SCCP.cpp revision dade2d22babb0877fcbfd13fecd3742991bebed9
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18// Notice that: 19// * This pass has a habit of making definitions be dead. It is a good idea 20// to to run a DCE pass sometime after running this pass. 21// 22//===----------------------------------------------------------------------===// 23 24#define DEBUG_TYPE "sccp" 25#include "llvm/Transforms/Scalar.h" 26#include "llvm/Transforms/IPO.h" 27#include "llvm/Constants.h" 28#include "llvm/DerivedTypes.h" 29#include "llvm/Instructions.h" 30#include "llvm/Pass.h" 31#include "llvm/Support/InstVisitor.h" 32#include "llvm/Transforms/Utils/Local.h" 33#include "llvm/Support/CallSite.h" 34#include "llvm/Support/Debug.h" 35#include "llvm/ADT/hash_map" 36#include "llvm/ADT/Statistic.h" 37#include "llvm/ADT/STLExtras.h" 38#include <algorithm> 39#include <set> 40using namespace llvm; 41 42// LatticeVal class - This class represents the different lattice values that an 43// instruction may occupy. It is a simple class with value semantics. 44// 45namespace { 46 47class LatticeVal { 48 enum { 49 undefined, // This instruction has no known value 50 constant, // This instruction has a constant value 51 overdefined // This instruction has an unknown value 52 } LatticeValue; // The current lattice position 53 Constant *ConstantVal; // If Constant value, the current value 54public: 55 inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {} 56 57 // markOverdefined - Return true if this is a new status to be in... 58 inline bool markOverdefined() { 59 if (LatticeValue != overdefined) { 60 LatticeValue = overdefined; 61 return true; 62 } 63 return false; 64 } 65 66 // markConstant - Return true if this is a new status for us... 67 inline bool markConstant(Constant *V) { 68 if (LatticeValue != constant) { 69 LatticeValue = constant; 70 ConstantVal = V; 71 return true; 72 } else { 73 assert(ConstantVal == V && "Marking constant with different value"); 74 } 75 return false; 76 } 77 78 inline bool isUndefined() const { return LatticeValue == undefined; } 79 inline bool isConstant() const { return LatticeValue == constant; } 80 inline bool isOverdefined() const { return LatticeValue == overdefined; } 81 82 inline Constant *getConstant() const { 83 assert(isConstant() && "Cannot get the constant of a non-constant!"); 84 return ConstantVal; 85 } 86}; 87 88} // end anonymous namespace 89 90 91//===----------------------------------------------------------------------===// 92// 93/// SCCPSolver - This class is a general purpose solver for Sparse Conditional 94/// Constant Propagation. 95/// 96class SCCPSolver : public InstVisitor<SCCPSolver> { 97 std::set<BasicBlock*> BBExecutable;// The basic blocks that are executable 98 hash_map<Value*, LatticeVal> ValueState; // The state each value is in... 99 100 /// GlobalValue - If we are tracking any values for the contents of a global 101 /// variable, we keep a mapping from the constant accessor to the element of 102 /// the global, to the currently known value. If the value becomes 103 /// overdefined, it's entry is simply removed from this map. 104 hash_map<GlobalVariable*, LatticeVal> TrackedGlobals; 105 106 /// TrackedFunctionRetVals - If we are tracking arguments into and the return 107 /// value out of a function, it will have an entry in this map, indicating 108 /// what the known return value for the function is. 109 hash_map<Function*, LatticeVal> TrackedFunctionRetVals; 110 111 // The reason for two worklists is that overdefined is the lowest state 112 // on the lattice, and moving things to overdefined as fast as possible 113 // makes SCCP converge much faster. 114 // By having a separate worklist, we accomplish this because everything 115 // possibly overdefined will become overdefined at the soonest possible 116 // point. 117 std::vector<Value*> OverdefinedInstWorkList; 118 std::vector<Value*> InstWorkList; 119 120 121 std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list 122 123 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not 124 /// overdefined, despite the fact that the PHI node is overdefined. 125 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; 126 127 /// KnownFeasibleEdges - Entries in this set are edges which have already had 128 /// PHI nodes retriggered. 129 typedef std::pair<BasicBlock*,BasicBlock*> Edge; 130 std::set<Edge> KnownFeasibleEdges; 131public: 132 133 /// MarkBlockExecutable - This method can be used by clients to mark all of 134 /// the blocks that are known to be intrinsically live in the processed unit. 135 void MarkBlockExecutable(BasicBlock *BB) { 136 DEBUG(std::cerr << "Marking Block Executable: " << BB->getName() << "\n"); 137 BBExecutable.insert(BB); // Basic block is executable! 138 BBWorkList.push_back(BB); // Add the block to the work list! 139 } 140 141 /// TrackValueOfGlobalVariable - Clients can use this method to 142 /// inform the SCCPSolver that it should track loads and stores to the 143 /// specified global variable if it can. This is only legal to call if 144 /// performing Interprocedural SCCP. 145 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 146 const Type *ElTy = GV->getType()->getElementType(); 147 if (ElTy->isFirstClassType()) { 148 LatticeVal &IV = TrackedGlobals[GV]; 149 if (!isa<UndefValue>(GV->getInitializer())) 150 IV.markConstant(GV->getInitializer()); 151 } 152 } 153 154 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 155 /// and out of the specified function (which cannot have its address taken), 156 /// this method must be called. 157 void AddTrackedFunction(Function *F) { 158 assert(F->hasInternalLinkage() && "Can only track internal functions!"); 159 // Add an entry, F -> undef. 160 TrackedFunctionRetVals[F]; 161 } 162 163 /// Solve - Solve for constants and executable blocks. 164 /// 165 void Solve(); 166 167 /// ResolveBranchesIn - While solving the dataflow for a function, we assume 168 /// that branches on undef values cannot reach any of their successors. 