SCCP.cpp revision ddaaa374879f2f736f7bfa20f4b25202fcb85708
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18// Notice that: 19// * This pass has a habit of making definitions be dead. It is a good idea 20// to to run a DCE pass sometime after running this pass. 21// 22//===----------------------------------------------------------------------===// 23 24#define DEBUG_TYPE "sccp" 25#include "llvm/Transforms/Scalar.h" 26#include "llvm/Transforms/IPO.h" 27#include "llvm/Constants.h" 28#include "llvm/DerivedTypes.h" 29#include "llvm/Instructions.h" 30#include "llvm/Pass.h" 31#include "llvm/Support/InstVisitor.h" 32#include "llvm/Transforms/Utils/Local.h" 33#include "llvm/Support/CallSite.h" 34#include "llvm/Support/Debug.h" 35#include "llvm/ADT/hash_map" 36#include "llvm/ADT/Statistic.h" 37#include "llvm/ADT/STLExtras.h" 38#include <algorithm> 39#include <iostream> 40#include <set> 41using namespace llvm; 42 43// LatticeVal class - This class represents the different lattice values that an 44// instruction may occupy. It is a simple class with value semantics. 45// 46namespace { 47 48class LatticeVal { 49 enum { 50 undefined, // This instruction has no known value 51 constant, // This instruction has a constant value 52 overdefined // This instruction has an unknown value 53 } LatticeValue; // The current lattice position 54 Constant *ConstantVal; // If Constant value, the current value 55public: 56 inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {} 57 58 // markOverdefined - Return true if this is a new status to be in... 59 inline bool markOverdefined() { 60 if (LatticeValue != overdefined) { 61 LatticeValue = overdefined; 62 return true; 63 } 64 return false; 65 } 66 67 // markConstant - Return true if this is a new status for us... 68 inline bool markConstant(Constant *V) { 69 if (LatticeValue != constant) { 70 LatticeValue = constant; 71 ConstantVal = V; 72 return true; 73 } else { 74 assert(ConstantVal == V && "Marking constant with different value"); 75 } 76 return false; 77 } 78 79 inline bool isUndefined() const { return LatticeValue == undefined; } 80 inline bool isConstant() const { return LatticeValue == constant; } 81 inline bool isOverdefined() const { return LatticeValue == overdefined; } 82 83 inline Constant *getConstant() const { 84 assert(isConstant() && "Cannot get the constant of a non-constant!"); 85 return ConstantVal; 86 } 87}; 88 89} // end anonymous namespace 90 91 92//===----------------------------------------------------------------------===// 93// 94/// SCCPSolver - This class is a general purpose solver for Sparse Conditional 95/// Constant Propagation. 96/// 97class SCCPSolver : public InstVisitor<SCCPSolver> { 98 std::set<BasicBlock*> BBExecutable;// The basic blocks that are executable 99 hash_map<Value*, LatticeVal> ValueState; // The state each value is in... 100 101 /// GlobalValue - If we are tracking any values for the contents of a global 102 /// variable, we keep a mapping from the constant accessor to the element of 103 /// the global, to the currently known value. If the value becomes 104 /// overdefined, it's entry is simply removed from this map. 105 hash_map<GlobalVariable*, LatticeVal> TrackedGlobals; 106 107 /// TrackedFunctionRetVals - If we are tracking arguments into and the return 108 /// value out of a function, it will have an entry in this map, indicating 109 /// what the known return value for the function is. 110 hash_map<Function*, LatticeVal> TrackedFunctionRetVals; 111 112 // The reason for two worklists is that overdefined is the lowest state 113 // on the lattice, and moving things to overdefined as fast as possible 114 // makes SCCP converge much faster. 115 // By having a separate worklist, we accomplish this because everything 116 // possibly overdefined will become overdefined at the soonest possible 117 // point. 118 std::vector<Value*> OverdefinedInstWorkList; 119 std::vector<Value*> InstWorkList; 120 121 122 std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list 123 124 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not 125 /// overdefined, despite the fact that the PHI node is overdefined. 126 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; 127 128 /// KnownFeasibleEdges - Entries in this set are edges which have already had 129 /// PHI nodes retriggered. 130 typedef std::pair<BasicBlock*,BasicBlock*> Edge; 131 std::set<Edge> KnownFeasibleEdges; 132public: 133 134 /// MarkBlockExecutable - This method can be used by clients to mark all of 135 /// the blocks that are known to be intrinsically live in the processed unit. 136 void MarkBlockExecutable(BasicBlock *BB) { 137 DEBUG(std::cerr << "Marking Block Executable: " << BB->getName() << "\n"); 138 BBExecutable.insert(BB); // Basic block is executable! 139 BBWorkList.push_back(BB); // Add the block to the work list! 140 } 141 142 /// TrackValueOfGlobalVariable - Clients can use this method to 143 /// inform the SCCPSolver that it should track loads and stores to the 144 /// specified global variable if it can. This is only legal to call if 145 /// performing Interprocedural SCCP. 146 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 147 const Type *ElTy = GV->getType()->getElementType(); 148 if (ElTy->isFirstClassType()) { 149 LatticeVal &IV = TrackedGlobals[GV]; 150 if (!isa<UndefValue>(GV->getInitializer())) 151 IV.markConstant(GV->getInitializer()); 152 } 153 } 154 155 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 156 /// and out of the specified function (which cannot have its address taken), 157 /// this method must be called. 158 void AddTrackedFunction(Function *F) { 159 assert(F->hasInternalLinkage() && "Can only track internal functions!"); 160 // Add an entry, F -> undef. 161 TrackedFunctionRetVals[F]; 162 } 163 164 /// Solve - Solve for constants and executable blocks. 165 /// 166 void Solve(); 167 168 /// ResolveBranchesIn - While solving the dataflow for a function, we assume 169 /// that branches on undef values cannot reach any of their successors. 170 /// However, this is not a safe assumption. After we solve dataflow, this 171 /// method should be use to handle this. If this returns true, the solver 172 /// should be rerun. 173 bool ResolveBranchesIn(Function &F); 174 175 /// getExecutableBlocks - Once we have solved for constants, return the set of 176 /// blocks that is known to be executable. 177 std::set<BasicBlock*> &getExecutableBlocks() { 178 return BBExecutable; 179 } 180 181 /// getValueMapping - Once we have solved for constants, return the mapping of 182 /// LLVM values to LatticeVals. 