SCCP.cpp revision bb46f52027416598a662dc1c58f48d9d56b1a65b
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18// Notice that:
19//   * This pass has a habit of making definitions be dead.  It is a good idea
20//     to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "sccp"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/IPO.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Instructions.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/ConstantFolding.h"
32#include "llvm/Analysis/ValueTracking.h"
33#include "llvm/Transforms/Utils/Local.h"
34#include "llvm/Support/CallSite.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/InstVisitor.h"
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/DenseSet.h"
40#include "llvm/ADT/SmallSet.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/ADT/STLExtras.h"
44#include <algorithm>
45#include <map>
46using namespace llvm;
47
48STATISTIC(NumInstRemoved, "Number of instructions removed");
49STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
50
51STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
52STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
53STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
54STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
55
56namespace {
57/// LatticeVal class - This class represents the different lattice values that
58/// an LLVM value may occupy.  It is a simple class with value semantics.
59///
60class VISIBILITY_HIDDEN LatticeVal {
61  enum {
62    /// undefined - This LLVM Value has no known value yet.
63    undefined,
64
65    /// constant - This LLVM Value has a specific constant value.
66    constant,
67
68    /// forcedconstant - This LLVM Value was thought to be undef until
69    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
70    /// with another (different) constant, it goes to overdefined, instead of
71    /// asserting.
72    forcedconstant,
73
74    /// overdefined - This instruction is not known to be constant, and we know
75    /// it has a value.
76    overdefined
77  } LatticeValue;    // The current lattice position
78
79  Constant *ConstantVal; // If Constant value, the current value
80public:
81  inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
82
83  // markOverdefined - Return true if this is a new status to be in...
84  inline bool markOverdefined() {
85    if (LatticeValue != overdefined) {
86      LatticeValue = overdefined;
87      return true;
88    }
89    return false;
90  }
91
92  // markConstant - Return true if this is a new status for us.
93  inline bool markConstant(Constant *V) {
94    if (LatticeValue != constant) {
95      if (LatticeValue == undefined) {
96        LatticeValue = constant;
97        assert(V && "Marking constant with NULL");
98        ConstantVal = V;
99      } else {
100        assert(LatticeValue == forcedconstant &&
101               "Cannot move from overdefined to constant!");
102        // Stay at forcedconstant if the constant is the same.
103        if (V == ConstantVal) return false;
104
105        // Otherwise, we go to overdefined.  Assumptions made based on the
106        // forced value are possibly wrong.  Assuming this is another constant
107        // could expose a contradiction.
108        LatticeValue = overdefined;
109      }
110      return true;
111    } else {
112      assert(ConstantVal == V && "Marking constant with different value");
113    }
114    return false;
115  }
116
117  inline void markForcedConstant(Constant *V) {
118    assert(LatticeValue == undefined && "Can't force a defined value!");
119    LatticeValue = forcedconstant;
120    ConstantVal = V;
121  }
122
123  inline bool isUndefined() const { return LatticeValue == undefined; }
124  inline bool isConstant() const {
125    return LatticeValue == constant || LatticeValue == forcedconstant;
126  }
127  inline bool isOverdefined() const { return LatticeValue == overdefined; }
128
129  inline Constant *getConstant() const {
130    assert(isConstant() && "Cannot get the constant of a non-constant!");
131    return ConstantVal;
132  }
133};
134
135//===----------------------------------------------------------------------===//
136//
137/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
138/// Constant Propagation.
139///
140class SCCPSolver : public InstVisitor<SCCPSolver> {
141  DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable
142  std::map<Value*, LatticeVal> ValueState;  // The state each value is in.
143
144  /// GlobalValue - If we are tracking any values for the contents of a global
145  /// variable, we keep a mapping from the constant accessor to the element of
146  /// the global, to the currently known value.  If the value becomes
147  /// overdefined, it's entry is simply removed from this map.
148  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
149
150  /// TrackedRetVals - If we are tracking arguments into and the return
151  /// value out of a function, it will have an entry in this map, indicating
152  /// what the known return value for the function is.
153  DenseMap<Function*, LatticeVal> TrackedRetVals;
154
155  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
156  /// that return multiple values.
157  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
158
159  // The reason for two worklists is that overdefined is the lowest state
160  // on the lattice, and moving things to overdefined as fast as possible
161  // makes SCCP converge much faster.
162  // By having a separate worklist, we accomplish this because everything
163  // possibly overdefined will become overdefined at the soonest possible
164  // point.
165  SmallVector<Value*, 64> OverdefinedInstWorkList;
166  SmallVector<Value*, 64> InstWorkList;
167
168
169  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
170
171  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
172  /// overdefined, despite the fact that the PHI node is overdefined.
173  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
174
175  /// KnownFeasibleEdges - Entries in this set are edges which have already had
176  /// PHI nodes retriggered.
177  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
178  DenseSet<Edge> KnownFeasibleEdges;
179public:
180
181  /// MarkBlockExecutable - This method can be used by clients to mark all of
182  /// the blocks that are known to be intrinsically live in the processed unit.
183  void MarkBlockExecutable(BasicBlock *BB) {
184    DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n";
185    BBExecutable.insert(BB);   // Basic block is executable!
186    BBWorkList.push_back(BB);  // Add the block to the work list!
187  }
188
189  /// TrackValueOfGlobalVariable - Clients can use this method to
190  /// inform the SCCPSolver that it should track loads and stores to the
191  /// specified global variable if it can.  This is only legal to call if
192  /// performing Interprocedural SCCP.
193  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
194    const Type *ElTy = GV->getType()->getElementType();
195    if (ElTy->isFirstClassType()) {
196      LatticeVal &IV = TrackedGlobals[GV];
197      if (!isa<UndefValue>(GV->getInitializer()))
198        IV.markConstant(GV->getInitializer());
199    }
200  }
201
202  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
203  /// and out of the specified function (which cannot have its address taken),
204  /// this method must be called.
205  void AddTrackedFunction(Function *F) {
206    assert(F->hasLocalLinkage() && "Can only track internal functions!");
207    // Add an entry, F -> undef.
208    if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
209      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
210        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
211                                                     LatticeVal()));
212    } else
213      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
214  }
215
216  /// Solve - Solve for constants and executable blocks.
217  ///
218  void Solve();
219
220  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
221  /// that branches on undef values cannot reach any of their successors.
222  /// However, this is not a safe assumption.  After we solve dataflow, this
223  /// method should be use to handle this.  If this returns true, the solver
224  /// should be rerun.
225  bool ResolvedUndefsIn(Function &F);
226
227  bool isBlockExecutable(BasicBlock *BB) const {
228    return BBExecutable.count(BB);
229  }
230
231  /// getValueMapping - Once we have solved for constants, return the mapping of
232  /// LLVM values to LatticeVals.
233  std::map<Value*, LatticeVal> &getValueMapping() {
234    return ValueState;
235  }
236
237  /// getTrackedRetVals - Get the inferred return value map.
238  ///
239  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
240    return TrackedRetVals;
241  }
242
243  /// getTrackedGlobals - Get and return the set of inferred initializers for
244  /// global variables.
245  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
246    return TrackedGlobals;
247  }
248
249  inline void markOverdefined(Value *V) {
250    markOverdefined(ValueState[V], V);
251  }
252
253private:
254  // markConstant - Make a value be marked as "constant".  If the value
255  // is not already a constant, add it to the instruction work list so that
256  // the users of the instruction are updated later.
257  //
258  inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
259    if (IV.markConstant(C)) {
260      DOUT << "markConstant: " << *C << ": " << *V;
261      InstWorkList.push_back(V);
262    }
263  }
264
265  inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
266    IV.markForcedConstant(C);
267    DOUT << "markForcedConstant: " << *C << ": " << *V;
268    InstWorkList.push_back(V);
269  }
270
271  inline void markConstant(Value *V, Constant *C) {
272    markConstant(ValueState[V], V, C);
273  }
274
275  // markOverdefined - Make a value be marked as "overdefined". If the
276  // value is not already overdefined, add it to the overdefined instruction
277  // work list so that the users of the instruction are updated later.
