SCCP.cpp revision dd278277330c5a333ab1f6398c30997af08ffd69
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18// Notice that:
19//   * This pass has a habit of making definitions be dead.  It is a good idea
20//     to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/Pass.h"
30#include "llvm/Type.h"
31#include "llvm/Support/InstVisitor.h"
32#include "llvm/Transforms/Utils/Local.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/ADT/hash_map"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/ADT/STLExtras.h"
37#include <algorithm>
38#include <set>
39using namespace llvm;
40
41// InstVal class - This class represents the different lattice values that an
42// instruction may occupy.  It is a simple class with value semantics.
43//
44namespace {
45  Statistic<> NumInstRemoved("sccp", "Number of instructions removed");
46
47class InstVal {
48  enum {
49    undefined,           // This instruction has no known value
50    constant,            // This instruction has a constant value
51    overdefined          // This instruction has an unknown value
52  } LatticeValue;        // The current lattice position
53  Constant *ConstantVal; // If Constant value, the current value
54public:
55  inline InstVal() : LatticeValue(undefined), ConstantVal(0) {}
56
57  // markOverdefined - Return true if this is a new status to be in...
58  inline bool markOverdefined() {
59    if (LatticeValue != overdefined) {
60      LatticeValue = overdefined;
61      return true;
62    }
63    return false;
64  }
65
66  // markConstant - Return true if this is a new status for us...
67  inline bool markConstant(Constant *V) {
68    if (LatticeValue != constant) {
69      LatticeValue = constant;
70      ConstantVal = V;
71      return true;
72    } else {
73      assert(ConstantVal == V && "Marking constant with different value");
74    }
75    return false;
76  }
77
78  inline bool isUndefined()   const { return LatticeValue == undefined; }
79  inline bool isConstant()    const { return LatticeValue == constant; }
80  inline bool isOverdefined() const { return LatticeValue == overdefined; }
81
82  inline Constant *getConstant() const {
83    assert(isConstant() && "Cannot get the constant of a non-constant!");
84    return ConstantVal;
85  }
86};
87
88} // end anonymous namespace
89
90
91//===----------------------------------------------------------------------===//
92// SCCP Class
93//
94// This class does all of the work of Sparse Conditional Constant Propagation.
95//
96namespace {
97class SCCP : public FunctionPass, public InstVisitor<SCCP> {
98  std::set<BasicBlock*>     BBExecutable;// The basic blocks that are executable
99  hash_map<Value*, InstVal> ValueState;  // The state each value is in...
100
101  // The reason for two worklists is that overdefined is the lowest state
102  // on the lattice, and moving things to overdefined as fast as possible
103  // makes SCCP converge much faster.
104  // By having a separate worklist, we accomplish this because everything
105  // possibly overdefined will become overdefined at the soonest possible
106  // point.
107  std::vector<Instruction*> OverdefinedInstWorkList;// The overdefined
108                                                    // instruction work list
109  std::vector<Instruction*> InstWorkList;// The instruction work list
110
111
112  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
113
114  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
115  /// overdefined, despite the fact that the PHI node is overdefined.
116  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
117
118  /// KnownFeasibleEdges - Entries in this set are edges which have already had
119  /// PHI nodes retriggered.
120  typedef std::pair<BasicBlock*,BasicBlock*> Edge;
121  std::set<Edge> KnownFeasibleEdges;
122public:
123
124  // runOnFunction - Run the Sparse Conditional Constant Propagation algorithm,
125  // and return true if the function was modified.
126  //
127  bool runOnFunction(Function &F);
128
129  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
130    AU.setPreservesCFG();
131  }
132
133
134  //===--------------------------------------------------------------------===//
135  // The implementation of this class
136  //
137private:
138  friend class InstVisitor<SCCP>;        // Allow callbacks from visitor
139
140  // markConstant - Make a value be marked as "constant".  If the value
141  // is not already a constant, add it to the instruction work list so that
142  // the users of the instruction are updated later.
