SCCP.cpp revision f006b183e2d2bebcf6968d1dd7350397c95b0325
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13//   * Assumes values are constant unless proven otherwise
14//   * Assumes BasicBlocks are dead unless proven otherwise
15//   * Proves values to be constant, and replaces them with constants
16//   * Proves conditional branches to be unconditional
17//
18// Notice that:
19//   * This pass has a habit of making definitions be dead.  It is a good idea
20//     to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "sccp"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/IPO.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Instructions.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Pass.h"
32#include "llvm/Analysis/ConstantFolding.h"
33#include "llvm/Analysis/MemoryBuiltins.h"
34#include "llvm/Analysis/ValueTracking.h"
35#include "llvm/Transforms/Utils/Local.h"
36#include "llvm/Support/CallSite.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/InstVisitor.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/ADT/DenseMap.h"
42#include "llvm/ADT/DenseSet.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/STLExtras.h"
47#include <algorithm>
48#include <map>
49using namespace llvm;
50
51STATISTIC(NumInstRemoved, "Number of instructions removed");
52STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
53
54STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
55STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
56STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
57STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
58
59namespace {
60/// LatticeVal class - This class represents the different lattice values that
61/// an LLVM value may occupy.  It is a simple class with value semantics.
62///
63class LatticeVal {
64  enum {
65    /// undefined - This LLVM Value has no known value yet.
66    undefined,
67
68    /// constant - This LLVM Value has a specific constant value.
69    constant,
70
71    /// forcedconstant - This LLVM Value was thought to be undef until
72    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
73    /// with another (different) constant, it goes to overdefined, instead of
74    /// asserting.
75    forcedconstant,
76
77    /// overdefined - This instruction is not known to be constant, and we know
78    /// it has a value.
79    overdefined
80  } LatticeValue;    // The current lattice position
81
82  Constant *ConstantVal; // If Constant value, the current value
83public:
84  inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
85
86  // markOverdefined - Return true if this is a new status to be in...
87  inline bool markOverdefined() {
88    if (LatticeValue != overdefined) {
89      LatticeValue = overdefined;
90      return true;
91    }
92    return false;
93  }
94
95  // markConstant - Return true if this is a new status for us.
96  inline bool markConstant(Constant *V) {
97    if (LatticeValue != constant) {
98      if (LatticeValue == undefined) {
99        LatticeValue = constant;
100        assert(V && "Marking constant with NULL");
101        ConstantVal = V;
102      } else {
103        assert(LatticeValue == forcedconstant &&
104               "Cannot move from overdefined to constant!");
105        // Stay at forcedconstant if the constant is the same.
106        if (V == ConstantVal) return false;
107
108        // Otherwise, we go to overdefined.  Assumptions made based on the
109        // forced value are possibly wrong.  Assuming this is another constant
110        // could expose a contradiction.
111        LatticeValue = overdefined;
112      }
113      return true;
114    } else {
115      assert(ConstantVal == V && "Marking constant with different value");
116    }
117    return false;
118  }
119
120  inline void markForcedConstant(Constant *V) {
121    assert(LatticeValue == undefined && "Can't force a defined value!");
122    LatticeValue = forcedconstant;
123    ConstantVal = V;
124  }
125
126  inline bool isUndefined() const { return LatticeValue == undefined; }
127  inline bool isConstant() const {
128    return LatticeValue == constant || LatticeValue == forcedconstant;
129  }
130  inline bool isOverdefined() const { return LatticeValue == overdefined; }
131
132  inline Constant *getConstant() const {
133    assert(isConstant() && "Cannot get the constant of a non-constant!");
134    return ConstantVal;
135  }
136};
137
138//===----------------------------------------------------------------------===//
139//
140/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
141/// Constant Propagation.
142///
143class SCCPSolver : public InstVisitor<SCCPSolver> {
144  LLVMContext *Context;
145  DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable
146  std::map<Value*, LatticeVal> ValueState;  // The state each value is in.
147
148  /// GlobalValue - If we are tracking any values for the contents of a global
149  /// variable, we keep a mapping from the constant accessor to the element of
150  /// the global, to the currently known value.  If the value becomes
151  /// overdefined, it's entry is simply removed from this map.
152  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
153
154  /// TrackedRetVals - If we are tracking arguments into and the return
155  /// value out of a function, it will have an entry in this map, indicating
156  /// what the known return value for the function is.
157  DenseMap<Function*, LatticeVal> TrackedRetVals;
158
159  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
160  /// that return multiple values.
161  DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
162
163  // The reason for two worklists is that overdefined is the lowest state
164  // on the lattice, and moving things to overdefined as fast as possible
165  // makes SCCP converge much faster.
166  // By having a separate worklist, we accomplish this because everything
167  // possibly overdefined will become overdefined at the soonest possible
168  // point.
169  SmallVector<Value*, 64> OverdefinedInstWorkList;
170  SmallVector<Value*, 64> InstWorkList;
171
172
173  SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
174
175  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
176  /// overdefined, despite the fact that the PHI node is overdefined.
177  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
178
179  /// KnownFeasibleEdges - Entries in this set are edges which have already had
180  /// PHI nodes retriggered.
181  typedef std::pair<BasicBlock*, BasicBlock*> Edge;
182  DenseSet<Edge> KnownFeasibleEdges;
183public:
184  void setContext(LLVMContext *C) { Context = C; }
185
186  /// MarkBlockExecutable - This method can be used by clients to mark all of
187  /// the blocks that are known to be intrinsically live in the processed unit.
188  void MarkBlockExecutable(BasicBlock *BB) {
189    DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n");
190    BBExecutable.insert(BB);   // Basic block is executable!
191    BBWorkList.push_back(BB);  // Add the block to the work list!
192  }
193
194  /// TrackValueOfGlobalVariable - Clients can use this method to
195  /// inform the SCCPSolver that it should track loads and stores to the
196  /// specified global variable if it can.  This is only legal to call if
197  /// performing Interprocedural SCCP.
198  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
199    const Type *ElTy = GV->getType()->getElementType();
200    if (ElTy->isFirstClassType()) {
201      LatticeVal &IV = TrackedGlobals[GV];
202      if (!isa<UndefValue>(GV->getInitializer()))
203        IV.markConstant(GV->getInitializer());
204    }
205  }
206
207  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
208  /// and out of the specified function (which cannot have its address taken),
209  /// this method must be called.
210  void AddTrackedFunction(Function *F) {
211    assert(F->hasLocalLinkage() && "Can only track internal functions!");
212    // Add an entry, F -> undef.
213    if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
214      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
215        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
216                                                     LatticeVal()));
217    } else
218      TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
219  }
220
221  /// Solve - Solve for constants and executable blocks.
222  ///
223  void Solve();
224
225  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
226  /// that branches on undef values cannot reach any of their successors.
227  /// However, this is not a safe assumption.  After we solve dataflow, this
228  /// method should be use to handle this.  If this returns true, the solver
229  /// should be rerun.
230  bool ResolvedUndefsIn(Function &F);
231
232  bool isBlockExecutable(BasicBlock *BB) const {
233    return BBExecutable.count(BB);
234  }
235
236  /// getValueMapping - Once we have solved for constants, return the mapping of
237  /// LLVM values to LatticeVals.
238  std::map<Value*, LatticeVal> &getValueMapping() {
239    return ValueState;
240  }
241
242  /// getTrackedRetVals - Get the inferred return value map.
243  ///
244  const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
245    return TrackedRetVals;
246  }
247
248  /// getTrackedGlobals - Get and return the set of inferred initializers for
249  /// global variables.
250  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
251    return TrackedGlobals;
252  }
253
254  inline void markOverdefined(Value *V) {
255    markOverdefined(ValueState[V], V);
256  }
257
258private:
259  // markConstant - Make a value be marked as "constant".  If the value
260  // is not already a constant, add it to the instruction work list so that
261  // the users of the instruction are updated later.
