SCCP.cpp revision f006b183e2d2bebcf6968d1dd7350397c95b0325
1//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements sparse conditional constant propagation and merging: 11// 12// Specifically, this: 13// * Assumes values are constant unless proven otherwise 14// * Assumes BasicBlocks are dead unless proven otherwise 15// * Proves values to be constant, and replaces them with constants 16// * Proves conditional branches to be unconditional 17// 18// Notice that: 19// * This pass has a habit of making definitions be dead. It is a good idea 20// to to run a DCE pass sometime after running this pass. 21// 22//===----------------------------------------------------------------------===// 23 24#define DEBUG_TYPE "sccp" 25#include "llvm/Transforms/Scalar.h" 26#include "llvm/Transforms/IPO.h" 27#include "llvm/Constants.h" 28#include "llvm/DerivedTypes.h" 29#include "llvm/Instructions.h" 30#include "llvm/LLVMContext.h" 31#include "llvm/Pass.h" 32#include "llvm/Analysis/ConstantFolding.h" 33#include "llvm/Analysis/MemoryBuiltins.h" 34#include "llvm/Analysis/ValueTracking.h" 35#include "llvm/Transforms/Utils/Local.h" 36#include "llvm/Support/CallSite.h" 37#include "llvm/Support/Debug.h" 38#include "llvm/Support/ErrorHandling.h" 39#include "llvm/Support/InstVisitor.h" 40#include "llvm/Support/raw_ostream.h" 41#include "llvm/ADT/DenseMap.h" 42#include "llvm/ADT/DenseSet.h" 43#include "llvm/ADT/SmallSet.h" 44#include "llvm/ADT/SmallVector.h" 45#include "llvm/ADT/Statistic.h" 46#include "llvm/ADT/STLExtras.h" 47#include <algorithm> 48#include <map> 49using namespace llvm; 50 51STATISTIC(NumInstRemoved, "Number of instructions removed"); 52STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 53 54STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); 55STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP"); 56STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 57STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 58 59namespace { 60/// LatticeVal class - This class represents the different lattice values that 61/// an LLVM value may occupy. It is a simple class with value semantics. 62/// 63class LatticeVal { 64 enum { 65 /// undefined - This LLVM Value has no known value yet. 66 undefined, 67 68 /// constant - This LLVM Value has a specific constant value. 69 constant, 70 71 /// forcedconstant - This LLVM Value was thought to be undef until 72 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 73 /// with another (different) constant, it goes to overdefined, instead of 74 /// asserting. 75 forcedconstant, 76 77 /// overdefined - This instruction is not known to be constant, and we know 78 /// it has a value. 79 overdefined 80 } LatticeValue; // The current lattice position 81 82 Constant *ConstantVal; // If Constant value, the current value 83public: 84 inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {} 85 86 // markOverdefined - Return true if this is a new status to be in... 87 inline bool markOverdefined() { 88 if (LatticeValue != overdefined) { 89 LatticeValue = overdefined; 90 return true; 91 } 92 return false; 93 } 94 95 // markConstant - Return true if this is a new status for us. 96 inline bool markConstant(Constant *V) { 97 if (LatticeValue != constant) { 98 if (LatticeValue == undefined) { 99 LatticeValue = constant; 100 assert(V && "Marking constant with NULL"); 101 ConstantVal = V; 102 } else { 103 assert(LatticeValue == forcedconstant && 104 "Cannot move from overdefined to constant!"); 105 // Stay at forcedconstant if the constant is the same. 106 if (V == ConstantVal) return false; 107 108 // Otherwise, we go to overdefined. Assumptions made based on the 109 // forced value are possibly wrong. Assuming this is another constant 110 // could expose a contradiction. 111 LatticeValue = overdefined; 112 } 113 return true; 114 } else { 115 assert(ConstantVal == V && "Marking constant with different value"); 116 } 117 return false; 118 } 119 120 inline void markForcedConstant(Constant *V) { 121 assert(LatticeValue == undefined && "Can't force a defined value!"); 122 LatticeValue = forcedconstant; 123 ConstantVal = V; 124 } 125 126 inline bool isUndefined() const { return LatticeValue == undefined; } 127 inline bool isConstant() const { 128 return LatticeValue == constant || LatticeValue == forcedconstant; 129 } 130 inline bool isOverdefined() const { return LatticeValue == overdefined; } 131 132 inline Constant *getConstant() const { 133 assert(isConstant() && "Cannot get the constant of a non-constant!"); 134 return ConstantVal; 135 } 136}; 137 138//===----------------------------------------------------------------------===// 139// 140/// SCCPSolver - This class is a general purpose solver for Sparse Conditional 141/// Constant Propagation. 142/// 143class SCCPSolver : public InstVisitor<SCCPSolver> { 144 LLVMContext *Context; 145 DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable 146 std::map<Value*, LatticeVal> ValueState; // The state each value is in. 147 148 /// GlobalValue - If we are tracking any values for the contents of a global 149 /// variable, we keep a mapping from the constant accessor to the element of 150 /// the global, to the currently known value. If the value becomes 151 /// overdefined, it's entry is simply removed from this map. 152 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; 153 154 /// TrackedRetVals - If we are tracking arguments into and the return 155 /// value out of a function, it will have an entry in this map, indicating 156 /// what the known return value for the function is. 157 DenseMap<Function*, LatticeVal> TrackedRetVals; 158 159 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 160 /// that return multiple values. 161 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; 162 163 // The reason for two worklists is that overdefined is the lowest state 164 // on the lattice, and moving things to overdefined as fast as possible 165 // makes SCCP converge much faster. 166 // By having a separate worklist, we accomplish this because everything 167 // possibly overdefined will become overdefined at the soonest possible 168 // point. 169 SmallVector<Value*, 64> OverdefinedInstWorkList; 170 SmallVector<Value*, 64> InstWorkList; 171 172 173 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list 174 175 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not 176 /// overdefined, despite the fact that the PHI node is overdefined. 177 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; 178 179 /// KnownFeasibleEdges - Entries in this set are edges which have already had 180 /// PHI nodes retriggered. 181 typedef std::pair<BasicBlock*, BasicBlock*> Edge; 182 DenseSet<Edge> KnownFeasibleEdges; 183public: 184 void setContext(LLVMContext *C) { Context = C; } 185 186 /// MarkBlockExecutable - This method can be used by clients to mark all of 187 /// the blocks that are known to be intrinsically live in the processed unit. 188 void MarkBlockExecutable(BasicBlock *BB) { 189 DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n"); 190 BBExecutable.insert(BB); // Basic block is executable! 191 BBWorkList.push_back(BB); // Add the block to the work list! 192 } 193 194 /// TrackValueOfGlobalVariable - Clients can use this method to 195 /// inform the SCCPSolver that it should track loads and stores to the 196 /// specified global variable if it can. This is only legal to call if 197 /// performing Interprocedural SCCP. 198 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 199 const Type *ElTy = GV->getType()->getElementType(); 200 if (ElTy->isFirstClassType()) { 201 LatticeVal &IV = TrackedGlobals[GV]; 202 if (!isa<UndefValue>(GV->getInitializer())) 203 IV.markConstant(GV->getInitializer()); 204 } 205 } 206 207 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 208 /// and out of the specified function (which cannot have its address taken), 209 /// this method must be called. 210 void AddTrackedFunction(Function *F) { 211 assert(F->hasLocalLinkage() && "Can only track internal functions!"); 212 // Add an entry, F -> undef. 213 if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 214 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 215 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), 216 LatticeVal())); 217 } else 218 TrackedRetVals.insert(std::make_pair(F, LatticeVal())); 219 } 220 221 /// Solve - Solve for constants and executable blocks. 222 /// 223 void Solve(); 224 225 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 226 /// that branches on undef values cannot reach any of their successors. 