143  //
144  inline void markConstant(InstVal &IV, Instruction *I, Constant *C) {
145    if (IV.markConstant(C)) {
146      DEBUG(std::cerr << "markConstant: " << *C << ": " << *I);
147      InstWorkList.push_back(I);
148    }
149  }
150  inline void markConstant(Instruction *I, Constant *C) {
151    markConstant(ValueState[I], I, C);
152  }
153
154  // markOverdefined - Make a value be marked as "overdefined". If the
155  // value is not already overdefined, add it to the overdefined instruction
156  // work list so that the users of the instruction are updated later.
157
158  inline void markOverdefined(InstVal &IV, Instruction *I) {
159    if (IV.markOverdefined()) {
160      DEBUG(std::cerr << "markOverdefined: " << *I);
161      OverdefinedInstWorkList.push_back(I);  // Only instructions go on the work list
162    }
163  }
164  inline void markOverdefined(Instruction *I) {
165    markOverdefined(ValueState[I], I);
166  }
167
168  // getValueState - Return the InstVal object that corresponds to the value.
169  // This function is necessary because not all values should start out in the
170  // underdefined state... Argument's should be overdefined, and
171  // constants should be marked as constants.  If a value is not known to be an
172  // Instruction object, then use this accessor to get its value from the map.
173  //
174  inline InstVal &getValueState(Value *V) {
175    hash_map<Value*, InstVal>::iterator I = ValueState.find(V);
176    if (I != ValueState.end()) return I->second;  // Common case, in the map
177
178    if (Constant *CPV = dyn_cast<Constant>(V)) {  // Constants are constant
179      ValueState[CPV].markConstant(CPV);
180    } else if (isa<Argument>(V)) {                // Arguments are overdefined
181      ValueState[V].markOverdefined();
182    }
183    // All others are underdefined by default...
184    return ValueState[V];
185  }
186
187  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
188  // work list if it is not already executable...
189  //
190  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
191    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
192      return;  // This edge is already known to be executable!
193
194    if (BBExecutable.count(Dest)) {
195      DEBUG(std::cerr << "Marking Edge Executable: " << Source->getName()
196                      << " -> " << Dest->getName() << "\n");
197
198      // The destination is already executable, but we just made an edge
199      // feasible that wasn't before.  Revisit the PHI nodes in the block
200      // because they have potentially new operands.
201      for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) {
202        PHINode *PN = cast<PHINode>(I);
203        visitPHINode(*PN);
204      }
205
206    } else {
207      DEBUG(std::cerr << "Marking Block Executable: " << Dest->getName()<<"\n");
208      BBExecutable.insert(Dest);   // Basic block is executable!
209      BBWorkList.push_back(Dest);  // Add the block to the work list!
210    }
211  }
212
213
214  // visit implementations - Something changed in this instruction... Either an
215  // operand made a transition, or the instruction is newly executable.  Change
216  // the value type of I to reflect these changes if appropriate.
217  //
218  void visitPHINode(PHINode &I);
219
220  // Terminators
221  void visitReturnInst(ReturnInst &I) { /*does not have an effect*/ }
222  void visitTerminatorInst(TerminatorInst &TI);
223
224  void visitCastInst(CastInst &I);
225  void visitSelectInst(SelectInst &I);
226  void visitBinaryOperator(Instruction &I);
227  void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
228
229  // Instructions that cannot be folded away...
230  void visitStoreInst     (Instruction &I) { /*returns void*/ }
231  void visitLoadInst      (LoadInst &I);
232  void visitGetElementPtrInst(GetElementPtrInst &I);
233  void visitCallInst      (CallInst &I);
234  void visitInvokeInst    (TerminatorInst &I) {
235    if (I.getType() != Type::VoidTy) markOverdefined(&I);
236    visitTerminatorInst(I);
237  }
238  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
239  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
240  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
241  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
242  void visitFreeInst      (Instruction &I) { /*returns void*/ }
243
244  void visitInstruction(Instruction &I) {
245    // If a new instruction is added to LLVM that we don't handle...
246    std::cerr << "SCCP: Don't know how to handle: " << I;
247    markOverdefined(&I);   // Just in case
248  }
249
250  // getFeasibleSuccessors - Return a vector of booleans to indicate which
251  // successors are reachable from a given terminator instruction.