183 hash_map<Value*, LatticeVal> &getValueMapping() { 184 return ValueState; 185 } 186 187 /// getTrackedFunctionRetVals - Get the inferred return value map. 188 /// 189 const hash_map<Function*, LatticeVal> &getTrackedFunctionRetVals() { 190 return TrackedFunctionRetVals; 191 } 192 193 /// getTrackedGlobals - Get and return the set of inferred initializers for 194 /// global variables. 195 const hash_map<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 196 return TrackedGlobals; 197 } 198 199 200private: 201 // markConstant - Make a value be marked as "constant". If the value 202 // is not already a constant, add it to the instruction work list so that 203 // the users of the instruction are updated later. 204 // 205 inline void markConstant(LatticeVal &IV, Value *V, Constant *C) { 206 if (IV.markConstant(C)) { 207 DEBUG(std::cerr << "markConstant: " << *C << ": " << *V); 208 InstWorkList.push_back(V); 209 } 210 } 211 inline void markConstant(Value *V, Constant *C) { 212 markConstant(ValueState[V], V, C); 213 } 214 215 // markOverdefined - Make a value be marked as "overdefined". If the 216 // value is not already overdefined, add it to the overdefined instruction 217 // work list so that the users of the instruction are updated later. 218 219 inline void markOverdefined(LatticeVal &IV, Value *V) { 220 if (IV.markOverdefined()) { 221 DEBUG(std::cerr << "markOverdefined: "; 222 if (Function *F = dyn_cast<Function>(V)) 223 std::cerr << "Function '" << F->getName() << "'\n"; 224 else 225 std::cerr << *V); 226 // Only instructions go on the work list 227 OverdefinedInstWorkList.push_back(V); 228 } 229 } 230 inline void markOverdefined(Value *V) { 231 markOverdefined(ValueState[V], V); 232 } 233 234 inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) { 235 if (IV.isOverdefined() || MergeWithV.isUndefined()) 236 return; // Noop. 237 if (MergeWithV.isOverdefined()) 238 markOverdefined(IV, V); 239 else if (IV.isUndefined()) 240 markConstant(IV, V, MergeWithV.getConstant()); 241 else if (IV.getConstant() != MergeWithV.getConstant()) 242 markOverdefined(IV, V); 243 } 244 245 inline void mergeInValue(Value *V, LatticeVal &MergeWithV) { 246 return mergeInValue(ValueState[V], V, MergeWithV); 247 } 248 249 250 // getValueState - Return the LatticeVal object that corresponds to the value. 251 // This function is necessary because not all values should start out in the 252 // underdefined state... Argument's should be overdefined, and 253 // constants should be marked as constants. If a value is not known to be an 254 // Instruction object, then use this accessor to get its value from the map. 255 // 256 inline LatticeVal &getValueState(Value *V) { 257 hash_map<Value*, LatticeVal>::iterator I = ValueState.find(V); 258 if (I != ValueState.end()) return I->second; // Common case, in the map 259 260 if (Constant *CPV = dyn_cast<Constant>(V)) { 261 if (isa<UndefValue>(V)) { 262 // Nothing to do, remain undefined. 263 } else { 264 ValueState[CPV].markConstant(CPV); // Constants are constant 265 } 266 } 267 // All others are underdefined by default... 268 return ValueState[V]; 269 } 270 271 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB 272 // work list if it is not already executable... 273 // 274 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 275 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 276 return; // This edge is already known to be executable! 277 278 if (BBExecutable.count(Dest)) { 279 DEBUG(std::cerr << "Marking Edge Executable: " << Source->getName() 280 << " -> " << Dest->getName() << "\n"); 281 282 // The destination is already executable, but we just made an edge 283 // feasible that wasn't before. Revisit the PHI nodes in the block 284 // because they have potentially new operands. 285 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) 286 visitPHINode(*cast<PHINode>(I)); 287 288 } else { 289 MarkBlockExecutable(Dest); 290 } 291 } 292 293 // getFeasibleSuccessors - Return a vector of booleans to indicate which 294 // successors are reachable from a given terminator instruction. 295 // 296 void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs); 297 298 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 299 // block to the 'To' basic block is currently feasible... 300 // 301 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 302 303 // OperandChangedState - This method is invoked on all of the users of an 304 // instruction that was just changed state somehow.... Based on this 305 // information, we need to update the specified user of this instruction. 306 // 307 void OperandChangedState(User *U) { 308 // Only instructions use other variable values! 309 Instruction &I = cast<Instruction>(*U); 310 if (BBExecutable.count(I.getParent())) // Inst is executable? 311 visit(I); 312 } 313 314private: 315 friend class InstVisitor<SCCPSolver>; 316 317 // visit implementations - Something changed in this instruction... Either an 318 // operand made a transition, or the instruction is newly executable. Change 319 // the value type of I to reflect these changes if appropriate. 320 // 321 void visitPHINode(PHINode &I); 322 323 // Terminators 324 void visitReturnInst(ReturnInst &I); 325 void visitTerminatorInst(TerminatorInst &TI); 326 327 void visitCastInst(CastInst &I); 328 void visitSelectInst(SelectInst &I); 329 void visitBinaryOperator(Instruction &I); 330 void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } 331 void visitExtractElementInst(ExtractElementInst &I); 332 void visitInsertElementInst(InsertElementInst &I); 333 void visitShuffleVectorInst(ShuffleVectorInst &I); 334 335 // Instructions that cannot be folded away... 336 void visitStoreInst (Instruction &I); 337 void visitLoadInst (LoadInst &I); 338 void visitGetElementPtrInst(GetElementPtrInst &I); 339 void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); } 340 void visitInvokeInst (InvokeInst &II) { 341 visitCallSite(CallSite::get(&II)); 342 visitTerminatorInst(II); 343 } 344 void visitCallSite (CallSite CS); 345 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 346 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 347 void visitAllocationInst(Instruction &I) { markOverdefined(&I); } 348 void visitVANextInst (Instruction &I) { markOverdefined(&I); } 349 void visitVAArgInst (Instruction &I) { markOverdefined(&I); } 350 void visitFreeInst (Instruction &I) { /*returns void*/ } 351 352 void visitInstruction(Instruction &I) { 353 // If a new instruction is added to LLVM that we don't handle... 