227 /// However, this is not a safe assumption. After we solve dataflow, this 228 /// method should be use to handle this. If this returns true, the solver 229 /// should be rerun. 230 bool ResolvedUndefsIn(Function &F); 231 232 bool isBlockExecutable(BasicBlock *BB) const { 233 return BBExecutable.count(BB); 234 } 235 236 /// getValueMapping - Once we have solved for constants, return the mapping of 237 /// LLVM values to LatticeVals. 238 std::map<Value*, LatticeVal> &getValueMapping() { 239 return ValueState; 240 } 241 242 /// getTrackedRetVals - Get the inferred return value map. 243 /// 244 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { 245 return TrackedRetVals; 246 } 247 248 /// getTrackedGlobals - Get and return the set of inferred initializers for 249 /// global variables. 250 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 251 return TrackedGlobals; 252 } 253 254 inline void markOverdefined(Value *V) { 255 markOverdefined(ValueState[V], V); 256 } 257 258private: 259 // markConstant - Make a value be marked as "constant". If the value 260 // is not already a constant, add it to the instruction work list so that 261 // the users of the instruction are updated later. 262 // 263 inline void markConstant(LatticeVal &IV, Value *V, Constant *C) { 264 if (IV.markConstant(C)) { 265 DEBUG(errs() << "markConstant: " << *C << ": " << *V << '\n'); 266 InstWorkList.push_back(V); 267 } 268 } 269 270 inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) { 271 IV.markForcedConstant(C); 272 DEBUG(errs() << "markForcedConstant: " << *C << ": " << *V << '\n'); 273 InstWorkList.push_back(V); 274 } 275 276 inline void markConstant(Value *V, Constant *C) { 277 markConstant(ValueState[V], V, C); 278 } 279 280 // markOverdefined - Make a value be marked as "overdefined". If the 281 // value is not already overdefined, add it to the overdefined instruction 282 // work list so that the users of the instruction are updated later. 283 inline void markOverdefined(LatticeVal &IV, Value *V) { 284 if (IV.markOverdefined()) { 285 DEBUG(errs() << "markOverdefined: "; 286 if (Function *F = dyn_cast<Function>(V)) 287 errs() << "Function '" << F->getName() << "'\n"; 288 else 289 errs() << *V << '\n'); 290 // Only instructions go on the work list 291 OverdefinedInstWorkList.push_back(V); 292 } 293 } 294 295 inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) { 296 if (IV.isOverdefined() || MergeWithV.isUndefined()) 297 return; // Noop. 298 if (MergeWithV.isOverdefined()) 299 markOverdefined(IV, V); 300 else if (IV.isUndefined()) 301 markConstant(IV, V, MergeWithV.getConstant()); 302 else if (IV.getConstant() != MergeWithV.getConstant()) 303 markOverdefined(IV, V); 304 } 305 306 inline void mergeInValue(Value *V, LatticeVal &MergeWithV) { 307 return mergeInValue(ValueState[V], V, MergeWithV); 308 } 309 310 311 // getValueState - Return the LatticeVal object that corresponds to the value. 312 // This function is necessary because not all values should start out in the 313 // underdefined state... Argument's should be overdefined, and 314 // constants should be marked as constants. If a value is not known to be an 315 // Instruction object, then use this accessor to get its value from the map. 316 // 317 inline LatticeVal &getValueState(Value *V) { 318 std::map<Value*, LatticeVal>::iterator I = ValueState.find(V); 319 if (I != ValueState.end()) return I->second; // Common case, in the map 320 321 if (Constant *C = dyn_cast<Constant>(V)) { 322 if (isa<UndefValue>(V)) { 323 // Nothing to do, remain undefined. 324 } else { 325 LatticeVal &LV = ValueState[C]; 326 LV.markConstant(C); // Constants are constant 327 return LV; 328 } 329 } 330 // All others are underdefined by default... 331 return ValueState[V]; 332 } 333 334 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB 335 // work list if it is not already executable... 336 // 337 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 338 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 339 return; // This edge is already known to be executable! 340 341 if (BBExecutable.count(Dest)) { 342 DEBUG(errs() << "Marking Edge Executable: " << Source->getName() 343 << " -> " << Dest->getName() << "\n"); 344 345 // The destination is already executable, but we just made an edge 346 // feasible that wasn't before. Revisit the PHI nodes in the block 347 // because they have potentially new operands. 348 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) 349 visitPHINode(*cast<PHINode>(I)); 350 351 } else { 352 MarkBlockExecutable(Dest); 353 } 354 } 355 356 // getFeasibleSuccessors - Return a vector of booleans to indicate which 357 // successors are reachable from a given terminator instruction. 358 // 359 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs); 360 361 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 362 // block to the 'To' basic block is currently feasible... 363 // 364 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 365 366 // OperandChangedState - This method is invoked on all of the users of an 367 // instruction that was just changed state somehow.... Based on this 368 // information, we need to update the specified user of this instruction. 369 // 370 void OperandChangedState(User *U) { 371 // Only instructions use other variable values! 372 Instruction &I = cast<Instruction>(*U); 373 if (BBExecutable.count(I.getParent())) // Inst is executable? 374 visit(I); 375 } 376 377private: 378 friend class InstVisitor<SCCPSolver>; 379 380 // visit implementations - Something changed in this instruction... Either an 381 // operand made a transition, or the instruction is newly executable. Change 382 // the value type of I to reflect these changes if appropriate. 383 // 384 void visitPHINode(PHINode &I); 385 386 // Terminators 387 void visitReturnInst(ReturnInst &I); 388 void visitTerminatorInst(TerminatorInst &TI); 389 390 void visitCastInst(CastInst &I); 391 void visitSelectInst(SelectInst &I); 392 void visitBinaryOperator(Instruction &I); 393 void visitCmpInst(CmpInst &I); 394 void visitExtractElementInst(ExtractElementInst &I); 395 void visitInsertElementInst(InsertElementInst &I); 396 void visitShuffleVectorInst(ShuffleVectorInst &I); 397 void visitExtractValueInst(ExtractValueInst &EVI); 398 void visitInsertValueInst(InsertValueInst &IVI); 399 400 // Instructions that cannot be folded away... 401 void visitStoreInst (Instruction &I); 402 void visitLoadInst (LoadInst &I); 403 void visitGetElementPtrInst(GetElementPtrInst &I); 404 void visitCallInst (CallInst &I) { 405 if (isFreeCall(&I)) 406 return; 407 visitCallSite(CallSite::get(&I)); 408 } 409 void visitInvokeInst (InvokeInst &II) { 410 visitCallSite(CallSite::get(&II)); 411 visitTerminatorInst(II); 412 } 413 void visitCallSite (CallSite CS); 414 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } 415 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 416 void visitAllocaInst (Instruction &I) { markOverdefined(&I); } 417 void visitVANextInst (Instruction &I) { markOverdefined(&I); } 418 void visitVAArgInst (Instruction &I) { markOverdefined(&I); } 419 420 void visitInstruction(Instruction &I) { 421 // If a new instruction is added to LLVM that we don't handle... 422 errs() << "SCCP: Don't know how to handle: " << I; 423 markOverdefined(&I); // Just in case 424 } 425}; 426 427} // end anonymous namespace 428 429 430// getFeasibleSuccessors - Return a vector of booleans to indicate which 431// successors are reachable from a given terminator instruction. 432// 433void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 434 SmallVector<bool, 16> &Succs) { 435 Succs.resize(TI.getNumSuccessors()); 436 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 437 if (BI->isUnconditional()) { 438 Succs[0] = true; 439 } else { 440 LatticeVal &BCValue = getValueState(BI->getCondition()); 441 if (BCValue.isOverdefined() || 442 (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) { 443 // Overdefined condition variables, and branches on unfoldable constant 444 // conditions, mean the branch could go either way. 445 Succs[0] = Succs[1] = true; 446 } else if (BCValue.isConstant()) { 447 // Constant condition variables mean the branch can only go a single way 448 Succs[BCValue.getConstant() == ConstantInt::getFalse(*Context)] = true; 449 } 450 } 451 } else if (isa<InvokeInst>(&TI)) { 452 // Invoke instructions successors are always executable. 453 Succs[0] = Succs[1] = true; 454 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 455 LatticeVal &SCValue = getValueState(SI->getCondition()); 456 if (SCValue.isOverdefined() || // Overdefined condition? 