252  //
253  void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs);
254
255  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
256  // block to the 'To' basic block is currently feasible...
257  //
258  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
259
260  // OperandChangedState - This method is invoked on all of the users of an
261  // instruction that was just changed state somehow....  Based on this
262  // information, we need to update the specified user of this instruction.
263  //
264  void OperandChangedState(User *U) {
265    // Only instructions use other variable values!
266    Instruction &I = cast<Instruction>(*U);
267    if (BBExecutable.count(I.getParent()))   // Inst is executable?
268      visit(I);
269  }
270};
271
272  RegisterOpt<SCCP> X("sccp", "Sparse Conditional Constant Propagation");
273} // end anonymous namespace
274
275
276// createSCCPPass - This is the public interface to this file...
277FunctionPass *llvm::createSCCPPass() {
278  return new SCCP();
279}
280
281
282//===----------------------------------------------------------------------===//
283// SCCP Class Implementation
284
285
286// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
287// and return true if the function was modified.
288//
289bool SCCP::runOnFunction(Function &F) {
290  // Mark the first block of the function as being executable...
291  BBExecutable.insert(F.begin());   // Basic block is executable!
292  BBWorkList.push_back(F.begin());  // Add the block to the work list!
293
294  // Process the work lists until they are empty!
295  while (!BBWorkList.empty() || !InstWorkList.empty() ||
296	 !OverdefinedInstWorkList.empty()) {
297    // Process the instruction work list...
298    while (!OverdefinedInstWorkList.empty()) {
299      Instruction *I = OverdefinedInstWorkList.back();
300      OverdefinedInstWorkList.pop_back();
301
302      DEBUG(std::cerr << "\nPopped off OI-WL: " << I);
303
304      // "I" got into the work list because it either made the transition from
305      // bottom to constant
306      //
307      // Anything on this worklist that is overdefined need not be visited
308      // since all of its users will have already been marked as overdefined
309      // Update all of the users of this instruction's value...
310      //
311      for_each(I->use_begin(), I->use_end(),
312	       bind_obj(this, &SCCP::OperandChangedState));
313    }
314    // Process the instruction work list...
315    while (!InstWorkList.empty()) {
316      Instruction *I = InstWorkList.back();
317      InstWorkList.pop_back();
318
319      DEBUG(std::cerr << "\nPopped off I-WL: " << *I);
320
321      // "I" got into the work list because it either made the transition from
322      // bottom to constant
323      //
324      // Anything on this worklist that is overdefined need not be visited
325      // since all of its users will have already been marked as overdefined.
326      // Update all of the users of this instruction's value...
327      //
328      InstVal &Ival = getValueState (I);
329      if (!Ival.isOverdefined())
330	for_each(I->use_begin(), I->use_end(),
331		 bind_obj(this, &SCCP::OperandChangedState));
332    }
333
334    // Process the basic block work list...
335    while (!BBWorkList.empty()) {
336      BasicBlock *BB = BBWorkList.back();
337      BBWorkList.pop_back();
338
339      DEBUG(std::cerr << "\nPopped off BBWL: " << *BB);
340
341      // Notify all instructions in this basic block that they are newly
342      // executable.
343      visit(BB);
344    }
345  }
346
347  DEBUG(for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
348          if (!BBExecutable.count(I))
349             std::cerr << "BasicBlock Dead:" << *I);
350
351  // Iterate over all of the instructions in a function, replacing them with
352  // constants if we have found them to be of constant values.
353  //
354  bool MadeChanges = false;
355  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB)
356    for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) {
357      Instruction &Inst = *BI;
358      InstVal &IV = ValueState[&Inst];
359      if (IV.isConstant()) {
360        Constant *Const = IV.getConstant();
361        DEBUG(std::cerr << "Constant: " << *Const << " = " << Inst);
362
363        // Replaces all of the uses of a variable with uses of the constant.
364        Inst.replaceAllUsesWith(Const);
365
366        // Remove the operator from the list of definitions... and delete it.
367        BI = BB->getInstList().erase(BI);
368
369        // Hey, we just changed something!