354 std::cerr << "SCCP: Don't know how to handle: " << I; 355 markOverdefined(&I); // Just in case 356 } 357}; 358 359// getFeasibleSuccessors - Return a vector of booleans to indicate which 360// successors are reachable from a given terminator instruction. 361// 362void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 363 std::vector<bool> &Succs) { 364 Succs.resize(TI.getNumSuccessors()); 365 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 366 if (BI->isUnconditional()) { 367 Succs[0] = true; 368 } else { 369 LatticeVal &BCValue = getValueState(BI->getCondition()); 370 if (BCValue.isOverdefined() || 371 (BCValue.isConstant() && !isa<ConstantBool>(BCValue.getConstant()))) { 372 // Overdefined condition variables, and branches on unfoldable constant 373 // conditions, mean the branch could go either way. 374 Succs[0] = Succs[1] = true; 375 } else if (BCValue.isConstant()) { 376 // Constant condition variables mean the branch can only go a single way 377 Succs[BCValue.getConstant() == ConstantBool::getFalse()] = true; 378 } 379 } 380 } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) { 381 // Invoke instructions successors are always executable. 382 Succs[0] = Succs[1] = true; 383 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 384 LatticeVal &SCValue = getValueState(SI->getCondition()); 385 if (SCValue.isOverdefined() || // Overdefined condition? 386 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) { 387 // All destinations are executable! 388 Succs.assign(TI.getNumSuccessors(), true); 389 } else if (SCValue.isConstant()) { 390 Constant *CPV = SCValue.getConstant(); 391 // Make sure to skip the "default value" which isn't a value 392 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { 393 if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... 394 Succs[i] = true; 395 return; 396 } 397 } 398 399 // Constant value not equal to any of the branches... must execute 400 // default branch then... 401 Succs[0] = true; 402 } 403 } else { 404 std::cerr << "SCCP: Don't know how to handle: " << TI; 405 Succs.assign(TI.getNumSuccessors(), true); 406 } 407} 408 409 410// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 411// block to the 'To' basic block is currently feasible... 412// 413bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 414 assert(BBExecutable.count(To) && "Dest should always be alive!"); 415 416 // Make sure the source basic block is executable!! 417 if (!BBExecutable.count(From)) return false; 418 419 // Check to make sure this edge itself is actually feasible now... 420 TerminatorInst *TI = From->getTerminator(); 421 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 422 if (BI->isUnconditional()) 423 return true; 424 else { 425 LatticeVal &BCValue = getValueState(BI->getCondition()); 426 if (BCValue.isOverdefined()) { 427 // Overdefined condition variables mean the branch could go either way. 428 return true; 429 } else if (BCValue.isConstant()) { 430 // Not branching on an evaluatable constant? 431 if (!isa<ConstantBool>(BCValue.getConstant())) return true; 432 433 // Constant condition variables mean the branch can only go a single way 434 return BI->getSuccessor(BCValue.getConstant() == 435 ConstantBool::getFalse()) == To; 436 } 437 return false; 438 } 439 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 440 // Invoke instructions successors are always executable. 441 return true; 442 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 443 LatticeVal &SCValue = getValueState(SI->getCondition()); 444 if (SCValue.isOverdefined()) { // Overdefined condition? 445 // All destinations are executable! 446 return true; 447 } else if (SCValue.isConstant()) { 448 Constant *CPV = SCValue.getConstant(); 449 if (!isa<ConstantInt>(CPV)) 450 return true; // not a foldable constant? 451 452 // Make sure to skip the "default value" which isn't a value 453 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 454 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... 455 return SI->getSuccessor(i) == To; 456 457 // Constant value not equal to any of the branches... must execute 458 // default branch then... 459 return SI->getDefaultDest() == To; 460 } 461 return false; 462 } else { 463 std::cerr << "Unknown terminator instruction: " << *TI; 464 abort(); 465 } 466} 467 468// visit Implementations - Something changed in this instruction... Either an 469// operand made a transition, or the instruction is newly executable. Change 470// the value type of I to reflect these changes if appropriate. This method 471// makes sure to do the following actions: 472// 473// 1. If a phi node merges two constants in, and has conflicting value coming 474// from different branches, or if the PHI node merges in an overdefined 475// value, then the PHI node becomes overdefined. 476// 2. If a phi node merges only constants in, and they all agree on value, the 477// PHI node becomes a constant value equal to that. 478// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 479// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 480// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 481// 6. If a conditional branch has a value that is constant, make the selected 482// destination executable 483// 7. If a conditional branch has a value that is overdefined, make all 484// successors executable. 485// 486void SCCPSolver::visitPHINode(PHINode &PN) { 487 LatticeVal &PNIV = getValueState(&PN); 488 if (PNIV.isOverdefined()) { 489 // There may be instructions using this PHI node that are not overdefined 490 // themselves. If so, make sure that they know that the PHI node operand 491 // changed. 492 std::multimap<PHINode*, Instruction*>::iterator I, E; 493 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); 494 if (I != E) { 495 std::vector<Instruction*> Users; 496 Users.reserve(std::distance(I, E)); 497 for (; I != E; ++I) Users.push_back(I->second); 498 while (!Users.empty()) { 499 visit(Users.back()); 500 Users.pop_back(); 501 } 502 } 503 return; // Quick exit 504 } 505 506 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 507 // and slow us down a lot. Just mark them overdefined. 508 if (PN.getNumIncomingValues() > 64) { 509 markOverdefined(PNIV, &PN); 510 return; 511 } 512 513 // Look at all of the executable operands of the PHI node. If any of them 514 // are overdefined, the PHI becomes overdefined as well. If they are all 515 // constant, and they agree with each other, the PHI becomes the identical 516 // constant. If they are constant and don't agree, the PHI is overdefined. 