SCCP.cpp revision c25e7581b9b8088910da31702d4ca21c4734c6d7
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18// Notice that:
19//   * This pass has a habit of making definitions be dead.  It is a good idea
20//     to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "sccp"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/IPO.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Instructions.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Pass.h"
32#include "llvm/Analysis/ConstantFolding.h"
33#include "llvm/Analysis/ValueTracking.h"
34#include "llvm/Transforms/Utils/Local.h"
35#include "llvm/Support/CallSite.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/InstVisitor.h"
40#include "llvm/ADT/DenseMap.h"
41#include "llvm/ADT/DenseSet.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/STLExtras.h"
46#include <algorithm>
47#include <map>
48using namespace llvm;
49
50STATISTIC(NumInstRemoved, "Number of instructions removed");
51STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
52
53STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
54STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
55STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
56STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
57
58namespace {
59/// LatticeVal class - This class represents the different lattice values that
60/// an LLVM value may occupy.  It is a simple class with value semantics.
61///
62class VISIBILITY_HIDDEN LatticeVal {
63  enum {
64    /// undefined - This LLVM Value has no known value yet.
65    undefined,
66
67    /// constant - This LLVM Value has a specific constant value.
68    constant,
69
70    /// forcedconstant - This LLVM Value was thought to be undef until
71    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
72    /// with another (different) constant, it goes to overdefined, instead of
73    /// asserting.
74    forcedconstant,
75
76    /// overdefined - This instruction is not known to be constant, and we know
77    /// it has a value.
78    overdefined
79  } LatticeValue;    // The current lattice position
80
81  Constant *ConstantVal; // If Constant value, the current value
82public:
83  inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
84
85  // markOverdefined - Return true if this is a new status to be in...
86  inline bool markOverdefined() {
87    if (LatticeValue != overdefined) {
88      LatticeValue = overdefined;
89      return true;
90    }
91    return false;
92  }
93
94  // markConstant - Return true if this is a new status for us.
95  inline bool markConstant(Constant *V) {
96    if (LatticeValue != constant) {
97      if (LatticeValue == undefined) {
98        LatticeValue = constant;
99        assert(V && "Marking constant with NULL");
100        ConstantVal = V;
101      } else {
102        assert(LatticeValue == forcedconstant &&
103               "Cannot move from overdefined to constant!");
104        // Stay at forcedconstant if the constant is the same.
105        if (V == ConstantVal) return false;
106
107        // Otherwise, we go to overdefined.  Assumptions made based on the
108        // forced value are possibly wrong.  Assuming this is another constant
109        // could expose a contradiction.
110        LatticeValue = overdefined;
111      }
112      return true;
113    } else {
114      assert(ConstantVal == V && "Marking constant with different value");
115    }
116    return false;
117  }
118
119  inline void markForcedConstant(Constant *V) {
120    assert(LatticeValue == undefined && "Can't force a defined value!");
121    LatticeValue = forcedconstant;
122    ConstantVal = V;
123  }
124
125  inline bool isUndefined() const { return LatticeValue == undefined; }
126  inline bool isConstant() const {
127    return LatticeValue == constant || LatticeValue == forcedconstant;
128  }
129  inline bool isOverdefined() const { return LatticeValue == overdefined; }
130
131  inline Constant *getConstant() const {
132    assert(isConstant() && "Cannot get the constant of a non-constant!");
133    return ConstantVal;
134  }
135};
136
137//===----------------------------------------------------------------------===//
138//
139/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
140/// Constant Propagation.
141///
142class SCCPSolver : public InstVisitor<SCCPSolver> {
143  LLVMContext *Context;
144  DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable
145  std::map<Value*, LatticeVal> ValueState;  // The state each value is in.
146
147  /// GlobalValue - If we are tracking any values for the contents of a global
148  /// variable, we keep a mapping from the constant accessor to the element of
149  /// the global, to the currently known value.  If the value becomes
150  /// overdefined, it's entry is simply removed from this map.
151  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
152
153  /// TrackedRetVals - If we are tracking arguments into and the return
154  /// value out of a function, it will have an entry in this map, indicating
155  /// what the known return value for the function is.
156  DenseMap<Function*, LatticeVal> TrackedRetVals;
157
158  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
159  /// that return multiple values.
160  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
161
162  // The reason for two worklists is that overdefined is the lowest state
163  // on the lattice, and moving things to overdefined as fast as possible
164  // makes SCCP converge much faster.
165  // By having a separate worklist, we accomplish this because everything
166  // possibly overdefined will become overdefined at the soonest possible
167  // point.
168  SmallVector<Value*, 64> OverdefinedInstWorkList;
169  SmallVector<Value*, 64> InstWorkList;
170
171
172  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
173
174  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
175  /// overdefined, despite the fact that the PHI node is overdefined.
176  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
177
178  /// KnownFeasibleEdges - Entries in this set are edges which have already had
179  /// PHI nodes retriggered.
180  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
181  DenseSet<Edge> KnownFeasibleEdges;
182public:
183  void setContext(LLVMContext *C) { Context = C; }
184
185  /// MarkBlockExecutable - This method can be used by clients to mark all of
186  /// the blocks that are known to be intrinsically live in the processed unit.
187  void MarkBlockExecutable(BasicBlock *BB) {
188    DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n";
189    BBExecutable.insert(BB);   // Basic block is executable!
190    BBWorkList.push_back(BB);  // Add the block to the work list!
191  }
192
193  /// TrackValueOfGlobalVariable - Clients can use this method to
194  /// inform the SCCPSolver that it should track loads and stores to the
195  /// specified global variable if it can.  This is only legal to call if
196  /// performing Interprocedural SCCP.
197  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
198    const Type *ElTy = GV->getType()->getElementType();
199    if (ElTy->isFirstClassType()) {
200      LatticeVal &IV = TrackedGlobals[GV];
201      if (!isa<UndefValue>(GV->getInitializer()))
202        IV.markConstant(GV->getInitializer());
203    }
204  }
205
206  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
207  /// and out of the specified function (which cannot have its address taken),
208  /// this method must be called.
209  void AddTrackedFunction(Function *F) {
210    assert(F->hasLocalLinkage() && "Can only track internal functions!");
211    // Add an entry, F -> undef.
212    if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
213      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
214        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
215                                                     LatticeVal()));
216    } else
217      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
218  }
219
220  /// Solve - Solve for constants and executable blocks.
221  ///
222  void Solve();
223
224  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
225  /// that branches on undef values cannot reach any of their successors.
226  /// However, this is not a safe assumption.  After we solve dataflow, this
227  /// method should be use to handle this.  If this returns true, the solver
228  /// should be rerun.
229  bool ResolvedUndefsIn(Function &F);
230
231  bool isBlockExecutable(BasicBlock *BB) const {
232    return BBExecutable.count(BB);
233  }
234
235  /// getValueMapping - Once we have solved for constants, return the mapping of
236  /// LLVM values to LatticeVals.
237  std::map<Value*, LatticeVal> &getValueMapping() {
238    return ValueState;
239  }
240
241  /// getTrackedRetVals - Get the inferred return value map.
242  ///
243  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
244    return TrackedRetVals;
245  }
246
247  /// getTrackedGlobals - Get and return the set of inferred initializers for
248  /// global variables.
249  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
250    return TrackedGlobals;
251  }
252
253  inline void markOverdefined(Value *V) {
254    markOverdefined(ValueState[V], V);
255  }
256
257private:
258  // markConstant - Make a value be marked as "constant".  If the value
259  // is not already a constant, add it to the instruction work list so that
260  // the users of the instruction are updated later.
261  //
262  inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
263    if (IV.markConstant(C)) {
264      DOUT << "markConstant: " << *C << ": " << *V;
265      InstWorkList.push_back(V);
266    }
267  }
268
269  inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
270    IV.markForcedConstant(C);
271    DOUT << "markForcedConstant: " << *C << ": " << *V;
272    InstWorkList.push_back(V);
273  }
274
275  inline void markConstant(Value *V, Constant *C) {
276    markConstant(ValueState[V], V, C);
277  }
278
279  // markOverdefined - Make a value be marked as "overdefined". If the
280  // value is not already overdefined, add it to the overdefined instruction
281  // work list so that the users of the instruction are updated later.