370        MadeChanges = true;
371        ++NumInstRemoved;
372      } else {
373        ++BI;
374      }
375    }
376
377  // Reset state so that the next invocation will have empty data structures
378  BBExecutable.clear();
379  ValueState.clear();
380  std::vector<Instruction*>().swap(OverdefinedInstWorkList);
381  std::vector<Instruction*>().swap(InstWorkList);
382  std::vector<BasicBlock*>().swap(BBWorkList);
383
384  return MadeChanges;
385}
386
387
388// getFeasibleSuccessors - Return a vector of booleans to indicate which
389// successors are reachable from a given terminator instruction.
390//
391void SCCP::getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs) {
392  Succs.resize(TI.getNumSuccessors());
393  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
394    if (BI->isUnconditional()) {
395      Succs[0] = true;
396    } else {
397      InstVal &BCValue = getValueState(BI->getCondition());
398      if (BCValue.isOverdefined() ||
399          (BCValue.isConstant() && !isa<ConstantBool>(BCValue.getConstant()))) {
400        // Overdefined condition variables, and branches on unfoldable constant
401        // conditions, mean the branch could go either way.
402        Succs[0] = Succs[1] = true;
403      } else if (BCValue.isConstant()) {
404        // Constant condition variables mean the branch can only go a single way
405        Succs[BCValue.getConstant() == ConstantBool::False] = true;
406      }
407    }
408  } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) {
409    // Invoke instructions successors are always executable.
410    Succs[0] = Succs[1] = true;
411  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
412    InstVal &SCValue = getValueState(SI->getCondition());
413    if (SCValue.isOverdefined() ||   // Overdefined condition?
414        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
415      // All destinations are executable!
416      Succs.assign(TI.getNumSuccessors(), true);
417    } else if (SCValue.isConstant()) {
418      Constant *CPV = SCValue.getConstant();
419      // Make sure to skip the "default value" which isn't a value
420      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
421        if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
422          Succs[i] = true;
423          return;
424        }
425      }
426
427      // Constant value not equal to any of the branches... must execute
428      // default branch then...
429      Succs[0] = true;
430    }
431  } else {
432    std::cerr << "SCCP: Don't know how to handle: " << TI;
433    Succs.assign(TI.getNumSuccessors(), true);
434  }
435}
436
437
438// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
439// block to the 'To' basic block is currently feasible...
440//
441bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
442  assert(BBExecutable.count(To) && "Dest should always be alive!");
443
444  // Make sure the source basic block is executable!!
445  if (!BBExecutable.count(From)) return false;
446
447  // Check to make sure this edge itself is actually feasible now...
448  TerminatorInst *TI = From->getTerminator();
449  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
450    if (BI->isUnconditional())
451      return true;
452    else {
453      InstVal &BCValue = getValueState(BI->getCondition());
454      if (BCValue.isOverdefined()) {
455        // Overdefined condition variables mean the branch could go either way.
456        return true;
457      } else if (BCValue.isConstant()) {
458        // Not branching on an evaluatable constant?
459        if (!isa<ConstantBool>(BCValue.getConstant())) return true;
460
461        // Constant condition variables mean the branch can only go a single way
462        return BI->getSuccessor(BCValue.getConstant() ==
463                                       ConstantBool::False) == To;
464      }
465      return false;
466    }
467  } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
468    // Invoke instructions successors are always executable.
469    return true;
470  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
471    InstVal &SCValue = getValueState(SI->getCondition());
472    if (SCValue.isOverdefined()) {  // Overdefined condition?
473      // All destinations are executable!
474      return true;
475    } else if (SCValue.isConstant()) {
476      Constant *CPV = SCValue.getConstant();
477      if (!isa<ConstantInt>(CPV))
478        return true;  // not a foldable constant?
479
480      // Make sure to skip the "default value" which isn't a value
481      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
482        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
483          return SI->getSuccessor(i) == To;
484
485      // Constant value not equal to any of the branches... must execute
486      // default branch then...