517 // If there are no executable operands, the PHI remains undefined. 518 // 519 Constant *OperandVal = 0; 520 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 521 LatticeVal &IV = getValueState(PN.getIncomingValue(i)); 522 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 523 524 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { 525 if (IV.isOverdefined()) { // PHI node becomes overdefined! 526 markOverdefined(PNIV, &PN); 527 return; 528 } 529 530 if (OperandVal == 0) { // Grab the first value... 531 OperandVal = IV.getConstant(); 532 } else { // Another value is being merged in! 533 // There is already a reachable operand. If we conflict with it, 534 // then the PHI node becomes overdefined. If we agree with it, we 535 // can continue on. 536 537 // Check to see if there are two different constants merging... 538 if (IV.getConstant() != OperandVal) { 539 // Yes there is. This means the PHI node is not constant. 540 // You must be overdefined poor PHI. 541 // 542 markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined 543 return; // I'm done analyzing you 544 } 545 } 546 } 547 } 548 549 // If we exited the loop, this means that the PHI node only has constant 550 // arguments that agree with each other(and OperandVal is the constant) or 551 // OperandVal is null because there are no defined incoming arguments. If 552 // this is the case, the PHI remains undefined. 553 // 554 if (OperandVal) 555 markConstant(PNIV, &PN, OperandVal); // Acquire operand value 556} 557 558void SCCPSolver::visitReturnInst(ReturnInst &I) { 559 if (I.getNumOperands() == 0) return; // Ret void 560 561 // If we are tracking the return value of this function, merge it in. 562 Function *F = I.getParent()->getParent(); 563 if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) { 564 hash_map<Function*, LatticeVal>::iterator TFRVI = 565 TrackedFunctionRetVals.find(F); 566 if (TFRVI != TrackedFunctionRetVals.end() && 567 !TFRVI->second.isOverdefined()) { 568 LatticeVal &IV = getValueState(I.getOperand(0)); 569 mergeInValue(TFRVI->second, F, IV); 570 } 571 } 572} 573 574 575void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 576 std::vector<bool> SuccFeasible; 577 getFeasibleSuccessors(TI, SuccFeasible); 578 579 BasicBlock *BB = TI.getParent(); 580 581 // Mark all feasible successors executable... 582 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 583 if (SuccFeasible[i]) 584 markEdgeExecutable(BB, TI.getSuccessor(i)); 585} 586 587void SCCPSolver::visitCastInst(CastInst &I) { 588 Value *V = I.getOperand(0); 589 LatticeVal &VState = getValueState(V); 590 if (VState.isOverdefined()) // Inherit overdefinedness of operand 591 markOverdefined(&I); 592 else if (VState.isConstant()) // Propagate constant value 593 markConstant(&I, ConstantExpr::getCast(VState.getConstant(), I.getType())); 594} 595 596void SCCPSolver::visitSelectInst(SelectInst &I) { 597 LatticeVal &CondValue = getValueState(I.getCondition()); 598 if (CondValue.isUndefined()) 599 return; 600 if (CondValue.isConstant()) { 601 if (ConstantBool *CondCB = dyn_cast<ConstantBool>(CondValue.getConstant())){ 602 mergeInValue(&I, getValueState(CondCB->getValue() ? I.getTrueValue() 603 : I.getFalseValue())); 604 return; 605 } 606 } 607 608 // Otherwise, the condition is overdefined or a constant we can't evaluate. 609 // See if we can produce something better than overdefined based on the T/F 610 // value. 611 LatticeVal &TVal = getValueState(I.getTrueValue()); 612 LatticeVal &FVal = getValueState(I.getFalseValue()); 613 614 // select ?, C, C -> C. 615 if (TVal.isConstant() && FVal.isConstant() && 616 TVal.getConstant() == FVal.getConstant()) { 617 markConstant(&I, FVal.getConstant()); 618 return; 619 } 620 621 if (TVal.isUndefined()) { // select ?, undef, X -> X. 622 mergeInValue(&I, FVal); 623 } else if (FVal.isUndefined()) { // select ?, X, undef -> X. 624 mergeInValue(&I, TVal); 625 } else { 626 markOverdefined(&I); 627 } 628} 629 630// Handle BinaryOperators and Shift Instructions... 631void SCCPSolver::visitBinaryOperator(Instruction &I) { 632 LatticeVal &IV = ValueState[&I]; 633 if (IV.isOverdefined()) return; 634 635 LatticeVal &V1State = getValueState(I.getOperand(0)); 636 LatticeVal &V2State = getValueState(I.getOperand(1)); 637 638 if (V1State.isOverdefined() || V2State.isOverdefined()) { 639 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 640 // operand is overdefined. 641 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 642 LatticeVal *NonOverdefVal = 0; 643 if (!V1State.isOverdefined()) { 644 NonOverdefVal = &V1State; 645 } else if (!V2State.isOverdefined()) { 646 NonOverdefVal = &V2State; 647 } 648 649 if (NonOverdefVal) { 650 if (NonOverdefVal->isUndefined()) { 651 // Could annihilate value. 652 if (I.getOpcode() == Instruction::And) 653 markConstant(IV, &I, Constant::getNullValue(I.getType())); 654 else 655 markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType())); 656 return; 657 } else { 658 if (I.getOpcode() == Instruction::And) { 659 if (NonOverdefVal->getConstant()->isNullValue()) { 660 markConstant(IV, &I, NonOverdefVal->getConstant()); 661 return; // X or 0 = -1 662 } 663 } else { 664 if (ConstantIntegral *CI = 665 dyn_cast<ConstantIntegral>(NonOverdefVal->getConstant())) 666 if (CI->isAllOnesValue()) { 667 markConstant(IV, &I, NonOverdefVal->getConstant()); 668 return; // X or -1 = -1 669 } 670 } 671 } 672 } 673 } 674 675 676 // If both operands are PHI nodes, it is possible that this instruction has 677 // a constant value, despite the fact that the PHI node doesn't. Check for 678 // this condition now. 679 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 680 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 681 if (PN1->getParent() == PN2->getParent()) { 682 // Since the two PHI nodes are in the same basic block, they must have 683 // entries for the same predecessors. Walk the predecessor list, and 684 // if all of the incoming values are constants, and the result of 685 // evaluating this expression with all incoming value pairs is the 686 // same, then this expression is a constant even though the PHI node 687 // is not a constant! 688 LatticeVal Result; 689 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 690 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 691 BasicBlock *InBlock = PN1->getIncomingBlock(i); 692 LatticeVal &In2 = 693 getValueState(PN2->getIncomingValueForBlock(InBlock)); 694 695 if (In1.isOverdefined() || In2.isOverdefined()) { 696 Result.markOverdefined(); 697 break; // Cannot fold this operation over the PHI nodes! 