169 /// However, this is not a safe assumption. After we solve dataflow, this 170 /// method should be use to handle this. If this returns true, the solver 171 /// should be rerun. 172 bool ResolveBranchesIn(Function &F); 173 174 /// getExecutableBlocks - Once we have solved for constants, return the set of 175 /// blocks that is known to be executable. 176 std::set<BasicBlock*> &getExecutableBlocks() { 177 return BBExecutable; 178 } 179 180 /// getValueMapping - Once we have solved for constants, return the mapping of 181 /// LLVM values to LatticeVals. 182 hash_map<Value*, LatticeVal> &getValueMapping() { 183 return ValueState; 184 } 185 186 /// getTrackedFunctionRetVals - Get the inferred return value map. 187 /// 188 const hash_map<Function*, LatticeVal> &getTrackedFunctionRetVals() { 189 return TrackedFunctionRetVals; 190 } 191 192 /// getTrackedGlobals - Get and return the set of inferred initializers for 193 /// global variables. 194 const hash_map<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 195 return TrackedGlobals; 196 } 197 198 199private: 200 // markConstant - Make a value be marked as "constant". If the value 201 // is not already a constant, add it to the instruction work list so that 202 // the users of the instruction are updated later. 203 // 204 inline void markConstant(LatticeVal &IV, Value *V, Constant *C) { 205 if (IV.markConstant(C)) { 206 DEBUG(std::cerr << "markConstant: " << *C << ": " << *V); 207 InstWorkList.push_back(V); 208 } 209 } 210 inline void markConstant(Value *V, Constant *C) { 211 markConstant(ValueState[V], V, C); 212 } 213 214 // markOverdefined - Make a value be marked as "overdefined". If the 215 // value is not already overdefined, add it to the overdefined instruction 216 // work list so that the users of the instruction are updated later. 217 218 inline void markOverdefined(LatticeVal &IV, Value *V) { 219 if (IV.markOverdefined()) { 220 DEBUG(std::cerr << "markOverdefined: "; 221 if (Function *F = dyn_cast<Function>(V)) 222 std::cerr << "Function '" << F->getName() << "'\n"; 223 else 224 std::cerr << *V); 225 // Only instructions go on the work list 226 OverdefinedInstWorkList.push_back(V); 227 } 228 } 229 inline void markOverdefined(Value *V) { 230 markOverdefined(ValueState[V], V); 231 } 232 233 inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) { 234 if (IV.isOverdefined() || MergeWithV.isUndefined()) 235 return; // Noop. 236 if (MergeWithV.isOverdefined()) 237 markOverdefined(IV, V); 238 else if (IV.isUndefined()) 239 markConstant(IV, V, MergeWithV.getConstant()); 240 else if (IV.getConstant() != MergeWithV.getConstant()) 241 markOverdefined(IV, V); 242 } 243 244 // getValueState - Return the LatticeVal object that corresponds to the value. 245 // This function is necessary because not all values should start out in the 246 // underdefined state... Argument's should be overdefined, and 247 // constants should be marked as constants. If a value is not known to be an 248 // Instruction object, then use this accessor to get its value from the map. 249 // 250 inline LatticeVal &getValueState(Value *V) { 251 hash_map<Value*, LatticeVal>::iterator I = ValueState.find(V); 252 if (I != ValueState.end()) return I->second; // Common case, in the map 253 254 if (Constant *CPV = dyn_cast<Constant>(V)) { 255 if (isa<UndefValue>(V)) { 256 // Nothing to do, remain undefined. 257 } else { 258 ValueState[CPV].markConstant(CPV); // Constants are constant 259 } 260 } 261 // All others are underdefined by default... 262 return ValueState[V]; 263 } 264 265 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB 266 // work list if it is not already executable... 267 // 268 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 269 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 270 return; // This edge is already known to be executable! 271 272 if (BBExecutable.count(Dest)) { 273 DEBUG(std::cerr << "Marking Edge Executable: " << Source->getName() 274 << " -> " << Dest->getName() << "\n"); 275 276 // The destination is already executable, but we just made an edge 277 // feasible that wasn't before. Revisit the PHI nodes in the block 278 // because they have potentially new operands. 279 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) 280 visitPHINode(*cast<PHINode>(I)); 281 282 } else { 283 MarkBlockExecutable(Dest); 284 } 285 } 286 287 // getFeasibleSuccessors - Return a vector of booleans to indicate which 288 // successors are reachable from a given terminator instruction. 289 // 290 void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs); 291 292 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 293 // block to the 'To' basic block is currently feasible... 294 // 295 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 296 297 // OperandChangedState - This method is invoked on all of the users of an 298 // instruction that was just changed state somehow.... Based on this 299 // information, we need to update the specified user of this instruction. 300 // 301 void OperandChangedState(User *U) { 302 // Only instructions use other variable values! 303 Instruction &I = cast<Instruction>(*U); 304 if (BBExecutable.count(I.getParent())) // Inst is executable? 305 visit(I); 306 } 307 308private: 309 friend class InstVisitor<SCCPSolver>; 310 311 // visit implementations - Something changed in this instruction... Either an 312 // operand made a transition, or the instruction is newly executable. Change 313 // the value type of I to reflect these changes if appropriate. 