262  //
263  inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
264    if (IV.markConstant(C)) {
265      DEBUG(errs() << "markConstant: " << *C << ": " << *V << '\n');
266      InstWorkList.push_back(V);
267    }
268  }
269
270  inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
271    IV.markForcedConstant(C);
272    DEBUG(errs() << "markForcedConstant: " << *C << ": " << *V << '\n');
273    InstWorkList.push_back(V);
274  }
275
276  inline void markConstant(Value *V, Constant *C) {
277    markConstant(ValueState[V], V, C);
278  }
279
280  // markOverdefined - Make a value be marked as "overdefined". If the
281  // value is not already overdefined, add it to the overdefined instruction
282  // work list so that the users of the instruction are updated later.
283  inline void markOverdefined(LatticeVal &IV, Value *V) {
284    if (IV.markOverdefined()) {
285      DEBUG(errs() << "markOverdefined: ";
286            if (Function *F = dyn_cast<Function>(V))
287              errs() << "Function '" << F->getName() << "'\n";
288            else
289              errs() << *V << '\n');
290      // Only instructions go on the work list
291      OverdefinedInstWorkList.push_back(V);
292    }
293  }
294
295  inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
296    if (IV.isOverdefined() || MergeWithV.isUndefined())
297      return;  // Noop.
298    if (MergeWithV.isOverdefined())
299      markOverdefined(IV, V);
300    else if (IV.isUndefined())
301      markConstant(IV, V, MergeWithV.getConstant());
302    else if (IV.getConstant() != MergeWithV.getConstant())
303      markOverdefined(IV, V);
304  }
305
306  inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
307    return mergeInValue(ValueState[V], V, MergeWithV);
308  }
309
310
311  // getValueState - Return the LatticeVal object that corresponds to the value.
312  // This function is necessary because not all values should start out in the
313  // underdefined state... Argument's should be overdefined, and
314  // constants should be marked as constants.  If a value is not known to be an
315  // Instruction object, then use this accessor to get its value from the map.
316  //
317  inline LatticeVal &getValueState(Value *V) {
318    std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
319    if (I != ValueState.end()) return I->second;  // Common case, in the map
320
321    if (Constant *C = dyn_cast<Constant>(V)) {
322      if (isa<UndefValue>(V)) {
323        // Nothing to do, remain undefined.
324      } else {
325        LatticeVal &LV = ValueState[C];
326        LV.markConstant(C);          // Constants are constant
327        return LV;
328      }
329    }
330    // All others are underdefined by default...
331    return ValueState[V];
332  }
333
334  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
335  // work list if it is not already executable...
336  //
337  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
338    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
339      return;  // This edge is already known to be executable!
340
341    if (BBExecutable.count(Dest)) {
342      DEBUG(errs() << "Marking Edge Executable: " << Source->getName()
343            << " -> " << Dest->getName() << "\n");
344
345      // The destination is already executable, but we just made an edge
346      // feasible that wasn't before.  Revisit the PHI nodes in the block
347      // because they have potentially new operands.
348      for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
349        visitPHINode(*cast<PHINode>(I));
350
351    } else {
352      MarkBlockExecutable(Dest);
353    }
354  }
355
356  // getFeasibleSuccessors - Return a vector of booleans to indicate which
357  // successors are reachable from a given terminator instruction.
358  //
359  void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
360
361  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
362  // block to the 'To' basic block is currently feasible...
363  //
364  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
365
366  // OperandChangedState - This method is invoked on all of the users of an
367  // instruction that was just changed state somehow....  Based on this
368  // information, we need to update the specified user of this instruction.
369  //
370  void OperandChangedState(User *U) {
371    // Only instructions use other variable values!
372    Instruction &I = cast<Instruction>(*U);
373    if (BBExecutable.count(I.getParent()))   // Inst is executable?
374      visit(I);
375  }
376
377private:
378  friend class InstVisitor<SCCPSolver>;
379
380  // visit implementations - Something changed in this instruction... Either an
381  // operand made a transition, or the instruction is newly executable.  Change
382  // the value type of I to reflect these changes if appropriate.
383  //
384  void visitPHINode(PHINode &I);
385
386  // Terminators
387  void visitReturnInst(ReturnInst &I);
388  void visitTerminatorInst(TerminatorInst &TI);
389
390  void visitCastInst(CastInst &I);
391  void visitSelectInst(SelectInst &I);
392  void visitBinaryOperator(Instruction &I);
393  void visitCmpInst(CmpInst &I);
394  void visitExtractElementInst(ExtractElementInst &I);
395  void visitInsertElementInst(InsertElementInst &I);
396  void visitShuffleVectorInst(ShuffleVectorInst &I);
397  void visitExtractValueInst(ExtractValueInst &EVI);
398  void visitInsertValueInst(InsertValueInst &IVI);
399
400  // Instructions that cannot be folded away...
401  void visitStoreInst     (Instruction &I);
402  void visitLoadInst      (LoadInst &I);
403  void visitGetElementPtrInst(GetElementPtrInst &I);
404  void visitCallInst      (CallInst &I) {
405    if (isFreeCall(&I))
406      return;
407    visitCallSite(CallSite::get(&I));
408  }
409  void visitInvokeInst    (InvokeInst &II) {
410    visitCallSite(CallSite::get(&II));
411    visitTerminatorInst(II);
412  }
413  void visitCallSite      (CallSite CS);
414  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
415  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
416  void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
417  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
418  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
419
420  void visitInstruction(Instruction &I) {
421    // If a new instruction is added to LLVM that we don't handle...
422    errs() << "SCCP: Don't know how to handle: " << I;
423    markOverdefined(&I);   // Just in case
424  }
425};
426
427} // end anonymous namespace
428
429
430// getFeasibleSuccessors - Return a vector of booleans to indicate which
431// successors are reachable from a given terminator instruction.
432//
433void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
434                                       SmallVector<bool, 16> &Succs) {
435  Succs.resize(TI.getNumSuccessors());
436  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
437    if (BI->isUnconditional()) {
438      Succs[0] = true;
439    } else {
440      LatticeVal &BCValue = getValueState(BI->getCondition());
441      if (BCValue.isOverdefined() ||
442          (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
443        // Overdefined condition variables, and branches on unfoldable constant
444        // conditions, mean the branch could go either way.
445        Succs[0] = Succs[1] = true;
446      } else if (BCValue.isConstant()) {
447        // Constant condition variables mean the branch can only go a single way
448        Succs[BCValue.getConstant() == ConstantInt::getFalse(*Context)] = true;
449      }
450    }
451  } else if (isa<InvokeInst>(&TI)) {
452    // Invoke instructions successors are always executable.
453    Succs[0] = Succs[1] = true;
454  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
455    LatticeVal &SCValue = getValueState(SI->getCondition());
456    if (SCValue.isOverdefined() ||   // Overdefined condition?
457        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
458      // All destinations are executable!
459      Succs.assign(TI.getNumSuccessors(), true);
460    } else if (SCValue.isConstant())
461      Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true;
462  } else {
463    llvm_unreachable("SCCP: Don't know how to handle this terminator!");
464  }
465}
466
467
468// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
469// block to the 'To' basic block is currently feasible...
470//
471bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
472  assert(BBExecutable.count(To) && "Dest should always be alive!");
473
474  // Make sure the source basic block is executable!!
475  if (!BBExecutable.count(From)) return false;
476
477  // Check to make sure this edge itself is actually feasible now...
478  TerminatorInst *TI = From->getTerminator();
479  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
480    if (BI->isUnconditional())
481      return true;
482    else {
483      LatticeVal &BCValue = getValueState(BI->getCondition());
484      if (BCValue.isOverdefined()) {
485        // Overdefined condition variables mean the branch could go either way.
486        return true;
487      } else if (BCValue.isConstant()) {
488        // Not branching on an evaluatable constant?
489        if (!isa<ConstantInt>(BCValue.getConstant())) return true;
490
491        // Constant condition variables mean the branch can only go a single way
492        return BI->getSuccessor(BCValue.getConstant() ==
493                                       ConstantInt::getFalse(*Context)) == To;
494      }
495      return false;
496    }
497  } else if (isa<InvokeInst>(TI)) {
498    // Invoke instructions successors are always executable.