698 } else if (In1.isConstant() && In2.isConstant()) { 699 Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), 700 In2.getConstant()); 701 if (Result.isUndefined()) 702 Result.markConstant(V); 703 else if (Result.isConstant() && Result.getConstant() != V) { 704 Result.markOverdefined(); 705 break; 706 } 707 } 708 } 709 710 // If we found a constant value here, then we know the instruction is 711 // constant despite the fact that the PHI nodes are overdefined. 712 if (Result.isConstant()) { 713 markConstant(IV, &I, Result.getConstant()); 714 // Remember that this instruction is virtually using the PHI node 715 // operands. 716 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 717 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 718 return; 719 } else if (Result.isUndefined()) { 720 return; 721 } 722 723 // Okay, this really is overdefined now. Since we might have 724 // speculatively thought that this was not overdefined before, and 725 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 726 // make sure to clean out any entries that we put there, for 727 // efficiency. 728 std::multimap<PHINode*, Instruction*>::iterator It, E; 729 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 730 while (It != E) { 731 if (It->second == &I) { 732 UsersOfOverdefinedPHIs.erase(It++); 733 } else 734 ++It; 735 } 736 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 737 while (It != E) { 738 if (It->second == &I) { 739 UsersOfOverdefinedPHIs.erase(It++); 740 } else 741 ++It; 742 } 743 } 744 745 markOverdefined(IV, &I); 746 } else if (V1State.isConstant() && V2State.isConstant()) { 747 markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 748 V2State.getConstant())); 749 } 750} 751 752void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 753 LatticeVal &ValState = getValueState(I.getOperand(0)); 754 LatticeVal &IdxState = getValueState(I.getOperand(1)); 755 756 if (ValState.isOverdefined() || IdxState.isOverdefined()) 757 markOverdefined(&I); 758 else if(ValState.isConstant() && IdxState.isConstant()) 759 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 760 IdxState.getConstant())); 761} 762 763void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 764 LatticeVal &ValState = getValueState(I.getOperand(0)); 765 LatticeVal &EltState = getValueState(I.getOperand(1)); 766 LatticeVal &IdxState = getValueState(I.getOperand(2)); 767 768 if (ValState.isOverdefined() || EltState.isOverdefined() || 769 IdxState.isOverdefined()) 770 markOverdefined(&I); 771 else if(ValState.isConstant() && EltState.isConstant() && 772 IdxState.isConstant()) 773 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 774 EltState.getConstant(), 775 IdxState.getConstant())); 776 else if (ValState.isUndefined() && EltState.isConstant() && 777 IdxState.isConstant()) 778 markConstant(&I, ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 779 EltState.getConstant(), 780 IdxState.getConstant())); 781} 782 783void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 784 LatticeVal &V1State = getValueState(I.getOperand(0)); 785 LatticeVal &V2State = getValueState(I.getOperand(1)); 786 LatticeVal &MaskState = getValueState(I.getOperand(2)); 787 788 if (MaskState.isUndefined() || 789 (V1State.isUndefined() && V2State.isUndefined())) 790 return; // Undefined output if mask or both inputs undefined. 791 792 if (V1State.isOverdefined() || V2State.isOverdefined() || 793 MaskState.isOverdefined()) { 794 markOverdefined(&I); 795 } else { 796 // A mix of constant/undef inputs. 797 Constant *V1 = V1State.isConstant() ? 798 V1State.getConstant() : UndefValue::get(I.getType()); 799 Constant *V2 = V2State.isConstant() ? 800 V2State.getConstant() : UndefValue::get(I.getType()); 801 Constant *Mask = MaskState.isConstant() ? 802 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 803 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 804 } 805} 806 807// Handle getelementptr instructions... if all operands are constants then we 808// can turn this into a getelementptr ConstantExpr. 809// 810void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 811 LatticeVal &IV = ValueState[&I]; 812 if (IV.isOverdefined()) return; 813 814 std::vector<Constant*> Operands; 815 Operands.reserve(I.getNumOperands()); 816 817 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 818 LatticeVal &State = getValueState(I.getOperand(i)); 819 if (State.isUndefined()) 820 return; // Operands are not resolved yet... 821 else if (State.isOverdefined()) { 822 markOverdefined(IV, &I); 823 return; 824 } 825 assert(State.isConstant() && "Unknown state!"); 826 Operands.push_back(State.getConstant()); 827 } 828 829 Constant *Ptr = Operands[0]; 830 Operands.erase(Operands.begin()); // Erase the pointer from idx list... 831 832 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands)); 833} 834 835void SCCPSolver::visitStoreInst(Instruction &SI) { 836 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 837 return; 838 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 839 hash_map<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 840 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 841 842 // Get the value we are storing into the global. 843 LatticeVal &PtrVal = getValueState(SI.getOperand(0)); 844 845 mergeInValue(I->second, GV, PtrVal); 846 if (I->second.isOverdefined()) 847 TrackedGlobals.erase(I); // No need to keep tracking this! 848} 849 850 851// Handle load instructions. If the operand is a constant pointer to a constant 852// global, we can replace the load with the loaded constant value! 853void SCCPSolver::visitLoadInst(LoadInst &I) { 854 LatticeVal &IV = ValueState[&I]; 855 if (IV.isOverdefined()) return; 856 857 LatticeVal &PtrVal = getValueState(I.getOperand(0)); 858 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 859 if (PtrVal.isConstant() && !I.isVolatile()) { 860 Value *Ptr = PtrVal.getConstant(); 861 if (isa<ConstantPointerNull>(Ptr)) { 862 // load null -> null 863 markConstant(IV, &I, Constant::getNullValue(I.getType())); 864 return; 865 } 866 867 // Transform load (constant global) into the value loaded. 868 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 869 if (GV->isConstant()) { 870 if (!GV->isExternal()) { 871 markConstant(IV, &I, GV->getInitializer()); 872 return; 873 } 874 } else if (!TrackedGlobals.empty()) { 875 // If we are tracking this global, merge in the known value for it. 876 hash_map<GlobalVariable*, LatticeVal>::iterator It = 877 TrackedGlobals.find(GV); 878 if (It != TrackedGlobals.end()) { 879 mergeInValue(IV, &I, It->second); 880 return; 881 } 882 } 883 } 884 885 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. 