487      return SI->getDefaultDest() == To;
488    }
489    return false;
490  } else {
491    std::cerr << "Unknown terminator instruction: " << *TI;
492    abort();
493  }
494}
495
496// visit Implementations - Something changed in this instruction... Either an
497// operand made a transition, or the instruction is newly executable.  Change
498// the value type of I to reflect these changes if appropriate.  This method
499// makes sure to do the following actions:
500//
501// 1. If a phi node merges two constants in, and has conflicting value coming
502//    from different branches, or if the PHI node merges in an overdefined
503//    value, then the PHI node becomes overdefined.
504// 2. If a phi node merges only constants in, and they all agree on value, the
505//    PHI node becomes a constant value equal to that.
506// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
507// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
508// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
509// 6. If a conditional branch has a value that is constant, make the selected
510//    destination executable
511// 7. If a conditional branch has a value that is overdefined, make all
512//    successors executable.
513//
514void SCCP::visitPHINode(PHINode &PN) {
515  InstVal &PNIV = getValueState(&PN);
516  if (PNIV.isOverdefined()) {
517    // There may be instructions using this PHI node that are not overdefined
518    // themselves.  If so, make sure that they know that the PHI node operand
519    // changed.
520    std::multimap<PHINode*, Instruction*>::iterator I, E;
521    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
522    if (I != E) {
523      std::vector<Instruction*> Users;
524      Users.reserve(std::distance(I, E));
525      for (; I != E; ++I) Users.push_back(I->second);
526      while (!Users.empty()) {
527        visit(Users.back());
528        Users.pop_back();
529      }
530    }
531    return;  // Quick exit
532  }
533
534  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
535  // and slow us down a lot.  Just mark them overdefined.
536  if (PN.getNumIncomingValues() > 64) {
537    markOverdefined(PNIV, &PN);
538    return;
539  }
540
541  // Look at all of the executable operands of the PHI node.  If any of them
542  // are overdefined, the PHI becomes overdefined as well.  If they are all
543  // constant, and they agree with each other, the PHI becomes the identical
544  // constant.  If they are constant and don't agree, the PHI is overdefined.
545  // If there are no executable operands, the PHI remains undefined.
546  //
547  Constant *OperandVal = 0;
548  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
549    InstVal &IV = getValueState(PN.getIncomingValue(i));
550    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
551
552    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
553      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
554        markOverdefined(PNIV, &PN);
555        return;
556      }
557
558      if (OperandVal == 0) {   // Grab the first value...
559        OperandVal = IV.getConstant();
560      } else {                // Another value is being merged in!
561        // There is already a reachable operand.  If we conflict with it,
562        // then the PHI node becomes overdefined.  If we agree with it, we
563        // can continue on.
564
565        // Check to see if there are two different constants merging...
566        if (IV.getConstant() != OperandVal) {
567          // Yes there is.  This means the PHI node is not constant.
568          // You must be overdefined poor PHI.
569          //
570          markOverdefined(PNIV, &PN);    // The PHI node now becomes overdefined
571          return;    // I'm done analyzing you
572        }
573      }
574    }
575  }
576
577  // If we exited the loop, this means that the PHI node only has constant
578  // arguments that agree with each other(and OperandVal is the constant) or
579  // OperandVal is null because there are no defined incoming arguments.  If
580  // this is the case, the PHI remains undefined.
581  //
582  if (OperandVal)
583    markConstant(PNIV, &PN, OperandVal);      // Acquire operand value
584}
585
586void SCCP::visitTerminatorInst(TerminatorInst &TI) {
587  std::vector<bool> SuccFeasible;
588  getFeasibleSuccessors(TI, SuccFeasible);
589
590  BasicBlock *BB = TI.getParent();
591
592  // Mark all feasible successors executable...