499    return true;
500  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
501    LatticeVal &SCValue = getValueState(SI->getCondition());
502    if (SCValue.isOverdefined()) {  // Overdefined condition?
503      // All destinations are executable!
504      return true;
505    } else if (SCValue.isConstant()) {
506      Constant *CPV = SCValue.getConstant();
507      if (!isa<ConstantInt>(CPV))
508        return true;  // not a foldable constant?
509
510      // Make sure to skip the "default value" which isn't a value
511      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
512        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
513          return SI->getSuccessor(i) == To;
514
515      // Constant value not equal to any of the branches... must execute
516      // default branch then...
517      return SI->getDefaultDest() == To;
518    }
519    return false;
520  } else {
521#ifndef NDEBUG
522    errs() << "Unknown terminator instruction: " << *TI << '\n';
523#endif
524    llvm_unreachable(0);
525  }
526}
527
528// visit Implementations - Something changed in this instruction... Either an
529// operand made a transition, or the instruction is newly executable.  Change
530// the value type of I to reflect these changes if appropriate.  This method
531// makes sure to do the following actions:
532//
533// 1. If a phi node merges two constants in, and has conflicting value coming
534//    from different branches, or if the PHI node merges in an overdefined
535//    value, then the PHI node becomes overdefined.
536// 2. If a phi node merges only constants in, and they all agree on value, the
537//    PHI node becomes a constant value equal to that.
538// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
539// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
540// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
541// 6. If a conditional branch has a value that is constant, make the selected
542//    destination executable
543// 7. If a conditional branch has a value that is overdefined, make all
544//    successors executable.
545//
546void SCCPSolver::visitPHINode(PHINode &PN) {
547  LatticeVal &PNIV = getValueState(&PN);
548  if (PNIV.isOverdefined()) {
549    // There may be instructions using this PHI node that are not overdefined
550    // themselves.  If so, make sure that they know that the PHI node operand
551    // changed.
552    std::multimap<PHINode*, Instruction*>::iterator I, E;
553    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
554    if (I != E) {
555      SmallVector<Instruction*, 16> Users;
556      for (; I != E; ++I) Users.push_back(I->second);
557      while (!Users.empty()) {
558        visit(Users.back());
559        Users.pop_back();
560      }
561    }
562    return;  // Quick exit
563  }
564
565  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
566  // and slow us down a lot.  Just mark them overdefined.
567  if (PN.getNumIncomingValues() > 64) {
568    markOverdefined(PNIV, &PN);
569    return;
570  }
571
572  // Look at all of the executable operands of the PHI node.  If any of them
573  // are overdefined, the PHI becomes overdefined as well.  If they are all
574  // constant, and they agree with each other, the PHI becomes the identical
575  // constant.  If they are constant and don't agree, the PHI is overdefined.
576  // If there are no executable operands, the PHI remains undefined.
577  //
578  Constant *OperandVal = 0;
579  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
580    LatticeVal &IV = getValueState(PN.getIncomingValue(i));
581    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
582
583    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
584      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
585        markOverdefined(&PN);
586        return;
587      }
588
589      if (OperandVal == 0) {   // Grab the first value...
590        OperandVal = IV.getConstant();
591      } else {                // Another value is being merged in!
592        // There is already a reachable operand.  If we conflict with it,
593        // then the PHI node becomes overdefined.  If we agree with it, we
594        // can continue on.
595
596        // Check to see if there are two different constants merging...
597        if (IV.getConstant() != OperandVal) {
598          // Yes there is.  This means the PHI node is not constant.
599          // You must be overdefined poor PHI.
600          //
601          markOverdefined(&PN);    // The PHI node now becomes overdefined
602          return;    // I'm done analyzing you
603        }
604      }
605    }
606  }
607
608  // If we exited the loop, this means that the PHI node only has constant
609  // arguments that agree with each other(and OperandVal is the constant) or
610  // OperandVal is null because there are no defined incoming arguments.  If
611  // this is the case, the PHI remains undefined.
612  //
613  if (OperandVal)
614    markConstant(&PN, OperandVal);      // Acquire operand value
615}
616
617void SCCPSolver::visitReturnInst(ReturnInst &I) {
618  if (I.getNumOperands() == 0) return;  // Ret void
619
620  Function *F = I.getParent()->getParent();
621  // If we are tracking the return value of this function, merge it in.
622  if (!F->hasLocalLinkage())
623    return;
624
625  if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
626    DenseMap<Function*, LatticeVal>::iterator TFRVI =
627      TrackedRetVals.find(F);
628    if (TFRVI != TrackedRetVals.end() &&
629        !TFRVI->second.isOverdefined()) {
630      LatticeVal &IV = getValueState(I.getOperand(0));
631      mergeInValue(TFRVI->second, F, IV);
632      return;
633    }
634  }
635
636  // Handle functions that return multiple values.
637  if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
638    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
639      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
640        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
641      if (It == TrackedMultipleRetVals.end()) break;
642      mergeInValue(It->second, F, getValueState(I.getOperand(i)));
643    }
644  } else if (!TrackedMultipleRetVals.empty() &&
645             I.getNumOperands() == 1 &&
646             isa<StructType>(I.getOperand(0)->getType())) {
647    for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
648         i != e; ++i) {
649      DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
650        It = TrackedMultipleRetVals.find(std::make_pair(F, i));
651      if (It == TrackedMultipleRetVals.end()) break;
652      if (Value *Val = FindInsertedValue(I.getOperand(0), i, I.getContext()))
653        mergeInValue(It->second, F, getValueState(Val));
654    }
655  }
656}
657
658void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
659  SmallVector<bool, 16> SuccFeasible;
660  getFeasibleSuccessors(TI, SuccFeasible);
661
662  BasicBlock *BB = TI.getParent();
663
664  // Mark all feasible successors executable...
665  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
666    if (SuccFeasible[i])
667      markEdgeExecutable(BB, TI.getSuccessor(i));
668}
669
670void SCCPSolver::visitCastInst(CastInst &I) {
671  Value *V = I.getOperand(0);
672  LatticeVal &VState = getValueState(V);
673  if (VState.isOverdefined())          // Inherit overdefinedness of operand
674    markOverdefined(&I);
675  else if (VState.isConstant())        // Propagate constant value
676    markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
677                                           VState.getConstant(), I.getType()));
678}
679
680void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
681  Value *Aggr = EVI.getAggregateOperand();
682
683  // If the operand to the extractvalue is an undef, the result is undef.
684  if (isa<UndefValue>(Aggr))
685    return;
686
687  // Currently only handle single-index extractvalues.
688  if (EVI.getNumIndices() != 1) {
689    markOverdefined(&EVI);
690    return;
691  }
692
693  Function *F = 0;
694  if (CallInst *CI = dyn_cast<CallInst>(Aggr))
695    F = CI->getCalledFunction();
696  else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
697    F = II->getCalledFunction();
698
699  // TODO: If IPSCCP resolves the callee of this function, we could propagate a
700  // result back!
701  if (F == 0 || TrackedMultipleRetVals.empty()) {
702    markOverdefined(&EVI);
703    return;
704  }
705
706  // See if we are tracking the result of the callee.  If not tracking this
707  // function (for example, it is a declaration) just move to overdefined.
708  if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) {
709    markOverdefined(&EVI);
710    return;
711  }
712
713  // Otherwise, the value will be merged in here as a result of CallSite
714  // handling.
715}
716
717void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
718  Value *Aggr = IVI.getAggregateOperand();
719  Value *Val = IVI.getInsertedValueOperand();
720
721  // If the operands to the insertvalue are undef, the result is undef.
722  if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val))
723    return;
724
725  // Currently only handle single-index insertvalues.
726  if (IVI.getNumIndices() != 1) {
727    markOverdefined(&IVI);
728    return;
729  }
730
731  // Currently only handle insertvalue instructions that are in a single-use
732  // chain that builds up a return value.
