the "default value" which isn't a value
450      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
451        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
452          return SI->getSuccessor(i) == To;
453
454      // Constant value not equal to any of the branches... must execute
455      // default branch then...
456      return SI->getDefaultDest() == To;
457    }
458    return false;
459  } else {
460    std::cerr << "Unknown terminator instruction: " << *TI;
461    abort();
462  }
463}
464
465// visit Implementations - Something changed in this instruction... Either an
466// operand made a transition, or the instruction is newly executable.  Change
467// the value type of I to reflect these changes if appropriate.  This method
468// makes sure to do the following actions:
469//
470// 1. If a phi node merges two constants in, and has conflicting value coming
471//    from different branches, or if the PHI node merges in an overdefined
472//    value, then the PHI node becomes overdefined.
473// 2. If a phi node merges only constants in, and they all agree on value, the
474//    PHI node becomes a constant value equal to that.
475// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
476// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
477// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
478// 6. If a conditional branch has a value that is constant, make the selected
479//    destination executable
480// 7. If a conditional branch has a value that is overdefined, make all
481//    successors executable.
482//
483void SCCP::visitPHINode(PHINode &PN) {
484  InstVal &PNIV = getValueState(&PN);
485  if (PNIV.isOverdefined()) {
486    // There may be instructions using this PHI node that are not overdefined
487    // themselves.  If so, make sure that they know that the PHI node operand
488    // changed.
489    std::multimap<PHINode*, Instruction*>::iterator I, E;
490    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
491    if (I != E) {
492      std::vector<Instruction*> Users;
493      Users.reserve(std::distance(I, E));
494      for (; I != E; ++I) Users.push_back(I->second);
495      while (!Users.empty()) {
496        visit(Users.back());
497        Users.pop_back();
498      }
499    }
500    return;  // Quick exit
501  }
502
503  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
504  // and slow us down a lot.  Just mark them overdefined.
505  if (PN.getNumIncomingValues() > 64) {
506    markOverdefined(PNIV, &PN);
507    return;
508  }
509
510  // Look at all of the executable operands of the PHI node.  If any of them
511  // are overdefined, the PHI becomes overdefined as well.  If they are all
512  // constant, and they agree with each other, the PHI becomes the identical
513  // constant.  If they are constant and don't agree, the PHI is overdefined.
514  // If there are no executable operands, the PHI remains undefined.
515  //
516  Constant *OperandVal = 0;
517  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
518    InstVal &IV = getValueState(PN.getIncomingValue(i));
519    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
520
521    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
522      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
523        markOverdefined(PNIV, &PN);
524        return;
525      }
526
527      if (OperandVal == 0) {   // Grab the first value...
528        OperandVal = IV.getConstant();
529      } else {                // Another value is being merged in!
530        // There is already a reachable operand.  If we conflict with it,
531        // then the PHI node becomes overdefined.  If we agree with it, we
532        // can continue on.
533
534        // Check to see if there are two different constants merging...
535        if (IV.getConstant() != OperandVal) {
536          // Yes there is.  This means the PHI node is not constant.
537          // You must be overdefined poor PHI.
538          //
539          markOverdefined(PNIV, &PN);    // The PHI node now becomes overdefined
540          return;    // I'm done analyzing you
541        }
542      }
543    }
544  }
545
546  // If we exited the loop, this means that the PHI node only has constant
547  // arguments that agree with each other(and OperandVal is the constant) or
548  // OperandVal is null because there are no defined incoming arguments.  If
549  // this is the case, the PHI remains undefined.
550  //
551  if (OperandVal)
552    markConstant(PNIV, &PN, OperandVal);      // Acquire operand value
553}
554
555void SCCP::visitTerminatorInst(TerminatorInst &TI) {
556  std::vector<bool> SuccFeasible;
557  getFeasibleSuccessors(TI, SuccFeasible);
558
559  BasicBlock *BB = TI.getParent();
560
561  // Mark all feasible successors executable...