314 // 315 void visitPHINode(PHINode &I); 316 317 // Terminators 318 void visitReturnInst(ReturnInst &I); 319 void visitTerminatorInst(TerminatorInst &TI); 320 321 void visitCastInst(CastInst &I); 322 void visitSelectInst(SelectInst &I); 323 void visitBinaryOperator(Instruction &I); 324 void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } 325 326 // Instructions that cannot be folded away... 327 void visitStoreInst (Instruction &I); 328 void visitLoadInst (LoadInst &I); 329 void visitGetElementPtrInst(GetElementPtrInst &I); 330 void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); } 331 void visitInvokeInst (InvokeInst &II) { 332 visitCallSite(CallSite::get(&II)); 333 visitTerminatorInst(II); 334 } 335 void visitCallSite (CallSite CS); 336 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 337 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 338 void visitAllocationInst(Instruction &I) { markOverdefined(&I); } 339 void visitVANextInst (Instruction &I) { markOverdefined(&I); } 340 void visitVAArgInst (Instruction &I) { markOverdefined(&I); } 341 void visitFreeInst (Instruction &I) { /*returns void*/ } 342 343 void visitInstruction(Instruction &I) { 344 // If a new instruction is added to LLVM that we don't handle... 345 std::cerr << "SCCP: Don't know how to handle: " << I; 346 markOverdefined(&I); // Just in case 347 } 348}; 349 350// getFeasibleSuccessors - Return a vector of booleans to indicate which 351// successors are reachable from a given terminator instruction. 352// 353void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 354 std::vector<bool> &Succs) { 355 Succs.resize(TI.getNumSuccessors()); 356 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 357 if (BI->isUnconditional()) { 358 Succs[0] = true; 359 } else { 360 LatticeVal &BCValue = getValueState(BI->getCondition()); 361 if (BCValue.isOverdefined() || 362 (BCValue.isConstant() && !isa<ConstantBool>(BCValue.getConstant()))) { 363 // Overdefined condition variables, and branches on unfoldable constant 364 // conditions, mean the branch could go either way. 365 Succs[0] = Succs[1] = true; 366 } else if (BCValue.isConstant()) { 367 // Constant condition variables mean the branch can only go a single way 368 Succs[BCValue.getConstant() == ConstantBool::False] = true; 369 } 370 } 371 } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) { 372 // Invoke instructions successors are always executable. 373 Succs[0] = Succs[1] = true; 374 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 375 LatticeVal &SCValue = getValueState(SI->getCondition()); 376 if (SCValue.isOverdefined() || // Overdefined condition? 377 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) { 378 // All destinations are executable! 379 Succs.assign(TI.getNumSuccessors(), true); 380 } else if (SCValue.isConstant()) { 381 Constant *CPV = SCValue.getConstant(); 382 // Make sure to skip the "default value" which isn't a value 383 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { 384 if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... 385 Succs[i] = true; 386 return; 387 } 388 } 389 390 // Constant value not equal to any of the branches... must execute 391 // default branch then... 392 Succs[0] = true; 393 } 394 } else { 395 std::cerr << "SCCP: Don't know how to handle: " << TI; 396 Succs.assign(TI.getNumSuccessors(), true); 397 } 398} 399 400 401// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 402// block to the 'To' basic block is currently feasible... 403// 404bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 405 assert(BBExecutable.count(To) && "Dest should always be alive!"); 406 407 // Make sure the source basic block is executable!! 408 if (!BBExecutable.count(From)) return false; 409 410 // Check to make sure this edge itself is actually feasible now... 411 TerminatorInst *TI = From->getTerminator(); 412 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 413 if (BI->isUnconditional()) 414 return true; 415 else { 416 LatticeVal &BCValue = getValueState(BI->getCondition()); 417 if (BCValue.isOverdefined()) { 418 // Overdefined condition variables mean the branch could go either way. 419 return true; 420 } else if (BCValue.isConstant()) { 421 // Not branching on an evaluatable constant? 422 if (!isa<ConstantBool>(BCValue.getConstant())) return true; 423 424 // Constant condition variables mean the branch can only go a single way 425 return BI->getSuccessor(BCValue.getConstant() == 426 ConstantBool::False) == To; 427 } 428 return false; 429 } 430 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 431 // Invoke instructions successors are always executable. 432 return true; 433 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 434 LatticeVal &SCValue = getValueState(SI->getCondition()); 435 if (SCValue.isOverdefined()) { // Overdefined condition? 436 // All destinations are executable! 437 return true; 438 } else if (SCValue.isConstant()) { 439 Constant *CPV = SCValue.getConstant(); 440 if (!isa<ConstantInt>(CPV)) 441 return true; // not a foldable constant? 442 443 // Make sure to skip the "default value" which isn't a value 444 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 445 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... 446 return SI->getSuccessor(i) == To; 447 448 // Constant value not equal to any of the branches... must execute 449 // default branch then... 450 return SI->getDefaultDest() == To; 451 } 452 return false; 453 } else { 454 std::cerr << "Unknown terminator instruction: " << *TI; 455 abort(); 456 } 457} 458 459// visit Implementations - Something changed in this instruction... Either an 460// operand made a transition, or the instruction is newly executable. Change 461// the value type of I to reflect these changes if appropriate. This method 462// makes sure to do the following actions: 463// 464// 1. If a phi node merges two constants in, and has conflicting value coming 465// from different branches, or if the PHI node merges in an overdefined 466// value, then the PHI node becomes overdefined. 467// 2. If a phi node merges only constants in, and they all agree on value, the 468// PHI node becomes a constant value equal to that. 469// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 470// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 471// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 472// 6. If a conditional branch has a value that is constant, make the selected 473// destination executable 474// 7. If a conditional branch has a value that is overdefined, make all 475// successors executable. 