457 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) { 458 // All destinations are executable! 459 Succs.assign(TI.getNumSuccessors(), true); 460 } else if (SCValue.isConstant()) 461 Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true; 462 } else { 463 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 464 } 465} 466 467 468// isEdgeFeasible - Return true if the control flow edge from the 'From' basic 469// block to the 'To' basic block is currently feasible... 470// 471bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 472 assert(BBExecutable.count(To) && "Dest should always be alive!"); 473 474 // Make sure the source basic block is executable!! 475 if (!BBExecutable.count(From)) return false; 476 477 // Check to make sure this edge itself is actually feasible now... 478 TerminatorInst *TI = From->getTerminator(); 479 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 480 if (BI->isUnconditional()) 481 return true; 482 else { 483 LatticeVal &BCValue = getValueState(BI->getCondition()); 484 if (BCValue.isOverdefined()) { 485 // Overdefined condition variables mean the branch could go either way. 486 return true; 487 } else if (BCValue.isConstant()) { 488 // Not branching on an evaluatable constant? 489 if (!isa<ConstantInt>(BCValue.getConstant())) return true; 490 491 // Constant condition variables mean the branch can only go a single way 492 return BI->getSuccessor(BCValue.getConstant() == 493 ConstantInt::getFalse(*Context)) == To; 494 } 495 return false; 496 } 497 } else if (isa<InvokeInst>(TI)) { 498 // Invoke instructions successors are always executable. 499 return true; 500 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 501 LatticeVal &SCValue = getValueState(SI->getCondition()); 502 if (SCValue.isOverdefined()) { // Overdefined condition? 503 // All destinations are executable! 504 return true; 505 } else if (SCValue.isConstant()) { 506 Constant *CPV = SCValue.getConstant(); 507 if (!isa<ConstantInt>(CPV)) 508 return true; // not a foldable constant? 509 510 // Make sure to skip the "default value" which isn't a value 511 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) 512 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... 513 return SI->getSuccessor(i) == To; 514 515 // Constant value not equal to any of the branches... must execute 516 // default branch then... 517 return SI->getDefaultDest() == To; 518 } 519 return false; 520 } else { 521#ifndef NDEBUG 522 errs() << "Unknown terminator instruction: " << *TI << '\n'; 523#endif 524 llvm_unreachable(0); 525 } 526} 527 528// visit Implementations - Something changed in this instruction... Either an 529// operand made a transition, or the instruction is newly executable. Change 530// the value type of I to reflect these changes if appropriate. This method 531// makes sure to do the following actions: 532// 533// 1. If a phi node merges two constants in, and has conflicting value coming 534// from different branches, or if the PHI node merges in an overdefined 535// value, then the PHI node becomes overdefined. 536// 2. If a phi node merges only constants in, and they all agree on value, the 537// PHI node becomes a constant value equal to that. 538// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 539// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 540// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 541// 6. If a conditional branch has a value that is constant, make the selected 542// destination executable 543// 7. If a conditional branch has a value that is overdefined, make all 544// successors executable. 545// 546void SCCPSolver::visitPHINode(PHINode &PN) { 547 LatticeVal &PNIV = getValueState(&PN); 548 if (PNIV.isOverdefined()) { 549 // There may be instructions using this PHI node that are not overdefined 550 // themselves. If so, make sure that they know that the PHI node operand 551 // changed. 552 std::multimap<PHINode*, Instruction*>::iterator I, E; 553 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); 554 if (I != E) { 555 SmallVector<Instruction*, 16> Users; 556 for (; I != E; ++I) Users.push_back(I->second); 557 while (!Users.empty()) { 558 visit(Users.back()); 559 Users.pop_back(); 560 } 561 } 562 return; // Quick exit 563 } 564 565 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 566 // and slow us down a lot. Just mark them overdefined. 567 if (PN.getNumIncomingValues() > 64) { 568 markOverdefined(PNIV, &PN); 569 return; 570 } 571 572 // Look at all of the executable operands of the PHI node. If any of them 573 // are overdefined, the PHI becomes overdefined as well. If they are all 574 // constant, and they agree with each other, the PHI becomes the identical 575 // constant. If they are constant and don't agree, the PHI is overdefined. 576 // If there are no executable operands, the PHI remains undefined. 577 // 578 Constant *OperandVal = 0; 579 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 580 LatticeVal &IV = getValueState(PN.getIncomingValue(i)); 581 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 582 583 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { 584 if (IV.isOverdefined()) { // PHI node becomes overdefined! 585 markOverdefined(&PN); 586 return; 587 } 588 589 if (OperandVal == 0) { // Grab the first value... 590 OperandVal = IV.getConstant(); 591 } else { // Another value is being merged in! 592 // There is already a reachable operand. If we conflict with it, 593 // then the PHI node becomes overdefined. If we agree with it, we 594 // can continue on. 595 596 // Check to see if there are two different constants merging... 597 if (IV.getConstant() != OperandVal) { 598 // Yes there is. This means the PHI node is not constant. 599 // You must be overdefined poor PHI. 600 // 601 markOverdefined(&PN); // The PHI node now becomes overdefined 602 return; // I'm done analyzing you 603 } 604 } 605 } 606 } 607 608 // If we exited the loop, this means that the PHI node only has constant 609 // arguments that agree with each other(and OperandVal is the constant) or 610 // OperandVal is null because there are no defined incoming arguments. If 611 // this is the case, the PHI remains undefined. 612 // 613 if (OperandVal) 614 markConstant(&PN, OperandVal); // Acquire operand value 615} 616 617void SCCPSolver::visitReturnInst(ReturnInst &I) { 618 if (I.getNumOperands() == 0) return; // Ret void 619 620 Function *F = I.getParent()->getParent(); 621 // If we are tracking the return value of this function, merge it in. 622 if (!F->hasLocalLinkage()) 623 return; 624 625 if (!TrackedRetVals.empty() && I.getNumOperands() == 1) { 626 DenseMap<Function*, LatticeVal>::iterator TFRVI = 627 TrackedRetVals.find(F); 628 if (TFRVI != TrackedRetVals.end() && 629 !TFRVI->second.isOverdefined()) { 630 LatticeVal &IV = getValueState(I.getOperand(0)); 631 mergeInValue(TFRVI->second, F, IV); 632 return; 633 } 634 } 635 636 // Handle functions that return multiple values. 637 if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) { 638 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 639 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 640 It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 641 if (It == TrackedMultipleRetVals.end()) break; 642 mergeInValue(It->second, F, getValueState(I.getOperand(i))); 643 } 644 } else if (!TrackedMultipleRetVals.empty() && 645 I.getNumOperands() == 1 && 646 isa<StructType>(I.getOperand(0)->getType())) { 647 for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes(); 648 i != e; ++i) { 649 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 650 It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 651 if (It == TrackedMultipleRetVals.end()) break; 652 if (Value *Val = FindInsertedValue(I.getOperand(0), i, I.getContext())) 653 mergeInValue(It->second, F, getValueState(Val)); 654 } 655 } 656} 657 658void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 659 SmallVector<bool, 16> SuccFeasible; 660 getFeasibleSuccessors(TI, SuccFeasible); 661 662 BasicBlock *BB = TI.getParent(); 663 664 // Mark all feasible successors executable... 665 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 666 if (SuccFeasible[i]) 667 markEdgeExecutable(BB, TI.getSuccessor(i)); 668} 669 670void SCCPSolver::visitCastInst(CastInst &I) { 671 Value *V = I.getOperand(0); 672 LatticeVal &VState = getValueState(V); 673 if (VState.isOverdefined()) // Inherit overdefinedness of operand 674 markOverdefined(&I); 675 else if (VState.isConstant()) // Propagate constant value 676 markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 677 VState.getConstant(), I.getType())); 678} 679 680void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { 681 Value *Aggr = EVI.getAggregateOperand(); 682 683 // If the operand to the extractvalue is an undef, the result is undef. 