733  for (const InsertValueInst *TmpIVI = &IVI; ; ) {
734    if (!TmpIVI->hasOneUse()) {
735      markOverdefined(&IVI);
736      return;
737    }
738    const Value *V = *TmpIVI->use_begin();
739    if (isa<ReturnInst>(V))
740      break;
741    TmpIVI = dyn_cast<InsertValueInst>(V);
742    if (!TmpIVI) {
743      markOverdefined(&IVI);
744      return;
745    }
746  }
747
748  // See if we are tracking the result of the callee.
749  Function *F = IVI.getParent()->getParent();
750  DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
751    It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
752
753  // Merge in the inserted member value.
754  if (It != TrackedMultipleRetVals.end())
755    mergeInValue(It->second, F, getValueState(Val));
756
757  // Mark the aggregate result of the IVI overdefined; any tracking that we do
758  // will be done on the individual member values.
759  markOverdefined(&IVI);
760}
761
762void SCCPSolver::visitSelectInst(SelectInst &I) {
763  LatticeVal &CondValue = getValueState(I.getCondition());
764  if (CondValue.isUndefined())
765    return;
766  if (CondValue.isConstant()) {
767    if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
768      mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
769                                                          : I.getFalseValue()));
770      return;
771    }
772  }
773
774  // Otherwise, the condition is overdefined or a constant we can't evaluate.
775  // See if we can produce something better than overdefined based on the T/F
776  // value.
777  LatticeVal &TVal = getValueState(I.getTrueValue());
778  LatticeVal &FVal = getValueState(I.getFalseValue());
779
780  // select ?, C, C -> C.
781  if (TVal.isConstant() && FVal.isConstant() &&
782      TVal.getConstant() == FVal.getConstant()) {
783    markConstant(&I, FVal.getConstant());
784    return;
785  }
786
787  if (TVal.isUndefined()) {  // select ?, undef, X -> X.
788    mergeInValue(&I, FVal);
789  } else if (FVal.isUndefined()) {  // select ?, X, undef -> X.
790    mergeInValue(&I, TVal);
791  } else {
792    markOverdefined(&I);
793  }
794}
795
796// Handle BinaryOperators and Shift Instructions...
797void SCCPSolver::visitBinaryOperator(Instruction &I) {
798  LatticeVal &IV = ValueState[&I];
799  if (IV.isOverdefined()) return;
800
801  LatticeVal &V1State = getValueState(I.getOperand(0));
802  LatticeVal &V2State = getValueState(I.getOperand(1));
803
804  if (V1State.isOverdefined() || V2State.isOverdefined()) {
805    // If this is an AND or OR with 0 or -1, it doesn't matter that the other
806    // operand is overdefined.
807    if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
808      LatticeVal *NonOverdefVal = 0;
809      if (!V1State.isOverdefined()) {
810        NonOverdefVal = &V1State;
811      } else if (!V2State.isOverdefined()) {
812        NonOverdefVal = &V2State;
813      }
814
815      if (NonOverdefVal) {
816        if (NonOverdefVal->isUndefined()) {
817          // Could annihilate value.
818          if (I.getOpcode() == Instruction::And)
819            markConstant(IV, &I, Constant::getNullValue(I.getType()));
820          else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
821            markConstant(IV, &I, Constant::getAllOnesValue(PT));
822          else
823            markConstant(IV, &I,
824                         Constant::getAllOnesValue(I.getType()));
825          return;
826        } else {
827          if (I.getOpcode() == Instruction::And) {
828            if (NonOverdefVal->getConstant()->isNullValue()) {
829              markConstant(IV, &I, NonOverdefVal->getConstant());
830              return;      // X and 0 = 0
831            }
832          } else {
833            if (ConstantInt *CI =
834                     dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
835              if (CI->isAllOnesValue()) {
836                markConstant(IV, &I, NonOverdefVal->getConstant());
837                return;    // X or -1 = -1
838              }
839          }
840        }
841      }
842    }
843
844
845    // If both operands are PHI nodes, it is possible that this instruction has
846    // a constant value, despite the fact that the PHI node doesn't.  Check for
847    // this condition now.
848    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
849      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
850        if (PN1->getParent() == PN2->getParent()) {
851          // Since the two PHI nodes are in the same basic block, they must have
852          // entries for the same predecessors.  Walk the predecessor list, and
853          // if all of the incoming values are constants, and the result of
854          // evaluating this expression with all incoming value pairs is the
855          // same, then this expression is a constant even though the PHI node
856          // is not a constant!
857          LatticeVal Result;
858          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
859            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
860            BasicBlock *InBlock = PN1->getIncomingBlock(i);
861            LatticeVal &In2 =
862              getValueState(PN2->getIncomingValueForBlock(InBlock));
863
864            if (In1.isOverdefined() || In2.isOverdefined()) {
865              Result.markOverdefined();
866              break;  // Cannot fold this operation over the PHI nodes!
867            } else if (In1.isConstant() && In2.isConstant()) {
868              Constant *V =
869                     ConstantExpr::get(I.getOpcode(), In1.getConstant(),
870                                              In2.getConstant());
871              if (Result.isUndefined())
872                Result.markConstant(V);
873              else if (Result.isConstant() && Result.getConstant() != V) {
874                Result.markOverdefined();
875                break;
876              }
877            }
878          }
879
880          // If we found a constant value here, then we know the instruction is
881          // constant despite the fact that the PHI nodes are overdefined.
882          if (Result.isConstant()) {
883            markConstant(IV, &I, Result.getConstant());
884            // Remember that this instruction is virtually using the PHI node
885            // operands.
886            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
887            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
888            return;
889          } else if (Result.isUndefined()) {
890            return;
891          }
892
893          // Okay, this really is overdefined now.  Since we might have
894          // speculatively thought that this was not overdefined before, and
895          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
896          // make sure to clean out any entries that we put there, for
897          // efficiency.
898          std::multimap<PHINode*, Instruction*>::iterator It, E;
899          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
900          while (It != E) {
901            if (It->second == &I) {
902              UsersOfOverdefinedPHIs.erase(It++);
903            } else
904              ++It;
905          }
906          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
907          while (It != E) {
908            if (It->second == &I) {
909              UsersOfOverdefinedPHIs.erase(It++);
910            } else
911              ++It;
912          }
913        }
914
915    markOverdefined(IV, &I);
916  } else if (V1State.isConstant() && V2State.isConstant()) {
917    markConstant(IV, &I,
918                ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
919                                           V2State.getConstant()));
920  }
921}
922
923// Handle ICmpInst instruction...
924void SCCPSolver::visitCmpInst(CmpInst &I) {
925  LatticeVal &IV = ValueState[&I];
926  if (IV.isOverdefined()) return;
927
928  LatticeVal &V1State = getValueState(I.getOperand(0));
929  LatticeVal &V2State = getValueState(I.getOperand(1));
930
931  if (V1State.isOverdefined() || V2State.isOverdefined()) {
932    // If both operands are PHI nodes, it is possible that this instruction has
933    // a constant value, despite the fact that the PHI node doesn't.  Check for
934    // this condition now.
935    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
936      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
937        if (PN1->getParent() == PN2->getParent()) {
938          // Since the two PHI nodes are in the same basic block, they must have
939          // entries for the same predecessors.  Walk the predecessor list, and
940          // if all of the incoming values are constants, and the result of
941          // evaluating this expression with all incoming value pairs is the
942          // same, then this expression is a constant even though the PHI node
943          // is not a constant!
944          LatticeVal Result;
945          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
946            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
947            BasicBlock *InBlock = PN1->getIncomingBlock(i);
948            LatticeVal &In2 =
949              getValueState(PN2->getIncomingValueForBlock(InBlock));
950
951            if (In1.isOverdefined() || In2.isOverdefined()) {
952              Result.markOverdefined();
953              break;  // Cannot fold this operation over the PHI nodes!