282  inline void markOverdefined(LatticeVal &IV, Value *V) {
283    if (IV.markOverdefined()) {
284      DEBUG(DOUT << "markOverdefined: ";
285            if (Function *F = dyn_cast<Function>(V))
286              DOUT << "Function '" << F->getName() << "'\n";
287            else
288              DOUT << *V);
289      // Only instructions go on the work list
290      OverdefinedInstWorkList.push_back(V);
291    }
292  }
293
294  inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
295    if (IV.isOverdefined() || MergeWithV.isUndefined())
296      return;  // Noop.
297    if (MergeWithV.isOverdefined())
298      markOverdefined(IV, V);
299    else if (IV.isUndefined())
300      markConstant(IV, V, MergeWithV.getConstant());
301    else if (IV.getConstant() != MergeWithV.getConstant())
302      markOverdefined(IV, V);
303  }
304
305  inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
306    return mergeInValue(ValueState[V], V, MergeWithV);
307  }
308
309
310  // getValueState - Return the LatticeVal object that corresponds to the value.
311  // This function is necessary because not all values should start out in the
312  // underdefined state... Argument's should be overdefined, and
313  // constants should be marked as constants.  If a value is not known to be an
314  // Instruction object, then use this accessor to get its value from the map.
315  //
316  inline LatticeVal &getValueState(Value *V) {
317    std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
318    if (I != ValueState.end()) return I->second;  // Common case, in the map
319
320    if (Constant *C = dyn_cast<Constant>(V)) {
321      if (isa<UndefValue>(V)) {
322        // Nothing to do, remain undefined.
323      } else {
324        LatticeVal &LV = ValueState[C];
325        LV.markConstant(C);          // Constants are constant
326        return LV;
327      }
328    }
329    // All others are underdefined by default...
330    return ValueState[V];
331  }
332
333  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
334  // work list if it is not already executable...
335  //
336  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
337    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
338      return;  // This edge is already known to be executable!
339
340    if (BBExecutable.count(Dest)) {
341      DOUT << "Marking Edge Executable: " << Source->getNameStart()
342           << " -> " << Dest->getNameStart() << "\n";
343
344      // The destination is already executable, but we just made an edge
345      // feasible that wasn't before.  Revisit the PHI nodes in the block
346      // because they have potentially new operands.
347      for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
348        visitPHINode(*cast<PHINode>(I));
349
350    } else {
351      MarkBlockExecutable(Dest);
352    }
353  }
354
355  // getFeasibleSuccessors - Return a vector of booleans to indicate which
356  // successors are reachable from a given terminator instruction.
357  //
358  void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
359
360  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
361  // block to the 'To' basic block is currently feasible...
362  //
363  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
364
365  // OperandChangedState - This method is invoked on all of the users of an
366  // instruction that was just changed state somehow....  Based on this
367  // information, we need to update the specified user of this instruction.
368  //
369  void OperandChangedState(User *U) {
370    // Only instructions use other variable values!
371    Instruction &I = cast<Instruction>(*U);
372    if (BBExecutable.count(I.getParent()))   // Inst is executable?
373      visit(I);
374  }
375
376private:
377  friend class InstVisitor<SCCPSolver>;
378
379  // visit implementations - Something changed in this instruction... Either an
380  // operand made a transition, or the instruction is newly executable.  Change
381  // the value type of I to reflect these changes if appropriate.
382  //
383  void visitPHINode(PHINode &I);
384
385  // Terminators
386  void visitReturnInst(ReturnInst &I);
387  void visitTerminatorInst(TerminatorInst &TI);
388
389  void visitCastInst(CastInst &I);
390  void visitSelectInst(SelectInst &I);
391  void visitBinaryOperator(Instruction &I);
392  void visitCmpInst(CmpInst &I);
393  void visitExtractElementInst(ExtractElementInst &I);
394  void visitInsertElementInst(InsertElementInst &I);
395  void visitShuffleVectorInst(ShuffleVectorInst &I);
396  void visitExtractValueInst(ExtractValueInst &EVI);
397  void visitInsertValueInst(InsertValueInst &IVI);
398
399  // Instructions that cannot be folded away...
400  void visitStoreInst     (Instruction &I);
401  void visitLoadInst      (LoadInst &I);
402  void visitGetElementPtrInst(GetElementPtrInst &I);
403  void visitCallInst      (CallInst &I) { visitCallSite(CallSite::get(&I)); }
404  void visitInvokeInst    (InvokeInst &II) {
405    visitCallSite(CallSite::get(&II));
406    visitTerminatorInst(II);
407  }
408  void visitCallSite      (CallSite CS);
409  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
410  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
411  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
412  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
413  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
414  void visitFreeInst      (Instruction &I) { /*returns void*/ }
415
416  void visitInstruction(Instruction &I) {
417    // If a new instruction is added to LLVM that we don't handle...
418    cerr << "SCCP: Don't know how to handle: " << I;
419    markOverdefined(&I);   // Just in case
420  }
421};
422
423} // end anonymous namespace
424
425
426// getFeasibleSuccessors - Return a vector of booleans to indicate which
427// successors are reachable from a given terminator instruction.
428//
429void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
430                                       SmallVector<bool, 16> &Succs) {
431  Succs.resize(TI.getNumSuccessors());
432  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
433    if (BI->isUnconditional()) {
434      Succs[0] = true;
435    } else {
436      LatticeVal &BCValue = getValueState(BI->getCondition());
437      if (BCValue.isOverdefined() ||
438          (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
439        // Overdefined condition variables, and branches on unfoldable constant
440        // conditions, mean the branch could go either way.
441        Succs[0] = Succs[1] = true;
442      } else if (BCValue.isConstant()) {
443        // Constant condition variables mean the branch can only go a single way
444        Succs[BCValue.getConstant() == Context->getConstantIntFalse()] = true;
445      }
446    }
447  } else if (isa<InvokeInst>(&TI)) {
448    // Invoke instructions successors are always executable.
449    Succs[0] = Succs[1] = true;
450  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
451    LatticeVal &SCValue = getValueState(SI->getCondition());
452    if (SCValue.isOverdefined() ||   // Overdefined condition?
453        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
454      // All destinations are executable!
455      Succs.assign(TI.getNumSuccessors(), true);
456    } else if (SCValue.isConstant())
457      Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true;
458  } else {
459    LLVM_UNREACHABLE("SCCP: Don't know how to handle this terminator!");
460  }
461}
462
463
464// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
465// block to the 'To' basic block is currently feasible...
466//
467bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
468  assert(BBExecutable.count(To) && "Dest should always be alive!");
469
470  // Make sure the source basic block is executable!!
471  if (!BBExecutable.count(From)) return false;
472
473  // Check to make sure this edge itself is actually feasible now...
474  TerminatorInst *TI = From->getTerminator();
475  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
476    if (BI->isUnconditional())
477      return true;
478    else {
479      LatticeVal &BCValue = getValueState(BI->getCondition());
480      if (BCValue.isOverdefined()) {
481        // Overdefined condition variables mean the branch could go either way.
482        return true;
483      } else if (BCValue.isConstant()) {
484        // Not branching on an evaluatable constant?
485        if (!isa<ConstantInt>(BCValue.getConstant())) return true;
486
487        // Constant condition variables mean the branch can only go a single way
488        return BI->getSuccessor(BCValue.getConstant() ==
489                                       Context->getConstantIntFalse()) == To;
490      }
491      return false;
492    }
493  } else if (isa<InvokeInst>(TI)) {
494    // Invoke instructions successors are always executable.
495    return true;
496  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
497    LatticeVal &SCValue = getValueState(SI->getCondition());
498    if (SCValue.isOverdefined()) {  // Overdefined condition?