476// 477void SCCPSolver::visitPHINode(PHINode &PN) { 478 LatticeVal &PNIV = getValueState(&PN); 479 if (PNIV.isOverdefined()) { 480 // There may be instructions using this PHI node that are not overdefined 481 // themselves. If so, make sure that they know that the PHI node operand 482 // changed. 483 std::multimap<PHINode*, Instruction*>::iterator I, E; 484 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); 485 if (I != E) { 486 std::vector<Instruction*> Users; 487 Users.reserve(std::distance(I, E)); 488 for (; I != E; ++I) Users.push_back(I->second); 489 while (!Users.empty()) { 490 visit(Users.back()); 491 Users.pop_back(); 492 } 493 } 494 return; // Quick exit 495 } 496 497 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 498 // and slow us down a lot. Just mark them overdefined. 499 if (PN.getNumIncomingValues() > 64) { 500 markOverdefined(PNIV, &PN); 501 return; 502 } 503 504 // Look at all of the executable operands of the PHI node. If any of them 505 // are overdefined, the PHI becomes overdefined as well. If they are all 506 // constant, and they agree with each other, the PHI becomes the identical 507 // constant. If they are constant and don't agree, the PHI is overdefined. 508 // If there are no executable operands, the PHI remains undefined. 509 // 510 Constant *OperandVal = 0; 511 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 512 LatticeVal &IV = getValueState(PN.getIncomingValue(i)); 513 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 514 515 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { 516 if (IV.isOverdefined()) { // PHI node becomes overdefined! 517 markOverdefined(PNIV, &PN); 518 return; 519 } 520 521 if (OperandVal == 0) { // Grab the first value... 522 OperandVal = IV.getConstant(); 523 } else { // Another value is being merged in! 524 // There is already a reachable operand. If we conflict with it, 525 // then the PHI node becomes overdefined. If we agree with it, we 526 // can continue on. 527 528 // Check to see if there are two different constants merging... 529 if (IV.getConstant() != OperandVal) { 530 // Yes there is. This means the PHI node is not constant. 531 // You must be overdefined poor PHI. 532 // 533 markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined 534 return; // I'm done analyzing you 535 } 536 } 537 } 538 } 539 540 // If we exited the loop, this means that the PHI node only has constant 541 // arguments that agree with each other(and OperandVal is the constant) or 542 // OperandVal is null because there are no defined incoming arguments. If 543 // this is the case, the PHI remains undefined. 544 // 545 if (OperandVal) 546 markConstant(PNIV, &PN, OperandVal); // Acquire operand value 547} 548 549void SCCPSolver::visitReturnInst(ReturnInst &I) { 550 if (I.getNumOperands() == 0) return; // Ret void 551 552 // If we are tracking the return value of this function, merge it in. 553 Function *F = I.getParent()->getParent(); 554 if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) { 555 hash_map<Function*, LatticeVal>::iterator TFRVI = 556 TrackedFunctionRetVals.find(F); 557 if (TFRVI != TrackedFunctionRetVals.end() && 558 !TFRVI->second.isOverdefined()) { 559 LatticeVal &IV = getValueState(I.getOperand(0)); 560 mergeInValue(TFRVI->second, F, IV); 561 } 562 } 563} 564 565 566void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 567 std::vector<bool> SuccFeasible; 568 getFeasibleSuccessors(TI, SuccFeasible); 569 570 BasicBlock *BB = TI.getParent(); 571 572 // Mark all feasible successors executable... 573 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 574 if (SuccFeasible[i]) 575 markEdgeExecutable(BB, TI.getSuccessor(i)); 576} 577 578void SCCPSolver::visitCastInst(CastInst &I) { 579 Value *V = I.getOperand(0); 580 LatticeVal &VState = getValueState(V); 581 if (VState.isOverdefined()) // Inherit overdefinedness of operand 582 markOverdefined(&I); 583 else if (VState.isConstant()) // Propagate constant value 584 markConstant(&I, ConstantExpr::getCast(VState.getConstant(), I.getType())); 585} 586 587void SCCPSolver::visitSelectInst(SelectInst &I) { 588 LatticeVal &CondValue = getValueState(I.getCondition()); 589 if (CondValue.isOverdefined()) 590 markOverdefined(&I); 591 else if (CondValue.isConstant()) { 592 if (CondValue.getConstant() == ConstantBool::True) { 593 LatticeVal &Val = getValueState(I.getTrueValue()); 594 if (Val.isOverdefined()) 595 markOverdefined(&I); 596 else if (Val.isConstant()) 597 markConstant(&I, Val.getConstant()); 598 } else if (CondValue.getConstant() == ConstantBool::False) { 599 LatticeVal &Val = getValueState(I.getFalseValue()); 600 if (Val.isOverdefined()) 601 markOverdefined(&I); 602 else if (Val.isConstant()) 603 markConstant(&I, Val.getConstant()); 604 } else 605 markOverdefined(&I); 606 } 607} 608 609// Handle BinaryOperators and Shift Instructions... 610void SCCPSolver::visitBinaryOperator(Instruction &I) { 611 LatticeVal &IV = ValueState[&I]; 612 if (IV.isOverdefined()) return; 613 614 LatticeVal &V1State = getValueState(I.getOperand(0)); 615 LatticeVal &V2State = getValueState(I.getOperand(1)); 616 617 if (V1State.isOverdefined() || V2State.isOverdefined()) { 618 // If both operands are PHI nodes, it is possible that this instruction has 619 // a constant value, despite the fact that the PHI node doesn't. Check for 620 // this condition now. 621 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 622 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 623 if (PN1->getParent() == PN2->getParent()) { 624 // Since the two PHI nodes are in the same basic block, they must have 625 // entries for the same predecessors. Walk the predecessor list, and 626 // if all of the incoming values are constants, and the result of 627 // evaluating this expression with all incoming value pairs is the 628 // same, then this expression is a constant even though the PHI node 629 // is not a constant! 