954            } else if (In1.isConstant() && In2.isConstant()) {
955              Constant *V = ConstantExpr::getCompare(I.getPredicate(),
956                                                     In1.getConstant(),
957                                                     In2.getConstant());
958              if (Result.isUndefined())
959                Result.markConstant(V);
960              else if (Result.isConstant() && Result.getConstant() != V) {
961                Result.markOverdefined();
962                break;
963              }
964            }
965          }
966
967          // If we found a constant value here, then we know the instruction is
968          // constant despite the fact that the PHI nodes are overdefined.
969          if (Result.isConstant()) {
970            markConstant(IV, &I, Result.getConstant());
971            // Remember that this instruction is virtually using the PHI node
972            // operands.
973            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
974            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
975            return;
976          } else if (Result.isUndefined()) {
977            return;
978          }
979
980          // Okay, this really is overdefined now.  Since we might have
981          // speculatively thought that this was not overdefined before, and
982          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
983          // make sure to clean out any entries that we put there, for
984          // efficiency.
985          std::multimap<PHINode*, Instruction*>::iterator It, E;
986          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
987          while (It != E) {
988            if (It->second == &I) {
989              UsersOfOverdefinedPHIs.erase(It++);
990            } else
991              ++It;
992          }
993          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
994          while (It != E) {
995            if (It->second == &I) {
996              UsersOfOverdefinedPHIs.erase(It++);
997            } else
998              ++It;
999          }
1000        }
1001
1002    markOverdefined(IV, &I);
1003  } else if (V1State.isConstant() && V2State.isConstant()) {
1004    markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
1005                                                  V1State.getConstant(),
1006                                                  V2State.getConstant()));
1007  }
1008}
1009
1010void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1011  // FIXME : SCCP does not handle vectors properly.
1012  markOverdefined(&I);
1013  return;
1014
1015#if 0
1016  LatticeVal &ValState = getValueState(I.getOperand(0));
1017  LatticeVal &IdxState = getValueState(I.getOperand(1));
1018
1019  if (ValState.isOverdefined() || IdxState.isOverdefined())
1020    markOverdefined(&I);
1021  else if(ValState.isConstant() && IdxState.isConstant())
1022    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1023                                                     IdxState.getConstant()));
1024#endif
1025}
1026
1027void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1028  // FIXME : SCCP does not handle vectors properly.
1029  markOverdefined(&I);
1030  return;
1031#if 0
1032  LatticeVal &ValState = getValueState(I.getOperand(0));
1033  LatticeVal &EltState = getValueState(I.getOperand(1));
1034  LatticeVal &IdxState = getValueState(I.getOperand(2));
1035
1036  if (ValState.isOverdefined() || EltState.isOverdefined() ||
1037      IdxState.isOverdefined())
1038    markOverdefined(&I);
1039  else if(ValState.isConstant() && EltState.isConstant() &&
1040          IdxState.isConstant())
1041    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1042                                                    EltState.getConstant(),
1043                                                    IdxState.getConstant()));
1044  else if (ValState.isUndefined() && EltState.isConstant() &&
1045           IdxState.isConstant())
1046    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1047                                                   EltState.getConstant(),
1048                                                   IdxState.getConstant()));
1049#endif
1050}
1051
1052void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1053  // FIXME : SCCP does not handle vectors properly.
1054  markOverdefined(&I);
1055  return;
1056#if 0
1057  LatticeVal &V1State   = getValueState(I.getOperand(0));
1058  LatticeVal &V2State   = getValueState(I.getOperand(1));
1059  LatticeVal &MaskState = getValueState(I.getOperand(2));
1060
1061  if (MaskState.isUndefined() ||
1062      (V1State.isUndefined() && V2State.isUndefined()))
1063    return;  // Undefined output if mask or both inputs undefined.
1064
1065  if (V1State.isOverdefined() || V2State.isOverdefined() ||
1066      MaskState.isOverdefined()) {
1067    markOverdefined(&I);
1068  } else {
1069    // A mix of constant/undef inputs.
1070    Constant *V1 = V1State.isConstant() ?
1071        V1State.getConstant() : UndefValue::get(I.getType());
1072    Constant *V2 = V2State.isConstant() ?
1073        V2State.getConstant() : UndefValue::get(I.getType());
1074    Constant *Mask = MaskState.isConstant() ?
1075      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1076    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1077  }
1078#endif
1079}
1080
1081// Handle getelementptr instructions... if all operands are constants then we
1082// can turn this into a getelementptr ConstantExpr.
1083//
1084void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1085  LatticeVal &IV = ValueState[&I];
1086  if (IV.isOverdefined()) return;
1087
1088  SmallVector<Constant*, 8> Operands;
1089  Operands.reserve(I.getNumOperands());
1090
1091  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1092    LatticeVal &State = getValueState(I.getOperand(i));
1093    if (State.isUndefined())
1094      return;  // Operands are not resolved yet...
1095    else if (State.isOverdefined()) {
1096      markOverdefined(IV, &I);
1097      return;
1098    }
1099    assert(State.isConstant() && "Unknown state!");
1100    Operands.push_back(State.getConstant());
1101  }
1102
1103  Constant *Ptr = Operands[0];
1104  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
1105
1106  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
1107                                                      Operands.size()));
1108}
1109
1110void SCCPSolver::visitStoreInst(Instruction &SI) {
1111  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1112    return;
1113  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1114  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1115  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1116
1117  // Get the value we are storing into the global.
1118  LatticeVal &PtrVal = getValueState(SI.getOperand(0));
1119
1120  mergeInValue(I->second, GV, PtrVal);
1121  if (I->second.isOverdefined())
1122    TrackedGlobals.erase(I);      // No need to keep tracking this!
1123}
1124
1125
1126// Handle load instructions.  If the operand is a constant pointer to a constant
1127// global, we can replace the load with the loaded constant value!
1128void SCCPSolver::visitLoadInst(LoadInst &I) {
1129  LatticeVal &IV = ValueState[&I];
1130  if (IV.isOverdefined()) return;
1131
1132  LatticeVal &PtrVal = getValueState(I.getOperand(0));
1133  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
1134  if (PtrVal.isConstant() && !I.isVolatile()) {
1135    Value *Ptr = PtrVal.getConstant();
1136    // TODO: Consider a target hook for valid address spaces for this xform.
1137    if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) {
1138      // load null -> null
1139      markConstant(IV, &I, Constant::getNullValue(I.getType()));
1140      return;
1141    }
1142
1143    // Transform load (constant global) into the value loaded.
1144    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1145      if (GV->isConstant()) {
1146        if (GV->hasDefinitiveInitializer()) {
1147          markConstant(IV, &I, GV->getInitializer());
1148          return;
1149        }
1150      } else if (!TrackedGlobals.empty()) {
1151        // If we are tracking this global, merge in the known value for it.
1152        DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1153          TrackedGlobals.find(GV);
1154        if (It != TrackedGlobals.end()) {
1155          mergeInValue(IV, &I, It->second);
1156          return;
1157        }
1158      }
1159    }
1160
1161    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1162    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1163      if (CE->getOpcode() == Instruction::GetElementPtr)
1164    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
1165      if (GV->isConstant() && GV->hasDefinitiveInitializer())
1166        if (Constant *V =
1167             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
1168          markConstant(IV, &I, V);
1169          return;
1170        }
1171  }
1172
1173  // Otherwise we cannot say for certain what value this load will produce.
1174  // Bail out.
1175  markOverdefined(IV, &I);
1176}
1177
1178void SCCPSolver::visitCallSite(CallSite CS) {
1179  Function *F = CS.getCalledFunction();
1180  Instruction *I = CS.getInstruction();
1181
1182  // The common case is that we aren't tracking the callee, either because we
1183  // are not doing interprocedural analysis or the callee is indirect, or is
1184  // external.  Handle these cases first.
1185  if (F == 0 || !F->hasLocalLinkage()) {
1186CallOverdefined:
1187    // Void return and not tracking callee, just bail.
