SCCP.cpp revision d0fde30ce850b78371fd1386338350591f9ff494
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18// Notice that: 19// * This pass has a habit of making definitions be dead. It is a good idea 20// to to run a DCE pass sometime after running this pass. 21// 22//===----------------------------------------------------------------------===// 23 24#include "llvm/Transforms/Scalar.h" 25#include "llvm/ConstantHandling.h" 26#include "llvm/Function.h" 27#include "llvm/Instructions.h" 28#include "llvm/Pass.h" 29#include "llvm/Support/InstVisitor.h" 30#include "Support/Debug.h" 31#include "Support/Statistic.h" 32#include "Support/STLExtras.h" 33#include <algorithm> 34#include <set> 35 36namespace llvm { 37 38// InstVal class - This class represents the different lattice values that an 39// instruction may occupy. It is a simple class with value semantics. 40// 41namespace { 42 Statistic<> NumInstRemoved("sccp", "Number of instructions removed"); 43 44class InstVal { 45 enum { 46 undefined, // This instruction has no known value 47 constant, // This instruction has a constant value 48 overdefined // This instruction has an unknown value 49 } LatticeValue; // The current lattice position 50 Constant *ConstantVal; // If Constant value, the current value 51public: 52 inline InstVal() : LatticeValue(undefined), ConstantVal(0) {} 53 54 // markOverdefined - Return true if this is a new status to be in... 55 inline bool markOverdefined() { 56 if (LatticeValue != overdefined) { 57 LatticeValue = overdefined; 58 return true; 59 } 60 return false; 61 } 62 63 // markConstant - Return true if this is a new status for us... 64 inline bool markConstant(Constant *V) { 65 if (LatticeValue != constant) { 66 LatticeValue = constant; 67 ConstantVal = V; 68 return true; 69 } else { 70 assert(ConstantVal == V && "Marking constant with different value"); 71 } 72 return false; 73 } 74 75 inline bool isUndefined() const { return LatticeValue == undefined; } 76 inline bool isConstant() const { return LatticeValue == constant; } 77 inline bool isOverdefined() const { return LatticeValue == overdefined; } 78 79 inline Constant *getConstant() const { return ConstantVal; } 80}; 81 82} // end anonymous namespace 83 84 85//===----------------------------------------------------------------------===// 86// SCCP Class 87// 88// This class does all of the work of Sparse Conditional Constant Propagation. 89// 90namespace { 91class SCCP : public FunctionPass, public InstVisitor<SCCP> { 92 std::set<BasicBlock*> BBExecutable;// The basic blocks that are executable 93 std::map<Value*, InstVal> ValueState; // The state each value is in... 94 95 std::vector<Instruction*> InstWorkList;// The instruction work list 96 std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list 97 98 /// KnownFeasibleEdges - Entries in this set are edges which have already had 99 /// PHI nodes retriggered. 100 typedef std::pair<BasicBlock*,BasicBlock*> Edge; 101 std::set<Edge> KnownFeasibleEdges; 102public: 103 104 // runOnFunction - Run the Sparse Conditional Constant Propagation algorithm, 105 // and return true if the function was modified. 106 // 107 bool runOnFunction(Function &F); 108 109 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 110 AU.setPreservesCFG(); 111 } 112 113 114 //===--------------------------------------------------------------------===// 115 // The implementation of this class 116 // 117private: 118 friend class InstVisitor<SCCP>; // Allow callbacks from visitor 119 120 // markValueOverdefined - Make a value be marked as "constant". If the value 121 // is not already a constant, add it to the instruction work list so that 122 // the users of the instruction are updated later. 123 // 124 inline void markConstant(InstVal &IV, Instruction *I, Constant *C) { 125 if (IV.markConstant(C)) { 126 DEBUG(std::cerr << "markConstant: " << *C << ": " << *I); 127 InstWorkList.push_back(I); 128 } 129 } 130 inline void markConstant(Instruction *I, Constant *C) { 131 markConstant(ValueState[I], I, C); 132 } 133 134 // markValueOverdefined - Make a value be marked as "overdefined". If the 135 // value is not already overdefined, add it to the instruction work list so 136 // that the users of the instruction are updated later. 