278  inline void markOverdefined(LatticeVal &IV, Value *V) {
279    if (IV.markOverdefined()) {
280      DEBUG(DOUT << "markOverdefined: ";
281            if (Function *F = dyn_cast<Function>(V))
282              DOUT << "Function '" << F->getName() << "'\n";
283            else
284              DOUT << *V);
285      // Only instructions go on the work list
286      OverdefinedInstWorkList.push_back(V);
287    }
288  }
289
290  inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
291    if (IV.isOverdefined() || MergeWithV.isUndefined())
292      return;  // Noop.
293    if (MergeWithV.isOverdefined())
294      markOverdefined(IV, V);
295    else if (IV.isUndefined())
296      markConstant(IV, V, MergeWithV.getConstant());
297    else if (IV.getConstant() != MergeWithV.getConstant())
298      markOverdefined(IV, V);
299  }
300
301  inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
302    return mergeInValue(ValueState[V], V, MergeWithV);
303  }
304
305
306  // getValueState - Return the LatticeVal object that corresponds to the value.
307  // This function is necessary because not all values should start out in the
308  // underdefined state... Argument's should be overdefined, and
309  // constants should be marked as constants.  If a value is not known to be an
310  // Instruction object, then use this accessor to get its value from the map.
311  //
312  inline LatticeVal &getValueState(Value *V) {
313    std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
314    if (I != ValueState.end()) return I->second;  // Common case, in the map
315
316    if (Constant *C = dyn_cast<Constant>(V)) {
317      if (isa<UndefValue>(V)) {
318        // Nothing to do, remain undefined.
319      } else {
320        LatticeVal &LV = ValueState[C];
321        LV.markConstant(C);          // Constants are constant
322        return LV;
323      }
324    }
325    // All others are underdefined by default...
326    return ValueState[V];
327  }
328
329  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
330  // work list if it is not already executable...
331  //
332  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
333    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
334      return;  // This edge is already known to be executable!
335
336    if (BBExecutable.count(Dest)) {
337      DOUT << "Marking Edge Executable: " << Source->getNameStart()
338           << " -> " << Dest->getNameStart() << "\n";
339
340      // The destination is already executable, but we just made an edge
341      // feasible that wasn't before.  Revisit the PHI nodes in the block
342      // because they have potentially new operands.
343      for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
344        visitPHINode(*cast<PHINode>(I));
345
346    } else {
347      MarkBlockExecutable(Dest);
348    }
349  }
350
351  // getFeasibleSuccessors - Return a vector of booleans to indicate which
352  // successors are reachable from a given terminator instruction.
353  //
354  void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
355
356  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
357  // block to the 'To' basic block is currently feasible...
358  //
359  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
360
361  // OperandChangedState - This method is invoked on all of the users of an
362  // instruction that was just changed state somehow....  Based on this
363  // information, we need to update the specified user of this instruction.
364  //
365  void OperandChangedState(User *U) {
366    // Only instructions use other variable values!
367    Instruction &I = cast<Instruction>(*U);
368    if (BBExecutable.count(I.getParent()))   // Inst is executable?
369      visit(I);
370  }
371
372private:
373  friend class InstVisitor<SCCPSolver>;
374
375  // visit implementations - Something changed in this instruction... Either an
376  // operand made a transition, or the instruction is newly executable.  Change
377  // the value type of I to reflect these changes if appropriate.
378  //
379  void visitPHINode(PHINode &I);
380
381  // Terminators
382  void visitReturnInst(ReturnInst &I);
383  void visitTerminatorInst(TerminatorInst &TI);
384
385  void visitCastInst(CastInst &I);
386  void visitSelectInst(SelectInst &I);
387  void visitBinaryOperator(Instruction &I);
388  void visitCmpInst(CmpInst &I);
389  void visitExtractElementInst(ExtractElementInst &I);
390  void visitInsertElementInst(InsertElementInst &I);
391  void visitShuffleVectorInst(ShuffleVectorInst &I);
392  void visitExtractValueInst(ExtractValueInst &EVI);
393  void visitInsertValueInst(InsertValueInst &IVI);
394
395  // Instructions that cannot be folded away...
396  void visitStoreInst     (Instruction &I);
397  void visitLoadInst      (LoadInst &I);
398  void visitGetElementPtrInst(GetElementPtrInst &I);
399  void visitCallInst      (CallInst &I) { visitCallSite(CallSite::get(&I)); }
400  void visitInvokeInst    (InvokeInst &II) {
401    visitCallSite(CallSite::get(&II));
402    visitTerminatorInst(II);
403  }
404  void visitCallSite      (CallSite CS);
405  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
406  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
407  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
408  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
409  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
410  void visitFreeInst      (Instruction &I) { /*returns void*/ }
411
412  void visitInstruction(Instruction &I) {
413    // If a new instruction is added to LLVM that we don't handle...
414    cerr << "SCCP: Don't know how to handle: " << I;
415    markOverdefined(&I);   // Just in case
416  }
417};
418
419} // end anonymous namespace
420
421
422// getFeasibleSuccessors - Return a vector of booleans to indicate which
423// successors are reachable from a given terminator instruction.
424//
425void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
426                                       SmallVector<bool, 16> &Succs) {
427  Succs.resize(TI.getNumSuccessors());
428  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
429    if (BI->isUnconditional()) {
430      Succs[0] = true;
431    } else {
432      LatticeVal &BCValue = getValueState(BI->getCondition());
433      if (BCValue.isOverdefined() ||
434          (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
435        // Overdefined condition variables, and branches on unfoldable constant
436        // conditions, mean the branch could go either way.
437        Succs[0] = Succs[1] = true;
438      } else if (BCValue.isConstant()) {
439        // Constant condition variables mean the branch can only go a single way
440        Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true;
441      }
442    }
443  } else if (isa<InvokeInst>(&TI)) {
444    // Invoke instructions successors are always executable.
445    Succs[0] = Succs[1] = true;
446  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
447    LatticeVal &SCValue = getValueState(SI->getCondition());
448    if (SCValue.isOverdefined() ||   // Overdefined condition?
449        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
450      // All destinations are executable!
451      Succs.assign(TI.getNumSuccessors(), true);
452    } else if (SCValue.isConstant())
453      Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true;
454  } else {
455    assert(0 && "SCCP: Don't know how to handle this terminator!");
456  }
457}
458
459
460// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
461// block to the 'To' basic block is currently feasible...
462//
463bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
464  assert(BBExecutable.count(To) && "Dest should always be alive!");
465
466  // Make sure the source basic block is executable!!
467  if (!BBExecutable.count(From)) return false;
468
469  // Check to make sure this edge itself is actually feasible now...
470  TerminatorInst *TI = From->getTerminator();
471  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
472    if (BI->isUnconditional())
473      return true;
474    else {
475      LatticeVal &BCValue = getValueState(BI->getCondition());
476      if (BCValue.isOverdefined()) {
477        // Overdefined condition variables mean the branch could go either way.
478        return true;
479      } else if (BCValue.isConstant()) {
480        // Not branching on an evaluatable constant?
481        if (!isa<ConstantInt>(BCValue.getConstant())) return true;
482
483        // Constant condition variables mean the branch can only go a single way
484        return BI->getSuccessor(BCValue.getConstant() ==
485                                       ConstantInt::getFalse()) == To;
486      }
487      return false;
488    }
489  } else if (isa<InvokeInst>(TI)) {
490    // Invoke instructions successors are always executable.