684 if (isa<UndefValue>(Aggr)) 685 return; 686 687 // Currently only handle single-index extractvalues. 688 if (EVI.getNumIndices() != 1) { 689 markOverdefined(&EVI); 690 return; 691 } 692 693 Function *F = 0; 694 if (CallInst *CI = dyn_cast<CallInst>(Aggr)) 695 F = CI->getCalledFunction(); 696 else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr)) 697 F = II->getCalledFunction(); 698 699 // TODO: If IPSCCP resolves the callee of this function, we could propagate a 700 // result back! 701 if (F == 0 || TrackedMultipleRetVals.empty()) { 702 markOverdefined(&EVI); 703 return; 704 } 705 706 // See if we are tracking the result of the callee. If not tracking this 707 // function (for example, it is a declaration) just move to overdefined. 708 if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) { 709 markOverdefined(&EVI); 710 return; 711 } 712 713 // Otherwise, the value will be merged in here as a result of CallSite 714 // handling. 715} 716 717void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { 718 Value *Aggr = IVI.getAggregateOperand(); 719 Value *Val = IVI.getInsertedValueOperand(); 720 721 // If the operands to the insertvalue are undef, the result is undef. 722 if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val)) 723 return; 724 725 // Currently only handle single-index insertvalues. 726 if (IVI.getNumIndices() != 1) { 727 markOverdefined(&IVI); 728 return; 729 } 730 731 // Currently only handle insertvalue instructions that are in a single-use 732 // chain that builds up a return value. 733 for (const InsertValueInst *TmpIVI = &IVI; ; ) { 734 if (!TmpIVI->hasOneUse()) { 735 markOverdefined(&IVI); 736 return; 737 } 738 const Value *V = *TmpIVI->use_begin(); 739 if (isa<ReturnInst>(V)) 740 break; 741 TmpIVI = dyn_cast<InsertValueInst>(V); 742 if (!TmpIVI) { 743 markOverdefined(&IVI); 744 return; 745 } 746 } 747 748 // See if we are tracking the result of the callee. 749 Function *F = IVI.getParent()->getParent(); 750 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 751 It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin())); 752 753 // Merge in the inserted member value. 754 if (It != TrackedMultipleRetVals.end()) 755 mergeInValue(It->second, F, getValueState(Val)); 756 757 // Mark the aggregate result of the IVI overdefined; any tracking that we do 758 // will be done on the individual member values. 759 markOverdefined(&IVI); 760} 761 762void SCCPSolver::visitSelectInst(SelectInst &I) { 763 LatticeVal &CondValue = getValueState(I.getCondition()); 764 if (CondValue.isUndefined()) 765 return; 766 if (CondValue.isConstant()) { 767 if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){ 768 mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue() 769 : I.getFalseValue())); 770 return; 771 } 772 } 773 774 // Otherwise, the condition is overdefined or a constant we can't evaluate. 775 // See if we can produce something better than overdefined based on the T/F 776 // value. 777 LatticeVal &TVal = getValueState(I.getTrueValue()); 778 LatticeVal &FVal = getValueState(I.getFalseValue()); 779 780 // select ?, C, C -> C. 781 if (TVal.isConstant() && FVal.isConstant() && 782 TVal.getConstant() == FVal.getConstant()) { 783 markConstant(&I, FVal.getConstant()); 784 return; 785 } 786 787 if (TVal.isUndefined()) { // select ?, undef, X -> X. 788 mergeInValue(&I, FVal); 789 } else if (FVal.isUndefined()) { // select ?, X, undef -> X. 790 mergeInValue(&I, TVal); 791 } else { 792 markOverdefined(&I); 793 } 794} 795 796// Handle BinaryOperators and Shift Instructions... 797void SCCPSolver::visitBinaryOperator(Instruction &I) { 798 LatticeVal &IV = ValueState[&I]; 799 if (IV.isOverdefined()) return; 800 801 LatticeVal &V1State = getValueState(I.getOperand(0)); 802 LatticeVal &V2State = getValueState(I.getOperand(1)); 803 804 if (V1State.isOverdefined() || V2State.isOverdefined()) { 805 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 806 // operand is overdefined. 807 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 808 LatticeVal *NonOverdefVal = 0; 809 if (!V1State.isOverdefined()) { 810 NonOverdefVal = &V1State; 811 } else if (!V2State.isOverdefined()) { 812 NonOverdefVal = &V2State; 813 } 814 815 if (NonOverdefVal) { 816 if (NonOverdefVal->isUndefined()) { 817 // Could annihilate value. 818 if (I.getOpcode() == Instruction::And) 819 markConstant(IV, &I, Constant::getNullValue(I.getType())); 820 else if (const VectorType *PT = dyn_cast<VectorType>(I.getType())) 821 markConstant(IV, &I, Constant::getAllOnesValue(PT)); 822 else 823 markConstant(IV, &I, 824 Constant::getAllOnesValue(I.getType())); 825 return; 826 } else { 827 if (I.getOpcode() == Instruction::And) { 828 if (NonOverdefVal->getConstant()->isNullValue()) { 829 markConstant(IV, &I, NonOverdefVal->getConstant()); 830 return; // X and 0 = 0 831 } 832 } else { 833 if (ConstantInt *CI = 834 dyn_cast<ConstantInt>(NonOverdefVal->getConstant())) 835 if (CI->isAllOnesValue()) { 836 markConstant(IV, &I, NonOverdefVal->getConstant()); 837 return; // X or -1 = -1 838 } 839 } 840 } 841 } 842 } 843 844 845 // If both operands are PHI nodes, it is possible that this instruction has 846 // a constant value, despite the fact that the PHI node doesn't. Check for 847 // this condition now. 848 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 849 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 850 if (PN1->getParent() == PN2->getParent()) { 851 // Since the two PHI nodes are in the same basic block, they must have 852 // entries for the same predecessors. Walk the predecessor list, and 853 // if all of the incoming values are constants, and the result of 854 // evaluating this expression with all incoming value pairs is the 855 // same, then this expression is a constant even though the PHI node 856 // is not a constant! 857 LatticeVal Result; 858 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 859 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 860 BasicBlock *InBlock = PN1->getIncomingBlock(i); 861 LatticeVal &In2 = 862 getValueState(PN2->getIncomingValueForBlock(InBlock)); 863 864 if (In1.isOverdefined() || In2.isOverdefined()) { 865 Result.markOverdefined(); 866 break; // Cannot fold this operation over the PHI nodes! 867 } else if (In1.isConstant() && In2.isConstant()) { 868 Constant *V = 869 ConstantExpr::get(I.getOpcode(), In1.getConstant(), 870 In2.getConstant()); 871 if (Result.isUndefined()) 872 Result.markConstant(V); 873 else if (Result.isConstant() && Result.getConstant() != V) { 874 Result.markOverdefined(); 875 break; 876 } 877 } 878 } 879 880 // If we found a constant value here, then we know the instruction is 881 // constant despite the fact that the PHI nodes are overdefined. 882 if (Result.isConstant()) { 883 markConstant(IV, &I, Result.getConstant()); 884 // Remember that this instruction is virtually using the PHI node 885 // operands. 886 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 887 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 888 return; 889 } else if (Result.isUndefined()) { 890 return; 891 } 892 893 // Okay, this really is overdefined now. Since we might have 894 // speculatively thought that this was not overdefined before, and 895 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 896 // make sure to clean out any entries that we put there, for 897 // efficiency. 898 std::multimap<PHINode*, Instruction*>::iterator It, E; 899 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 900 while (It != E) { 901 if (It->second == &I) { 902 UsersOfOverdefinedPHIs.erase(It++); 903 } else 904 ++It; 905 } 906 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 907 while (It != E) { 908 if (It->second == &I) { 909 UsersOfOverdefinedPHIs.erase(It++); 910 } else 911 ++It; 912 } 913 } 914 915 markOverdefined(IV, &I); 916 } else if (V1State.isConstant() && V2State.isConstant()) { 917 markConstant(IV, &I, 918 ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 919 V2State.getConstant())); 920 } 921} 922 923// Handle ICmpInst instruction... 