499      // All destinations are executable!
500      return true;
501    } else if (SCValue.isConstant()) {
502      Constant *CPV = SCValue.getConstant();
503      if (!isa<ConstantInt>(CPV))
504        return true;  // not a foldable constant?
505
506      // Make sure to skip the "default value" which isn't a value
507      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
508        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
509          return SI->getSuccessor(i) == To;
510
511      // Constant value not equal to any of the branches... must execute
512      // default branch then...
513      return SI->getDefaultDest() == To;
514    }
515    return false;
516  } else {
517#ifndef NDEBUG
518    cerr << "Unknown terminator instruction: " << *TI;
519#endif
520    llvm_unreachable();
521  }
522}
523
524// visit Implementations - Something changed in this instruction... Either an
525// operand made a transition, or the instruction is newly executable.  Change
526// the value type of I to reflect these changes if appropriate.  This method
527// makes sure to do the following actions:
528//
529// 1. If a phi node merges two constants in, and has conflicting value coming
530//    from different branches, or if the PHI node merges in an overdefined
531//    value, then the PHI node becomes overdefined.
532// 2. If a phi node merges only constants in, and they all agree on value, the
533//    PHI node becomes a constant value equal to that.
534// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
535// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
536// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
537// 6. If a conditional branch has a value that is constant, make the selected
538//    destination executable
539// 7. If a conditional branch has a value that is overdefined, make all
540//    successors executable.
541//
542void SCCPSolver::visitPHINode(PHINode &PN) {
543  LatticeVal &PNIV = getValueState(&PN);
544  if (PNIV.isOverdefined()) {
545    // There may be instructions using this PHI node that are not overdefined
546    // themselves.  If so, make sure that they know that the PHI node operand
547    // changed.
548    std::multimap<PHINode*, Instruction*>::iterator I, E;
549    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
550    if (I != E) {
551      SmallVector<Instruction*, 16> Users;
552      for (; I != E; ++I) Users.push_back(I->second);
553      while (!Users.empty()) {
554        visit(Users.back());
555        Users.pop_back();
556      }
557    }
558    return;  // Quick exit
559  }
560
561  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
562  // and slow us down a lot.  Just mark them overdefined.
563  if (PN.getNumIncomingValues() > 64) {
564    markOverdefined(PNIV, &PN);
565    return;
566  }
567
568  // Look at all of the executable operands of the PHI node.  If any of them
569  // are overdefined, the PHI becomes overdefined as well.  If they are all
570  // constant, and they agree with each other, the PHI becomes the identical
571  // constant.  If they are constant and don't agree, the PHI is overdefined.
572  // If there are no executable operands, the PHI remains undefined.
573  //
574  Constant *OperandVal = 0;
575  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
576    LatticeVal &IV = getValueState(PN.getIncomingValue(i));
577    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
578
579    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
580      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
581        markOverdefined(&PN);
582        return;
583      }
584
585      if (OperandVal == 0) {   // Grab the first value...
586        OperandVal = IV.getConstant();
587      } else {                // Another value is being merged in!
588        // There is already a reachable operand.  If we conflict with it,
589        // then the PHI node becomes overdefined.  If we agree with it, we
590        // can continue on.
591
592        // Check to see if there are two different constants merging...
593        if (IV.getConstant() != OperandVal) {
594          // Yes there is.  This means the PHI node is not constant.
595          // You must be overdefined poor PHI.
596          //
597          markOverdefined(&PN);    // The PHI node now becomes overdefined
598          return;    // I'm done analyzing you
599        }
600      }
601    }
602  }
603
604  // If we exited the loop, this means that the PHI node only has constant
605  // arguments that agree with each other(and OperandVal is the constant) or
606  // OperandVal is null because there are no defined incoming arguments.  If
607  // this is the case, the PHI remains undefined.
608  //
609  if (OperandVal)
610    markConstant(&PN, OperandVal);      // Acquire operand value
611}
612
613void SCCPSolver::visitReturnInst(ReturnInst &I) {
614  if (I.getNumOperands() == 0) return;  // Ret void
615
616  Function *F = I.getParent()->getParent();
617  // If we are tracking the return value of this function, merge it in.
618  if (!F->hasLocalLinkage())
619    return;
620
621  if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
622    DenseMap<Function*, LatticeVal>::iterator TFRVI =
623      TrackedRetVals.find(F);
624    if (TFRVI != TrackedRetVals.end() &&
625        !TFRVI->second.isOverdefined()) {
626      LatticeVal &IV = getValueState(I.getOperand(0));
627      mergeInValue(TFRVI->second, F, IV);
628      return;
629    }
630  }
631
632  // Handle functions that return multiple values.
633  if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
634    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
635      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
636        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
637      if (It == TrackedMultipleRetVals.end()) break;
638      mergeInValue(It->second, F, getValueState(I.getOperand(i)));
639    }
640  } else if (!TrackedMultipleRetVals.empty() &&
641             I.getNumOperands() == 1 &&
642             isa<StructType>(I.getOperand(0)->getType())) {
643    for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
644         i != e; ++i) {
645      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
646        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
647      if (It == TrackedMultipleRetVals.end()) break;
648      if (Value *Val = FindInsertedValue(I.getOperand(0), i, Context))
649        mergeInValue(It->second, F, getValueState(Val));
650    }
651  }
652}
653
654void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
655  SmallVector<bool, 16> SuccFeasible;
656  getFeasibleSuccessors(TI, SuccFeasible);
657
658  BasicBlock *BB = TI.getParent();
659
660  // Mark all feasible successors executable...
661  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
662    if (SuccFeasible[i])
663      markEdgeExecutable(BB, TI.getSuccessor(i));
664}
665
666void SCCPSolver::visitCastInst(CastInst &I) {
667  Value *V = I.getOperand(0);
668  LatticeVal &VState = getValueState(V);
669  if (VState.isOverdefined())          // Inherit overdefinedness of operand
670    markOverdefined(&I);
671  else if (VState.isConstant())        // Propagate constant value
672    markConstant(&I, Context->getConstantExprCast(I.getOpcode(),
673                                           VState.getConstant(), I.getType()));
674}
675
676void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
677  Value *Aggr = EVI.getAggregateOperand();
678
679  // If the operand to the extractvalue is an undef, the result is undef.
680  if (isa<UndefValue>(Aggr))
681    return;
682
683  // Currently only handle single-index extractvalues.
684  if (EVI.getNumIndices() != 1) {
685    markOverdefined(&EVI);
686    return;
687  }
688
689  Function *F = 0;
690  if (CallInst *CI = dyn_cast<CallInst>(Aggr))
691    F = CI->getCalledFunction();
692  else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
693    F = II->getCalledFunction();
694
695  // TODO: If IPSCCP resolves the callee of this function, we could propagate a
696  // result back!
697  if (F == 0 || TrackedMultipleRetVals.empty()) {
698    markOverdefined(&EVI);
699    return;
700  }
701
702  // See if we are tracking the result of the callee.  If not tracking this
703  // function (for example, it is a declaration) just move to overdefined.
704  if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) {
705    markOverdefined(&EVI);
706    return;
707  }
708
709  // Otherwise, the value will be merged in here as a result of CallSite
710  // handling.
711}
712
713void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
714  Value *Aggr = IVI.getAggregateOperand();
715  Value *Val = IVI.getInsertedValueOperand();
716
717  // If the operands to the insertvalue are undef, the result is undef.
718  if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val))
719    return;
720
721  // Currently only handle single-index insertvalues.
722  if (IVI.getNumIndices() != 1) {
723    markOverdefined(&IVI);
724    return;
725  }
726
727  // Currently only handle insertvalue instructions that are in a single-use
728  // chain that builds up a return value.