630 LatticeVal Result; 631 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 632 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 633 BasicBlock *InBlock = PN1->getIncomingBlock(i); 634 LatticeVal &In2 = 635 getValueState(PN2->getIncomingValueForBlock(InBlock)); 636 637 if (In1.isOverdefined() || In2.isOverdefined()) { 638 Result.markOverdefined(); 639 break; // Cannot fold this operation over the PHI nodes! 640 } else if (In1.isConstant() && In2.isConstant()) { 641 Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), 642 In2.getConstant()); 643 if (Result.isUndefined()) 644 Result.markConstant(V); 645 else if (Result.isConstant() && Result.getConstant() != V) { 646 Result.markOverdefined(); 647 break; 648 } 649 } 650 } 651 652 // If we found a constant value here, then we know the instruction is 653 // constant despite the fact that the PHI nodes are overdefined. 654 if (Result.isConstant()) { 655 markConstant(IV, &I, Result.getConstant()); 656 // Remember that this instruction is virtually using the PHI node 657 // operands. 658 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 659 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 660 return; 661 } else if (Result.isUndefined()) { 662 return; 663 } 664 665 // Okay, this really is overdefined now. Since we might have 666 // speculatively thought that this was not overdefined before, and 667 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 668 // make sure to clean out any entries that we put there, for 669 // efficiency. 670 std::multimap<PHINode*, Instruction*>::iterator It, E; 671 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 672 while (It != E) { 673 if (It->second == &I) { 674 UsersOfOverdefinedPHIs.erase(It++); 675 } else 676 ++It; 677 } 678 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 679 while (It != E) { 680 if (It->second == &I) { 681 UsersOfOverdefinedPHIs.erase(It++); 682 } else 683 ++It; 684 } 685 } 686 687 markOverdefined(IV, &I); 688 } else if (V1State.isConstant() && V2State.isConstant()) { 689 markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 690 V2State.getConstant())); 691 } 692} 693 694// Handle getelementptr instructions... if all operands are constants then we 695// can turn this into a getelementptr ConstantExpr. 696// 697void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 698 LatticeVal &IV = ValueState[&I]; 699 if (IV.isOverdefined()) return; 700 701 std::vector<Constant*> Operands; 702 Operands.reserve(I.getNumOperands()); 703 704 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 705 LatticeVal &State = getValueState(I.getOperand(i)); 706 if (State.isUndefined()) 707 return; // Operands are not resolved yet... 708 else if (State.isOverdefined()) { 709 markOverdefined(IV, &I); 710 return; 711 } 712 assert(State.isConstant() && "Unknown state!"); 713 Operands.push_back(State.getConstant()); 714 } 715 716 Constant *Ptr = Operands[0]; 717 Operands.erase(Operands.begin()); // Erase the pointer from idx list... 718 719 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands)); 720} 721 722/// GetGEPGlobalInitializer - Given a constant and a getelementptr constantexpr, 723/// return the constant value being addressed by the constant expression, or 724/// null if something is funny. 725/// 726static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) { 727 if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType())) 728 return 0; // Do not allow stepping over the value! 729 730 // Loop over all of the operands, tracking down which value we are 731 // addressing... 732 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) 733 if (ConstantUInt *CU = dyn_cast<ConstantUInt>(CE->getOperand(i))) { 734 ConstantStruct *CS = dyn_cast<ConstantStruct>(C); 735 if (CS == 0) return 0; 736 if (CU->getValue() >= CS->getNumOperands()) return 0; 737 C = CS->getOperand(CU->getValue()); 738 } else if (ConstantSInt *CS = dyn_cast<ConstantSInt>(CE->getOperand(i))) { 739 ConstantArray *CA = dyn_cast<ConstantArray>(C); 740 if (CA == 0) return 0; 741 if ((uint64_t)CS->getValue() >= CA->getNumOperands()) return 0; 742 C = CA->getOperand(CS->getValue()); 743 } else 744 return 0; 745 return C; 746} 747 748void SCCPSolver::visitStoreInst(Instruction &SI) { 749 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 750 return; 751 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 752 hash_map<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 753 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 754 755 // Get the value we are storing into the global. 756 LatticeVal &PtrVal = getValueState(SI.getOperand(0)); 757 758 mergeInValue(I->second, GV, PtrVal); 759 if (I->second.isOverdefined()) 760 TrackedGlobals.erase(I); // No need to keep tracking this! 761} 762 763 764// Handle load instructions. If the operand is a constant pointer to a constant 765// global, we can replace the load with the loaded constant value! 766void SCCPSolver::visitLoadInst(LoadInst &I) { 767 LatticeVal &IV = ValueState[&I]; 768 if (IV.isOverdefined()) return; 769 770 LatticeVal &PtrVal = getValueState(I.getOperand(0)); 771 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 772 if (PtrVal.isConstant() && !I.isVolatile()) { 773 Value *Ptr = PtrVal.getConstant(); 774 if (isa<ConstantPointerNull>(Ptr)) { 775 // load null -> null 776 markConstant(IV, &I, Constant::getNullValue(I.getType())); 777 return; 778 } 779 780 // Transform load (constant global) into the value loaded. 781 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 782 if (GV->isConstant()) { 783 if (!GV->isExternal()) { 784 markConstant(IV, &I, GV->getInitializer()); 785 return; 786 } 787 } else if (!TrackedGlobals.empty()) { 788 // If we are tracking this global, merge in the known value for it. 789 hash_map<GlobalVariable*, LatticeVal>::iterator It = 790 TrackedGlobals.find(GV); 791 if (It != TrackedGlobals.end()) { 792 mergeInValue(IV, &I, It->second); 793 return; 794 } 795 } 796 } 797 798 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. 