924void SCCPSolver::visitCmpInst(CmpInst &I) { 925 LatticeVal &IV = ValueState[&I]; 926 if (IV.isOverdefined()) return; 927 928 LatticeVal &V1State = getValueState(I.getOperand(0)); 929 LatticeVal &V2State = getValueState(I.getOperand(1)); 930 931 if (V1State.isOverdefined() || V2State.isOverdefined()) { 932 // If both operands are PHI nodes, it is possible that this instruction has 933 // a constant value, despite the fact that the PHI node doesn't. Check for 934 // this condition now. 935 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) 936 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) 937 if (PN1->getParent() == PN2->getParent()) { 938 // Since the two PHI nodes are in the same basic block, they must have 939 // entries for the same predecessors. Walk the predecessor list, and 940 // if all of the incoming values are constants, and the result of 941 // evaluating this expression with all incoming value pairs is the 942 // same, then this expression is a constant even though the PHI node 943 // is not a constant! 944 LatticeVal Result; 945 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { 946 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); 947 BasicBlock *InBlock = PN1->getIncomingBlock(i); 948 LatticeVal &In2 = 949 getValueState(PN2->getIncomingValueForBlock(InBlock)); 950 951 if (In1.isOverdefined() || In2.isOverdefined()) { 952 Result.markOverdefined(); 953 break; // Cannot fold this operation over the PHI nodes! 954 } else if (In1.isConstant() && In2.isConstant()) { 955 Constant *V = ConstantExpr::getCompare(I.getPredicate(), 956 In1.getConstant(), 957 In2.getConstant()); 958 if (Result.isUndefined()) 959 Result.markConstant(V); 960 else if (Result.isConstant() && Result.getConstant() != V) { 961 Result.markOverdefined(); 962 break; 963 } 964 } 965 } 966 967 // If we found a constant value here, then we know the instruction is 968 // constant despite the fact that the PHI nodes are overdefined. 969 if (Result.isConstant()) { 970 markConstant(IV, &I, Result.getConstant()); 971 // Remember that this instruction is virtually using the PHI node 972 // operands. 973 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); 974 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); 975 return; 976 } else if (Result.isUndefined()) { 977 return; 978 } 979 980 // Okay, this really is overdefined now. Since we might have 981 // speculatively thought that this was not overdefined before, and 982 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, 983 // make sure to clean out any entries that we put there, for 984 // efficiency. 985 std::multimap<PHINode*, Instruction*>::iterator It, E; 986 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); 987 while (It != E) { 988 if (It->second == &I) { 989 UsersOfOverdefinedPHIs.erase(It++); 990 } else 991 ++It; 992 } 993 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); 994 while (It != E) { 995 if (It->second == &I) { 996 UsersOfOverdefinedPHIs.erase(It++); 997 } else 998 ++It; 999 } 1000 } 1001 1002 markOverdefined(IV, &I); 1003 } else if (V1State.isConstant() && V2State.isConstant()) { 1004 markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 1005 V1State.getConstant(), 1006 V2State.getConstant())); 1007 } 1008} 1009 1010void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 1011 // FIXME : SCCP does not handle vectors properly. 1012 markOverdefined(&I); 1013 return; 1014 1015#if 0 1016 LatticeVal &ValState = getValueState(I.getOperand(0)); 1017 LatticeVal &IdxState = getValueState(I.getOperand(1)); 1018 1019 if (ValState.isOverdefined() || IdxState.isOverdefined()) 1020 markOverdefined(&I); 1021 else if(ValState.isConstant() && IdxState.isConstant()) 1022 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 1023 IdxState.getConstant())); 1024#endif 1025} 1026 1027void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 1028 // FIXME : SCCP does not handle vectors properly. 1029 markOverdefined(&I); 1030 return; 1031#if 0 1032 LatticeVal &ValState = getValueState(I.getOperand(0)); 1033 LatticeVal &EltState = getValueState(I.getOperand(1)); 1034 LatticeVal &IdxState = getValueState(I.getOperand(2)); 1035 1036 if (ValState.isOverdefined() || EltState.isOverdefined() || 1037 IdxState.isOverdefined()) 1038 markOverdefined(&I); 1039 else if(ValState.isConstant() && EltState.isConstant() && 1040 IdxState.isConstant()) 1041 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 1042 EltState.getConstant(), 1043 IdxState.getConstant())); 1044 else if (ValState.isUndefined() && EltState.isConstant() && 1045 IdxState.isConstant()) 1046 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 1047 EltState.getConstant(), 1048 IdxState.getConstant())); 1049#endif 1050} 1051 1052void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 1053 // FIXME : SCCP does not handle vectors properly. 1054 markOverdefined(&I); 1055 return; 1056#if 0 1057 LatticeVal &V1State = getValueState(I.getOperand(0)); 1058 LatticeVal &V2State = getValueState(I.getOperand(1)); 1059 LatticeVal &MaskState = getValueState(I.getOperand(2)); 1060 1061 if (MaskState.isUndefined() || 1062 (V1State.isUndefined() && V2State.isUndefined())) 1063 return; // Undefined output if mask or both inputs undefined. 1064 1065 if (V1State.isOverdefined() || V2State.isOverdefined() || 1066 MaskState.isOverdefined()) { 1067 markOverdefined(&I); 1068 } else { 1069 // A mix of constant/undef inputs. 1070 Constant *V1 = V1State.isConstant() ? 1071 V1State.getConstant() : UndefValue::get(I.getType()); 1072 Constant *V2 = V2State.isConstant() ? 1073 V2State.getConstant() : UndefValue::get(I.getType()); 1074 Constant *Mask = MaskState.isConstant() ? 1075 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 1076 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 1077 } 1078#endif 1079} 1080 1081// Handle getelementptr instructions... if all operands are constants then we 1082// can turn this into a getelementptr ConstantExpr. 1083// 1084void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 1085 LatticeVal &IV = ValueState[&I]; 1086 if (IV.isOverdefined()) return; 1087 1088 SmallVector<Constant*, 8> Operands; 1089 Operands.reserve(I.getNumOperands()); 1090 1091 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1092 LatticeVal &State = getValueState(I.getOperand(i)); 1093 if (State.isUndefined()) 1094 return; // Operands are not resolved yet... 1095 else if (State.isOverdefined()) { 1096 markOverdefined(IV, &I); 1097 return; 1098 } 1099 assert(State.isConstant() && "Unknown state!"); 1100 Operands.push_back(State.getConstant()); 1101 } 1102 1103 Constant *Ptr = Operands[0]; 1104 Operands.erase(Operands.begin()); // Erase the pointer from idx list... 1105 1106 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0], 1107 Operands.size())); 1108} 1109 1110void SCCPSolver::visitStoreInst(Instruction &SI) { 1111 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1112 return; 1113 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1114 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 1115 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 1116 1117 // Get the value we are storing into the global. 1118 LatticeVal &PtrVal = getValueState(SI.getOperand(0)); 1119 1120 mergeInValue(I->second, GV, PtrVal); 1121 if (I->second.isOverdefined()) 1122 TrackedGlobals.erase(I); // No need to keep tracking this! 1123} 1124 1125 1126// Handle load instructions. If the operand is a constant pointer to a constant 1127// global, we can replace the load with the loaded constant value! 1128void SCCPSolver::visitLoadInst(LoadInst &I) { 1129 LatticeVal &IV = ValueState[&I]; 1130 if (IV.isOverdefined()) return; 1131 1132 LatticeVal &PtrVal = getValueState(I.getOperand(0)); 1133 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 1134 if (PtrVal.isConstant() && !I.isVolatile()) { 1135 Value *Ptr = PtrVal.getConstant(); 1136 // TODO: Consider a target hook for valid address spaces for this xform. 1137 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) { 1138 // load null -> null 1139 markConstant(IV, &I, Constant::getNullValue(I.getType())); 1140 return; 1141 } 1142 1143 // Transform load (constant global) into the value loaded. 1144 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 1145 if (GV->isConstant()) { 1146 if (GV->hasDefinitiveInitializer()) { 1147 markConstant(IV, &I, GV->getInitializer()); 1148 return; 1149 } 1150 } else if (!TrackedGlobals.empty()) { 1151 // If we are tracking this global, merge in the known value for it. 1152 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1153 TrackedGlobals.find(GV); 1154 if (It != TrackedGlobals.end()) { 1155 mergeInValue(IV, &I, It->second); 1156 return; 1157 } 1158 } 1159 } 1160 1161 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. 