491    return true;
492  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
493    LatticeVal &SCValue = getValueState(SI->getCondition());
494    if (SCValue.isOverdefined()) {  // Overdefined condition?
495      // All destinations are executable!
496      return true;
497    } else if (SCValue.isConstant()) {
498      Constant *CPV = SCValue.getConstant();
499      if (!isa<ConstantInt>(CPV))
500        return true;  // not a foldable constant?
501
502      // Make sure to skip the "default value" which isn't a value
503      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
504        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
505          return SI->getSuccessor(i) == To;
506
507      // Constant value not equal to any of the branches... must execute
508      // default branch then...
509      return SI->getDefaultDest() == To;
510    }
511    return false;
512  } else {
513    cerr << "Unknown terminator instruction: " << *TI;
514    abort();
515  }
516}
517
518// visit Implementations - Something changed in this instruction... Either an
519// operand made a transition, or the instruction is newly executable.  Change
520// the value type of I to reflect these changes if appropriate.  This method
521// makes sure to do the following actions:
522//
523// 1. If a phi node merges two constants in, and has conflicting value coming
524//    from different branches, or if the PHI node merges in an overdefined
525//    value, then the PHI node becomes overdefined.
526// 2. If a phi node merges only constants in, and they all agree on value, the
527//    PHI node becomes a constant value equal to that.
528// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
529// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
530// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
531// 6. If a conditional branch has a value that is constant, make the selected
532//    destination executable
533// 7. If a conditional branch has a value that is overdefined, make all
534//    successors executable.
535//
536void SCCPSolver::visitPHINode(PHINode &PN) {
537  LatticeVal &PNIV = getValueState(&PN);
538  if (PNIV.isOverdefined()) {
539    // There may be instructions using this PHI node that are not overdefined
540    // themselves.  If so, make sure that they know that the PHI node operand
541    // changed.
542    std::multimap<PHINode*, Instruction*>::iterator I, E;
543    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
544    if (I != E) {
545      SmallVector<Instruction*, 16> Users;
546      for (; I != E; ++I) Users.push_back(I->second);
547      while (!Users.empty()) {
548        visit(Users.back());
549        Users.pop_back();
550      }
551    }
552    return;  // Quick exit
553  }
554
555  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
556  // and slow us down a lot.  Just mark them overdefined.
557  if (PN.getNumIncomingValues() > 64) {
558    markOverdefined(PNIV, &PN);
559    return;
560  }
561
562  // Look at all of the executable operands of the PHI node.  If any of them
563  // are overdefined, the PHI becomes overdefined as well.  If they are all
564  // constant, and they agree with each other, the PHI becomes the identical
565  // constant.  If they are constant and don't agree, the PHI is overdefined.
566  // If there are no executable operands, the PHI remains undefined.
567  //
568  Constant *OperandVal = 0;
569  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
570    LatticeVal &IV = getValueState(PN.getIncomingValue(i));
571    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
572
573    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
574      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
575        markOverdefined(&PN);
576        return;
577      }
578
579      if (OperandVal == 0) {   // Grab the first value...
580        OperandVal = IV.getConstant();
581      } else {                // Another value is being merged in!
582        // There is already a reachable operand.  If we conflict with it,
583        // then the PHI node becomes overdefined.  If we agree with it, we
584        // can continue on.
585
586        // Check to see if there are two different constants merging...
587        if (IV.getConstant() != OperandVal) {
588          // Yes there is.  This means the PHI node is not constant.
589          // You must be overdefined poor PHI.
590          //
591          markOverdefined(&PN);    // The PHI node now becomes overdefined
592          return;    // I'm done analyzing you
593        }
594      }
595    }
596  }
597
598  // If we exited the loop, this means that the PHI node only has constant
599  // arguments that agree with each other(and OperandVal is the constant) or
600  // OperandVal is null because there are no defined incoming arguments.  If
601  // this is the case, the PHI remains undefined.
602  //
603  if (OperandVal)
604    markConstant(&PN, OperandVal);      // Acquire operand value
605}
606
607void SCCPSolver::visitReturnInst(ReturnInst &I) {
608  if (I.getNumOperands() == 0) return;  // Ret void
609
610  Function *F = I.getParent()->getParent();
611  // If we are tracking the return value of this function, merge it in.
612  if (!F->hasLocalLinkage())
613    return;
614
615  if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
616    DenseMap<Function*, LatticeVal>::iterator TFRVI =
617      TrackedRetVals.find(F);
618    if (TFRVI != TrackedRetVals.end() &&
619        !TFRVI->second.isOverdefined()) {
620      LatticeVal &IV = getValueState(I.getOperand(0));
621      mergeInValue(TFRVI->second, F, IV);
622      return;
623    }
624  }
625
626  // Handle functions that return multiple values.
627  if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
628    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
629      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
630        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
631      if (It == TrackedMultipleRetVals.end()) break;
632      mergeInValue(It->second, F, getValueState(I.getOperand(i)));
633    }
634  } else if (!TrackedMultipleRetVals.empty() &&
635             I.getNumOperands() == 1 &&
636             isa<StructType>(I.getOperand(0)->getType())) {
637    for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
638         i != e; ++i) {
639      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
640        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
641      if (It == TrackedMultipleRetVals.end()) break;
642      Value *Val = FindInsertedValue(I.getOperand(0), i);
643      mergeInValue(It->second, F, getValueState(Val));
644    }
645  }
646}
647
648void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
649  SmallVector<bool, 16> SuccFeasible;
650  getFeasibleSuccessors(TI, SuccFeasible);
651
652  BasicBlock *BB = TI.getParent();
653
654  // Mark all feasible successors executable...
655  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
656    if (SuccFeasible[i])
657      markEdgeExecutable(BB, TI.getSuccessor(i));
658}
659
660void SCCPSolver::visitCastInst(CastInst &I) {
661  Value *V = I.getOperand(0);
662  LatticeVal &VState = getValueState(V);
663  if (VState.isOverdefined())          // Inherit overdefinedness of operand
664    markOverdefined(&I);
665  else if (VState.isConstant())        // Propagate constant value
666    markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
667                                           VState.getConstant(), I.getType()));
668}
669
670void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
671  Value *Aggr = EVI.getAggregateOperand();
672
673  // If the operand to the extractvalue is an undef, the result is undef.
674  if (isa<UndefValue>(Aggr))
675    return;
676
677  // Currently only handle single-index extractvalues.
678  if (EVI.getNumIndices() != 1) {
679    markOverdefined(&EVI);
680    return;
681  }
682
683  Function *F = 0;
684  if (CallInst *CI = dyn_cast<CallInst>(Aggr))
685    F = CI->getCalledFunction();
686  else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
687    F = II->getCalledFunction();
688
689  // TODO: If IPSCCP resolves the callee of this function, we could propagate a
690  // result back!
691  if (F == 0 || TrackedMultipleRetVals.empty()) {
692    markOverdefined(&EVI);
693    return;
694  }
695
696  // See if we are tracking the result of the callee.  If not tracking this
697  // function (for example, it is a declaration) just move to overdefined.
698  if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) {
699    markOverdefined(&EVI);
700    return;
701  }
702
703  // Otherwise, the value will be merged in here as a result of CallSite
704  // handling.
705}
706
707void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
708  Value *Aggr = IVI.getAggregateOperand();
709  Value *Val = IVI.getInsertedValueOperand();
710
711  // If the operands to the insertvalue are undef, the result is undef.
712  if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val))
713    return;
714
715  // Currently only handle single-index insertvalues.
716  if (IVI.getNumIndices() != 1) {
717    markOverdefined(&IVI);
718    return;
719  }
720
721  // Currently only handle insertvalue instructions that are in a single-use
722  // chain that builds up a return value.