729  for (const InsertValueInst *TmpIVI = &IVI; ; ) {
730    if (!TmpIVI->hasOneUse()) {
731      markOverdefined(&IVI);
732      return;
733    }
734    const Value *V = *TmpIVI->use_begin();
735    if (isa<ReturnInst>(V))
736      break;
737    TmpIVI = dyn_cast<InsertValueInst>(V);
738    if (!TmpIVI) {
739      markOverdefined(&IVI);
740      return;
741    }
742  }
743
744  // See if we are tracking the result of the callee.
745  Function *F = IVI.getParent()->getParent();
746  DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
747    It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
748
749  // Merge in the inserted member value.
750  if (It != TrackedMultipleRetVals.end())
751    mergeInValue(It->second, F, getValueState(Val));
752
753  // Mark the aggregate result of the IVI overdefined; any tracking that we do
754  // will be done on the individual member values.
755  markOverdefined(&IVI);
756}
757
758void SCCPSolver::visitSelectInst(SelectInst &I) {
759  LatticeVal &CondValue = getValueState(I.getCondition());
760  if (CondValue.isUndefined())
761    return;
762  if (CondValue.isConstant()) {
763    if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
764      mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
765                                                          : I.getFalseValue()));
766      return;
767    }
768  }
769
770  // Otherwise, the condition is overdefined or a constant we can't evaluate.
771  // See if we can produce something better than overdefined based on the T/F
772  // value.
773  LatticeVal &TVal = getValueState(I.getTrueValue());
774  LatticeVal &FVal = getValueState(I.getFalseValue());
775
776  // select ?, C, C -> C.
777  if (TVal.isConstant() && FVal.isConstant() &&
778      TVal.getConstant() == FVal.getConstant()) {
779    markConstant(&I, FVal.getConstant());
780    return;
781  }
782
783  if (TVal.isUndefined()) {  // select ?, undef, X -> X.
784    mergeInValue(&I, FVal);
785  } else if (FVal.isUndefined()) {  // select ?, X, undef -> X.
786    mergeInValue(&I, TVal);
787  } else {
788    markOverdefined(&I);
789  }
790}
791
792// Handle BinaryOperators and Shift Instructions...
793void SCCPSolver::visitBinaryOperator(Instruction &I) {
794  LatticeVal &IV = ValueState[&I];
795  if (IV.isOverdefined()) return;
796
797  LatticeVal &V1State = getValueState(I.getOperand(0));
798  LatticeVal &V2State = getValueState(I.getOperand(1));
799
800  if (V1State.isOverdefined() || V2State.isOverdefined()) {
801    // If this is an AND or OR with 0 or -1, it doesn't matter that the other
802    // operand is overdefined.
803    if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
804      LatticeVal *NonOverdefVal = 0;
805      if (!V1State.isOverdefined()) {
806        NonOverdefVal = &V1State;
807      } else if (!V2State.isOverdefined()) {
808        NonOverdefVal = &V2State;
809      }
810
811      if (NonOverdefVal) {
812        if (NonOverdefVal->isUndefined()) {
813          // Could annihilate value.
814          if (I.getOpcode() == Instruction::And)
815            markConstant(IV, &I, Context->getNullValue(I.getType()));
816          else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
817            markConstant(IV, &I, Context->getConstantVectorAllOnesValue(PT));
818          else
819            markConstant(IV, &I,
820                         Context->getConstantIntAllOnesValue(I.getType()));
821          return;
822        } else {
823          if (I.getOpcode() == Instruction::And) {
824            if (NonOverdefVal->getConstant()->isNullValue()) {
825              markConstant(IV, &I, NonOverdefVal->getConstant());
826              return;      // X and 0 = 0
827            }
828          } else {
829            if (ConstantInt *CI =
830                     dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
831              if (CI->isAllOnesValue()) {
832                markConstant(IV, &I, NonOverdefVal->getConstant());
833                return;    // X or -1 = -1
834              }
835          }
836        }
837      }
838    }
839
840
841    // If both operands are PHI nodes, it is possible that this instruction has
842    // a constant value, despite the fact that the PHI node doesn't.  Check for
843    // this condition now.
844    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
845      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
846        if (PN1->getParent() == PN2->getParent()) {
847          // Since the two PHI nodes are in the same basic block, they must have
848          // entries for the same predecessors.  Walk the predecessor list, and
849          // if all of the incoming values are constants, and the result of
850          // evaluating this expression with all incoming value pairs is the
851          // same, then this expression is a constant even though the PHI node
852          // is not a constant!
853          LatticeVal Result;
854          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
855            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
856            BasicBlock *InBlock = PN1->getIncomingBlock(i);
857            LatticeVal &In2 =
858              getValueState(PN2->getIncomingValueForBlock(InBlock));
859
860            if (In1.isOverdefined() || In2.isOverdefined()) {
861              Result.markOverdefined();
862              break;  // Cannot fold this operation over the PHI nodes!
863            } else if (In1.isConstant() && In2.isConstant()) {
864              Constant *V =
865                     Context->getConstantExpr(I.getOpcode(), In1.getConstant(),
866                                              In2.getConstant());
867              if (Result.isUndefined())
868                Result.markConstant(V);
869              else if (Result.isConstant() && Result.getConstant() != V) {
870                Result.markOverdefined();
871                break;
872              }
873            }
874          }
875
876          // If we found a constant value here, then we know the instruction is
877          // constant despite the fact that the PHI nodes are overdefined.
878          if (Result.isConstant()) {
879            markConstant(IV, &I, Result.getConstant());
880            // Remember that this instruction is virtually using the PHI node
881            // operands.
882            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
883            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
884            return;
885          } else if (Result.isUndefined()) {
886            return;
887          }
888
889          // Okay, this really is overdefined now.  Since we might have
890          // speculatively thought that this was not overdefined before, and
891          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
892          // make sure to clean out any entries that we put there, for
893          // efficiency.
894          std::multimap<PHINode*, Instruction*>::iterator It, E;
895          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
896          while (It != E) {
897            if (It->second == &I) {
898              UsersOfOverdefinedPHIs.erase(It++);
899            } else
900              ++It;
901          }
902          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
903          while (It != E) {
904            if (It->second == &I) {
905              UsersOfOverdefinedPHIs.erase(It++);
906            } else
907              ++It;
908          }
909        }
910
911    markOverdefined(IV, &I);
912  } else if (V1State.isConstant() && V2State.isConstant()) {
913    markConstant(IV, &I,
914                Context->getConstantExpr(I.getOpcode(), V1State.getConstant(),
915                                           V2State.getConstant()));
916  }
917}
918
919// Handle ICmpInst instruction...
920void SCCPSolver::visitCmpInst(CmpInst &I) {
921  LatticeVal &IV = ValueState[&I];
922  if (IV.isOverdefined()) return;
923
924  LatticeVal &V1State = getValueState(I.getOperand(0));
925  LatticeVal &V2State = getValueState(I.getOperand(1));
926
927  if (V1State.isOverdefined() || V2State.isOverdefined()) {
928    // If both operands are PHI nodes, it is possible that this instruction has
929    // a constant value, despite the fact that the PHI node doesn't.  Check for
930    // this condition now.
931    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
932      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
933        if (PN1->getParent() == PN2->getParent()) {
934          // Since the two PHI nodes are in the same basic block, they must have
935          // entries for the same predecessors.  Walk the predecessor list, and
936          // if all of the incoming values are constants, and the result of
937          // evaluating this expression with all incoming value pairs is the
938          // same, then this expression is a constant even though the PHI node
939          // is not a constant!
940          LatticeVal Result;
941          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
942            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
943            BasicBlock *InBlock = PN1->getIncomingBlock(i);
944            LatticeVal &In2 =
945              getValueState(PN2->getIncomingValueForBlock(InBlock));
946
947            if (In1.isOverdefined() || In2.isOverdefined()) {
948              Result.markOverdefined();
949              break;  // Cannot fold this operation over the PHI nodes!