886 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 887 if (CE->getOpcode() == Instruction::GetElementPtr) 888 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) 889 if (GV->isConstant() && !GV->isExternal()) 890 if (Constant *V = 891 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) { 892 markConstant(IV, &I, V); 893 return; 894 } 895 } 896 897 // Otherwise we cannot say for certain what value this load will produce. 898 // Bail out. 899 markOverdefined(IV, &I); 900} 901 902void SCCPSolver::visitCallSite(CallSite CS) { 903 Function *F = CS.getCalledFunction(); 904 905 // If we are tracking this function, we must make sure to bind arguments as 906 // appropriate. 907 hash_map<Function*, LatticeVal>::iterator TFRVI =TrackedFunctionRetVals.end(); 908 if (F && F->hasInternalLinkage()) 909 TFRVI = TrackedFunctionRetVals.find(F); 910 911 if (TFRVI != TrackedFunctionRetVals.end()) { 912 // If this is the first call to the function hit, mark its entry block 913 // executable. 914 if (!BBExecutable.count(F->begin())) 915 MarkBlockExecutable(F->begin()); 916 917 CallSite::arg_iterator CAI = CS.arg_begin(); 918 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 919 AI != E; ++AI, ++CAI) { 920 LatticeVal &IV = ValueState[AI]; 921 if (!IV.isOverdefined()) 922 mergeInValue(IV, AI, getValueState(*CAI)); 923 } 924 } 925 Instruction *I = CS.getInstruction(); 926 if (I->getType() == Type::VoidTy) return; 927 928 LatticeVal &IV = ValueState[I]; 929 if (IV.isOverdefined()) return; 930 931 // Propagate the return value of the function to the value of the instruction. 932 if (TFRVI != TrackedFunctionRetVals.end()) { 933 mergeInValue(IV, I, TFRVI->second); 934 return; 935 } 936 937 if (F == 0 || !F->isExternal() || !canConstantFoldCallTo(F)) { 938 markOverdefined(IV, I); 939 return; 940 } 941 942 std::vector<Constant*> Operands; 943 Operands.reserve(I->getNumOperands()-1); 944 945 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 946 AI != E; ++AI) { 947 LatticeVal &State = getValueState(*AI); 948 if (State.isUndefined()) 949 return; // Operands are not resolved yet... 950 else if (State.isOverdefined()) { 951 markOverdefined(IV, I); 952 return; 953 } 954 assert(State.isConstant() && "Unknown state!"); 955 Operands.push_back(State.getConstant()); 956 } 957 958 if (Constant *C = ConstantFoldCall(F, Operands)) 959 markConstant(IV, I, C); 960 else 961 markOverdefined(IV, I); 962} 963 964 965void SCCPSolver::Solve() { 966 // Process the work lists until they are empty! 967 while (!BBWorkList.empty() || !InstWorkList.empty() || 968 !OverdefinedInstWorkList.empty()) { 969 // Process the instruction work list... 970 while (!OverdefinedInstWorkList.empty()) { 971 Value *I = OverdefinedInstWorkList.back(); 972 OverdefinedInstWorkList.pop_back(); 973 974 DEBUG(std::cerr << "\nPopped off OI-WL: " << *I); 975 976 // "I" got into the work list because it either made the transition from 977 // bottom to constant 978 // 979 // Anything on this worklist that is overdefined need not be visited 980 // since all of its users will have already been marked as overdefined 981 // Update all of the users of this instruction's value... 982 // 983 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 984 UI != E; ++UI) 985 OperandChangedState(*UI); 986 } 987 // Process the instruction work list... 988 while (!InstWorkList.empty()) { 989 Value *I = InstWorkList.back(); 990 InstWorkList.pop_back(); 991 992 DEBUG(std::cerr << "\nPopped off I-WL: " << *I); 993 994 // "I" got into the work list because it either made the transition from 995 // bottom to constant 996 // 997 // Anything on this worklist that is overdefined need not be visited 998 // since all of its users will have already been marked as overdefined. 999 // Update all of the users of this instruction's value... 1000 // 1001 if (!getValueState(I).isOverdefined()) 1002 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1003 UI != E; ++UI) 1004 OperandChangedState(*UI); 1005 } 1006 1007 // Process the basic block work list... 1008 while (!BBWorkList.empty()) { 1009 BasicBlock *BB = BBWorkList.back(); 1010 BBWorkList.pop_back(); 1011 1012 DEBUG(std::cerr << "\nPopped off BBWL: " << *BB); 1013 1014 // Notify all instructions in this basic block that they are newly 1015 // executable. 1016 visit(BB); 1017 } 1018 } 1019} 1020 1021/// ResolveBranchesIn - While solving the dataflow for a function, we assume 1022/// that branches on undef values cannot reach any of their successors. 1023/// However, this is not a safe assumption. After we solve dataflow, this 1024/// method should be use to handle this. If this returns true, the solver 1025/// should be rerun. 1026/// 1027/// This method handles this by finding an unresolved branch and marking it one 1028/// of the edges from the block as being feasible, even though the condition 1029/// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1030/// CFG and only slightly pessimizes the analysis results (by marking one, 1031/// potentially unfeasible, edge feasible). This cannot usefully modify the 1032/// constraints on the condition of the branch, as that would impact other users 1033/// of the value. 1034bool SCCPSolver::ResolveBranchesIn(Function &F) { 1035 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1036 if (!BBExecutable.count(BB)) 1037 continue; 1038 1039 TerminatorInst *TI = BB->getTerminator(); 1040 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1041 if (!BI->isConditional()) continue; 1042 if (!getValueState(BI->getCondition()).isUndefined()) 1043 continue; 1044 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1045 if (!getValueState(SI->getCondition()).isUndefined()) 1046 continue; 1047 } else { 1048 continue; 1049 } 1050 1051 // If the edge to the first successor isn't thought to be feasible yet, mark 1052 // it so now. 1053 if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(0)))) 1054 continue; 1055 1056 // Otherwise, it isn't already thought to be feasible. Mark it as such now 1057 // and return. This will make other blocks reachable, which will allow new 1058 // values to be discovered and existing ones to be moved in the lattice. 