723  for (const InsertValueInst *TmpIVI = &IVI; ; ) {
724    if (!TmpIVI->hasOneUse()) {
725      markOverdefined(&IVI);
726      return;
727    }
728    const Value *V = *TmpIVI->use_begin();
729    if (isa<ReturnInst>(V))
730      break;
731    TmpIVI = dyn_cast<InsertValueInst>(V);
732    if (!TmpIVI) {
733      markOverdefined(&IVI);
734      return;
735    }
736  }
737
738  // See if we are tracking the result of the callee.
739  Function *F = IVI.getParent()->getParent();
740  DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
741    It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
742
743  // Merge in the inserted member value.
744  if (It != TrackedMultipleRetVals.end())
745    mergeInValue(It->second, F, getValueState(Val));
746
747  // Mark the aggregate result of the IVI overdefined; any tracking that we do
748  // will be done on the individual member values.
749  markOverdefined(&IVI);
750}
751
752void SCCPSolver::visitSelectInst(SelectInst &I) {
753  LatticeVal &CondValue = getValueState(I.getCondition());
754  if (CondValue.isUndefined())
755    return;
756  if (CondValue.isConstant()) {
757    if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
758      mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
759                                                          : I.getFalseValue()));
760      return;
761    }
762  }
763
764  // Otherwise, the condition is overdefined or a constant we can't evaluate.
765  // See if we can produce something better than overdefined based on the T/F
766  // value.
767  LatticeVal &TVal = getValueState(I.getTrueValue());
768  LatticeVal &FVal = getValueState(I.getFalseValue());
769
770  // select ?, C, C -> C.
771  if (TVal.isConstant() && FVal.isConstant() &&
772      TVal.getConstant() == FVal.getConstant()) {
773    markConstant(&I, FVal.getConstant());
774    return;
775  }
776
777  if (TVal.isUndefined()) {  // select ?, undef, X -> X.
778    mergeInValue(&I, FVal);
779  } else if (FVal.isUndefined()) {  // select ?, X, undef -> X.
780    mergeInValue(&I, TVal);
781  } else {
782    markOverdefined(&I);
783  }
784}
785
786// Handle BinaryOperators and Shift Instructions...
787void SCCPSolver::visitBinaryOperator(Instruction &I) {
788  LatticeVal &IV = ValueState[&I];
789  if (IV.isOverdefined()) return;
790
791  LatticeVal &V1State = getValueState(I.getOperand(0));
792  LatticeVal &V2State = getValueState(I.getOperand(1));
793
794  if (V1State.isOverdefined() || V2State.isOverdefined()) {
795    // If this is an AND or OR with 0 or -1, it doesn't matter that the other
796    // operand is overdefined.
797    if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
798      LatticeVal *NonOverdefVal = 0;
799      if (!V1State.isOverdefined()) {
800        NonOverdefVal = &V1State;
801      } else if (!V2State.isOverdefined()) {
802        NonOverdefVal = &V2State;
803      }
804
805      if (NonOverdefVal) {
806        if (NonOverdefVal->isUndefined()) {
807          // Could annihilate value.
808          if (I.getOpcode() == Instruction::And)
809            markConstant(IV, &I, Constant::getNullValue(I.getType()));
810          else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
811            markConstant(IV, &I, ConstantVector::getAllOnesValue(PT));
812          else
813            markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType()));
814          return;
815        } else {
816          if (I.getOpcode() == Instruction::And) {
817            if (NonOverdefVal->getConstant()->isNullValue()) {
818              markConstant(IV, &I, NonOverdefVal->getConstant());
819              return;      // X and 0 = 0
820            }
821          } else {
822            if (ConstantInt *CI =
823                     dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
824              if (CI->isAllOnesValue()) {
825                markConstant(IV, &I, NonOverdefVal->getConstant());
826                return;    // X or -1 = -1
827              }
828          }
829        }
830      }
831    }
832
833
834    // If both operands are PHI nodes, it is possible that this instruction has
835    // a constant value, despite the fact that the PHI node doesn't.  Check for
836    // this condition now.
837    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
838      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
839        if (PN1->getParent() == PN2->getParent()) {
840          // Since the two PHI nodes are in the same basic block, they must have
841          // entries for the same predecessors.  Walk the predecessor list, and
842          // if all of the incoming values are constants, and the result of
843          // evaluating this expression with all incoming value pairs is the
844          // same, then this expression is a constant even though the PHI node
845          // is not a constant!
846          LatticeVal Result;
847          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
848            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
849            BasicBlock *InBlock = PN1->getIncomingBlock(i);
850            LatticeVal &In2 =
851              getValueState(PN2->getIncomingValueForBlock(InBlock));
852
853            if (In1.isOverdefined() || In2.isOverdefined()) {
854              Result.markOverdefined();
855              break;  // Cannot fold this operation over the PHI nodes!
856            } else if (In1.isConstant() && In2.isConstant()) {
857              Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
858                                              In2.getConstant());
859              if (Result.isUndefined())
860                Result.markConstant(V);
861              else if (Result.isConstant() && Result.getConstant() != V) {
862                Result.markOverdefined();
863                break;
864              }
865            }
866          }
867
868          // If we found a constant value here, then we know the instruction is
869          // constant despite the fact that the PHI nodes are overdefined.
870          if (Result.isConstant()) {
871            markConstant(IV, &I, Result.getConstant());
872            // Remember that this instruction is virtually using the PHI node
873            // operands.
874            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
875            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
876            return;
877          } else if (Result.isUndefined()) {
878            return;
879          }
880
881          // Okay, this really is overdefined now.  Since we might have
882          // speculatively thought that this was not overdefined before, and
883          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
884          // make sure to clean out any entries that we put there, for
885          // efficiency.
886          std::multimap<PHINode*, Instruction*>::iterator It, E;
887          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
888          while (It != E) {
889            if (It->second == &I) {
890              UsersOfOverdefinedPHIs.erase(It++);
891            } else
892              ++It;
893          }
894          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
895          while (It != E) {
896            if (It->second == &I) {
897              UsersOfOverdefinedPHIs.erase(It++);
898            } else
899              ++It;
900          }
901        }
902
903    markOverdefined(IV, &I);
904  } else if (V1State.isConstant() && V2State.isConstant()) {
905    markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
906                                           V2State.getConstant()));
907  }
908}
909
910// Handle ICmpInst instruction...
911void SCCPSolver::visitCmpInst(CmpInst &I) {
912  LatticeVal &IV = ValueState[&I];
913  if (IV.isOverdefined()) return;
914
915  LatticeVal &V1State = getValueState(I.getOperand(0));
916  LatticeVal &V2State = getValueState(I.getOperand(1));
917
918  if (V1State.isOverdefined() || V2State.isOverdefined()) {
919    // If both operands are PHI nodes, it is possible that this instruction has
920    // a constant value, despite the fact that the PHI node doesn't.  Check for
921    // this condition now.
922    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
923      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
924        if (PN1->getParent() == PN2->getParent()) {
925          // Since the two PHI nodes are in the same basic block, they must have
926          // entries for the same predecessors.  Walk the predecessor list, and
927          // if all of the incoming values are constants, and the result of
928          // evaluating this expression with all incoming value pairs is the
929          // same, then this expression is a constant even though the PHI node
930          // is not a constant!
931          LatticeVal Result;
932          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
933            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
934            BasicBlock *InBlock = PN1->getIncomingBlock(i);
935            LatticeVal &In2 =
936              getValueState(PN2->getIncomingValueForBlock(InBlock));
937
938            if (In1.isOverdefined() || In2.isOverdefined()) {
939              Result.markOverdefined();
940              break;  // Cannot fold this operation over the PHI nodes!