137 // 138 inline void markOverdefined(InstVal &IV, Instruction *I) { 139 if (IV.markOverdefined()) { 140 DEBUG(std::cerr << "markOverdefined: " << *I); 141 InstWorkList.push_back(I); // Only instructions go on the work list 142 } 143 } 144 inline void markOverdefined(Instruction *I) { 145 markOverdefined(ValueState[I], I); 146 } 147 148 // getValueState - Return the InstVal object that corresponds to the value. 149 // This function is necessary because not all values should start out in the 150 // underdefined state... Argument's should be overdefined, and 151 // constants should be marked as constants. If a value is not known to be an 152 // Instruction object, then use this accessor to get its value from the map. 153 // 154 inline InstVal &getValueState(Value *V) { 155 std::map<Value*, InstVal>::iterator I = ValueState.find(V); 156 if (I != ValueState.end()) return I->second; // Common case, in the map 157 158 if (Constant *CPV = dyn_cast<Constant>(V)) { // Constants are constant 159 ValueState[CPV].markConstant(CPV); 160 } else if (isa<Argument>(V)) { // Arguments are overdefined 161 ValueState[V].markOverdefined(); 162 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 163 // The address of a global is a constant... 164 ValueState[V].markConstant(ConstantPointerRef::get(GV)); 165 } 166 // All others are underdefined by default... 167 return ValueState[V]; 168 } 169 170 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB 171 // work list if it is not already executable... 172 // 173 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 174 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 175 return; // This edge is already known to be executable! 176 177 if (BBExecutable.count(Dest)) { 178 DEBUG(std::cerr << "Marking Edge Executable: " << Source->getName() 179 << " -> " << Dest->getName() << "\n"); 180 181 // The destination is already executable, but we just made an edge 182 // feasible that wasn't before. Revisit the PHI nodes in the block 183 // because they have potentially new operands. 184 for (BasicBlock::iterator I = Dest->begin(); 185 PHINode *PN = dyn_cast<PHINode>(I); ++I) 186 visitPHINode(*PN); 187 188 } else { 189 DEBUG(std::cerr << "Marking Block Executable: " << Dest->getName()<<"\n"); 190 BBExecutable.insert(Dest); // Basic block is executable! 191 BBWorkList.push_back(Dest); // Add the block to the work list! 192 } 193 } 194 195 196 // visit implementations - Something changed in this instruction... Either an 197 // operand made a transition, or the instruction is newly executable. Change 198 // the value type of I to reflect these changes if appropriate. 199 // 200 void visitPHINode(PHINode &I); 201 202 // Terminators 203 void visitReturnInst(ReturnInst &I) { /*does not have an effect*/ } 204 void visitTerminatorInst(TerminatorInst &TI); 205 206 void visitCastInst(CastInst &I); 207 void visitBinaryOperator(Instruction &I); 208 void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } 209 210 // Instructions that cannot be folded away... 211 void visitStoreInst (Instruction &I) { /*returns void*/ } 212 void visitLoadInst (Instruction &I) { markOverdefined(&I); } 213 void visitGetElementPtrInst(GetElementPtrInst &I); 214 void visitCallInst (Instruction &I) { markOverdefined(&I); } 215 void visitInvokeInst (TerminatorInst &I) { 216 if (I.getType() != Type::VoidTy) markOverdefined(&I); 217 visitTerminatorInst(I); 218 } 219 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 220 void visitAllocationInst(Instruction &I) { markOverdefined(&I); } 221 void visitVANextInst (Instruction &I) { markOverdefined(&I); } 222 void visitVAArgInst (Instruction &I) { markOverdefined(&I); } 223 void visitFreeInst (Instruction &I) { /*returns void*/ } 224 225 void visitInstruction(Instruction &I) { 226 // If a new instruction is added to LLVM that we don't handle... 227 std::cerr << "SCCP: Don't know how to handle: " << I; 228 markOverdefined(&I); // Just in case 229 } 230 231 // getFeasibleSuccessors - Return a vector of booleans to indicate which 232 // successors are reachable from a given terminator instruction. 233 // 234 void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs); 235 236 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 237 // block to the 'To' basic block is currently feasible... 