1162 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 1163 if (CE->getOpcode() == Instruction::GetElementPtr) 1164 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) 1165 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1166 if (Constant *V = 1167 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) { 1168 markConstant(IV, &I, V); 1169 return; 1170 } 1171 } 1172 1173 // Otherwise we cannot say for certain what value this load will produce. 1174 // Bail out. 1175 markOverdefined(IV, &I); 1176} 1177 1178void SCCPSolver::visitCallSite(CallSite CS) { 1179 Function *F = CS.getCalledFunction(); 1180 Instruction *I = CS.getInstruction(); 1181 1182 // The common case is that we aren't tracking the callee, either because we 1183 // are not doing interprocedural analysis or the callee is indirect, or is 1184 // external. Handle these cases first. 1185 if (F == 0 || !F->hasLocalLinkage()) { 1186CallOverdefined: 1187 // Void return and not tracking callee, just bail. 1188 if (I->getType()->isVoidTy()) return; 1189 1190 // Otherwise, if we have a single return value case, and if the function is 1191 // a declaration, maybe we can constant fold it. 1192 if (!isa<StructType>(I->getType()) && F && F->isDeclaration() && 1193 canConstantFoldCallTo(F)) { 1194 1195 SmallVector<Constant*, 8> Operands; 1196 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1197 AI != E; ++AI) { 1198 LatticeVal &State = getValueState(*AI); 1199 if (State.isUndefined()) 1200 return; // Operands are not resolved yet. 1201 else if (State.isOverdefined()) { 1202 markOverdefined(I); 1203 return; 1204 } 1205 assert(State.isConstant() && "Unknown state!"); 1206 Operands.push_back(State.getConstant()); 1207 } 1208 1209 // If we can constant fold this, mark the result of the call as a 1210 // constant. 1211 if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) { 1212 markConstant(I, C); 1213 return; 1214 } 1215 } 1216 1217 // Otherwise, we don't know anything about this call, mark it overdefined. 1218 markOverdefined(I); 1219 return; 1220 } 1221 1222 // If this is a single/zero retval case, see if we're tracking the function. 1223 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); 1224 if (TFRVI != TrackedRetVals.end()) { 1225 // If so, propagate the return value of the callee into this call result. 1226 mergeInValue(I, TFRVI->second); 1227 } else if (isa<StructType>(I->getType())) { 1228 // Check to see if we're tracking this callee, if not, handle it in the 1229 // common path above. 1230 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator 1231 TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0)); 1232 if (TMRVI == TrackedMultipleRetVals.end()) 1233 goto CallOverdefined; 1234 1235 // Need to mark as overdefined, otherwise it stays undefined which 1236 // creates extractvalue undef, <idx> 1237 markOverdefined(I); 1238 // If we are tracking this callee, propagate the return values of the call 1239 // into this call site. We do this by walking all the uses. Single-index 1240 // ExtractValueInst uses can be tracked; anything more complicated is 1241 // currently handled conservatively. 1242 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1243 UI != E; ++UI) { 1244 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) { 1245 if (EVI->getNumIndices() == 1) { 1246 mergeInValue(EVI, 1247 TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]); 1248 continue; 1249 } 1250 } 1251 // The aggregate value is used in a way not handled here. Assume nothing. 1252 markOverdefined(*UI); 1253 } 1254 } else { 1255 // Otherwise we're not tracking this callee, so handle it in the 1256 // common path above. 1257 goto CallOverdefined; 1258 } 1259 1260 // Finally, if this is the first call to the function hit, mark its entry 1261 // block executable. 1262 if (!BBExecutable.count(F->begin())) 1263 MarkBlockExecutable(F->begin()); 1264 1265 // Propagate information from this call site into the callee. 1266 CallSite::arg_iterator CAI = CS.arg_begin(); 1267 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1268 AI != E; ++AI, ++CAI) { 1269 LatticeVal &IV = ValueState[AI]; 1270 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1271 IV.markOverdefined(); 1272 continue; 1273 } 1274 if (!IV.isOverdefined()) 1275 mergeInValue(IV, AI, getValueState(*CAI)); 1276 } 1277} 1278 1279void SCCPSolver::Solve() { 1280 // Process the work lists until they are empty! 1281 while (!BBWorkList.empty() || !InstWorkList.empty() || 1282 !OverdefinedInstWorkList.empty()) { 1283 // Process the instruction work list... 1284 while (!OverdefinedInstWorkList.empty()) { 1285 Value *I = OverdefinedInstWorkList.back(); 1286 OverdefinedInstWorkList.pop_back(); 1287 1288 DEBUG(errs() << "\nPopped off OI-WL: " << *I << '\n'); 1289 1290 // "I" got into the work list because it either made the transition from 1291 // bottom to constant 1292 // 1293 // Anything on this worklist that is overdefined need not be visited 1294 // since all of its users will have already been marked as overdefined 1295 // Update all of the users of this instruction's value... 1296 // 1297 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1298 UI != E; ++UI) 1299 OperandChangedState(*UI); 1300 } 1301 // Process the instruction work list... 1302 while (!InstWorkList.empty()) { 1303 Value *I = InstWorkList.back(); 1304 InstWorkList.pop_back(); 1305 1306 DEBUG(errs() << "\nPopped off I-WL: " << *I << '\n'); 1307 1308 // "I" got into the work list because it either made the transition from 1309 // bottom to constant 1310 // 1311 // Anything on this worklist that is overdefined need not be visited 1312 // since all of its users will have already been marked as overdefined. 1313 // Update all of the users of this instruction's value... 1314 // 1315 if (!getValueState(I).isOverdefined()) 1316 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 1317 UI != E; ++UI) 1318 OperandChangedState(*UI); 1319 } 1320 1321 // Process the basic block work list... 1322 while (!BBWorkList.empty()) { 1323 BasicBlock *BB = BBWorkList.back(); 1324 BBWorkList.pop_back(); 1325 1326 DEBUG(errs() << "\nPopped off BBWL: " << *BB << '\n'); 1327 1328 // Notify all instructions in this basic block that they are newly 1329 // executable. 1330 visit(BB); 1331 } 1332 } 1333} 1334 1335/// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1336/// that branches on undef values cannot reach any of their successors. 1337/// However, this is not a safe assumption. After we solve dataflow, this 1338/// method should be use to handle this. If this returns true, the solver 1339/// should be rerun. 1340/// 1341/// This method handles this by finding an unresolved branch and marking it one 1342/// of the edges from the block as being feasible, even though the condition 1343/// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1344/// CFG and only slightly pessimizes the analysis results (by marking one, 1345/// potentially infeasible, edge feasible). This cannot usefully modify the 1346/// constraints on the condition of the branch, as that would impact other users 1347/// of the value. 1348/// 1349/// This scan also checks for values that use undefs, whose results are actually 1350/// defined. For example, 'zext i8 undef to i32' should produce all zeros 1351/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1352/// even if X isn't defined. 1353bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1354 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1355 if (!BBExecutable.count(BB)) 1356 continue; 1357 1358 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1359 // Look for instructions which produce undef values. 1360 if (I->getType()->isVoidTy()) continue; 1361 1362 LatticeVal &LV = getValueState(I); 1363 if (!LV.isUndefined()) continue; 1364 1365 // Get the lattice values of the first two operands for use below. 1366 LatticeVal &Op0LV = getValueState(I->getOperand(0)); 1367 LatticeVal Op1LV; 1368 if (I->getNumOperands() == 2) { 1369 // If this is a two-operand instruction, and if both operands are 1370 // undefs, the result stays undef. 1371 Op1LV = getValueState(I->getOperand(1)); 1372 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1373 continue; 1374 } 1375 1376 // If this is an instructions whose result is defined even if the input is 1377 // not fully defined, propagate the information. 1378 const Type *ITy = I->getType(); 1379 switch (I->getOpcode()) { 1380 default: break; // Leave the instruction as an undef. 