941            } else if (In1.isConstant() && In2.isConstant()) {
942              Constant *V = ConstantExpr::getCompare(I.getPredicate(),
943                                                     In1.getConstant(),
944                                                     In2.getConstant());
945              if (Result.isUndefined())
946                Result.markConstant(V);
947              else if (Result.isConstant() && Result.getConstant() != V) {
948                Result.markOverdefined();
949                break;
950              }
951            }
952          }
953
954          // If we found a constant value here, then we know the instruction is
955          // constant despite the fact that the PHI nodes are overdefined.
956          if (Result.isConstant()) {
957            markConstant(IV, &I, Result.getConstant());
958            // Remember that this instruction is virtually using the PHI node
959            // operands.
960            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
961            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
962            return;
963          } else if (Result.isUndefined()) {
964            return;
965          }
966
967          // Okay, this really is overdefined now.  Since we might have
968          // speculatively thought that this was not overdefined before, and
969          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
970          // make sure to clean out any entries that we put there, for
971          // efficiency.
972          std::multimap<PHINode*, Instruction*>::iterator It, E;
973          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
974          while (It != E) {
975            if (It->second == &I) {
976              UsersOfOverdefinedPHIs.erase(It++);
977            } else
978              ++It;
979          }
980          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
981          while (It != E) {
982            if (It->second == &I) {
983              UsersOfOverdefinedPHIs.erase(It++);
984            } else
985              ++It;
986          }
987        }
988
989    markOverdefined(IV, &I);
990  } else if (V1State.isConstant() && V2State.isConstant()) {
991    markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
992                                                  V1State.getConstant(),
993                                                  V2State.getConstant()));
994  }
995}
996
997void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
998  // FIXME : SCCP does not handle vectors properly.
999  markOverdefined(&I);
1000  return;
1001
1002#if 0
1003  LatticeVal &ValState = getValueState(I.getOperand(0));
1004  LatticeVal &IdxState = getValueState(I.getOperand(1));
1005
1006  if (ValState.isOverdefined() || IdxState.isOverdefined())
1007    markOverdefined(&I);
1008  else if(ValState.isConstant() && IdxState.isConstant())
1009    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1010                                                     IdxState.getConstant()));
1011#endif
1012}
1013
1014void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1015  // FIXME : SCCP does not handle vectors properly.
1016  markOverdefined(&I);
1017  return;
1018#if 0
1019  LatticeVal &ValState = getValueState(I.getOperand(0));
1020  LatticeVal &EltState = getValueState(I.getOperand(1));
1021  LatticeVal &IdxState = getValueState(I.getOperand(2));
1022
1023  if (ValState.isOverdefined() || EltState.isOverdefined() ||
1024      IdxState.isOverdefined())
1025    markOverdefined(&I);
1026  else if(ValState.isConstant() && EltState.isConstant() &&
1027          IdxState.isConstant())
1028    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1029                                                    EltState.getConstant(),
1030                                                    IdxState.getConstant()));
1031  else if (ValState.isUndefined() && EltState.isConstant() &&
1032           IdxState.isConstant())
1033    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1034                                                   EltState.getConstant(),
1035                                                   IdxState.getConstant()));
1036#endif
1037}
1038
1039void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1040  // FIXME : SCCP does not handle vectors properly.
1041  markOverdefined(&I);
1042  return;
1043#if 0
1044  LatticeVal &V1State   = getValueState(I.getOperand(0));
1045  LatticeVal &V2State   = getValueState(I.getOperand(1));
1046  LatticeVal &MaskState = getValueState(I.getOperand(2));
1047
1048  if (MaskState.isUndefined() ||
1049      (V1State.isUndefined() && V2State.isUndefined()))
1050    return;  // Undefined output if mask or both inputs undefined.
1051
1052  if (V1State.isOverdefined() || V2State.isOverdefined() ||
1053      MaskState.isOverdefined()) {
1054    markOverdefined(&I);
1055  } else {
1056    // A mix of constant/undef inputs.
1057    Constant *V1 = V1State.isConstant() ?
1058        V1State.getConstant() : UndefValue::get(I.getType());
1059    Constant *V2 = V2State.isConstant() ?
1060        V2State.getConstant() : UndefValue::get(I.getType());
1061    Constant *Mask = MaskState.isConstant() ?
1062      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1063    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1064  }
1065#endif
1066}
1067
1068// Handle getelementptr instructions... if all operands are constants then we
1069// can turn this into a getelementptr ConstantExpr.
1070//
1071void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1072  LatticeVal &IV = ValueState[&I];
1073  if (IV.isOverdefined()) return;
1074
1075  SmallVector<Constant*, 8> Operands;
1076  Operands.reserve(I.getNumOperands());
1077
1078  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1079    LatticeVal &State = getValueState(I.getOperand(i));
1080    if (State.isUndefined())
1081      return;  // Operands are not resolved yet...
1082    else if (State.isOverdefined()) {
1083      markOverdefined(IV, &I);
1084      return;
1085    }
1086    assert(State.isConstant() && "Unknown state!");
1087    Operands.push_back(State.getConstant());
1088  }
1089
1090  Constant *Ptr = Operands[0];
1091  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
1092
1093  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
1094                                                      Operands.size()));
1095}
1096
1097void SCCPSolver::visitStoreInst(Instruction &SI) {
1098  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1099    return;
1100  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1101  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1102  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1103
1104  // Get the value we are storing into the global.
1105  LatticeVal &PtrVal = getValueState(SI.getOperand(0));
1106
1107  mergeInValue(I->second, GV, PtrVal);
1108  if (I->second.isOverdefined())
1109    TrackedGlobals.erase(I);      // No need to keep tracking this!
1110}
1111
1112
1113// Handle load instructions.  If the operand is a constant pointer to a constant
1114// global, we can replace the load with the loaded constant value!
1115void SCCPSolver::visitLoadInst(LoadInst &I) {
1116  LatticeVal &IV = ValueState[&I];
1117  if (IV.isOverdefined()) return;
1118
1119  LatticeVal &PtrVal = getValueState(I.getOperand(0));
1120  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1121  if (PtrVal.isConstant() && !I.isVolatile()) {
1122    Value *Ptr = PtrVal.getConstant();
1123    // TODO: Consider a target hook for valid address spaces for this xform.
1124    if (isa<ConstantPointerNull>(Ptr) &&
1125        cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) {
1126      // load null -> null
1127      markConstant(IV, &I, Constant::getNullValue(I.getType()));
1128      return;
1129    }
1130
1131    // Transform load (constant global) into the value loaded.
1132    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1133      if (GV->isConstant()) {
1134        if (!GV->isDeclaration()) {
1135          markConstant(IV, &I, GV->getInitializer());
1136          return;
1137        }
1138      } else if (!TrackedGlobals.empty()) {
1139        // If we are tracking this global, merge in the known value for it.
1140        DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1141          TrackedGlobals.find(GV);
1142        if (It != TrackedGlobals.end()) {
1143          mergeInValue(IV, &I, It->second);
1144          return;
1145        }
1146      }
1147    }
1148
1149    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1150    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1151      if (CE->getOpcode() == Instruction::GetElementPtr)
1152    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
1153      if (GV->isConstant() && !GV->isDeclaration())
1154        if (Constant *V =
1155             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
1156          markConstant(IV, &I, V);
1157          return;
1158        }
1159  }
1160
1161  // Otherwise we cannot say for certain what value this load will produce.
1162  // Bail out.
1163  markOverdefined(IV, &I);
1164}
1165
1166void SCCPSolver::visitCallSite(CallSite CS) {
1167  Function *F = CS.getCalledFunction();
1168  Instruction *I = CS.getInstruction();
1169
1170  // The common case is that we aren't tracking the callee, either because we
1171  // are not doing interprocedural analysis or the callee is indirect, or is
1172  // external.  Handle these cases first.
1173  if (F == 0 || !F->hasLocalLinkage()) {
1174CallOverdefined:
1175    // Void return and not tracking callee, just bail.