1188    if (I->getType()->isVoidTy()) return;
1189
1190    // Otherwise, if we have a single return value case, and if the function is
1191    // a declaration, maybe we can constant fold it.
1192    if (!isa<StructType>(I->getType()) && F && F->isDeclaration() &&
1193        canConstantFoldCallTo(F)) {
1194
1195      SmallVector<Constant*, 8> Operands;
1196      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1197           AI != E; ++AI) {
1198        LatticeVal &State = getValueState(*AI);
1199        if (State.isUndefined())
1200          return;  // Operands are not resolved yet.
1201        else if (State.isOverdefined()) {
1202          markOverdefined(I);
1203          return;
1204        }
1205        assert(State.isConstant() && "Unknown state!");
1206        Operands.push_back(State.getConstant());
1207      }
1208
1209      // If we can constant fold this, mark the result of the call as a
1210      // constant.
1211      if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) {
1212        markConstant(I, C);
1213        return;
1214      }
1215    }
1216
1217    // Otherwise, we don't know anything about this call, mark it overdefined.
1218    markOverdefined(I);
1219    return;
1220  }
1221
1222  // If this is a single/zero retval case, see if we're tracking the function.
1223  DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1224  if (TFRVI != TrackedRetVals.end()) {
1225    // If so, propagate the return value of the callee into this call result.
1226    mergeInValue(I, TFRVI->second);
1227  } else if (isa<StructType>(I->getType())) {
1228    // Check to see if we're tracking this callee, if not, handle it in the
1229    // common path above.
1230    DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
1231    TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
1232    if (TMRVI == TrackedMultipleRetVals.end())
1233      goto CallOverdefined;
1234
1235    // Need to mark as overdefined, otherwise it stays undefined which
1236    // creates extractvalue undef, <idx>
1237    markOverdefined(I);
1238    // If we are tracking this callee, propagate the return values of the call
1239    // into this call site.  We do this by walking all the uses. Single-index
1240    // ExtractValueInst uses can be tracked; anything more complicated is
1241    // currently handled conservatively.
1242    for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1243         UI != E; ++UI) {
1244      if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
1245        if (EVI->getNumIndices() == 1) {
1246          mergeInValue(EVI,
1247                  TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
1248          continue;
1249        }
1250      }
1251      // The aggregate value is used in a way not handled here. Assume nothing.
1252      markOverdefined(*UI);
1253    }
1254  } else {
1255    // Otherwise we're not tracking this callee, so handle it in the
1256    // common path above.
1257    goto CallOverdefined;
1258  }
1259
1260  // Finally, if this is the first call to the function hit, mark its entry
1261  // block executable.
1262  if (!BBExecutable.count(F->begin()))
1263    MarkBlockExecutable(F->begin());
1264
1265  // Propagate information from this call site into the callee.
1266  CallSite::arg_iterator CAI = CS.arg_begin();
1267  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1268       AI != E; ++AI, ++CAI) {
1269    LatticeVal &IV = ValueState[AI];
1270    if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1271      IV.markOverdefined();
1272      continue;
1273    }
1274    if (!IV.isOverdefined())
1275      mergeInValue(IV, AI, getValueState(*CAI));
1276  }
1277}
1278
1279void SCCPSolver::Solve() {
1280  // Process the work lists until they are empty!
1281  while (!BBWorkList.empty() || !InstWorkList.empty() ||
1282         !OverdefinedInstWorkList.empty()) {
1283    // Process the instruction work list...
1284    while (!OverdefinedInstWorkList.empty()) {
1285      Value *I = OverdefinedInstWorkList.back();
1286      OverdefinedInstWorkList.pop_back();
1287
1288      DEBUG(errs() << "\nPopped off OI-WL: " << *I << '\n');
1289
1290      // "I" got into the work list because it either made the transition from
1291      // bottom to constant
1292      //
1293      // Anything on this worklist that is overdefined need not be visited
1294      // since all of its users will have already been marked as overdefined
1295      // Update all of the users of this instruction's value...
1296      //
1297      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1298           UI != E; ++UI)
1299        OperandChangedState(*UI);
1300    }
1301    // Process the instruction work list...
1302    while (!InstWorkList.empty()) {
1303      Value *I = InstWorkList.back();
1304      InstWorkList.pop_back();
1305
1306      DEBUG(errs() << "\nPopped off I-WL: " << *I << '\n');
1307
1308      // "I" got into the work list because it either made the transition from
1309      // bottom to constant
1310      //
1311      // Anything on this worklist that is overdefined need not be visited
1312      // since all of its users will have already been marked as overdefined.
1313      // Update all of the users of this instruction's value...
1314      //
1315      if (!getValueState(I).isOverdefined())
1316        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1317             UI != E; ++UI)
1318          OperandChangedState(*UI);
1319    }
1320
1321    // Process the basic block work list...
1322    while (!BBWorkList.empty()) {
1323      BasicBlock *BB = BBWorkList.back();
1324      BBWorkList.pop_back();
1325
1326      DEBUG(errs() << "\nPopped off BBWL: " << *BB << '\n');
1327
1328      // Notify all instructions in this basic block that they are newly
1329      // executable.
1330      visit(BB);
1331    }
1332  }
1333}
1334
1335/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1336/// that branches on undef values cannot reach any of their successors.
1337/// However, this is not a safe assumption.  After we solve dataflow, this
1338/// method should be use to handle this.  If this returns true, the solver
1339/// should be rerun.
1340///
1341/// This method handles this by finding an unresolved branch and marking it one
1342/// of the edges from the block as being feasible, even though the condition
1343/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1344/// CFG and only slightly pessimizes the analysis results (by marking one,
1345/// potentially infeasible, edge feasible).  This cannot usefully modify the
1346/// constraints on the condition of the branch, as that would impact other users
1347/// of the value.
1348///
1349/// This scan also checks for values that use undefs, whose results are actually
1350/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1351/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1352/// even if X isn't defined.
1353bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1354  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1355    if (!BBExecutable.count(BB))
1356      continue;
1357
1358    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1359      // Look for instructions which produce undef values.
1360      if (I->getType()->isVoidTy()) continue;
1361
1362      LatticeVal &LV = getValueState(I);
1363      if (!LV.isUndefined()) continue;
1364
1365      // Get the lattice values of the first two operands for use below.
1366      LatticeVal &Op0LV = getValueState(I->getOperand(0));
1367      LatticeVal Op1LV;
1368      if (I->getNumOperands() == 2) {
1369        // If this is a two-operand instruction, and if both operands are
1370        // undefs, the result stays undef.
1371        Op1LV = getValueState(I->getOperand(1));
1372        if (Op0LV.isUndefined() && Op1LV.isUndefined())
1373          continue;
1374      }
1375
1376      // If this is an instructions whose result is defined even if the input is
1377      // not fully defined, propagate the information.
1378      const Type *ITy = I->getType();
1379      switch (I->getOpcode()) {
1380      default: break;          // Leave the instruction as an undef.
1381      case Instruction::ZExt:
1382        // After a zero extend, we know the top part is zero.  SExt doesn't have
1383        // to be handled here, because we don't know whether the top part is 1's
1384        // or 0's.
1385        assert(Op0LV.isUndefined());
1386        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1387        return true;
1388      case Instruction::Mul:
1389      case Instruction::And:
1390        // undef * X -> 0.   X could be zero.
1391        // undef & X -> 0.   X could be zero.
1392        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1393        return true;
1394
1395      case Instruction::Or:
1396        // undef | X -> -1.   X could be -1.
1397        if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
1398          markForcedConstant(LV, I,
1399                             Constant::getAllOnesValue(PTy));
1400        else
1401          markForcedConstant(LV, I, Constant::getAllOnesValue(ITy));
1402        return true;
1403
1404      case Instruction::SDiv:
1405      case Instruction::UDiv:
1406      case Instruction::SRem:
1407      case Instruction::URem:
1408        // X / undef -> undef.  No change.
1409        // X % undef -> undef.  No change.