950            } else if (In1.isConstant() && In2.isConstant()) {
951              Constant *V = Context->getConstantExprCompare(I.getPredicate(),
952                                                     In1.getConstant(),
953                                                     In2.getConstant());
954              if (Result.isUndefined())
955                Result.markConstant(V);
956              else if (Result.isConstant() && Result.getConstant() != V) {
957                Result.markOverdefined();
958                break;
959              }
960            }
961          }
962
963          // If we found a constant value here, then we know the instruction is
964          // constant despite the fact that the PHI nodes are overdefined.
965          if (Result.isConstant()) {
966            markConstant(IV, &I, Result.getConstant());
967            // Remember that this instruction is virtually using the PHI node
968            // operands.
969            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
970            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
971            return;
972          } else if (Result.isUndefined()) {
973            return;
974          }
975
976          // Okay, this really is overdefined now.  Since we might have
977          // speculatively thought that this was not overdefined before, and
978          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
979          // make sure to clean out any entries that we put there, for
980          // efficiency.
981          std::multimap<PHINode*, Instruction*>::iterator It, E;
982          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
983          while (It != E) {
984            if (It->second == &I) {
985              UsersOfOverdefinedPHIs.erase(It++);
986            } else
987              ++It;
988          }
989          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
990          while (It != E) {
991            if (It->second == &I) {
992              UsersOfOverdefinedPHIs.erase(It++);
993            } else
994              ++It;
995          }
996        }
997
998    markOverdefined(IV, &I);
999  } else if (V1State.isConstant() && V2State.isConstant()) {
1000    markConstant(IV, &I, Context->getConstantExprCompare(I.getPredicate(),
1001                                                  V1State.getConstant(),
1002                                                  V2State.getConstant()));
1003  }
1004}
1005
1006void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1007  // FIXME : SCCP does not handle vectors properly.
1008  markOverdefined(&I);
1009  return;
1010
1011#if 0
1012  LatticeVal &ValState = getValueState(I.getOperand(0));
1013  LatticeVal &IdxState = getValueState(I.getOperand(1));
1014
1015  if (ValState.isOverdefined() || IdxState.isOverdefined())
1016    markOverdefined(&I);
1017  else if(ValState.isConstant() && IdxState.isConstant())
1018    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1019                                                     IdxState.getConstant()));
1020#endif
1021}
1022
1023void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1024  // FIXME : SCCP does not handle vectors properly.
1025  markOverdefined(&I);
1026  return;
1027#if 0
1028  LatticeVal &ValState = getValueState(I.getOperand(0));
1029  LatticeVal &EltState = getValueState(I.getOperand(1));
1030  LatticeVal &IdxState = getValueState(I.getOperand(2));
1031
1032  if (ValState.isOverdefined() || EltState.isOverdefined() ||
1033      IdxState.isOverdefined())
1034    markOverdefined(&I);
1035  else if(ValState.isConstant() && EltState.isConstant() &&
1036          IdxState.isConstant())
1037    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1038                                                    EltState.getConstant(),
1039                                                    IdxState.getConstant()));
1040  else if (ValState.isUndefined() && EltState.isConstant() &&
1041           IdxState.isConstant())
1042    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1043                                                   EltState.getConstant(),
1044                                                   IdxState.getConstant()));
1045#endif
1046}
1047
1048void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1049  // FIXME : SCCP does not handle vectors properly.
1050  markOverdefined(&I);
1051  return;
1052#if 0
1053  LatticeVal &V1State   = getValueState(I.getOperand(0));
1054  LatticeVal &V2State   = getValueState(I.getOperand(1));
1055  LatticeVal &MaskState = getValueState(I.getOperand(2));
1056
1057  if (MaskState.isUndefined() ||
1058      (V1State.isUndefined() && V2State.isUndefined()))
1059    return;  // Undefined output if mask or both inputs undefined.
1060
1061  if (V1State.isOverdefined() || V2State.isOverdefined() ||
1062      MaskState.isOverdefined()) {
1063    markOverdefined(&I);
1064  } else {
1065    // A mix of constant/undef inputs.
1066    Constant *V1 = V1State.isConstant() ?
1067        V1State.getConstant() : UndefValue::get(I.getType());
1068    Constant *V2 = V2State.isConstant() ?
1069        V2State.getConstant() : UndefValue::get(I.getType());
1070    Constant *Mask = MaskState.isConstant() ?
1071      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1072    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1073  }
1074#endif
1075}
1076
1077// Handle getelementptr instructions... if all operands are constants then we
1078// can turn this into a getelementptr ConstantExpr.
1079//
1080void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1081  LatticeVal &IV = ValueState[&I];
1082  if (IV.isOverdefined()) return;
1083
1084  SmallVector<Constant*, 8> Operands;
1085  Operands.reserve(I.getNumOperands());
1086
1087  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1088    LatticeVal &State = getValueState(I.getOperand(i));
1089    if (State.isUndefined())
1090      return;  // Operands are not resolved yet...
1091    else if (State.isOverdefined()) {
1092      markOverdefined(IV, &I);
1093      return;
1094    }
1095    assert(State.isConstant() && "Unknown state!");
1096    Operands.push_back(State.getConstant());
1097  }
1098
1099  Constant *Ptr = Operands[0];
1100  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
1101
1102  markConstant(IV, &I, Context->getConstantExprGetElementPtr(Ptr, &Operands[0],
1103                                                      Operands.size()));
1104}
1105
1106void SCCPSolver::visitStoreInst(Instruction &SI) {
1107  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1108    return;
1109  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1110  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1111  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1112
1113  // Get the value we are storing into the global.
1114  LatticeVal &PtrVal = getValueState(SI.getOperand(0));
1115
1116  mergeInValue(I->second, GV, PtrVal);
1117  if (I->second.isOverdefined())
1118    TrackedGlobals.erase(I);      // No need to keep tracking this!
1119}
1120
1121
1122// Handle load instructions.  If the operand is a constant pointer to a constant
1123// global, we can replace the load with the loaded constant value!
1124void SCCPSolver::visitLoadInst(LoadInst &I) {
1125  LatticeVal &IV = ValueState[&I];
1126  if (IV.isOverdefined()) return;
1127
1128  LatticeVal &PtrVal = getValueState(I.getOperand(0));
1129  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1130  if (PtrVal.isConstant() && !I.isVolatile()) {
1131    Value *Ptr = PtrVal.getConstant();
1132    // TODO: Consider a target hook for valid address spaces for this xform.
1133    if (isa<ConstantPointerNull>(Ptr) &&
1134        cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) {
1135      // load null -> null
1136      markConstant(IV, &I, Context->getNullValue(I.getType()));
1137      return;
1138    }
1139
1140    // Transform load (constant global) into the value loaded.
1141    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1142      if (GV->isConstant()) {
1143        if (GV->hasDefinitiveInitializer()) {
1144          markConstant(IV, &I, GV->getInitializer());
1145          return;
1146        }
1147      } else if (!TrackedGlobals.empty()) {
1148        // If we are tracking this global, merge in the known value for it.
1149        DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1150          TrackedGlobals.find(GV);
1151        if (It != TrackedGlobals.end()) {
1152          mergeInValue(IV, &I, It->second);
1153          return;
1154        }
1155      }
1156    }
1157
1158    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1159    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1160      if (CE->getOpcode() == Instruction::GetElementPtr)
1161    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
1162      if (GV->isConstant() && GV->hasDefinitiveInitializer())
1163        if (Constant *V =
1164             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
1165                                                    Context)) {
1166          markConstant(IV, &I, V);
1167          return;
1168        }
1169  }
1170
1171  // Otherwise we cannot say for certain what value this load will produce.
1172  // Bail out.
1173  markOverdefined(IV, &I);
1174}
1175
1176void SCCPSolver::visitCallSite(CallSite CS) {
1177  Function *F = CS.getCalledFunction();
1178  Instruction *I = CS.getInstruction();
1179
1180  // The common case is that we aren't tracking the callee, either because we
1181  // are not doing interprocedural analysis or the callee is indirect, or is
1182  // external.  Handle these cases first.