799 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 800 if (CE->getOpcode() == Instruction::GetElementPtr) 801 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) 802 if (GV->isConstant() && !GV->isExternal()) 803 if (Constant *V = 804 GetGEPGlobalInitializer(GV->getInitializer(), CE)) { 805 markConstant(IV, &I, V); 806 return; 807 } 808 } 809 810 // Otherwise we cannot say for certain what value this load will produce. 811 // Bail out. 812 markOverdefined(IV, &I); 813} 814 815void SCCPSolver::visitCallSite(CallSite CS) { 816 Function *F = CS.getCalledFunction(); 817 818 // If we are tracking this function, we must make sure to bind arguments as 819 // appropriate. 820 hash_map<Function*, LatticeVal>::iterator TFRVI =TrackedFunctionRetVals.end(); 821 if (F && F->hasInternalLinkage()) 822 TFRVI = TrackedFunctionRetVals.find(F); 823 824 if (TFRVI != TrackedFunctionRetVals.end()) { 825 // If this is the first call to the function hit, mark its entry block 826 // executable. 827 if (!BBExecutable.count(F->begin())) 828 MarkBlockExecutable(F->begin()); 829 830 CallSite::arg_iterator CAI = CS.arg_begin(); 831 for (Function::aiterator AI = F->abegin(), E = F->aend(); 832 AI != E; ++AI, ++CAI) { 833 LatticeVal &IV = ValueState[AI]; 834 if (!IV.isOverdefined()) 835 mergeInValue(IV, AI, getValueState(*CAI)); 836 } 837 } 838 Instruction *I = CS.getInstruction(); 839 if (I->getType() == Type::VoidTy) return; 840 841 LatticeVal &IV = ValueState[I]; 842 if (IV.isOverdefined()) return; 843 844 // Propagate the return value of the function to the value of the instruction. 845 if (TFRVI != TrackedFunctionRetVals.end()) { 846 mergeInValue(IV, I, TFRVI->second); 847 return; 848 } 849 850 if (F == 0 || !F->isExternal() || !canConstantFoldCallTo(F)) { 851 markOverdefined(IV, I); 852 return; 853 } 854 855 std::vector<Constant*> Operands; 856 Operands.reserve(I->getNumOperands()-1); 857 858 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 859 AI != E; ++AI) { 860 LatticeVal &State = getValueState(*AI); 861 if (State.isUndefined()) 862 return; // Operands are not resolved yet... 863 else if (State.isOverdefined()) { 864 markOverdefined(IV, I); 865 return; 866 } 867 assert(State.isConstant() && "Unknown state!"); 868 Operands.push_back(State.getConstant()); 869 } 870 871 if (Constant *C = ConstantFoldCall(F, Operands)) 872 markConstant(IV, I, C); 873 else 874 markOverdefined(IV, I); 875} 876 877 878void SCCPSolver::Solve() { 879 // Process the work lists until they are empty! 880 while (!BBWorkList.empty() || !InstWorkList.empty() || 881 !OverdefinedInstWorkList.empty()) { 882 // Process the instruction work list... 883 while (!OverdefinedInstWorkList.empty()) { 884 Value *I = OverdefinedInstWorkList.back(); 885 OverdefinedInstWorkList.pop_back(); 886 887 DEBUG(std::cerr << "\nPopped off OI-WL: " << *I); 888 889 // "I" got into the work list because it either made the transition from 890 // bottom to constant 891 // 892 // Anything on this worklist that is overdefined need not be visited 893 // since all of its users will have already been marked as overdefined 894 // Update all of the users of this instruction's value... 895 // 896 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 897 UI != E; ++UI) 898 OperandChangedState(*UI); 899 } 900 // Process the instruction work list... 901 while (!InstWorkList.empty()) { 902 Value *I = InstWorkList.back(); 903 InstWorkList.pop_back(); 904 905 DEBUG(std::cerr << "\nPopped off I-WL: " << *I); 906 907 // "I" got into the work list because it either made the transition from 908 // bottom to constant 909 // 910 // Anything on this worklist that is overdefined need not be visited 911 // since all of its users will have already been marked as overdefined. 912 // Update all of the users of this instruction's value... 913 // 914 if (!getValueState(I).isOverdefined()) 915 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 916 UI != E; ++UI) 917 OperandChangedState(*UI); 918 } 919 920 // Process the basic block work list... 921 while (!BBWorkList.empty()) { 922 BasicBlock *BB = BBWorkList.back(); 923 BBWorkList.pop_back(); 924 925 DEBUG(std::cerr << "\nPopped off BBWL: " << *BB); 926 927 // Notify all instructions in this basic block that they are newly 928 // executable. 929 visit(BB); 930 } 931 } 932} 933 934/// ResolveBranchesIn - While solving the dataflow for a function, we assume 935/// that branches on undef values cannot reach any of their successors. 936/// However, this is not a safe assumption. After we solve dataflow, this 937/// method should be use to handle this. If this returns true, the solver 938/// should be rerun. 939bool SCCPSolver::ResolveBranchesIn(Function &F) { 940 bool BranchesResolved = false; 941 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 942 if (BBExecutable.count(BB)) { 943 TerminatorInst *TI = BB->getTerminator(); 944 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 945 if (BI->isConditional()) { 946 LatticeVal &BCValue = getValueState(BI->getCondition()); 947 if (BCValue.isUndefined()) { 948 BI->setCondition(ConstantBool::True); 949 BranchesResolved = true; 950 visit(BI); 951 } 952 } 953 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 954 LatticeVal &SCValue = getValueState(SI->getCondition()); 955 if (SCValue.isUndefined()) { 956 const Type *CondTy = SI->getCondition()->getType(); 957 SI->setCondition(Constant::getNullValue(CondTy)); 958 BranchesResolved = true; 959 visit(SI); 960 } 961 } 962 } 963 964 return BranchesResolved; 965} 966 967 968namespace { 969 Statistic<> NumInstRemoved("sccp", "Number of instructions removed"); 970 Statistic<> NumDeadBlocks ("sccp", "Number of basic blocks unreachable"); 971 972 //===--------------------------------------------------------------------===// 973 // 974 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 975 /// Sparse Conditional COnstant Propagator. 