1176    if (I->getType() == Type::VoidTy) return;
1177
1178    // Otherwise, if we have a single return value case, and if the function is
1179    // a declaration, maybe we can constant fold it.
1180    if (!isa<StructType>(I->getType()) && F && F->isDeclaration() &&
1181        canConstantFoldCallTo(F)) {
1182
1183      SmallVector<Constant*, 8> Operands;
1184      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1185           AI != E; ++AI) {
1186        LatticeVal &State = getValueState(*AI);
1187        if (State.isUndefined())
1188          return;  // Operands are not resolved yet.
1189        else if (State.isOverdefined()) {
1190          markOverdefined(I);
1191          return;
1192        }
1193        assert(State.isConstant() && "Unknown state!");
1194        Operands.push_back(State.getConstant());
1195      }
1196
1197      // If we can constant fold this, mark the result of the call as a
1198      // constant.
1199      if (Constant *C = ConstantFoldCall(F, &Operands[0], Operands.size())) {
1200        markConstant(I, C);
1201        return;
1202      }
1203    }
1204
1205    // Otherwise, we don't know anything about this call, mark it overdefined.
1206    markOverdefined(I);
1207    return;
1208  }
1209
1210  // If this is a single/zero retval case, see if we're tracking the function.
1211  DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1212  if (TFRVI != TrackedRetVals.end()) {
1213    // If so, propagate the return value of the callee into this call result.
1214    mergeInValue(I, TFRVI->second);
1215  } else if (isa<StructType>(I->getType())) {
1216    // Check to see if we're tracking this callee, if not, handle it in the
1217    // common path above.
1218    DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
1219    TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
1220    if (TMRVI == TrackedMultipleRetVals.end())
1221      goto CallOverdefined;
1222
1223    // If we are tracking this callee, propagate the return values of the call
1224    // into this call site.  We do this by walking all the uses. Single-index
1225    // ExtractValueInst uses can be tracked; anything more complicated is
1226    // currently handled conservatively.
1227    for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1228         UI != E; ++UI) {
1229      if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
1230        if (EVI->getNumIndices() == 1) {
1231          mergeInValue(EVI,
1232                  TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
1233          continue;
1234        }
1235      }
1236      // The aggregate value is used in a way not handled here. Assume nothing.
1237      markOverdefined(*UI);
1238    }
1239  } else {
1240    // Otherwise we're not tracking this callee, so handle it in the
1241    // common path above.
1242    goto CallOverdefined;
1243  }
1244
1245  // Finally, if this is the first call to the function hit, mark its entry
1246  // block executable.
1247  if (!BBExecutable.count(F->begin()))
1248    MarkBlockExecutable(F->begin());
1249
1250  // Propagate information from this call site into the callee.
1251  CallSite::arg_iterator CAI = CS.arg_begin();
1252  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1253       AI != E; ++AI, ++CAI) {
1254    LatticeVal &IV = ValueState[AI];
1255    if (!IV.isOverdefined())
1256      mergeInValue(IV, AI, getValueState(*CAI));
1257  }
1258}
1259
1260
1261void SCCPSolver::Solve() {
1262  // Process the work lists until they are empty!
1263  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1264         !OverdefinedInstWorkList.empty()) {
1265    // Process the instruction work list...
1266    while (!OverdefinedInstWorkList.empty()) {
1267      Value *I = OverdefinedInstWorkList.back();
1268      OverdefinedInstWorkList.pop_back();
1269
1270      DOUT << "\nPopped off OI-WL: " << *I;
1271
1272      // "I" got into the work list because it either made the transition from
1273      // bottom to constant
1274      //
1275      // Anything on this worklist that is overdefined need not be visited
1276      // since all of its users will have already been marked as overdefined
1277      // Update all of the users of this instruction's value...
1278      //
1279      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1280           UI != E; ++UI)
1281        OperandChangedState(*UI);
1282    }
1283    // Process the instruction work list...
1284    while (!InstWorkList.empty()) {
1285      Value *I = InstWorkList.back();
1286      InstWorkList.pop_back();
1287
1288      DOUT << "\nPopped off I-WL: " << *I;
1289
1290      // "I" got into the work list because it either made the transition from
1291      // bottom to constant
1292      //
1293      // Anything on this worklist that is overdefined need not be visited
1294      // since all of its users will have already been marked as overdefined.
1295      // Update all of the users of this instruction's value...
1296      //
1297      if (!getValueState(I).isOverdefined())
1298        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1299             UI != E; ++UI)
1300          OperandChangedState(*UI);
1301    }
1302
1303    // Process the basic block work list...
1304    while (!BBWorkList.empty()) {
1305      BasicBlock *BB = BBWorkList.back();
1306      BBWorkList.pop_back();
1307
1308      DOUT << "\nPopped off BBWL: " << *BB;
1309
1310      // Notify all instructions in this basic block that they are newly
1311      // executable.
1312      visit(BB);
1313    }
1314  }
1315}
1316
1317/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1318/// that branches on undef values cannot reach any of their successors.
1319/// However, this is not a safe assumption.  After we solve dataflow, this
1320/// method should be use to handle this.  If this returns true, the solver
1321/// should be rerun.
1322///
1323/// This method handles this by finding an unresolved branch and marking it one
1324/// of the edges from the block as being feasible, even though the condition
1325/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1326/// CFG and only slightly pessimizes the analysis results (by marking one,
1327/// potentially infeasible, edge feasible).  This cannot usefully modify the
1328/// constraints on the condition of the branch, as that would impact other users
1329/// of the value.
1330///
1331/// This scan also checks for values that use undefs, whose results are actually
1332/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1333/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1334/// even if X isn't defined.
1335bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1336  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1337    if (!BBExecutable.count(BB))
1338      continue;
1339
1340    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1341      // Look for instructions which produce undef values.
1342      if (I->getType() == Type::VoidTy) continue;
1343
1344      LatticeVal &LV = getValueState(I);
1345      if (!LV.isUndefined()) continue;
1346
1347      // Get the lattice values of the first two operands for use below.
1348      LatticeVal &Op0LV = getValueState(I->getOperand(0));
1349      LatticeVal Op1LV;
1350      if (I->getNumOperands() == 2) {
1351        // If this is a two-operand instruction, and if both operands are
1352        // undefs, the result stays undef.
1353        Op1LV = getValueState(I->getOperand(1));
1354        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1355          continue;
1356      }
1357
1358      // If this is an instructions whose result is defined even if the input is
1359      // not fully defined, propagate the information.
1360      const Type *ITy = I->getType();
1361      switch (I->getOpcode()) {
1362      default: break;          // Leave the instruction as an undef.
1363      case Instruction::ZExt:
1364        // After a zero extend, we know the top part is zero.  SExt doesn't have
1365        // to be handled here, because we don't know whether the top part is 1's
1366        // or 0's.
1367        assert(Op0LV.isUndefined());
1368        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1369        return true;
1370      case Instruction::Mul:
1371      case Instruction::And:
1372        // undef * X -> 0.   X could be zero.
1373        // undef & X -> 0.   X could be zero.
1374        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1375        return true;
1376
1377      case Instruction::Or:
1378        // undef | X -> -1.   X could be -1.
1379        if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
1380          markForcedConstant(LV, I, ConstantVector::getAllOnesValue(PTy));
1381        else
1382          markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy));
1383        return true;
1384
1385      case Instruction::SDiv:
1386      case Instruction::UDiv:
1387      case Instruction::SRem:
1388      case Instruction::URem:
1389        // X / undef -> undef.  No change.
1390        // X % undef -> undef.  No change.
1391        if (Op1LV.isUndefined()) break;
1392
1393        // undef / X -> 0.   X could be maxint.
1394        // undef % X -> 0.   X could be 1.