1183  if (F == 0 || !F->hasLocalLinkage()) {
1184CallOverdefined:
1185    // Void return and not tracking callee, just bail.
1186    if (I->getType() == Type::VoidTy) return;
1187
1188    // Otherwise, if we have a single return value case, and if the function is
1189    // a declaration, maybe we can constant fold it.
1190    if (!isa<StructType>(I->getType()) && F && F->isDeclaration() &&
1191        canConstantFoldCallTo(F)) {
1192
1193      SmallVector<Constant*, 8> Operands;
1194      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1195           AI != E; ++AI) {
1196        LatticeVal &State = getValueState(*AI);
1197        if (State.isUndefined())
1198          return;  // Operands are not resolved yet.
1199        else if (State.isOverdefined()) {
1200          markOverdefined(I);
1201          return;
1202        }
1203        assert(State.isConstant() && "Unknown state!");
1204        Operands.push_back(State.getConstant());
1205      }
1206
1207      // If we can constant fold this, mark the result of the call as a
1208      // constant.
1209      if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) {
1210        markConstant(I, C);
1211        return;
1212      }
1213    }
1214
1215    // Otherwise, we don't know anything about this call, mark it overdefined.
1216    markOverdefined(I);
1217    return;
1218  }
1219
1220  // If this is a single/zero retval case, see if we're tracking the function.
1221  DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1222  if (TFRVI != TrackedRetVals.end()) {
1223    // If so, propagate the return value of the callee into this call result.
1224    mergeInValue(I, TFRVI->second);
1225  } else if (isa<StructType>(I->getType())) {
1226    // Check to see if we're tracking this callee, if not, handle it in the
1227    // common path above.
1228    DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
1229    TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
1230    if (TMRVI == TrackedMultipleRetVals.end())
1231      goto CallOverdefined;
1232
1233    // If we are tracking this callee, propagate the return values of the call
1234    // into this call site.  We do this by walking all the uses. Single-index
1235    // ExtractValueInst uses can be tracked; anything more complicated is
1236    // currently handled conservatively.
1237    for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1238         UI != E; ++UI) {
1239      if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
1240        if (EVI->getNumIndices() == 1) {
1241          mergeInValue(EVI,
1242                  TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
1243          continue;
1244        }
1245      }
1246      // The aggregate value is used in a way not handled here. Assume nothing.
1247      markOverdefined(*UI);
1248    }
1249  } else {
1250    // Otherwise we're not tracking this callee, so handle it in the
1251    // common path above.
1252    goto CallOverdefined;
1253  }
1254
1255  // Finally, if this is the first call to the function hit, mark its entry
1256  // block executable.
1257  if (!BBExecutable.count(F->begin()))
1258    MarkBlockExecutable(F->begin());
1259
1260  // Propagate information from this call site into the callee.
1261  CallSite::arg_iterator CAI = CS.arg_begin();
1262  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1263       AI != E; ++AI, ++CAI) {
1264    LatticeVal &IV = ValueState[AI];
1265    if (!IV.isOverdefined())
1266      mergeInValue(IV, AI, getValueState(*CAI));
1267  }
1268}
1269
1270
1271void SCCPSolver::Solve() {
1272  // Process the work lists until they are empty!
1273  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1274         !OverdefinedInstWorkList.empty()) {
1275    // Process the instruction work list...
1276    while (!OverdefinedInstWorkList.empty()) {
1277      Value *I = OverdefinedInstWorkList.back();
1278      OverdefinedInstWorkList.pop_back();
1279
1280      DOUT << "\nPopped off OI-WL: " << *I;
1281
1282      // "I" got into the work list because it either made the transition from
1283      // bottom to constant
1284      //
1285      // Anything on this worklist that is overdefined need not be visited
1286      // since all of its users will have already been marked as overdefined
1287      // Update all of the users of this instruction's value...
1288      //
1289      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1290           UI != E; ++UI)
1291        OperandChangedState(*UI);
1292    }
1293    // Process the instruction work list...
1294    while (!InstWorkList.empty()) {
1295      Value *I = InstWorkList.back();
1296      InstWorkList.pop_back();
1297
1298      DOUT << "\nPopped off I-WL: " << *I;
1299
1300      // "I" got into the work list because it either made the transition from
1301      // bottom to constant
1302      //
1303      // Anything on this worklist that is overdefined need not be visited
1304      // since all of its users will have already been marked as overdefined.
1305      // Update all of the users of this instruction's value...
1306      //
1307      if (!getValueState(I).isOverdefined())
1308        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1309             UI != E; ++UI)
1310          OperandChangedState(*UI);
1311    }
1312
1313    // Process the basic block work list...
1314    while (!BBWorkList.empty()) {
1315      BasicBlock *BB = BBWorkList.back();
1316      BBWorkList.pop_back();
1317
1318      DOUT << "\nPopped off BBWL: " << *BB;
1319
1320      // Notify all instructions in this basic block that they are newly
1321      // executable.
1322      visit(BB);
1323    }
1324  }
1325}
1326
1327/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1328/// that branches on undef values cannot reach any of their successors.
1329/// However, this is not a safe assumption.  After we solve dataflow, this
1330/// method should be use to handle this.  If this returns true, the solver
1331/// should be rerun.
1332///
1333/// This method handles this by finding an unresolved branch and marking it one
1334/// of the edges from the block as being feasible, even though the condition
1335/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1336/// CFG and only slightly pessimizes the analysis results (by marking one,
1337/// potentially infeasible, edge feasible).  This cannot usefully modify the
1338/// constraints on the condition of the branch, as that would impact other users
1339/// of the value.
1340///
1341/// This scan also checks for values that use undefs, whose results are actually
1342/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1343/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1344/// even if X isn't defined.
1345bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1346  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1347    if (!BBExecutable.count(BB))
1348      continue;
1349
1350    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1351      // Look for instructions which produce undef values.
1352      if (I->getType() == Type::VoidTy) continue;
1353
1354      LatticeVal &LV = getValueState(I);
1355      if (!LV.isUndefined()) continue;
1356
1357      // Get the lattice values of the first two operands for use below.
1358      LatticeVal &Op0LV = getValueState(I->getOperand(0));
1359      LatticeVal Op1LV;
1360      if (I->getNumOperands() == 2) {
1361        // If this is a two-operand instruction, and if both operands are
1362        // undefs, the result stays undef.
1363        Op1LV = getValueState(I->getOperand(1));
1364        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1365          continue;
1366      }
1367
1368      // If this is an instructions whose result is defined even if the input is
1369      // not fully defined, propagate the information.
1370      const Type *ITy = I->getType();
1371      switch (I->getOpcode()) {
1372      default: break;          // Leave the instruction as an undef.
1373      case Instruction::ZExt:
1374        // After a zero extend, we know the top part is zero.  SExt doesn't have
1375        // to be handled here, because we don't know whether the top part is 1's
1376        // or 0's.
1377        assert(Op0LV.isUndefined());
1378        markForcedConstant(LV, I, Context->getNullValue(ITy));
1379        return true;
1380      case Instruction::Mul:
1381      case Instruction::And:
1382        // undef * X -> 0.   X could be zero.
1383        // undef & X -> 0.   X could be zero.
1384        markForcedConstant(LV, I, Context->getNullValue(ITy));
1385        return true;
1386
1387      case Instruction::Or:
1388        // undef | X -> -1.   X could be -1.
1389        if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
1390          markForcedConstant(LV, I,
1391                             Context->getConstantVectorAllOnesValue(PTy));
1392        else
1393          markForcedConstant(LV, I, Context->getConstantIntAllOnesValue(ITy));
1394        return true;
1395
1396      case Instruction::SDiv:
1397      case Instruction::UDiv:
1398      case Instruction::SRem:
1399      case Instruction::URem:
1400        // X / undef -> undef.  No change.
1401        // X % undef -> undef.  No change.
1402        if (Op1LV.isUndefined()) break;
1403
1404        // undef / X -> 0.   X could be maxint.
1405        // undef % X -> 0.   X could be 1.