1381 case Instruction::ZExt: 1382 // After a zero extend, we know the top part is zero. SExt doesn't have 1383 // to be handled here, because we don't know whether the top part is 1's 1384 // or 0's. 1385 assert(Op0LV.isUndefined()); 1386 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1387 return true; 1388 case Instruction::Mul: 1389 case Instruction::And: 1390 // undef * X -> 0. X could be zero. 1391 // undef & X -> 0. X could be zero. 1392 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1393 return true; 1394 1395 case Instruction::Or: 1396 // undef | X -> -1. X could be -1. 1397 if (const VectorType *PTy = dyn_cast<VectorType>(ITy)) 1398 markForcedConstant(LV, I, 1399 Constant::getAllOnesValue(PTy)); 1400 else 1401 markForcedConstant(LV, I, Constant::getAllOnesValue(ITy)); 1402 return true; 1403 1404 case Instruction::SDiv: 1405 case Instruction::UDiv: 1406 case Instruction::SRem: 1407 case Instruction::URem: 1408 // X / undef -> undef. No change. 1409 // X % undef -> undef. No change. 1410 if (Op1LV.isUndefined()) break; 1411 1412 // undef / X -> 0. X could be maxint. 1413 // undef % X -> 0. X could be 1. 1414 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1415 return true; 1416 1417 case Instruction::AShr: 1418 // undef >>s X -> undef. No change. 1419 if (Op0LV.isUndefined()) break; 1420 1421 // X >>s undef -> X. X could be 0, X could have the high-bit known set. 1422 if (Op0LV.isConstant()) 1423 markForcedConstant(LV, I, Op0LV.getConstant()); 1424 else 1425 markOverdefined(LV, I); 1426 return true; 1427 case Instruction::LShr: 1428 case Instruction::Shl: 1429 // undef >> X -> undef. No change. 1430 // undef << X -> undef. No change. 1431 if (Op0LV.isUndefined()) break; 1432 1433 // X >> undef -> 0. X could be 0. 1434 // X << undef -> 0. X could be 0. 1435 markForcedConstant(LV, I, Constant::getNullValue(ITy)); 1436 return true; 1437 case Instruction::Select: 1438 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1439 if (Op0LV.isUndefined()) { 1440 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1441 Op1LV = getValueState(I->getOperand(2)); 1442 } else if (Op1LV.isUndefined()) { 1443 // c ? undef : undef -> undef. No change. 1444 Op1LV = getValueState(I->getOperand(2)); 1445 if (Op1LV.isUndefined()) 1446 break; 1447 // Otherwise, c ? undef : x -> x. 1448 } else { 1449 // Leave Op1LV as Operand(1)'s LatticeValue. 1450 } 1451 1452 if (Op1LV.isConstant()) 1453 markForcedConstant(LV, I, Op1LV.getConstant()); 1454 else 1455 markOverdefined(LV, I); 1456 return true; 1457 case Instruction::Call: 1458 // If a call has an undef result, it is because it is constant foldable 1459 // but one of the inputs was undef. Just force the result to 1460 // overdefined. 1461 markOverdefined(LV, I); 1462 return true; 1463 } 1464 } 1465 1466 TerminatorInst *TI = BB->getTerminator(); 1467 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1468 if (!BI->isConditional()) continue; 1469 if (!getValueState(BI->getCondition()).isUndefined()) 1470 continue; 1471 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1472 if (SI->getNumSuccessors()<2) // no cases 1473 continue; 1474 if (!getValueState(SI->getCondition()).isUndefined()) 1475 continue; 1476 } else { 1477 continue; 1478 } 1479 1480 // If the edge to the second successor isn't thought to be feasible yet, 1481 // mark it so now. We pick the second one so that this goes to some 1482 // enumerated value in a switch instead of going to the default destination. 1483 if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1)))) 1484 continue; 1485 1486 // Otherwise, it isn't already thought to be feasible. Mark it as such now 1487 // and return. This will make other blocks reachable, which will allow new 1488 // values to be discovered and existing ones to be moved in the lattice. 1489 markEdgeExecutable(BB, TI->getSuccessor(1)); 1490 1491 // This must be a conditional branch of switch on undef. At this point, 1492 // force the old terminator to branch to the first successor. This is 1493 // required because we are now influencing the dataflow of the function with 1494 // the assumption that this edge is taken. If we leave the branch condition 1495 // as undef, then further analysis could think the undef went another way 1496 // leading to an inconsistent set of conclusions. 1497 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1498 BI->setCondition(ConstantInt::getFalse(*Context)); 1499 } else { 1500 SwitchInst *SI = cast<SwitchInst>(TI); 1501 SI->setCondition(SI->getCaseValue(1)); 1502 } 1503 1504 return true; 1505 } 1506 1507 return false; 1508} 1509 1510 1511namespace { 1512 //===--------------------------------------------------------------------===// 1513 // 1514 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1515 /// Sparse Conditional Constant Propagator. 1516 /// 1517 struct SCCP : public FunctionPass { 1518 static char ID; // Pass identification, replacement for typeid 1519 SCCP() : FunctionPass(&ID) {} 1520 1521 // runOnFunction - Run the Sparse Conditional Constant Propagation 1522 // algorithm, and return true if the function was modified. 1523 // 1524 bool runOnFunction(Function &F); 1525 1526 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1527 AU.setPreservesCFG(); 1528 } 1529 }; 1530} // end anonymous namespace 1531 1532char SCCP::ID = 0; 1533static RegisterPass<SCCP> 1534X("sccp", "Sparse Conditional Constant Propagation"); 1535 1536// createSCCPPass - This is the public interface to this file... 1537FunctionPass *llvm::createSCCPPass() { 1538 return new SCCP(); 1539} 1540 1541 1542// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1543// and return true if the function was modified. 1544// 1545bool SCCP::runOnFunction(Function &F) { 1546 DEBUG(errs() << "SCCP on function '" << F.getName() << "'\n"); 1547 SCCPSolver Solver; 1548 Solver.setContext(&F.getContext()); 1549 1550 // Mark the first block of the function as being executable. 1551 Solver.MarkBlockExecutable(F.begin()); 1552 1553 // Mark all arguments to the function as being overdefined. 1554 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) 1555 Solver.markOverdefined(AI); 1556 1557 // Solve for constants. 1558 bool ResolvedUndefs = true; 1559 while (ResolvedUndefs) { 1560 Solver.Solve(); 1561 DEBUG(errs() << "RESOLVING UNDEFs\n"); 1562 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1563 } 1564 1565 bool MadeChanges = false; 1566 1567 // If we decided that there are basic blocks that are dead in this function, 1568 // delete their contents now. Note that we cannot actually delete the blocks, 1569 // as we cannot modify the CFG of the function. 1570 // 1571 SmallVector<Instruction*, 512> Insts; 1572 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1573 1574 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1575 if (!Solver.isBlockExecutable(BB)) { 1576 DEBUG(errs() << " BasicBlock Dead:" << *BB); 1577 ++NumDeadBlocks; 1578 1579 // Delete the instructions backwards, as it has a reduced likelihood of 1580 // having to update as many def-use and use-def chains. 1581 for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator(); 1582 I != E; ++I) 1583 Insts.push_back(I); 1584 while (!Insts.empty()) { 1585 Instruction *I = Insts.back(); 1586 Insts.pop_back(); 1587 if (!I->use_empty()) 1588 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1589 BB->getInstList().erase(I); 1590 MadeChanges = true; 1591 ++NumInstRemoved; 1592 } 1593 } else { 1594 // Iterate over all of the instructions in a function, replacing them with 1595 // constants if we have found them to be of constant values. 1596 // 1597 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1598 Instruction *Inst = BI++; 1599 if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst)) 1600 continue; 1601 1602 LatticeVal &IV = Values[Inst]; 1603 if (!IV.isConstant() && !IV.isUndefined()) 1604 continue; 1605 1606 Constant *Const = IV.isConstant() 1607 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1608 DEBUG(errs() << " Constant: " << *Const << " = " << *Inst); 1609 1610 // Replaces all of the uses of a variable with uses of the constant. 1611 Inst->replaceAllUsesWith(Const); 1612 1613 // Delete the instruction. 1614 Inst->eraseFromParent(); 1615 1616 // Hey, we just changed something! 1617 MadeChanges = true; 1618 ++NumInstRemoved; 1619 } 1620 } 1621 1622 return MadeChanges; 1623} 1624 1625namespace { 1626 //===--------------------------------------------------------------------===// 1627 // 1628 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1629 /// Constant Propagation. 