1059 markEdgeExecutable(BB, TI->getSuccessor(0)); 1060 return true; 1061 } 1062 1063 return false; 1064} 1065 1066 1067namespace { 1068 Statistic<> NumInstRemoved("sccp", "Number of instructions removed"); 1069 Statistic<> NumDeadBlocks ("sccp", "Number of basic blocks unreachable"); 1070 1071 //===--------------------------------------------------------------------===// 1072 // 1073 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1074 /// Sparse Conditional COnstant Propagator. 1075 /// 1076 struct SCCP : public FunctionPass { 1077 // runOnFunction - Run the Sparse Conditional Constant Propagation 1078 // algorithm, and return true if the function was modified. 1079 // 1080 bool runOnFunction(Function &F); 1081 1082 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1083 AU.setPreservesCFG(); 1084 } 1085 }; 1086 1087 RegisterPass<SCCP> X("sccp", "Sparse Conditional Constant Propagation"); 1088} // end anonymous namespace 1089 1090 1091// createSCCPPass - This is the public interface to this file... 1092FunctionPass *llvm::createSCCPPass() { 1093 return new SCCP(); 1094} 1095 1096 1097// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1098// and return true if the function was modified. 1099// 1100bool SCCP::runOnFunction(Function &F) { 1101 DEBUG(std::cerr << "SCCP on function '" << F.getName() << "'\n"); 1102 SCCPSolver Solver; 1103 1104 // Mark the first block of the function as being executable. 1105 Solver.MarkBlockExecutable(F.begin()); 1106 1107 // Mark all arguments to the function as being overdefined. 1108 hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1109 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI) 1110 Values[AI].markOverdefined(); 1111 1112 // Solve for constants. 1113 bool ResolvedBranches = true; 1114 while (ResolvedBranches) { 1115 Solver.Solve(); 1116 DEBUG(std::cerr << "RESOLVING UNDEF BRANCHES\n"); 1117 ResolvedBranches = Solver.ResolveBranchesIn(F); 1118 } 1119 1120 bool MadeChanges = false; 1121 1122 // If we decided that there are basic blocks that are dead in this function, 1123 // delete their contents now. Note that we cannot actually delete the blocks, 1124 // as we cannot modify the CFG of the function. 1125 // 1126 std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks(); 1127 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1128 if (!ExecutableBBs.count(BB)) { 1129 DEBUG(std::cerr << " BasicBlock Dead:" << *BB); 1130 ++NumDeadBlocks; 1131 1132 // Delete the instructions backwards, as it has a reduced likelihood of 1133 // having to update as many def-use and use-def chains. 1134 std::vector<Instruction*> Insts; 1135 for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator(); 1136 I != E; ++I) 1137 Insts.push_back(I); 1138 while (!Insts.empty()) { 1139 Instruction *I = Insts.back(); 1140 Insts.pop_back(); 1141 if (!I->use_empty()) 1142 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1143 BB->getInstList().erase(I); 1144 MadeChanges = true; 1145 ++NumInstRemoved; 1146 } 1147 } else { 1148 // Iterate over all of the instructions in a function, replacing them with 1149 // constants if we have found them to be of constant values. 1150 // 1151 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1152 Instruction *Inst = BI++; 1153 if (Inst->getType() != Type::VoidTy) { 1154 LatticeVal &IV = Values[Inst]; 1155 if (IV.isConstant() || IV.isUndefined() && 1156 !isa<TerminatorInst>(Inst)) { 1157 Constant *Const = IV.isConstant() 1158 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1159 DEBUG(std::cerr << " Constant: " << *Const << " = " << *Inst); 1160 1161 // Replaces all of the uses of a variable with uses of the constant. 1162 Inst->replaceAllUsesWith(Const); 1163 1164 // Delete the instruction. 1165 BB->getInstList().erase(Inst); 1166 1167 // Hey, we just changed something! 1168 MadeChanges = true; 1169 ++NumInstRemoved; 1170 } 1171 } 1172 } 1173 } 1174 1175 return MadeChanges; 1176} 1177 1178namespace { 1179 Statistic<> IPNumInstRemoved("ipsccp", "Number of instructions removed"); 1180 Statistic<> IPNumDeadBlocks ("ipsccp", "Number of basic blocks unreachable"); 1181 Statistic<> IPNumArgsElimed ("ipsccp", 1182 "Number of arguments constant propagated"); 1183 Statistic<> IPNumGlobalConst("ipsccp", 1184 "Number of globals found to be constant"); 1185 1186 //===--------------------------------------------------------------------===// 1187 // 1188 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1189 /// Constant Propagation. 1190 /// 1191 struct IPSCCP : public ModulePass { 1192 bool runOnModule(Module &M); 1193 }; 1194 1195 RegisterPass<IPSCCP> 1196 Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation"); 1197} // end anonymous namespace 1198 1199// createIPSCCPPass - This is the public interface to this file... 1200ModulePass *llvm::createIPSCCPPass() { 1201 return new IPSCCP(); 1202} 1203 1204 1205static bool AddressIsTaken(GlobalValue *GV) { 1206 // Delete any dead constantexpr klingons. 1207 GV->removeDeadConstantUsers(); 1208 1209 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 1210 UI != E; ++UI) 1211 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 1212 if (SI->getOperand(0) == GV || SI->isVolatile()) 1213 return true; // Storing addr of GV. 1214 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) { 1215 // Make sure we are calling the function, not passing the address. 1216 CallSite CS = CallSite::get(cast<Instruction>(*UI)); 1217 for (CallSite::arg_iterator AI = CS.arg_begin(), 1218 E = CS.arg_end(); AI != E; ++AI) 1219 if (*AI == GV) 1220 return true; 1221 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1222 if (LI->isVolatile()) 1223 return true; 1224 } else { 1225 return true; 1226 } 1227 return false; 1228} 1229 1230bool IPSCCP::runOnModule(Module &M) { 1231 SCCPSolver Solver; 1232 1233 // Loop over all functions, marking arguments to those with their addresses 1234 // taken or that are external as overdefined. 1235 // 1236 hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1237 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1238 if (!F->hasInternalLinkage() || AddressIsTaken(F)) { 1239 if (!F->isExternal()) 1240 Solver.MarkBlockExecutable(F->begin()); 1241 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1242 AI != E; ++AI) 1243 Values[AI].markOverdefined(); 1244 } else { 1245 Solver.AddTrackedFunction(F); 1246 } 1247 1248 // Loop over global variables. We inform the solver about any internal global 1249 // variables that do not have their 'addresses taken'. If they don't have 1250 // their addresses taken, we can propagate constants through them. 1251 for (Module::global_iterator G = M.global_begin(), E = M.global_end(); 1252 G != E; ++G) 1253 if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G)) 1254 Solver.TrackValueOfGlobalVariable(G); 1255 1256 // Solve for constants. 