1406        markForcedConstant(LV, I, Context->getNullValue(ITy));
1407        return true;
1408
1409      case Instruction::AShr:
1410        // undef >>s X -> undef.  No change.
1411        if (Op0LV.isUndefined()) break;
1412
1413        // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
1414        if (Op0LV.isConstant())
1415          markForcedConstant(LV, I, Op0LV.getConstant());
1416        else
1417          markOverdefined(LV, I);
1418        return true;
1419      case Instruction::LShr:
1420      case Instruction::Shl:
1421        // undef >> X -> undef.  No change.
1422        // undef << X -> undef.  No change.
1423        if (Op0LV.isUndefined()) break;
1424
1425        // X >> undef -> 0.  X could be 0.
1426        // X << undef -> 0.  X could be 0.
1427        markForcedConstant(LV, I, Context->getNullValue(ITy));
1428        return true;
1429      case Instruction::Select:
1430        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1431        if (Op0LV.isUndefined()) {
1432          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1433            Op1LV = getValueState(I->getOperand(2));
1434        } else if (Op1LV.isUndefined()) {
1435          // c ? undef : undef -> undef.  No change.
1436          Op1LV = getValueState(I->getOperand(2));
1437          if (Op1LV.isUndefined())
1438            break;
1439          // Otherwise, c ? undef : x -> x.
1440        } else {
1441          // Leave Op1LV as Operand(1)'s LatticeValue.
1442        }
1443
1444        if (Op1LV.isConstant())
1445          markForcedConstant(LV, I, Op1LV.getConstant());
1446        else
1447          markOverdefined(LV, I);
1448        return true;
1449      case Instruction::Call:
1450        // If a call has an undef result, it is because it is constant foldable
1451        // but one of the inputs was undef.  Just force the result to
1452        // overdefined.
1453        markOverdefined(LV, I);
1454        return true;
1455      }
1456    }
1457
1458    TerminatorInst *TI = BB->getTerminator();
1459    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1460      if (!BI->isConditional()) continue;
1461      if (!getValueState(BI->getCondition()).isUndefined())
1462        continue;
1463    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1464      if (SI->getNumSuccessors()<2)   // no cases
1465        continue;
1466      if (!getValueState(SI->getCondition()).isUndefined())
1467        continue;
1468    } else {
1469      continue;
1470    }
1471
1472    // If the edge to the second successor isn't thought to be feasible yet,
1473    // mark it so now.  We pick the second one so that this goes to some
1474    // enumerated value in a switch instead of going to the default destination.
1475    if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
1476      continue;
1477
1478    // Otherwise, it isn't already thought to be feasible.  Mark it as such now
1479    // and return.  This will make other blocks reachable, which will allow new
1480    // values to be discovered and existing ones to be moved in the lattice.
1481    markEdgeExecutable(BB, TI->getSuccessor(1));
1482
1483    // This must be a conditional branch of switch on undef.  At this point,
1484    // force the old terminator to branch to the first successor.  This is
1485    // required because we are now influencing the dataflow of the function with
1486    // the assumption that this edge is taken.  If we leave the branch condition
1487    // as undef, then further analysis could think the undef went another way
1488    // leading to an inconsistent set of conclusions.
1489    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1490      BI->setCondition(Context->getConstantIntFalse());
1491    } else {
1492      SwitchInst *SI = cast<SwitchInst>(TI);
1493      SI->setCondition(SI->getCaseValue(1));
1494    }
1495
1496    return true;
1497  }
1498
1499  return false;
1500}
1501
1502
1503namespace {
1504  //===--------------------------------------------------------------------===//
1505  //
1506  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1507  /// Sparse Conditional Constant Propagator.
1508  ///
1509  struct VISIBILITY_HIDDEN SCCP : public FunctionPass {
1510    static char ID; // Pass identification, replacement for typeid
1511    SCCP() : FunctionPass(&ID) {}
1512
1513    // runOnFunction - Run the Sparse Conditional Constant Propagation
1514    // algorithm, and return true if the function was modified.
1515    //
1516    bool runOnFunction(Function &F);
1517
1518    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1519      AU.setPreservesCFG();
1520    }
1521  };
1522} // end anonymous namespace
1523
1524char SCCP::ID = 0;
1525static RegisterPass<SCCP>
1526X("sccp", "Sparse Conditional Constant Propagation");
1527
1528// createSCCPPass - This is the public interface to this file...
1529FunctionPass *llvm::createSCCPPass() {
1530  return new SCCP();
1531}
1532
1533
1534// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1535// and return true if the function was modified.
1536//
1537bool SCCP::runOnFunction(Function &F) {
1538  DOUT << "SCCP on function '" << F.getNameStart() << "'\n";
1539  SCCPSolver Solver;
1540  Solver.setContext(Context);
1541
1542  // Mark the first block of the function as being executable.
1543  Solver.MarkBlockExecutable(F.begin());
1544
1545  // Mark all arguments to the function as being overdefined.
1546  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1547    Solver.markOverdefined(AI);
1548
1549  // Solve for constants.
1550  bool ResolvedUndefs = true;
1551  while (ResolvedUndefs) {
1552    Solver.Solve();
1553    DOUT << "RESOLVING UNDEFs\n";
1554    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1555  }
1556
1557  bool MadeChanges = false;
1558
1559  // If we decided that there are basic blocks that are dead in this function,
1560  // delete their contents now.  Note that we cannot actually delete the blocks,
1561  // as we cannot modify the CFG of the function.
1562  //
1563  SmallVector<Instruction*, 512> Insts;
1564  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1565
1566  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1567    if (!Solver.isBlockExecutable(BB)) {
1568      DOUT << "  BasicBlock Dead:" << *BB;
1569      ++NumDeadBlocks;
1570
1571      // Delete the instructions backwards, as it has a reduced likelihood of
1572      // having to update as many def-use and use-def chains.
1573      for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1574           I != E; ++I)
1575        Insts.push_back(I);
1576      while (!Insts.empty()) {
1577        Instruction *I = Insts.back();
1578        Insts.pop_back();
1579        if (!I->use_empty())
1580          I->replaceAllUsesWith(Context->getUndef(I->getType()));
1581        BB->getInstList().erase(I);
1582        MadeChanges = true;
1583        ++NumInstRemoved;
1584      }
1585    } else {
1586      // Iterate over all of the instructions in a function, replacing them with
1587      // constants if we have found them to be of constant values.
1588      //
1589      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1590        Instruction *Inst = BI++;
1591        if (Inst->getType() == Type::VoidTy ||
1592            isa<TerminatorInst>(Inst))
1593          continue;
1594
1595        LatticeVal &IV = Values[Inst];
1596        if (!IV.isConstant() && !IV.isUndefined())
1597          continue;
1598
1599        Constant *Const = IV.isConstant()
1600          ? IV.getConstant() : Context->getUndef(Inst->getType());
1601        DOUT << "  Constant: " << *Const << " = " << *Inst;
1602
1603        // Replaces all of the uses of a variable with uses of the constant.
1604        Inst->replaceAllUsesWith(Const);
1605
1606        // Delete the instruction.
1607        Inst->eraseFromParent();
1608
1609        // Hey, we just changed something!
1610        MadeChanges = true;
1611        ++NumInstRemoved;
1612      }
1613    }
1614
1615  return MadeChanges;
1616}
1617
1618namespace {
1619  //===--------------------------------------------------------------------===//
1620  //
1621  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1622  /// Constant Propagation.
1623  ///
1624  struct VISIBILITY_HIDDEN IPSCCP : public ModulePass {
1625    static char ID;
1626    IPSCCP() : ModulePass(&ID) {}
1627    bool runOnModule(Module &M);
1628  };
1629} // end anonymous namespace
1630
1631char IPSCCP::ID = 0;
1632static RegisterPass<IPSCCP>
1633Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1634
1635// createIPSCCPPass - This is the public interface to this file...