562  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
563    if (SuccFeasible[i])
564      markEdgeExecutable(BB, TI.getSuccessor(i));
565}
566
567void SCCP::visitCastInst(CastInst &I) {
568  Value *V = I.getOperand(0);
569  InstVal &VState = getValueState(V);
570  if (VState.isOverdefined())          // Inherit overdefinedness of operand
571    markOverdefined(&I);
572  else if (VState.isConstant())        // Propagate constant value
573    markConstant(&I, ConstantExpr::getCast(VState.getConstant(), I.getType()));
574}
575
576void SCCP::visitSelectInst(SelectInst &I) {
577  InstVal &CondValue = getValueState(I.getCondition());
578  if (CondValue.isOverdefined())
579    markOverdefined(&I);
580  else if (CondValue.isConstant()) {
581    if (CondValue.getConstant() == ConstantBool::True) {
582      InstVal &Val = getValueState(I.getTrueValue());
583      if (Val.isOverdefined())
584        markOverdefined(&I);
585      else if (Val.isConstant())
586        markConstant(&I, Val.getConstant());
587    } else if (CondValue.getConstant() == ConstantBool::False) {
588      InstVal &Val = getValueState(I.getFalseValue());
589      if (Val.isOverdefined())
590        markOverdefined(&I);
591      else if (Val.isConstant())
592        markConstant(&I, Val.getConstant());
593    } else
594      markOverdefined(&I);
595  }
596}
597
598// Handle BinaryOperators and Shift Instructions...
599void SCCP::visitBinaryOperator(Instruction &I) {
600  InstVal &IV = ValueState[&I];
601  if (IV.isOverdefined()) return;
602
603  InstVal &V1State = getValueState(I.getOperand(0));
604  InstVal &V2State = getValueState(I.getOperand(1));
605
606  if (V1State.isOverdefined() || V2State.isOverdefined()) {
607    // If both operands are PHI nodes, it is possible that this instruction has
608    // a constant value, despite the fact that the PHI node doesn't.  Check for
609    // this condition now.
610    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
611      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
612        if (PN1->getParent() == PN2->getParent()) {
613          // Since the two PHI nodes are in the same basic block, they must have
614          // entries for the same predecessors.  Walk the predecessor list, and
615          // if all of the incoming values are constants, and the result of
616          // evaluating this expression with all incoming value pairs is the
617          // same, then this expression is a constant even though the PHI node
618          // is not a constant!
619          InstVal Result;
620          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
621            InstVal &In1 = getValueState(PN1->getIncomingValue(i));
622            BasicBlock *InBlock = PN1->getIncomingBlock(i);
623            InstVal &In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
624
625            if (In1.isOverdefined() || In2.isOverdefined()) {
626              Result.markOverdefined();
627              break;  // Cannot fold this operation over the PHI nodes!
628            } else if (In1.isConstant() && In2.isConstant()) {
629              Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
630                                              In2.getConstant());
631              if (Result.isUndefined())
632                Result.markConstant(V);
633              else if (Result.isConstant() && Result.getConstant() != V) {
634                Result.markOverdefined();
635                break;
636              }
637            }
638          }
639
640          // If we found a constant value here, then we know the instruction is
641          // constant despite the fact that the PHI nodes are overdefined.
642          if (Result.isConstant()) {
643            markConstant(IV, &I, Result.getConstant());
644            // Remember that this instruction is virtually using the PHI node
645            // operands.
646            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
647            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
648            return;
649          } else if (Result.isUndefined()) {
650            return;
651          }
652
653          // Okay, this really is overdefined now.  Since we might have
654          // speculatively thought that this was not overdefined before, and
655          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
656          // make sure to clean out any entries that we put there, for
657          // efficiency.