1410        if (Op1LV.isUndefined()) break;
1411
1412        // undef / X -> 0.   X could be maxint.
1413        // undef % X -> 0.   X could be 1.
1414        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1415        return true;
1416
1417      case Instruction::AShr:
1418        // undef >>s X -> undef.  No change.
1419        if (Op0LV.isUndefined()) break;
1420
1421        // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
1422        if (Op0LV.isConstant())
1423          markForcedConstant(LV, I, Op0LV.getConstant());
1424        else
1425          markOverdefined(LV, I);
1426        return true;
1427      case Instruction::LShr:
1428      case Instruction::Shl:
1429        // undef >> X -> undef.  No change.
1430        // undef << X -> undef.  No change.
1431        if (Op0LV.isUndefined()) break;
1432
1433        // X >> undef -> 0.  X could be 0.
1434        // X << undef -> 0.  X could be 0.
1435        markForcedConstant(LV, I, Constant::getNullValue(ITy));
1436        return true;
1437      case Instruction::Select:
1438        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1439        if (Op0LV.isUndefined()) {
1440          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1441            Op1LV = getValueState(I->getOperand(2));
1442        } else if (Op1LV.isUndefined()) {
1443          // c ? undef : undef -> undef.  No change.
1444          Op1LV = getValueState(I->getOperand(2));
1445          if (Op1LV.isUndefined())
1446            break;
1447          // Otherwise, c ? undef : x -> x.
1448        } else {
1449          // Leave Op1LV as Operand(1)'s LatticeValue.
1450        }
1451
1452        if (Op1LV.isConstant())
1453          markForcedConstant(LV, I, Op1LV.getConstant());
1454        else
1455          markOverdefined(LV, I);
1456        return true;
1457      case Instruction::Call:
1458        // If a call has an undef result, it is because it is constant foldable
1459        // but one of the inputs was undef.  Just force the result to
1460        // overdefined.
1461        markOverdefined(LV, I);
1462        return true;
1463      }
1464    }
1465
1466    TerminatorInst *TI = BB->getTerminator();
1467    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1468      if (!BI->isConditional()) continue;
1469      if (!getValueState(BI->getCondition()).isUndefined())
1470        continue;
1471    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1472      if (SI->getNumSuccessors()<2)   // no cases
1473        continue;
1474      if (!getValueState(SI->getCondition()).isUndefined())
1475        continue;
1476    } else {
1477      continue;
1478    }
1479
1480    // If the edge to the second successor isn't thought to be feasible yet,
1481    // mark it so now.  We pick the second one so that this goes to some
1482    // enumerated value in a switch instead of going to the default destination.
1483    if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
1484      continue;
1485
1486    // Otherwise, it isn't already thought to be feasible.  Mark it as such now
1487    // and return.  This will make other blocks reachable, which will allow new
1488    // values to be discovered and existing ones to be moved in the lattice.
1489    markEdgeExecutable(BB, TI->getSuccessor(1));
1490
1491    // This must be a conditional branch of switch on undef.  At this point,
1492    // force the old terminator to branch to the first successor.  This is
1493    // required because we are now influencing the dataflow of the function with
1494    // the assumption that this edge is taken.  If we leave the branch condition
1495    // as undef, then further analysis could think the undef went another way
1496    // leading to an inconsistent set of conclusions.
1497    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1498      BI->setCondition(ConstantInt::getFalse(*Context));
1499    } else {
1500      SwitchInst *SI = cast<SwitchInst>(TI);
1501      SI->setCondition(SI->getCaseValue(1));
1502    }
1503
1504    return true;
1505  }
1506
1507  return false;
1508}
1509
1510
1511namespace {
1512  //===--------------------------------------------------------------------===//
1513  //
1514  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1515  /// Sparse Conditional Constant Propagator.
1516  ///
1517  struct SCCP : public FunctionPass {
1518    static char ID; // Pass identification, replacement for typeid
1519    SCCP() : FunctionPass(&ID) {}
1520
1521    // runOnFunction - Run the Sparse Conditional Constant Propagation
1522    // algorithm, and return true if the function was modified.
1523    //
1524    bool runOnFunction(Function &F);
1525
1526    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1527      AU.setPreservesCFG();
1528    }
1529  };
1530} // end anonymous namespace
1531
1532char SCCP::ID = 0;
1533static RegisterPass<SCCP>
1534X("sccp", "Sparse Conditional Constant Propagation");
1535
1536// createSCCPPass - This is the public interface to this file...
1537FunctionPass *llvm::createSCCPPass() {
1538  return new SCCP();
1539}
1540
1541
1542// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1543// and return true if the function was modified.
1544//
1545bool SCCP::runOnFunction(Function &F) {
1546  DEBUG(errs() << "SCCP on function '" << F.getName() << "'\n");
1547  SCCPSolver Solver;
1548  Solver.setContext(&F.getContext());
1549
1550  // Mark the first block of the function as being executable.
1551  Solver.MarkBlockExecutable(F.begin());
1552
1553  // Mark all arguments to the function as being overdefined.
1554  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1555    Solver.markOverdefined(AI);
1556
1557  // Solve for constants.
1558  bool ResolvedUndefs = true;
1559  while (ResolvedUndefs) {
1560    Solver.Solve();
1561    DEBUG(errs() << "RESOLVING UNDEFs\n");
1562    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1563  }
1564
1565  bool MadeChanges = false;
1566
1567  // If we decided that there are basic blocks that are dead in this function,
1568  // delete their contents now.  Note that we cannot actually delete the blocks,
1569  // as we cannot modify the CFG of the function.
1570  //
1571  SmallVector<Instruction*, 512> Insts;
1572  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1573
1574  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1575    if (!Solver.isBlockExecutable(BB)) {
1576      DEBUG(errs() << "  BasicBlock Dead:" << *BB);
1577      ++NumDeadBlocks;
1578
1579      // Delete the instructions backwards, as it has a reduced likelihood of
1580      // having to update as many def-use and use-def chains.
1581      for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1582           I != E; ++I)
1583        Insts.push_back(I);
1584      while (!Insts.empty()) {
1585        Instruction *I = Insts.back();
1586        Insts.pop_back();
1587        if (!I->use_empty())
1588          I->replaceAllUsesWith(UndefValue::get(I->getType()));
1589        BB->getInstList().erase(I);
1590        MadeChanges = true;
1591        ++NumInstRemoved;
1592      }
1593    } else {
1594      // Iterate over all of the instructions in a function, replacing them with
1595      // constants if we have found them to be of constant values.
1596      //
1597      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1598        Instruction *Inst = BI++;
1599        if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1600          continue;
1601
1602        LatticeVal &IV = Values[Inst];
1603        if (!IV.isConstant() && !IV.isUndefined())
1604          continue;
1605
1606        Constant *Const = IV.isConstant()
1607          ? IV.getConstant() : UndefValue::get(Inst->getType());
1608        DEBUG(errs() << "  Constant: " << *Const << " = " << *Inst);
1609
1610        // Replaces all of the uses of a variable with uses of the constant.
1611        Inst->replaceAllUsesWith(Const);
1612
1613        // Delete the instruction.
1614        Inst->eraseFromParent();
1615
1616        // Hey, we just changed something!
1617        MadeChanges = true;
1618        ++NumInstRemoved;
1619      }
1620    }
1621
1622  return MadeChanges;
1623}
1624
1625namespace {
1626  //===--------------------------------------------------------------------===//
1627  //
1628  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1629  /// Constant Propagation.
1630  ///
1631  struct IPSCCP : public ModulePass {
1632    static char ID;
1633    IPSCCP() : ModulePass(&ID) {}
1634    bool runOnModule(Module &M);
1635  };
1636} // end anonymous namespace
1637
1638char IPSCCP::ID = 0;
1639static RegisterPass<IPSCCP>
1640Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1641
1642// createIPSCCPPass - This is the public interface to this file...