593  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
594    if (SuccFeasible[i])
595      markEdgeExecutable(BB, TI.getSuccessor(i));
596}
597
598void SCCP::visitCastInst(CastInst &I) {
599  Value *V = I.getOperand(0);
600  InstVal &VState = getValueState(V);
601  if (VState.isOverdefined())          // Inherit overdefinedness of operand
602    markOverdefined(&I);
603  else if (VState.isConstant())        // Propagate constant value
604    markConstant(&I, ConstantExpr::getCast(VState.getConstant(), I.getType()));
605}
606
607void SCCP::visitSelectInst(SelectInst &I) {
608  InstVal &CondValue = getValueState(I.getCondition());
609  if (CondValue.isOverdefined())
610    markOverdefined(&I);
611  else if (CondValue.isConstant()) {
612    if (CondValue.getConstant() == ConstantBool::True) {
613      InstVal &Val = getValueState(I.getTrueValue());
614      if (Val.isOverdefined())
615        markOverdefined(&I);
616      else if (Val.isConstant())
617        markConstant(&I, Val.getConstant());
618    } else if (CondValue.getConstant() == ConstantBool::False) {
619      InstVal &Val = getValueState(I.getFalseValue());
620      if (Val.isOverdefined())
621        markOverdefined(&I);
622      else if (Val.isConstant())
623        markConstant(&I, Val.getConstant());
624    } else
625      markOverdefined(&I);
626  }
627}
628
629// Handle BinaryOperators and Shift Instructions...
630void SCCP::visitBinaryOperator(Instruction &I) {
631  InstVal &IV = ValueState[&I];
632  if (IV.isOverdefined()) return;
633
634  InstVal &V1State = getValueState(I.getOperand(0));
635  InstVal &V2State = getValueState(I.getOperand(1));
636
637  if (V1State.isOverdefined() || V2State.isOverdefined()) {
638    // If both operands are PHI nodes, it is possible that this instruction has
639    // a constant value, despite the fact that the PHI node doesn't.  Check for
640    // this condition now.
641    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
642      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
643        if (PN1->getParent() == PN2->getParent()) {
644          // Since the two PHI nodes are in the same basic block, they must have
645          // entries for the same predecessors.  Walk the predecessor list, and
646          // if all of the incoming values are constants, and the result of
647          // evaluating this expression with all incoming value pairs is the
648          // same, then this expression is a constant even though the PHI node
649          // is not a constant!
650          InstVal Result;
651          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
652            InstVal &In1 = getValueState(PN1->getIncomingValue(i));
653            BasicBlock *InBlock = PN1->getIncomingBlock(i);
654            InstVal &In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
655
656            if (In1.isOverdefined() || In2.isOverdefined()) {
657              Result.markOverdefined();
658              break;  // Cannot fold this operation over the PHI nodes!
659            } else if (In1.isConstant() && In2.isConstant()) {
660              Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
661                                              In2.getConstant());
662              if (Result.isUndefined())
663                Result.markConstant(V);
664              else if (Result.isConstant() && Result.getConstant() != V) {
665                Result.markOverdefined();
666                break;
667              }
668            }
669          }
670
671          // If we found a constant value here, then we know the instruction is
672          // constant despite the fact that the PHI nodes are overdefined.
673          if (Result.isConstant()) {
674            markConstant(IV, &I, Result.getConstant());
675            // Remember that this instruction is virtually using the PHI node
676            // operands.
677            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
678            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
679            return;
680          } else if (Result.isUndefined()) {
681            return;
682          }
683
684          // Okay, this really is overdefined now.  Since we might have
685          // speculatively thought that this was not overdefined before, and
686          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
687          // make sure to clean out any entries that we put there, for
688          // efficiency.
689          std::multimap<PHINode*, Instruction*>::iterator It, E;
690          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
691          while (It != E) {
692            if (It->second == &I) {
693              UsersOfOverdefinedPHIs.erase(It++);
694            } else
695              ++It;
696          }
697          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
698          while (It != E) {
699            if (It->second == &I) {
700              UsersOfOverdefinedPHIs.erase(It++);
701            } else
702              ++It;
703          }
704        }
705
706    markOverdefined(IV, &I);
707  } else if (V1State.isConstant() && V2State.isConstant()) {
708    markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
709                                           V2State.getConstant()));
710  }
711}
712
713// Handle getelementptr instructions... if all operands are constants then we
714// can turn this into a getelementptr ConstantExpr.