658          std::multimap<PHINode*, Instruction*>::iterator It, E;
659          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
660          while (It != E) {
661            if (It->second == &I) {
662              UsersOfOverdefinedPHIs.erase(It++);
663            } else
664              ++It;
665          }
666          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
667          while (It != E) {
668            if (It->second == &I) {
669              UsersOfOverdefinedPHIs.erase(It++);
670            } else
671              ++It;
672          }
673        }
674
675    markOverdefined(IV, &I);
676  } else if (V1State.isConstant() && V2State.isConstant()) {
677    markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
678                                           V2State.getConstant()));
679  }
680}
681
682// Handle getelementptr instructions... if all operands are constants then we
683// can turn this into a getelementptr ConstantExpr.
684//
685void SCCP::visitGetElementPtrInst(GetElementPtrInst &I) {
686  InstVal &IV = ValueState[&I];
687  if (IV.isOverdefined()) return;
688
689  std::vector<Constant*> Operands;
690  Operands.reserve(I.getNumOperands());
691
692  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
693    InstVal &State = getValueState(I.getOperand(i));
694    if (State.isUndefined())
695      return;  // Operands are not resolved yet...
696    else if (State.isOverdefined()) {
697      markOverdefined(IV, &I);
698      return;
699    }
700    assert(State.isConstant() && "Unknown state!");
701    Operands.push_back(State.getConstant());
702  }
703
704  Constant *Ptr = Operands[0];
705  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
706
707  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands));
708}
709
710/// GetGEPGlobalInitializer - Given a constant and a getelementptr constantexpr,
711/// return the constant value being addressed by the constant expression, or
712/// null if something is funny.
713///
714static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) {
715  if (CE->getOperand(1) != Constant::getNullValue(Type::LongTy))
716    return 0;  // Do not allow stepping over the value!
717
718  // Loop over all of the operands, tracking down which value we are
719  // addressing...
720  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i)
721    if (ConstantUInt *CU = dyn_cast<ConstantUInt>(CE->getOperand(i))) {
722      ConstantStruct *CS = dyn_cast<ConstantStruct>(C);
723      if (CS == 0) return 0;
724      if (CU->getValue() >= CS->getValues().size()) return 0;
725      C = cast<Constant>(CS->getValues()[CU->getValue()]);
726    } else if (ConstantSInt *CS = dyn_cast<ConstantSInt>(CE->getOperand(i))) {
727      ConstantArray *CA = dyn_cast<ConstantArray>(C);
728      if (CA == 0) return 0;
729      if ((uint64_t)CS->getValue() >= CA->getValues().size()) return 0;
730      C = cast<Constant>(CA->getValues()[CS->getValue()]);
731    } else
732      return 0;
733  return C;
734}
735
736// Handle load instructions.  If the operand is a constant pointer to a constant
737// global, we can replace the load with the loaded constant value!
738void SCCP::visitLoadInst(LoadInst &I) {
739  InstVal &IV = ValueState[&I];
740  if (IV.isOverdefined()) return;
741
742  InstVal &PtrVal = getValueState(I.getOperand(0));
743  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
744  if (PtrVal.isConstant() && !I.isVolatile()) {
745    Value *Ptr = PtrVal.getConstant();
746    if (isa<ConstantPointerNull>(Ptr)) {
747      // load null -> null
748      markConstant(IV, &I, Constant::getNullValue(I.getType()));
749      return;
750    }
751
752    if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Ptr))
753      Ptr = CPR->getValue();
754
755    // Transform load (constant global) into the value loaded.
756    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr))
757      if (GV->isConstant() && !GV->isExternal()) {
758        markConstant(IV, &I, GV->getInitializer());
759        return;
760      }
761
762    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
763    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
764      if (CE->getOpcode() == Instruction::GetElementPtr)
765        if (ConstantPointerRef *G
766            = dyn_cast<ConstantPointerRef>(CE->getOperand(0)))
767          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getValue()))
768            if (GV->isConstant() && !GV->isExternal())
769              if (Constant *V =
770                  GetGEPGlobalInitializer(GV->getInitializer(), CE)) {
771                markConstant(IV, &I, V);
772                return;
773              }
774  }
775
776  // Otherwise we cannot say for certain what value this load will produce.
777  // Bail out.
778  markOverdefined(IV, &I);
779}
780