1630 /// 1631 struct IPSCCP : public ModulePass { 1632 static char ID; 1633 IPSCCP() : ModulePass(&ID) {} 1634 bool runOnModule(Module &M); 1635 }; 1636} // end anonymous namespace 1637 1638char IPSCCP::ID = 0; 1639static RegisterPass<IPSCCP> 1640Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation"); 1641 1642// createIPSCCPPass - This is the public interface to this file... 1643ModulePass *llvm::createIPSCCPPass() { 1644 return new IPSCCP(); 1645} 1646 1647 1648static bool AddressIsTaken(GlobalValue *GV) { 1649 // Delete any dead constantexpr klingons. 1650 GV->removeDeadConstantUsers(); 1651 1652 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 1653 UI != E; ++UI) 1654 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { 1655 if (SI->getOperand(0) == GV || SI->isVolatile()) 1656 return true; // Storing addr of GV. 1657 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) { 1658 // Make sure we are calling the function, not passing the address. 1659 CallSite CS = CallSite::get(cast<Instruction>(*UI)); 1660 if (CS.hasArgument(GV)) 1661 return true; 1662 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1663 if (LI->isVolatile()) 1664 return true; 1665 } else { 1666 return true; 1667 } 1668 return false; 1669} 1670 1671bool IPSCCP::runOnModule(Module &M) { 1672 LLVMContext *Context = &M.getContext(); 1673 1674 SCCPSolver Solver; 1675 Solver.setContext(Context); 1676 1677 // Loop over all functions, marking arguments to those with their addresses 1678 // taken or that are external as overdefined. 1679 // 1680 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1681 if (!F->hasLocalLinkage() || AddressIsTaken(F)) { 1682 if (!F->isDeclaration()) 1683 Solver.MarkBlockExecutable(F->begin()); 1684 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1685 AI != E; ++AI) 1686 Solver.markOverdefined(AI); 1687 } else { 1688 Solver.AddTrackedFunction(F); 1689 } 1690 1691 // Loop over global variables. We inform the solver about any internal global 1692 // variables that do not have their 'addresses taken'. If they don't have 1693 // their addresses taken, we can propagate constants through them. 1694 for (Module::global_iterator G = M.global_begin(), E = M.global_end(); 1695 G != E; ++G) 1696 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G)) 1697 Solver.TrackValueOfGlobalVariable(G); 1698 1699 // Solve for constants. 1700 bool ResolvedUndefs = true; 1701 while (ResolvedUndefs) { 1702 Solver.Solve(); 1703 1704 DEBUG(errs() << "RESOLVING UNDEFS\n"); 1705 ResolvedUndefs = false; 1706 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1707 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); 1708 } 1709 1710 bool MadeChanges = false; 1711 1712 // Iterate over all of the instructions in the module, replacing them with 1713 // constants if we have found them to be of constant values. 1714 // 1715 SmallVector<Instruction*, 512> Insts; 1716 SmallVector<BasicBlock*, 512> BlocksToErase; 1717 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping(); 1718 1719 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1720 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1721 AI != E; ++AI) 1722 if (!AI->use_empty()) { 1723 LatticeVal &IV = Values[AI]; 1724 if (IV.isConstant() || IV.isUndefined()) { 1725 Constant *CST = IV.isConstant() ? 1726 IV.getConstant() : UndefValue::get(AI->getType()); 1727 DEBUG(errs() << "*** Arg " << *AI << " = " << *CST <<"\n"); 1728 1729 // Replaces all of the uses of a variable with uses of the 1730 // constant. 1731 AI->replaceAllUsesWith(CST); 1732 ++IPNumArgsElimed; 1733 } 1734 } 1735 1736 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1737 if (!Solver.isBlockExecutable(BB)) { 1738 DEBUG(errs() << " BasicBlock Dead:" << *BB); 1739 ++IPNumDeadBlocks; 1740 1741 // Delete the instructions backwards, as it has a reduced likelihood of 1742 // having to update as many def-use and use-def chains. 1743 TerminatorInst *TI = BB->getTerminator(); 1744 for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I) 1745 Insts.push_back(I); 1746 1747 while (!Insts.empty()) { 1748 Instruction *I = Insts.back(); 1749 Insts.pop_back(); 1750 if (!I->use_empty()) 1751 I->replaceAllUsesWith(UndefValue::get(I->getType())); 1752 BB->getInstList().erase(I); 1753 MadeChanges = true; 1754 ++IPNumInstRemoved; 1755 } 1756 1757 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 1758 BasicBlock *Succ = TI->getSuccessor(i); 1759 if (!Succ->empty() && isa<PHINode>(Succ->begin())) 1760 TI->getSuccessor(i)->removePredecessor(BB); 1761 } 1762 if (!TI->use_empty()) 1763 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1764 BB->getInstList().erase(TI); 1765 1766 if (&*BB != &F->front()) 1767 BlocksToErase.push_back(BB); 1768 else 1769 new UnreachableInst(M.getContext(), BB); 1770 1771 } else { 1772 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1773 Instruction *Inst = BI++; 1774 if (Inst->getType()->isVoidTy()) 1775 continue; 1776 1777 LatticeVal &IV = Values[Inst]; 1778 if (!IV.isConstant() && !IV.isUndefined()) 1779 continue; 1780 1781 Constant *Const = IV.isConstant() 1782 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1783 DEBUG(errs() << " Constant: " << *Const << " = " << *Inst); 1784 1785 // Replaces all of the uses of a variable with uses of the 1786 // constant. 1787 Inst->replaceAllUsesWith(Const); 1788 1789 // Delete the instruction. 1790 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst)) 1791 Inst->eraseFromParent(); 1792 1793 // Hey, we just changed something! 1794 MadeChanges = true; 1795 ++IPNumInstRemoved; 1796 } 1797 } 1798 1799 // Now that all instructions in the function are constant folded, erase dead 1800 // blocks, because we can now use ConstantFoldTerminator to get rid of 1801 // in-edges. 1802 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1803 // If there are any PHI nodes in this successor, drop entries for BB now. 1804 BasicBlock *DeadBB = BlocksToErase[i]; 1805 while (!DeadBB->use_empty()) { 1806 Instruction *I = cast<Instruction>(DeadBB->use_back()); 1807 bool Folded = ConstantFoldTerminator(I->getParent()); 1808 if (!Folded) { 1809 // The constant folder may not have been able to fold the terminator 1810 // if this is a branch or switch on undef. Fold it manually as a 1811 // branch to the first successor. 1812#ifndef NDEBUG 1813 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1814 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1815 "Branch should be foldable!"); 1816 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1817 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1818 } else { 1819 llvm_unreachable("Didn't fold away reference to block!"); 1820 } 1821#endif 1822 1823 // Make this an uncond branch to the first successor. 1824 TerminatorInst *TI = I->getParent()->getTerminator(); 1825 BranchInst::Create(TI->getSuccessor(0), TI); 1826 1827 // Remove entries in successor phi nodes to remove edges. 1828 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1829 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1830 1831 // Remove the old terminator. 1832 TI->eraseFromParent(); 1833 } 1834 } 1835 1836 // Finally, delete the basic block. 1837 F->getBasicBlockList().erase(DeadBB); 1838 } 1839 BlocksToErase.clear(); 1840 } 1841 1842 // If we inferred constant or undef return values for a function, we replaced 1843 // all call uses with the inferred value. This means we don't need to bother 1844 // actually returning anything from the function. Replace all return 1845 // instructions with return undef. 1846 // TODO: Process multiple value ret instructions also. 1847 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); 1848 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), 1849 E = RV.end(); I != E; ++I) 1850 if (!I->second.isOverdefined() && 1851 !I->first->getReturnType()->isVoidTy()) { 1852 Function *F = I->first; 1853 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1854 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1855 if (!isa<UndefValue>(RI->getOperand(0))) 1856 RI->setOperand(0, UndefValue::get(F->getReturnType())); 1857 } 1858 1859 // If we infered constant or undef values for globals variables, we can delete 1860 // the global and any stores that remain to it. 1861 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1862 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1863 E = TG.end(); I != E; ++I) { 1864 GlobalVariable *GV = I->first; 1865 assert(!I->second.isOverdefined() && 1866 "Overdefined values should have been taken out of the map!"); 1867 DEBUG(errs() << "Found that GV '" << GV->getName() << "' is constant!\n"); 1868 while (!GV->use_empty()) { 1869 StoreInst *SI = cast<StoreInst>(GV->use_back()); 1870 SI->eraseFromParent(); 1871 } 1872 M.getGlobalList().erase(GV); 1873 ++IPNumGlobalConst; 1874 } 1875 1876 return MadeChanges; 1877} 1878