976 /// 977 struct SCCP : public FunctionPass { 978 // runOnFunction - Run the Sparse Conditional Constant Propagation 979 // algorithm, and return true if the function was modified. 980 // 981 bool runOnFunction(Function &F); 982 983 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 984 AU.setPreservesCFG(); 985 } 986 }; 987 988 RegisterOpt<SCCP> X("sccp", "Sparse Conditional Constant Propagation"); 989} // end anonymous namespace 990 991 992// createSCCPPass - This is the public interface to this file... 993FunctionPass *llvm::createSCCPPass() { 994 return new SCCP(); 995} 996 997 998// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 999// and return true if the function was modified. 1000// 1001bool SCCP::runOnFunction(Function &F) { 1002 DEBUG(std::cerr << "SCCP on function '" << F.getName() << "'\n"); 1003 SCCPSolver Solver; 1004 1005 // Mark the first block of the function as being executable. 1006 Solver.MarkBlockExecutable(F.begin()); 1007 1008 // Mark all arguments to the function as being overdefined. 1009 hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1010 for (Function::aiterator AI = F.abegin(), E = F.aend(); AI != E; ++AI) 1011 Values[AI].markOverdefined(); 1012 1013 // Solve for constants. 1014 bool ResolvedBranches = true; 1015 while (ResolvedBranches) { 1016 Solver.Solve(); 1017 DEBUG(std::cerr << "RESOLVING UNDEF BRANCHES\n"); 1018 ResolvedBranches = Solver.ResolveBranchesIn(F); 1019 } 1020 1021 bool MadeChanges = false; 1022 1023 // If we decided that there are basic blocks that are dead in this function, 1024 // delete their contents now. Note that we cannot actually delete the blocks, 1025 // as we cannot modify the CFG of the function. 1026 // 1027 std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks(); 1028 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1029 if (!ExecutableBBs.count(BB)) { 1030 DEBUG(std::cerr << " BasicBlock Dead:" << *BB); 1031 ++NumDeadBlocks; 1032 1033 // Delete the instructions backwards, as it has a reduced likelihood of 1034 // having to update as many def-use and use-def chains. 1035 std::vector<Instruction*> Insts; 1036 for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator(); 1037 I != E; ++I) 1038 Insts.push_back(I); 1039 while (!Insts.empty()) { 1040 Instruction *I = Insts.back(); 1041 Insts.pop_back(); 1042 if (!I->use_empty()) 1043 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1044 BB->getInstList().erase(I); 1045 MadeChanges = true; 1046 ++NumInstRemoved; 1047 } 1048 } else { 1049 // Iterate over all of the instructions in a function, replacing them with 1050 // constants if we have found them to be of constant values. 1051 // 1052 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1053 Instruction *Inst = BI++; 1054 if (Inst->getType() != Type::VoidTy) { 1055 LatticeVal &IV = Values[Inst]; 1056 if (IV.isConstant() || IV.isUndefined() && 1057 !isa<TerminatorInst>(Inst)) { 1058 Constant *Const = IV.isConstant() 1059 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1060 DEBUG(std::cerr << " Constant: " << *Const << " = " << *Inst); 1061 1062 // Replaces all of the uses of a variable with uses of the constant. 1063 Inst->replaceAllUsesWith(Const); 1064 1065 // Delete the instruction. 1066 BB->getInstList().erase(Inst); 1067 1068 // Hey, we just changed something! 1069 MadeChanges = true; 1070 ++NumInstRemoved; 1071 } 1072 } 1073 } 1074 } 1075 1076 return MadeChanges; 1077} 1078 1079namespace { 1080 Statistic<> IPNumInstRemoved("ipsccp", "Number of instructions removed"); 1081 Statistic<> IPNumDeadBlocks ("ipsccp", "Number of basic blocks unreachable"); 1082 Statistic<> IPNumArgsElimed ("ipsccp", 1083 "Number of arguments constant propagated"); 1084 Statistic<> IPNumGlobalConst("ipsccp", 1085 "Number of globals found to be constant"); 1086 1087 //===--------------------------------------------------------------------===// 1088 // 1089 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1090 /// Constant Propagation. 1091 /// 1092 struct IPSCCP : public ModulePass { 1093 bool runOnModule(Module &M); 1094 }; 1095 1096 RegisterOpt<IPSCCP> 1097 Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation"); 1098} // end anonymous namespace 1099 1100// createIPSCCPPass - This is the public interface to this file... 1101ModulePass *llvm::createIPSCCPPass() { 1102 return new IPSCCP(); 1103} 1104 1105 1106static bool AddressIsTaken(GlobalValue *GV) { 1107 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 1108 UI != E; ++UI) 1109 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 1110 if (SI->getOperand(0) == GV || SI->isVolatile()) 1111 return true; // Storing addr of GV. 1112 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) { 1113 // Make sure we are calling the function, not passing the address. 1114 CallSite CS = CallSite::get(cast<Instruction>(*UI)); 1115 for (CallSite::arg_iterator AI = CS.arg_begin(), 1116 E = CS.arg_end(); AI != E; ++AI) 1117 if (*AI == GV) 1118 return true; 1119 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1120 if (LI->isVolatile()) 1121 return true; 1122 } else { 1123 return true; 1124 } 1125 return false; 1126} 1127 1128bool IPSCCP::runOnModule(Module &M) { 1129 SCCPSolver Solver; 1130 1131 // Loop over all functions, marking arguments to those with their addresses 1132 // taken or that are external as overdefined. 