238 // 239 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 240 241 // OperandChangedState - This method is invoked on all of the users of an 242 // instruction that was just changed state somehow.... Based on this 243 // information, we need to update the specified user of this instruction. 244 // 245 void OperandChangedState(User *U) { 246 // Only instructions use other variable values! 247 Instruction &I = cast<Instruction>(*U); 248 if (BBExecutable.count(I.getParent())) // Inst is executable? 249 visit(I); 250 } 251}; 252 253 RegisterOpt<SCCP> X("sccp", "Sparse Conditional Constant Propagation"); 254} // end anonymous namespace 255 256 257// createSCCPPass - This is the public interface to this file... 258Pass *createSCCPPass() { 259 return new SCCP(); 260} 261 262 263//===----------------------------------------------------------------------===// 264// SCCP Class Implementation 265 266 267// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 268// and return true if the function was modified. 269// 270bool SCCP::runOnFunction(Function &F) { 271 // Mark the first block of the function as being executable... 272 BBExecutable.insert(F.begin()); // Basic block is executable! 273 BBWorkList.push_back(F.begin()); // Add the block to the work list! 274 275 // Process the work lists until their are empty! 276 while (!BBWorkList.empty() || !InstWorkList.empty()) { 277 // Process the instruction work list... 278 while (!InstWorkList.empty()) { 279 Instruction *I = InstWorkList.back(); 280 InstWorkList.pop_back(); 281 282 DEBUG(std::cerr << "\nPopped off I-WL: " << I); 283 284 // "I" got into the work list because it either made the transition from 285 // bottom to constant, or to Overdefined. 286 // 287 // Update all of the users of this instruction's value... 288 // 289 for_each(I->use_begin(), I->use_end(), 290 bind_obj(this, &SCCP::OperandChangedState)); 291 } 292 293 // Process the basic block work list... 294 while (!BBWorkList.empty()) { 295 BasicBlock *BB = BBWorkList.back(); 296 BBWorkList.pop_back(); 297 298 DEBUG(std::cerr << "\nPopped off BBWL: " << BB); 299 300 // Notify all instructions in this basic block that they are newly 301 // executable. 302 visit(BB); 303 } 304 } 305 306 if (DebugFlag) { 307 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) 308 if (!BBExecutable.count(I)) 309 std::cerr << "BasicBlock Dead:" << *I; 310 } 311 312 // Iterate over all of the instructions in a function, replacing them with 313 // constants if we have found them to be of constant values. 314 // 315 bool MadeChanges = false; 316 for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) 317 for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) { 318 Instruction &Inst = *BI; 319 InstVal &IV = ValueState[&Inst]; 320 if (IV.isConstant()) { 321 Constant *Const = IV.getConstant(); 322 DEBUG(std::cerr << "Constant: " << Const << " = " << Inst); 323 324 // Replaces all of the uses of a variable with uses of the constant. 325 Inst.replaceAllUsesWith(Const); 326 327 // Remove the operator from the list of definitions... and delete it. 328 BI = BB->getInstList().erase(BI); 329 330 // Hey, we just changed something! 331 MadeChanges = true; 332 ++NumInstRemoved; 333 } else { 334 ++BI; 335 } 336 } 337 338 // Reset state so that the next invocation will have empty data structures 339 BBExecutable.clear(); 340 ValueState.clear(); 341 std::vector<Instruction*>().swap(InstWorkList); 342 std::vector<BasicBlock*>().swap(BBWorkList); 343 344 return MadeChanges; 345} 346 347 348// getFeasibleSuccessors - Return a vector of booleans to indicate which 349// successors are reachable from a given terminator instruction. 350// 351void SCCP::getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs) { 352 Succs.resize(TI.getNumSuccessors()); 353 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 354 if (BI->isUnconditional()) { 355 Succs[0] = true; 356 } else { 357 InstVal &BCValue = getValueState(BI->getCondition()); 358 if (BCValue.isOverdefined()) { 359 // Overdefined condition variables mean the branch could go either way. 360 Succs[0] = Succs[1] = true; 361 } else if (BCValue.isConstant()) { 362 // Constant condition variables mean the branch can only go a single way 363 Succs[BCValue.getConstant() == ConstantBool::False] = true; 364 } 365 } 366 } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) { 367 // Invoke instructions successors are always executable. 