1395        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1396        return true;
1397
1398      case Instruction::AShr:
1399        // undef >>s X -> undef.  No change.
1400        if (Op0LV.isUndefined()) break;
1401
1402        // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
1403        if (Op0LV.isConstant())
1404          markForcedConstant(LV, I, Op0LV.getConstant());
1405        else
1406          markOverdefined(LV, I);
1407        return true;
1408      case Instruction::LShr:
1409      case Instruction::Shl:
1410        // undef >> X -> undef.  No change.
1411        // undef << X -> undef.  No change.
1412        if (Op0LV.isUndefined()) break;
1413
1414        // X >> undef -> 0.  X could be 0.
1415        // X << undef -> 0.  X could be 0.
1416        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1417        return true;
1418      case Instruction::Select:
1419        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1420        if (Op0LV.isUndefined()) {
1421          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1422            Op1LV = getValueState(I->getOperand(2));
1423        } else if (Op1LV.isUndefined()) {
1424          // c ? undef : undef -> undef.  No change.
1425          Op1LV = getValueState(I->getOperand(2));
1426          if (Op1LV.isUndefined())
1427            break;
1428          // Otherwise, c ? undef : x -> x.
1429        } else {
1430          // Leave Op1LV as Operand(1)'s LatticeValue.
1431        }
1432
1433        if (Op1LV.isConstant())
1434          markForcedConstant(LV, I, Op1LV.getConstant());
1435        else
1436          markOverdefined(LV, I);
1437        return true;
1438      case Instruction::Call:
1439        // If a call has an undef result, it is because it is constant foldable
1440        // but one of the inputs was undef.  Just force the result to
1441        // overdefined.
1442        markOverdefined(LV, I);
1443        return true;
1444      }
1445    }
1446
1447    TerminatorInst *TI = BB->getTerminator();
1448    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1449      if (!BI->isConditional()) continue;
1450      if (!getValueState(BI->getCondition()).isUndefined())
1451        continue;
1452    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1453      if (SI->getNumSuccessors()<2)   // no cases
1454        continue;
1455      if (!getValueState(SI->getCondition()).isUndefined())
1456        continue;
1457    } else {
1458      continue;
1459    }
1460
1461    // If the edge to the second successor isn't thought to be feasible yet,
1462    // mark it so now.  We pick the second one so that this goes to some
1463    // enumerated value in a switch instead of going to the default destination.
1464    if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
1465      continue;
1466
1467    // Otherwise, it isn't already thought to be feasible.  Mark it as such now
1468    // and return.  This will make other blocks reachable, which will allow new
1469    // values to be discovered and existing ones to be moved in the lattice.
1470    markEdgeExecutable(BB, TI->getSuccessor(1));
1471
1472    // This must be a conditional branch of switch on undef.  At this point,
1473    // force the old terminator to branch to the first successor.  This is
1474    // required because we are now influencing the dataflow of the function with
1475    // the assumption that this edge is taken.  If we leave the branch condition
1476    // as undef, then further analysis could think the undef went another way
1477    // leading to an inconsistent set of conclusions.
1478    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1479      BI->setCondition(ConstantInt::getFalse());
1480    } else {
1481      SwitchInst *SI = cast<SwitchInst>(TI);
1482      SI->setCondition(SI->getCaseValue(1));
1483    }
1484
1485    return true;
1486  }
1487
1488  return false;
1489}
1490
1491
1492namespace {
1493  //===--------------------------------------------------------------------===//
1494  //
1495  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1496  /// Sparse Conditional Constant Propagator.
1497  ///
1498  struct VISIBILITY_HIDDEN SCCP : public FunctionPass {
1499    static char ID; // Pass identification, replacement for typeid
1500    SCCP() : FunctionPass(&ID) {}
1501
1502    // runOnFunction - Run the Sparse Conditional Constant Propagation
1503    // algorithm, and return true if the function was modified.
1504    //
1505    bool runOnFunction(Function &F);
1506
1507    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1508      AU.setPreservesCFG();
1509    }
1510  };
1511} // end anonymous namespace
1512
1513char SCCP::ID = 0;
1514static RegisterPass<SCCP>
1515X("sccp", "Sparse Conditional Constant Propagation");
1516
1517// createSCCPPass - This is the public interface to this file...
1518FunctionPass *llvm::createSCCPPass() {
1519  return new SCCP();
1520}
1521
1522
1523// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1524// and return true if the function was modified.
1525//
1526bool SCCP::runOnFunction(Function &F) {
1527  DOUT << "SCCP on function '" << F.getNameStart() << "'\n";
1528  SCCPSolver Solver;
1529
1530  // Mark the first block of the function as being executable.
1531  Solver.MarkBlockExecutable(F.begin());
1532
1533  // Mark all arguments to the function as being overdefined.
1534  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1535    Solver.markOverdefined(AI);
1536
1537  // Solve for constants.
1538  bool ResolvedUndefs = true;
1539  while (ResolvedUndefs) {
1540    Solver.Solve();
1541    DOUT << "RESOLVING UNDEFs\n";
1542    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1543  }
1544
1545  bool MadeChanges = false;
1546
1547  // If we decided that there are basic blocks that are dead in this function,
1548  // delete their contents now.  Note that we cannot actually delete the blocks,
1549  // as we cannot modify the CFG of the function.
1550  //
1551  SmallVector<Instruction*, 512> Insts;
1552  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1553
1554  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1555    if (!Solver.isBlockExecutable(BB)) {
1556      DOUT << "  BasicBlock Dead:" << *BB;
1557      ++NumDeadBlocks;
1558
1559      // Delete the instructions backwards, as it has a reduced likelihood of
1560      // having to update as many def-use and use-def chains.
1561      for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1562           I != E; ++I)
1563        Insts.push_back(I);
1564      while (!Insts.empty()) {
1565        Instruction *I = Insts.back();
1566        Insts.pop_back();
1567        if (!I->use_empty())
1568          I->replaceAllUsesWith(UndefValue::get(I->getType()));
1569        BB->getInstList().erase(I);
1570        MadeChanges = true;
1571        ++NumInstRemoved;
1572      }
1573    } else {
1574      // Iterate over all of the instructions in a function, replacing them with
1575      // constants if we have found them to be of constant values.
1576      //
1577      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1578        Instruction *Inst = BI++;
1579        if (Inst->getType() == Type::VoidTy ||
1580            isa<TerminatorInst>(Inst))
1581          continue;
1582
1583        LatticeVal &IV = Values[Inst];
1584        if (!IV.isConstant() && !IV.isUndefined())
1585          continue;
1586
1587        Constant *Const = IV.isConstant()
1588          ? IV.getConstant() : UndefValue::get(Inst->getType());
1589        DOUT << "  Constant: " << *Const << " = " << *Inst;
1590
1591        // Replaces all of the uses of a variable with uses of the constant.
1592        Inst->replaceAllUsesWith(Const);
1593
1594        // Delete the instruction.
1595        Inst->eraseFromParent();
1596
1597        // Hey, we just changed something!
1598        MadeChanges = true;
1599        ++NumInstRemoved;
1600      }
1601    }
1602
1603  return MadeChanges;
1604}
1605
1606namespace {
1607  //===--------------------------------------------------------------------===//
1608  //
1609  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1610  /// Constant Propagation.
1611  ///
1612  struct VISIBILITY_HIDDEN IPSCCP : public ModulePass {
1613    static char ID;
1614    IPSCCP() : ModulePass(&ID) {}
1615    bool runOnModule(Module &M);
1616  };
1617} // end anonymous namespace
1618
1619char IPSCCP::ID = 0;
1620static RegisterPass<IPSCCP>
1621Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1622
1623// createIPSCCPPass - This is the public interface to this file...
1624ModulePass *llvm::createIPSCCPPass() {
1625  return new IPSCCP();
1626}
1627
1628
1629static bool AddressIsTaken(GlobalValue *GV) {
1630  // Delete any dead constantexpr klingons.