1636ModulePass *llvm::createIPSCCPPass() {
1637  return new IPSCCP();
1638}
1639
1640
1641static bool AddressIsTaken(GlobalValue *GV) {
1642  // Delete any dead constantexpr klingons.
1643  GV->removeDeadConstantUsers();
1644
1645  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1646       UI != E; ++UI)
1647    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1648      if (SI->getOperand(0) == GV || SI->isVolatile())
1649        return true;  // Storing addr of GV.
1650    } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1651      // Make sure we are calling the function, not passing the address.
1652      CallSite CS = CallSite::get(cast<Instruction>(*UI));
1653      if (CS.hasArgument(GV))
1654        return true;
1655    } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1656      if (LI->isVolatile())
1657        return true;
1658    } else {
1659      return true;
1660    }
1661  return false;
1662}
1663
1664bool IPSCCP::runOnModule(Module &M) {
1665  SCCPSolver Solver;
1666
1667  // Loop over all functions, marking arguments to those with their addresses
1668  // taken or that are external as overdefined.
1669  //
1670  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1671    if (!F->hasLocalLinkage() || AddressIsTaken(F)) {
1672      if (!F->isDeclaration())
1673        Solver.MarkBlockExecutable(F->begin());
1674      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1675           AI != E; ++AI)
1676        Solver.markOverdefined(AI);
1677    } else {
1678      Solver.AddTrackedFunction(F);
1679    }
1680
1681  // Loop over global variables.  We inform the solver about any internal global
1682  // variables that do not have their 'addresses taken'.  If they don't have
1683  // their addresses taken, we can propagate constants through them.
1684  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1685       G != E; ++G)
1686    if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1687      Solver.TrackValueOfGlobalVariable(G);
1688
1689  // Solve for constants.
1690  bool ResolvedUndefs = true;
1691  while (ResolvedUndefs) {
1692    Solver.Solve();
1693
1694    DOUT << "RESOLVING UNDEFS\n";
1695    ResolvedUndefs = false;
1696    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1697      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1698  }
1699
1700  bool MadeChanges = false;
1701
1702  // Iterate over all of the instructions in the module, replacing them with
1703  // constants if we have found them to be of constant values.
1704  //
1705  SmallVector<Instruction*, 512> Insts;
1706  SmallVector<BasicBlock*, 512> BlocksToErase;
1707  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1708
1709  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1710    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1711         AI != E; ++AI)
1712      if (!AI->use_empty()) {
1713        LatticeVal &IV = Values[AI];
1714        if (IV.isConstant() || IV.isUndefined()) {
1715          Constant *CST = IV.isConstant() ?
1716            IV.getConstant() : Context->getUndef(AI->getType());
1717          DOUT << "***  Arg " << *AI << " = " << *CST <<"\n";
1718
1719          // Replaces all of the uses of a variable with uses of the
1720          // constant.
1721          AI->replaceAllUsesWith(CST);
1722          ++IPNumArgsElimed;
1723        }
1724      }
1725
1726    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1727      if (!Solver.isBlockExecutable(BB)) {
1728        DOUT << "  BasicBlock Dead:" << *BB;
1729        ++IPNumDeadBlocks;
1730
1731        // Delete the instructions backwards, as it has a reduced likelihood of
1732        // having to update as many def-use and use-def chains.
1733        TerminatorInst *TI = BB->getTerminator();
1734        for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1735          Insts.push_back(I);
1736
1737        while (!Insts.empty()) {
1738          Instruction *I = Insts.back();
1739          Insts.pop_back();
1740          if (!I->use_empty())
1741            I->replaceAllUsesWith(Context->getUndef(I->getType()));
1742          BB->getInstList().erase(I);
1743          MadeChanges = true;
1744          ++IPNumInstRemoved;
1745        }
1746
1747        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1748          BasicBlock *Succ = TI->getSuccessor(i);
1749          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1750            TI->getSuccessor(i)->removePredecessor(BB);
1751        }
1752        if (!TI->use_empty())
1753          TI->replaceAllUsesWith(Context->getUndef(TI->getType()));
1754        BB->getInstList().erase(TI);
1755
1756        if (&*BB != &F->front())
1757          BlocksToErase.push_back(BB);
1758        else
1759          new UnreachableInst(BB);
1760
1761      } else {
1762        for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1763          Instruction *Inst = BI++;
1764          if (Inst->getType() == Type::VoidTy)
1765            continue;
1766
1767          LatticeVal &IV = Values[Inst];
1768          if (!IV.isConstant() && !IV.isUndefined())
1769            continue;
1770
1771          Constant *Const = IV.isConstant()
1772            ? IV.getConstant() : Context->getUndef(Inst->getType());
1773          DOUT << "  Constant: " << *Const << " = " << *Inst;
1774
1775          // Replaces all of the uses of a variable with uses of the
1776          // constant.
1777          Inst->replaceAllUsesWith(Const);
1778
1779          // Delete the instruction.
1780          if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1781            Inst->eraseFromParent();
1782
1783          // Hey, we just changed something!
1784          MadeChanges = true;
1785          ++IPNumInstRemoved;
1786        }
1787      }
1788
1789    // Now that all instructions in the function are constant folded, erase dead
1790    // blocks, because we can now use ConstantFoldTerminator to get rid of
1791    // in-edges.
1792    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1793      // If there are any PHI nodes in this successor, drop entries for BB now.
1794      BasicBlock *DeadBB = BlocksToErase[i];
1795      while (!DeadBB->use_empty()) {
1796        Instruction *I = cast<Instruction>(DeadBB->use_back());
1797        bool Folded = ConstantFoldTerminator(I->getParent());
1798        if (!Folded) {
1799          // The constant folder may not have been able to fold the terminator
1800          // if this is a branch or switch on undef.  Fold it manually as a
1801          // branch to the first successor.
1802#ifndef NDEBUG
1803          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1804            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1805                   "Branch should be foldable!");
1806          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1807            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1808          } else {
1809            LLVM_UNREACHABLE("Didn't fold away reference to block!");
1810          }
1811#endif
1812
1813          // Make this an uncond branch to the first successor.
1814          TerminatorInst *TI = I->getParent()->getTerminator();
1815          BranchInst::Create(TI->getSuccessor(0), TI);
1816
1817          // Remove entries in successor phi nodes to remove edges.
1818          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1819            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1820
1821          // Remove the old terminator.
1822          TI->eraseFromParent();
1823        }
1824      }
1825
1826      // Finally, delete the basic block.
1827      F->getBasicBlockList().erase(DeadBB);
1828    }
1829    BlocksToErase.clear();
1830  }
1831
1832  // If we inferred constant or undef return values for a function, we replaced
1833  // all call uses with the inferred value.  This means we don't need to bother
1834  // actually returning anything from the function.  Replace all return
1835  // instructions with return undef.
1836  // TODO: Process multiple value ret instructions also.
1837  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1838  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1839         E = RV.end(); I != E; ++I)
1840    if (!I->second.isOverdefined() &&
1841        I->first->getReturnType() != Type::VoidTy) {
1842      Function *F = I->first;
1843      for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1844        if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1845          if (!isa<UndefValue>(RI->getOperand(0)))
1846            RI->setOperand(0, Context->getUndef(F->getReturnType()));
1847    }
1848
1849  // If we infered constant or undef values for globals variables, we can delete
1850  // the global and any stores that remain to it.
1851  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1852  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1853         E = TG.end(); I != E; ++I) {
1854    GlobalVariable *GV = I->first;
1855    assert(!I->second.isOverdefined() &&
1856           "Overdefined values should have been taken out of the map!");
1857    DOUT << "Found that GV '" << GV->getNameStart() << "' is constant!\n";
1858    while (!GV->use_empty()) {
1859      StoreInst *SI = cast<StoreInst>(GV->use_back());
1860      SI->eraseFromParent();
1861    }
1862    M.getGlobalList().erase(GV);
1863    ++IPNumGlobalConst;
1864  }
1865
1866  return MadeChanges;
1867}
1868