368 Succs[0] = Succs[1] = true; 369 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 370 InstVal &SCValue = getValueState(SI->getCondition()); 371 if (SCValue.isOverdefined()) { // Overdefined condition? 372 // All destinations are executable! 373 Succs.assign(TI.getNumSuccessors(), true); 374 } else if (SCValue.isConstant()) { 375 Constant *CPV = SCValue.getConstant(); 376 // Make sure to skip the "default value" which isn't a value 377 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { 378 if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... 379 Succs[i] = true; 380 return; 381 } 382 } 383 384 // Constant value not equal to any of the branches... must execute 385 // default branch then... 386 Succs[0] = true; 387 } 388 } else { 389 std::cerr << "SCCP: Don't know how to handle: " << TI; 390 Succs.assign(TI.getNumSuccessors(), true); 391 } 392} 393 394 395// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 396// block to the 'To' basic block is currently feasible... 397// 398bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 399 assert(BBExecutable.count(To) && "Dest should always be alive!"); 400 401 // Make sure the source basic block is executable!! 402 if (!BBExecutable.count(From)) return false; 403 404 // Check to make sure this edge itself is actually feasible now... 405 TerminatorInst *TI = From->getTerminator(); 406 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 407 if (BI->isUnconditional()) 408 return true; 409 else { 410 InstVal &BCValue = getValueState(BI->getCondition()); 411 if (BCValue.isOverdefined()) { 412 // Overdefined condition variables mean the branch could go either way. 413 return true; 414 } else if (BCValue.isConstant()) { 415 // Constant condition variables mean the branch can only go a single way 416 return BI->getSuccessor(BCValue.getConstant() == 417 ConstantBool::False) == To; 418 } 419 return false; 420 } 421 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 422 // Invoke instructions successors are always executable. 423 return true; 424 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 425 InstVal &SCValue = getValueState(SI->getCondition()); 426 if (SCValue.isOverdefined()) { // Overdefined condition? 427 // All destinations are executable! 428 return true; 429 } else if (SCValue.isConstant()) { 430 Constant *CPV = SCValue.getConstant(); 431 // Make sure to skip the "default value" which isn't a value 432 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 433 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... 434 return SI->getSuccessor(i) == To; 435 436 // Constant value not equal to any of the branches... must execute 437 // default branch then... 438 return SI->getDefaultDest() == To; 439 } 440 return false; 441 } else { 442 std::cerr << "Unknown terminator instruction: " << *TI; 443 abort(); 444 } 445} 446 447// visit Implementations - Something changed in this instruction... Either an 448// operand made a transition, or the instruction is newly executable. Change 449// the value type of I to reflect these changes if appropriate. This method 450// makes sure to do the following actions: 451// 452// 1. If a phi node merges two constants in, and has conflicting value coming 453// from different branches, or if the PHI node merges in an overdefined 454// value, then the PHI node becomes overdefined. 455// 2. If a phi node merges only constants in, and they all agree on value, the 456// PHI node becomes a constant value equal to that. 457// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 458// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 459// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 460// 6. If a conditional branch has a value that is constant, make the selected 461// destination executable 462// 7. If a conditional branch has a value that is overdefined, make all 463// successors executable. 464// 465void SCCP::visitPHINode(PHINode &PN) { 466 InstVal &PNIV = getValueState(&PN); 467 if (PNIV.isOverdefined()) return; // Quick exit 468 469 // Look at all of the executable operands of the PHI node. If any of them 470 // are overdefined, the PHI becomes overdefined as well. If they are all 471 // constant, and they agree with each other, the PHI becomes the identical 472 // constant. If they are constant and don't agree, the PHI is overdefined. 