1631  GV->removeDeadConstantUsers();
1632
1633  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1634       UI != E; ++UI)
1635    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1636      if (SI->getOperand(0) == GV || SI->isVolatile())
1637        return true;  // Storing addr of GV.
1638    } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1639      // Make sure we are calling the function, not passing the address.
1640      CallSite CS = CallSite::get(cast<Instruction>(*UI));
1641      if (CS.hasArgument(GV))
1642        return true;
1643    } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1644      if (LI->isVolatile())
1645        return true;
1646    } else {
1647      return true;
1648    }
1649  return false;
1650}
1651
1652bool IPSCCP::runOnModule(Module &M) {
1653  SCCPSolver Solver;
1654
1655  // Loop over all functions, marking arguments to those with their addresses
1656  // taken or that are external as overdefined.
1657  //
1658  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1659    if (!F->hasLocalLinkage() || AddressIsTaken(F)) {
1660      if (!F->isDeclaration())
1661        Solver.MarkBlockExecutable(F->begin());
1662      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1663           AI != E; ++AI)
1664        Solver.markOverdefined(AI);
1665    } else {
1666      Solver.AddTrackedFunction(F);
1667    }
1668
1669  // Loop over global variables.  We inform the solver about any internal global
1670  // variables that do not have their 'addresses taken'.  If they don't have
1671  // their addresses taken, we can propagate constants through them.
1672  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1673       G != E; ++G)
1674    if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1675      Solver.TrackValueOfGlobalVariable(G);
1676
1677  // Solve for constants.
1678  bool ResolvedUndefs = true;
1679  while (ResolvedUndefs) {
1680    Solver.Solve();
1681
1682    DOUT << "RESOLVING UNDEFS\n";
1683    ResolvedUndefs = false;
1684    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1685      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1686  }
1687
1688  bool MadeChanges = false;
1689
1690  // Iterate over all of the instructions in the module, replacing them with
1691  // constants if we have found them to be of constant values.
1692  //
1693  SmallVector<Instruction*, 512> Insts;
1694  SmallVector<BasicBlock*, 512> BlocksToErase;
1695  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1696
1697  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1698    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1699         AI != E; ++AI)
1700      if (!AI->use_empty()) {
1701        LatticeVal &IV = Values[AI];
1702        if (IV.isConstant() || IV.isUndefined()) {
1703          Constant *CST = IV.isConstant() ?
1704            IV.getConstant() : UndefValue::get(AI->getType());
1705          DOUT << "***  Arg " << *AI << " = " << *CST <<"\n";
1706
1707          // Replaces all of the uses of a variable with uses of the
1708          // constant.
1709          AI->replaceAllUsesWith(CST);
1710          ++IPNumArgsElimed;
1711        }
1712      }
1713
1714    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1715      if (!Solver.isBlockExecutable(BB)) {
1716        DOUT << "  BasicBlock Dead:" << *BB;
1717        ++IPNumDeadBlocks;
1718
1719        // Delete the instructions backwards, as it has a reduced likelihood of
1720        // having to update as many def-use and use-def chains.
1721        TerminatorInst *TI = BB->getTerminator();
1722        for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1723          Insts.push_back(I);
1724
1725        while (!Insts.empty()) {
1726          Instruction *I = Insts.back();
1727          Insts.pop_back();
1728          if (!I->use_empty())
1729            I->replaceAllUsesWith(UndefValue::get(I->getType()));
1730          BB->getInstList().erase(I);
1731          MadeChanges = true;
1732          ++IPNumInstRemoved;
1733        }
1734
1735        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1736          BasicBlock *Succ = TI->getSuccessor(i);
1737          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1738            TI->getSuccessor(i)->removePredecessor(BB);
1739        }
1740        if (!TI->use_empty())
1741          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1742        BB->getInstList().erase(TI);
1743
1744        if (&*BB != &F->front())
1745          BlocksToErase.push_back(BB);
1746        else
1747          new UnreachableInst(BB);
1748
1749      } else {
1750        for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1751          Instruction *Inst = BI++;
1752          if (Inst->getType() == Type::VoidTy)
1753            continue;
1754
1755          LatticeVal &IV = Values[Inst];
1756          if (!IV.isConstant() && !IV.isUndefined())
1757            continue;
1758
1759          Constant *Const = IV.isConstant()
1760            ? IV.getConstant() : UndefValue::get(Inst->getType());
1761          DOUT << "  Constant: " << *Const << " = " << *Inst;
1762
1763          // Replaces all of the uses of a variable with uses of the
1764          // constant.
1765          Inst->replaceAllUsesWith(Const);
1766
1767          // Delete the instruction.
1768          if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1769            Inst->eraseFromParent();
1770
1771          // Hey, we just changed something!
1772          MadeChanges = true;
1773          ++IPNumInstRemoved;
1774        }
1775      }
1776
1777    // Now that all instructions in the function are constant folded, erase dead
1778    // blocks, because we can now use ConstantFoldTerminator to get rid of
1779    // in-edges.
1780    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1781      // If there are any PHI nodes in this successor, drop entries for BB now.
1782      BasicBlock *DeadBB = BlocksToErase[i];
1783      while (!DeadBB->use_empty()) {
1784        Instruction *I = cast<Instruction>(DeadBB->use_back());
1785        bool Folded = ConstantFoldTerminator(I->getParent());
1786        if (!Folded) {
1787          // The constant folder may not have been able to fold the terminator
1788          // if this is a branch or switch on undef.  Fold it manually as a
1789          // branch to the first successor.
1790#ifndef NDEBUG
1791          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1792            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1793                   "Branch should be foldable!");
1794          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1795            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1796          } else {
1797            assert(0 && "Didn't fold away reference to block!");
1798          }
1799#endif
1800
1801          // Make this an uncond branch to the first successor.
1802          TerminatorInst *TI = I->getParent()->getTerminator();
1803          BranchInst::Create(TI->getSuccessor(0), TI);
1804
1805          // Remove entries in successor phi nodes to remove edges.
1806          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1807            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1808
1809          // Remove the old terminator.
1810          TI->eraseFromParent();
1811        }
1812      }
1813
1814      // Finally, delete the basic block.
1815      F->getBasicBlockList().erase(DeadBB);
1816    }
1817    BlocksToErase.clear();
1818  }
1819
1820  // If we inferred constant or undef return values for a function, we replaced
1821  // all call uses with the inferred value.  This means we don't need to bother
1822  // actually returning anything from the function.  Replace all return
1823  // instructions with return undef.
1824  // TODO: Process multiple value ret instructions also.
1825  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1826  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1827         E = RV.end(); I != E; ++I)
1828    if (!I->second.isOverdefined() &&
1829        I->first->getReturnType() != Type::VoidTy) {
1830      Function *F = I->first;
1831      for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1832        if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1833          if (!isa<UndefValue>(RI->getOperand(0)))
1834            RI->setOperand(0, UndefValue::get(F->getReturnType()));
1835    }
1836
1837  // If we infered constant or undef values for globals variables, we can delete
1838  // the global and any stores that remain to it.
1839  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1840  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1841         E = TG.end(); I != E; ++I) {
1842    GlobalVariable *GV = I->first;
1843    assert(!I->second.isOverdefined() &&
1844           "Overdefined values should have been taken out of the map!");
1845    DOUT << "Found that GV '" << GV->getNameStart() << "' is constant!\n";
1846    while (!GV->use_empty()) {
1847      StoreInst *SI = cast<StoreInst>(GV->use_back());
1848      SI->eraseFromParent();
1849    }
1850    M.getGlobalList().erase(GV);
1851    ++IPNumGlobalConst;
1852  }
1853
1854  return MadeChanges;
1855}
1856