1133 // 1134 hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1135 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1136 if (!F->hasInternalLinkage() || AddressIsTaken(F)) { 1137 if (!F->isExternal()) 1138 Solver.MarkBlockExecutable(F->begin()); 1139 for (Function::aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI) 1140 Values[AI].markOverdefined(); 1141 } else { 1142 Solver.AddTrackedFunction(F); 1143 } 1144 1145 // Loop over global variables. We inform the solver about any internal global 1146 // variables that do not have their 'addresses taken'. If they don't have 1147 // their addresses taken, we can propagate constants through them. 1148 for (Module::giterator G = M.gbegin(), E = M.gend(); G != E; ++G) 1149 if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G)) 1150 Solver.TrackValueOfGlobalVariable(G); 1151 1152 // Solve for constants. 1153 bool ResolvedBranches = true; 1154 while (ResolvedBranches) { 1155 Solver.Solve(); 1156 1157 DEBUG(std::cerr << "RESOLVING UNDEF BRANCHES\n"); 1158 ResolvedBranches = false; 1159 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1160 ResolvedBranches |= Solver.ResolveBranchesIn(*F); 1161 } 1162 1163 bool MadeChanges = false; 1164 1165 // Iterate over all of the instructions in the module, replacing them with 1166 // constants if we have found them to be of constant values. 1167 // 1168 std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks(); 1169 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1170 for (Function::aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI) 1171 if (!AI->use_empty()) { 1172 LatticeVal &IV = Values[AI]; 1173 if (IV.isConstant() || IV.isUndefined()) { 1174 Constant *CST = IV.isConstant() ? 1175 IV.getConstant() : UndefValue::get(AI->getType()); 1176 DEBUG(std::cerr << "*** Arg " << *AI << " = " << *CST <<"\n"); 1177 1178 // Replaces all of the uses of a variable with uses of the 1179 // constant. 1180 AI->replaceAllUsesWith(CST); 1181 ++IPNumArgsElimed; 1182 } 1183 } 1184 1185 std::vector<BasicBlock*> BlocksToErase; 1186 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1187 if (!ExecutableBBs.count(BB)) { 1188 DEBUG(std::cerr << " BasicBlock Dead:" << *BB); 1189 ++IPNumDeadBlocks; 1190 1191 // Delete the instructions backwards, as it has a reduced likelihood of 1192 // having to update as many def-use and use-def chains. 1193 std::vector<Instruction*> Insts; 1194 TerminatorInst *TI = BB->getTerminator(); 1195 for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I) 1196 Insts.push_back(I); 1197 1198 while (!Insts.empty()) { 1199 Instruction *I = Insts.back(); 1200 Insts.pop_back(); 1201 if (!I->use_empty()) 1202 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1203 BB->getInstList().erase(I); 1204 MadeChanges = true; 1205 ++IPNumInstRemoved; 1206 } 1207 1208 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1209 BasicBlock *Succ = TI->getSuccessor(i); 1210 if (Succ->begin() != Succ->end() && isa<PHINode>(Succ->begin())) 1211 TI->getSuccessor(i)->removePredecessor(BB); 1212 } 1213 if (!TI->use_empty()) 1214 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1215 BB->getInstList().erase(TI); 1216 1217 if (&*BB != &F->front()) 1218 BlocksToErase.push_back(BB); 1219 else 1220 new UnreachableInst(BB); 1221 1222 } else { 1223 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1224 Instruction *Inst = BI++; 1225 if (Inst->getType() != Type::VoidTy) { 1226 LatticeVal &IV = Values[Inst]; 1227 if (IV.isConstant() || IV.isUndefined() && 1228 !isa<TerminatorInst>(Inst)) { 1229 Constant *Const = IV.isConstant() 1230 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1231 DEBUG(std::cerr << " Constant: " << *Const << " = " << *Inst); 1232 1233 // Replaces all of the uses of a variable with uses of the 1234 // constant. 1235 Inst->replaceAllUsesWith(Const); 1236 1237 // Delete the instruction. 1238 if (!isa<TerminatorInst>(Inst) && !isa<CallInst>(Inst)) 1239 BB->getInstList().erase(Inst); 1240 1241 // Hey, we just changed something! 1242 MadeChanges = true; 1243 ++IPNumInstRemoved; 1244 } 1245 } 1246 } 1247 } 1248 1249 // Now that all instructions in the function are constant folded, erase dead 1250 // blocks, because we can now use ConstantFoldTerminator to get rid of 1251 // in-edges. 1252 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1253 // If there are any PHI nodes in this successor, drop entries for BB now. 1254 BasicBlock *DeadBB = BlocksToErase[i]; 1255 while (!DeadBB->use_empty()) { 1256 Instruction *I = cast<Instruction>(DeadBB->use_back()); 1257 bool Folded = ConstantFoldTerminator(I->getParent()); 1258 assert(Folded && "Didn't fold away reference to block!"); 1259 } 1260 1261 // Finally, delete the basic block. 1262 F->getBasicBlockList().erase(DeadBB); 1263 } 1264 } 1265 1266 // If we inferred constant or undef return values for a function, we replaced 1267 // all call uses with the inferred value. This means we don't need to bother 1268 // actually returning anything from the function. Replace all return 1269 // instructions with return undef. 1270 const hash_map<Function*, LatticeVal> &RV =Solver.getTrackedFunctionRetVals(); 1271 for (hash_map<Function*, LatticeVal>::const_iterator I = RV.begin(), 1272 E = RV.end(); I != E; ++I) 1273 if (!I->second.isOverdefined() && 1274 I->first->getReturnType() != Type::VoidTy) { 1275 Function *F = I->first; 1276 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1277 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1278 if (!isa<UndefValue>(RI->getOperand(0))) 1279 RI->setOperand(0, UndefValue::get(F->getReturnType())); 1280 } 1281 1282 // If we infered constant or undef values for globals variables, we can delete 1283 // the global and any stores that remain to it. 1284 const hash_map<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1285 for (hash_map<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1286 E = TG.end(); I != E; ++I) { 1287 GlobalVariable *GV = I->first; 1288 assert(!I->second.isOverdefined() && 1289 "Overdefined values should have been taken out of the map!"); 1290 DEBUG(std::cerr << "Found that GV '" << GV->getName()<< "' is constant!\n"); 1291 while (!GV->use_empty()) { 1292 StoreInst *SI = cast<StoreInst>(GV->use_back()); 1293 SI->eraseFromParent(); 1294 } 1295 M.getGlobalList().erase(GV); 1296 ++IPNumGlobalConst; 1297 } 1298 1299 return MadeChanges; 1300} 1301