1257 bool ResolvedBranches = true; 1258 while (ResolvedBranches) { 1259 Solver.Solve(); 1260 1261 DEBUG(std::cerr << "RESOLVING UNDEF BRANCHES\n"); 1262 ResolvedBranches = false; 1263 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1264 ResolvedBranches |= Solver.ResolveBranchesIn(*F); 1265 } 1266 1267 bool MadeChanges = false; 1268 1269 // Iterate over all of the instructions in the module, replacing them with 1270 // constants if we have found them to be of constant values. 1271 // 1272 std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks(); 1273 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1274 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1275 AI != E; ++AI) 1276 if (!AI->use_empty()) { 1277 LatticeVal &IV = Values[AI]; 1278 if (IV.isConstant() || IV.isUndefined()) { 1279 Constant *CST = IV.isConstant() ? 1280 IV.getConstant() : UndefValue::get(AI->getType()); 1281 DEBUG(std::cerr << "*** Arg " << *AI << " = " << *CST <<"\n"); 1282 1283 // Replaces all of the uses of a variable with uses of the 1284 // constant. 1285 AI->replaceAllUsesWith(CST); 1286 ++IPNumArgsElimed; 1287 } 1288 } 1289 1290 std::vector<BasicBlock*> BlocksToErase; 1291 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1292 if (!ExecutableBBs.count(BB)) { 1293 DEBUG(std::cerr << " BasicBlock Dead:" << *BB); 1294 ++IPNumDeadBlocks; 1295 1296 // Delete the instructions backwards, as it has a reduced likelihood of 1297 // having to update as many def-use and use-def chains. 1298 std::vector<Instruction*> Insts; 1299 TerminatorInst *TI = BB->getTerminator(); 1300 for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I) 1301 Insts.push_back(I); 1302 1303 while (!Insts.empty()) { 1304 Instruction *I = Insts.back(); 1305 Insts.pop_back(); 1306 if (!I->use_empty()) 1307 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1308 BB->getInstList().erase(I); 1309 MadeChanges = true; 1310 ++IPNumInstRemoved; 1311 } 1312 1313 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1314 BasicBlock *Succ = TI->getSuccessor(i); 1315 if (Succ->begin() != Succ->end() && isa<PHINode>(Succ->begin())) 1316 TI->getSuccessor(i)->removePredecessor(BB); 1317 } 1318 if (!TI->use_empty()) 1319 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1320 BB->getInstList().erase(TI); 1321 1322 if (&*BB != &F->front()) 1323 BlocksToErase.push_back(BB); 1324 else 1325 new UnreachableInst(BB); 1326 1327 } else { 1328 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1329 Instruction *Inst = BI++; 1330 if (Inst->getType() != Type::VoidTy) { 1331 LatticeVal &IV = Values[Inst]; 1332 if (IV.isConstant() || IV.isUndefined() && 1333 !isa<TerminatorInst>(Inst)) { 1334 Constant *Const = IV.isConstant() 1335 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1336 DEBUG(std::cerr << " Constant: " << *Const << " = " << *Inst); 1337 1338 // Replaces all of the uses of a variable with uses of the 1339 // constant. 1340 Inst->replaceAllUsesWith(Const); 1341 1342 // Delete the instruction. 1343 if (!isa<TerminatorInst>(Inst) && !isa<CallInst>(Inst)) 1344 BB->getInstList().erase(Inst); 1345 1346 // Hey, we just changed something! 1347 MadeChanges = true; 1348 ++IPNumInstRemoved; 1349 } 1350 } 1351 } 1352 } 1353 1354 // Now that all instructions in the function are constant folded, erase dead 1355 // blocks, because we can now use ConstantFoldTerminator to get rid of 1356 // in-edges. 1357 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1358 // If there are any PHI nodes in this successor, drop entries for BB now. 1359 BasicBlock *DeadBB = BlocksToErase[i]; 1360 while (!DeadBB->use_empty()) { 1361 Instruction *I = cast<Instruction>(DeadBB->use_back()); 1362 bool Folded = ConstantFoldTerminator(I->getParent()); 1363 if (!Folded) { 1364 // The constant folder may not have been able to fold the termiantor 1365 // if this is a branch or switch on undef. Fold it manually as a 1366 // branch to the first successor. 1367 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1368 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1369 "Branch should be foldable!"); 1370 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1371 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1372 } else { 1373 assert(0 && "Didn't fold away reference to block!"); 1374 } 1375 1376 // Make this an uncond branch to the first successor. 1377 TerminatorInst *TI = I->getParent()->getTerminator(); 1378 new BranchInst(TI->getSuccessor(0), TI); 1379 1380 // Remove entries in successor phi nodes to remove edges. 1381 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1382 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1383 1384 // Remove the old terminator. 1385 TI->eraseFromParent(); 1386 } 1387 } 1388 1389 // Finally, delete the basic block. 1390 F->getBasicBlockList().erase(DeadBB); 1391 } 1392 } 1393 1394 // If we inferred constant or undef return values for a function, we replaced 1395 // all call uses with the inferred value. This means we don't need to bother 1396 // actually returning anything from the function. Replace all return 1397 // instructions with return undef. 1398 const hash_map<Function*, LatticeVal> &RV =Solver.getTrackedFunctionRetVals(); 1399 for (hash_map<Function*, LatticeVal>::const_iterator I = RV.begin(), 1400 E = RV.end(); I != E; ++I) 1401 if (!I->second.isOverdefined() && 1402 I->first->getReturnType() != Type::VoidTy) { 1403 Function *F = I->first; 1404 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1405 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1406 if (!isa<UndefValue>(RI->getOperand(0))) 1407 RI->setOperand(0, UndefValue::get(F->getReturnType())); 1408 } 1409 1410 // If we infered constant or undef values for globals variables, we can delete 1411 // the global and any stores that remain to it. 1412 const hash_map<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1413 for (hash_map<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1414 E = TG.end(); I != E; ++I) { 1415 GlobalVariable *GV = I->first; 1416 assert(!I->second.isOverdefined() && 1417 "Overdefined values should have been taken out of the map!"); 1418 DEBUG(std::cerr << "Found that GV '" << GV->getName()<< "' is constant!\n"); 1419 while (!GV->use_empty()) { 1420 StoreInst *SI = cast<StoreInst>(GV->use_back()); 1421 SI->eraseFromParent(); 1422 } 1423 M.getGlobalList().erase(GV); 1424 ++IPNumGlobalConst; 1425 } 1426 1427 return MadeChanges; 1428} 1429