715//
716void SCCP::visitGetElementPtrInst(GetElementPtrInst &I) {
717  InstVal &IV = ValueState[&I];
718  if (IV.isOverdefined()) return;
719
720  std::vector<Constant*> Operands;
721  Operands.reserve(I.getNumOperands());
722
723  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
724    InstVal &State = getValueState(I.getOperand(i));
725    if (State.isUndefined())
726      return;  // Operands are not resolved yet...
727    else if (State.isOverdefined()) {
728      markOverdefined(IV, &I);
729      return;
730    }
731    assert(State.isConstant() && "Unknown state!");
732    Operands.push_back(State.getConstant());
733  }
734
735  Constant *Ptr = Operands[0];
736  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
737
738  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands));
739}
740
741/// GetGEPGlobalInitializer - Given a constant and a getelementptr constantexpr,
742/// return the constant value being addressed by the constant expression, or
743/// null if something is funny.
744///
745static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) {
746  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
747    return 0;  // Do not allow stepping over the value!
748
749  // Loop over all of the operands, tracking down which value we are
750  // addressing...
751  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i)
752    if (ConstantUInt *CU = dyn_cast<ConstantUInt>(CE->getOperand(i))) {
753      ConstantStruct *CS = dyn_cast<ConstantStruct>(C);
754      if (CS == 0) return 0;
755      if (CU->getValue() >= CS->getNumOperands()) return 0;
756      C = CS->getOperand(CU->getValue());
757    } else if (ConstantSInt *CS = dyn_cast<ConstantSInt>(CE->getOperand(i))) {
758      ConstantArray *CA = dyn_cast<ConstantArray>(C);
759      if (CA == 0) return 0;
760      if ((uint64_t)CS->getValue() >= CA->getNumOperands()) return 0;
761      C = CA->getOperand(CS->getValue());
762    } else
763      return 0;
764  return C;
765}
766
767// Handle load instructions.  If the operand is a constant pointer to a constant
768// global, we can replace the load with the loaded constant value!
769void SCCP::visitLoadInst(LoadInst &I) {
770  InstVal &IV = ValueState[&I];
771  if (IV.isOverdefined()) return;
772
773  InstVal &PtrVal = getValueState(I.getOperand(0));
774  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
775  if (PtrVal.isConstant() && !I.isVolatile()) {
776    Value *Ptr = PtrVal.getConstant();
777    if (isa<ConstantPointerNull>(Ptr)) {
778      // load null -> null
779      markConstant(IV, &I, Constant::getNullValue(I.getType()));
780      return;
781    }
782
783    // Transform load (constant global) into the value loaded.
784    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr))
785      if (GV->isConstant() && !GV->isExternal()) {
786        markConstant(IV, &I, GV->getInitializer());
787        return;
788      }
789
790    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
791    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
792      if (CE->getOpcode() == Instruction::GetElementPtr)
793	if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
794	  if (GV->isConstant() && !GV->isExternal())
795	    if (Constant *V =
796		GetGEPGlobalInitializer(GV->getInitializer(), CE)) {
797	      markConstant(IV, &I, V);
798	      return;
799	    }
800  }
801
802  // Otherwise we cannot say for certain what value this load will produce.
803  // Bail out.
804  markOverdefined(IV, &I);
805}
806
807void SCCP::visitCallInst(CallInst &I) {
808  InstVal &IV = ValueState[&I];
809  if (IV.isOverdefined()) return;
810
811  Function *F = I.getCalledFunction();
812  if (F == 0 || !canConstantFoldCallTo(F)) {
813    markOverdefined(IV, &I);
814    return;
815  }
816
817  std::vector<Constant*> Operands;
818  Operands.reserve(I.getNumOperands()-1);
819
820  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
821    InstVal &State = getValueState(I.getOperand(i));
822    if (State.isUndefined())
823      return;  // Operands are not resolved yet...
824    else if (State.isOverdefined()) {
825      markOverdefined(IV, &I);
826      return;
827    }
828    assert(State.isConstant() && "Unknown state!");
829    Operands.push_back(State.getConstant());
830  }
831
832  if (Constant *C = ConstantFoldCall(F, Operands))
833    markConstant(IV, &I, C);
834  else
835    markOverdefined(IV, &I);
836}
837