473 // If there are no executable operands, the PHI remains undefined. 474 // 475 Constant *OperandVal = 0; 476 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 477 InstVal &IV = getValueState(PN.getIncomingValue(i)); 478 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 479 480 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { 481 if (IV.isOverdefined()) { // PHI node becomes overdefined! 482 markOverdefined(PNIV, &PN); 483 return; 484 } 485 486 if (OperandVal == 0) { // Grab the first value... 487 OperandVal = IV.getConstant(); 488 } else { // Another value is being merged in! 489 // There is already a reachable operand. If we conflict with it, 490 // then the PHI node becomes overdefined. If we agree with it, we 491 // can continue on. 492 493 // Check to see if there are two different constants merging... 494 if (IV.getConstant() != OperandVal) { 495 // Yes there is. This means the PHI node is not constant. 496 // You must be overdefined poor PHI. 497 // 498 markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined 499 return; // I'm done analyzing you 500 } 501 } 502 } 503 } 504 505 // If we exited the loop, this means that the PHI node only has constant 506 // arguments that agree with each other(and OperandVal is the constant) or 507 // OperandVal is null because there are no defined incoming arguments. If 508 // this is the case, the PHI remains undefined. 509 // 510 if (OperandVal) 511 markConstant(PNIV, &PN, OperandVal); // Acquire operand value 512} 513 514void SCCP::visitTerminatorInst(TerminatorInst &TI) { 515 std::vector<bool> SuccFeasible; 516 getFeasibleSuccessors(TI, SuccFeasible); 517 518 BasicBlock *BB = TI.getParent(); 519 520 // Mark all feasible successors executable... 521 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 522 if (SuccFeasible[i]) 523 markEdgeExecutable(BB, TI.getSuccessor(i)); 524} 525 526void SCCP::visitCastInst(CastInst &I) { 527 Value *V = I.getOperand(0); 528 InstVal &VState = getValueState(V); 529 if (VState.isOverdefined()) { // Inherit overdefinedness of operand 530 markOverdefined(&I); 531 } else if (VState.isConstant()) { // Propagate constant value 532 Constant *Result = 533 ConstantFoldCastInstruction(VState.getConstant(), I.getType()); 534 535 if (Result) // If this instruction constant folds! 536 markConstant(&I, Result); 537 else 538 markOverdefined(&I); // Don't know how to fold this instruction. :( 539 } 540} 541 542// Handle BinaryOperators and Shift Instructions... 543void SCCP::visitBinaryOperator(Instruction &I) { 544 InstVal &V1State = getValueState(I.getOperand(0)); 545 InstVal &V2State = getValueState(I.getOperand(1)); 546 if (V1State.isOverdefined() || V2State.isOverdefined()) { 547 markOverdefined(&I); 548 } else if (V1State.isConstant() && V2State.isConstant()) { 549 Constant *Result = 0; 550 if (isa<BinaryOperator>(I)) 551 Result = ConstantFoldBinaryInstruction(I.getOpcode(), 552 V1State.getConstant(), 553 V2State.getConstant()); 554 else if (isa<ShiftInst>(I)) 555 Result = ConstantFoldShiftInstruction(I.getOpcode(), 556 V1State.getConstant(), 557 V2State.getConstant()); 558 if (Result) 559 markConstant(&I, Result); // This instruction constant folds! 560 else 561 markOverdefined(&I); // Don't know how to fold this instruction. :( 562 } 563} 564 565// Handle getelementptr instructions... if all operands are constants then we 566// can turn this into a getelementptr ConstantExpr. 567// 568void SCCP::visitGetElementPtrInst(GetElementPtrInst &I) { 569 std::vector<Constant*> Operands; 570 Operands.reserve(I.getNumOperands()); 571 572 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 573 InstVal &State = getValueState(I.getOperand(i)); 574 if (State.isUndefined()) 575 return; // Operands are not resolved yet... 576 else if (State.isOverdefined()) { 577 markOverdefined(&I); 578 return; 579 } 580 assert(State.isConstant() && "Unknown state!"); 581 Operands.push_back(State.getConstant()); 582 } 583 584 Constant *Ptr = Operands[0]; 585 Operands.erase(Operands.begin()); // Erase the pointer from idx list... 586 587 markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Operands)); 588} 589 590} // End llvm namespace 591