1643ModulePass *llvm::createIPSCCPPass() {
1644  return new IPSCCP();
1645}
1646
1647
1648static bool AddressIsTaken(GlobalValue *GV) {
1649  // Delete any dead constantexpr klingons.
1650  GV->removeDeadConstantUsers();
1651
1652  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1653       UI != E; ++UI)
1654    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1655      if (SI->getOperand(0) == GV || SI->isVolatile())
1656        return true;  // Storing addr of GV.
1657    } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1658      // Make sure we are calling the function, not passing the address.
1659      CallSite CS = CallSite::get(cast<Instruction>(*UI));
1660      if (CS.hasArgument(GV))
1661        return true;
1662    } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1663      if (LI->isVolatile())
1664        return true;
1665    } else {
1666      return true;
1667    }
1668  return false;
1669}
1670
1671bool IPSCCP::runOnModule(Module &M) {
1672  LLVMContext *Context = &M.getContext();
1673
1674  SCCPSolver Solver;
1675  Solver.setContext(Context);
1676
1677  // Loop over all functions, marking arguments to those with their addresses
1678  // taken or that are external as overdefined.
1679  //
1680  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1681    if (!F->hasLocalLinkage() || AddressIsTaken(F)) {
1682      if (!F->isDeclaration())
1683        Solver.MarkBlockExecutable(F->begin());
1684      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1685           AI != E; ++AI)
1686        Solver.markOverdefined(AI);
1687    } else {
1688      Solver.AddTrackedFunction(F);
1689    }
1690
1691  // Loop over global variables.  We inform the solver about any internal global
1692  // variables that do not have their 'addresses taken'.  If they don't have
1693  // their addresses taken, we can propagate constants through them.
1694  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1695       G != E; ++G)
1696    if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1697      Solver.TrackValueOfGlobalVariable(G);
1698
1699  // Solve for constants.
1700  bool ResolvedUndefs = true;
1701  while (ResolvedUndefs) {
1702    Solver.Solve();
1703
1704    DEBUG(errs() << "RESOLVING UNDEFS\n");
1705    ResolvedUndefs = false;
1706    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1707      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1708  }
1709
1710  bool MadeChanges = false;
1711
1712  // Iterate over all of the instructions in the module, replacing them with
1713  // constants if we have found them to be of constant values.
1714  //
1715  SmallVector<Instruction*, 512> Insts;
1716  SmallVector<BasicBlock*, 512> BlocksToErase;
1717  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1718
1719  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1720    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1721         AI != E; ++AI)
1722      if (!AI->use_empty()) {
1723        LatticeVal &IV = Values[AI];
1724        if (IV.isConstant() || IV.isUndefined()) {
1725          Constant *CST = IV.isConstant() ?
1726            IV.getConstant() : UndefValue::get(AI->getType());
1727          DEBUG(errs() << "***  Arg " << *AI << " = " << *CST <<"\n");
1728
1729          // Replaces all of the uses of a variable with uses of the
1730          // constant.
1731          AI->replaceAllUsesWith(CST);
1732          ++IPNumArgsElimed;
1733        }
1734      }
1735
1736    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1737      if (!Solver.isBlockExecutable(BB)) {
1738        DEBUG(errs() << "  BasicBlock Dead:" << *BB);
1739        ++IPNumDeadBlocks;
1740
1741        // Delete the instructions backwards, as it has a reduced likelihood of
1742        // having to update as many def-use and use-def chains.
1743        TerminatorInst *TI = BB->getTerminator();
1744        for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1745          Insts.push_back(I);
1746
1747        while (!Insts.empty()) {
1748          Instruction *I = Insts.back();
1749          Insts.pop_back();
1750          if (!I->use_empty())
1751            I->replaceAllUsesWith(UndefValue::get(I->getType()));
1752          BB->getInstList().erase(I);
1753          MadeChanges = true;
1754          ++IPNumInstRemoved;
1755        }
1756
1757        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1758          BasicBlock *Succ = TI->getSuccessor(i);
1759          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1760            TI->getSuccessor(i)->removePredecessor(BB);
1761        }
1762        if (!TI->use_empty())
1763          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1764        BB->getInstList().erase(TI);
1765
1766        if (&*BB != &F->front())
1767          BlocksToErase.push_back(BB);
1768        else
1769          new UnreachableInst(M.getContext(), BB);
1770
1771      } else {
1772        for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1773          Instruction *Inst = BI++;
1774          if (Inst->getType()->isVoidTy())
1775            continue;
1776
1777          LatticeVal &IV = Values[Inst];
1778          if (!IV.isConstant() && !IV.isUndefined())
1779            continue;
1780
1781          Constant *Const = IV.isConstant()
1782            ? IV.getConstant() : UndefValue::get(Inst->getType());
1783          DEBUG(errs() << "  Constant: " << *Const << " = " << *Inst);
1784
1785          // Replaces all of the uses of a variable with uses of the
1786          // constant.
1787          Inst->replaceAllUsesWith(Const);
1788
1789          // Delete the instruction.
1790          if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1791            Inst->eraseFromParent();
1792
1793          // Hey, we just changed something!
1794          MadeChanges = true;
1795          ++IPNumInstRemoved;
1796        }
1797      }
1798
1799    // Now that all instructions in the function are constant folded, erase dead
1800    // blocks, because we can now use ConstantFoldTerminator to get rid of
1801    // in-edges.
1802    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1803      // If there are any PHI nodes in this successor, drop entries for BB now.
1804      BasicBlock *DeadBB = BlocksToErase[i];
1805      while (!DeadBB->use_empty()) {
1806        Instruction *I = cast<Instruction>(DeadBB->use_back());
1807        bool Folded = ConstantFoldTerminator(I->getParent());
1808        if (!Folded) {
1809          // The constant folder may not have been able to fold the terminator
1810          // if this is a branch or switch on undef.  Fold it manually as a
1811          // branch to the first successor.
1812#ifndef NDEBUG
1813          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1814            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1815                   "Branch should be foldable!");
1816          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1817            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1818          } else {
1819            llvm_unreachable("Didn't fold away reference to block!");
1820          }
1821#endif
1822
1823          // Make this an uncond branch to the first successor.
1824          TerminatorInst *TI = I->getParent()->getTerminator();
1825          BranchInst::Create(TI->getSuccessor(0), TI);
1826
1827          // Remove entries in successor phi nodes to remove edges.
1828          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1829            TI->getSuccessor(i)->removePredecessor(TI->getParent());
1830
1831          // Remove the old terminator.
1832          TI->eraseFromParent();
1833        }
1834      }
1835
1836      // Finally, delete the basic block.
1837      F->getBasicBlockList().erase(DeadBB);
1838    }
1839    BlocksToErase.clear();
1840  }
1841
1842  // If we inferred constant or undef return values for a function, we replaced
1843  // all call uses with the inferred value.  This means we don't need to bother
1844  // actually returning anything from the function.  Replace all return
1845  // instructions with return undef.
1846  // TODO: Process multiple value ret instructions also.
1847  const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1848  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1849         E = RV.end(); I != E; ++I)
1850    if (!I->second.isOverdefined() &&
1851        !I->first->getReturnType()->isVoidTy()) {
1852      Function *F = I->first;
1853      for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1854        if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1855          if (!isa<UndefValue>(RI->getOperand(0)))
1856            RI->setOperand(0, UndefValue::get(F->getReturnType()));
1857    }
1858
1859  // If we infered constant or undef values for globals variables, we can delete
1860  // the global and any stores that remain to it.
1861  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1862  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1863         E = TG.end(); I != E; ++I) {
1864    GlobalVariable *GV = I->first;
1865    assert(!I->second.isOverdefined() &&
1866           "Overdefined values should have been taken out of the map!");
1867    DEBUG(errs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1868    while (!GV->use_empty()) {
1869      StoreInst *SI = cast<StoreInst>(GV->use_back());
1870      SI->eraseFromParent();
1871    }
1872    M.getGlobalList().erase(GV);
1873    ++IPNumGlobalConst;
1874  }
1875
1876  return MadeChanges;
1877}
1878