SCCP.cpp revision f629309f74cf1a64aa7fd1cd5784fd7db9a8f59e
1//===- SCCP.cpp - Sparse Conditional Constant Propogation -----------------===//
2//
3// This file implements sparse conditional constant propogation and merging:
4//
5// Specifically, this:
6//   * Assumes values are constant unless proven otherwise
7//   * Assumes BasicBlocks are dead unless proven otherwise
8//   * Proves values to be constant, and replaces them with constants
9//   * Proves conditional branches constant, and unconditionalizes them
10//   * Folds multiple identical constants in the constant pool together
11//
12// Notice that:
13//   * This pass has a habit of making definitions be dead.  It is a good idea
14//     to to run a DCE pass sometime after running this pass.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/Transforms/Scalar.h"
19#include "llvm/ConstantHandling.h"
20#include "llvm/Function.h"
21#include "llvm/BasicBlock.h"
22#include "llvm/iPHINode.h"
23#include "llvm/iMemory.h"
24#include "llvm/iTerminators.h"
25#include "llvm/iOther.h"
26#include "llvm/Pass.h"
27#include "llvm/Support/InstVisitor.h"
28#include "Support/STLExtras.h"
29#include "Support/StatisticReporter.h"
30#include <algorithm>
31#include <set>
32#include <iostream>
33using std::cerr;
34
35static Statistic<> NumInstRemoved("sccp\t\t- Number of instructions removed");
36
37// InstVal class - This class represents the different lattice values that an
38// instruction may occupy.  It is a simple class with value semantics.
39//
40namespace {
41class InstVal {
42  enum {
43    undefined,           // This instruction has no known value
44    constant,            // This instruction has a constant value
45    // Range,            // This instruction is known to fall within a range
46    overdefined          // This instruction has an unknown value
47  } LatticeValue;        // The current lattice position
48  Constant *ConstantVal; // If Constant value, the current value
49public:
50  inline InstVal() : LatticeValue(undefined), ConstantVal(0) {}
51
52  // markOverdefined - Return true if this is a new status to be in...
53  inline bool markOverdefined() {
54    if (LatticeValue != overdefined) {
55      LatticeValue = overdefined;
56      return true;
57    }
58    return false;
59  }
60
61  // markConstant - Return true if this is a new status for us...
62  inline bool markConstant(Constant *V) {
63    if (LatticeValue != constant) {
64      LatticeValue = constant;
65      ConstantVal = V;
66      return true;
67    } else {
68      assert(ConstantVal == V && "Marking constant with different value");
69    }
70    return false;
71  }
72
73  inline bool isUndefined()   const { return LatticeValue == undefined; }
74  inline bool isConstant()    const { return LatticeValue == constant; }
75  inline bool isOverdefined() const { return LatticeValue == overdefined; }
76
77  inline Constant *getConstant() const { return ConstantVal; }
78};
79
80} // end anonymous namespace
81
82
83//===----------------------------------------------------------------------===//
84// SCCP Class
85//
86// This class does all of the work of Sparse Conditional Constant Propogation.
87//
88namespace {
89class SCCP : public FunctionPass, public InstVisitor<SCCP> {
90  std::set<BasicBlock*>     BBExecutable;// The basic blocks that are executable
91  std::map<Value*, InstVal> ValueState;  // The state each value is in...
92
93  std::vector<Instruction*> InstWorkList;// The instruction work list
94  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
95public:
96
97  // runOnFunction - Run the Sparse Conditional Constant Propogation algorithm,
98  // and return true if the function was modified.
99  //
100  bool runOnFunction(Function &F);
101
102  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
103    AU.preservesCFG();
104  }
105
106
107  //===--------------------------------------------------------------------===//
108  // The implementation of this class
109  //
110private:
111  friend class InstVisitor<SCCP>;        // Allow callbacks from visitor
112
113  // markValueOverdefined - Make a value be marked as "constant".  If the value
114  // is not already a constant, add it to the instruction work list so that
115  // the users of the instruction are updated later.
116  //
117  inline bool markConstant(Instruction *I, Constant *V) {
118    DEBUG(cerr << "markConstant: " << V << " = " << I);
119
120    if (ValueState[I].markConstant(V)) {
121      InstWorkList.push_back(I);
122      return true;
123    }
124    return false;
125  }
126
127  // markValueOverdefined - Make a value be marked as "overdefined". If the
128  // value is not already overdefined, add it to the instruction work list so
129  // that the users of the instruction are updated later.
130  //
131  inline bool markOverdefined(Value *V) {
132    if (ValueState[V].markOverdefined()) {
133      if (Instruction *I = dyn_cast<Instruction>(V)) {
134	DEBUG(cerr << "markOverdefined: " << V);
135	InstWorkList.push_back(I);  // Only instructions go on the work list
136      }
137      return true;
138    }
139    return false;
140  }
141
142  // getValueState - Return the InstVal object that corresponds to the value.
143  // This function is neccesary because not all values should start out in the
144  // underdefined state... Argument's should be overdefined, and
145  // constants should be marked as constants.  If a value is not known to be an
146  // Instruction object, then use this accessor to get its value from the map.
147  //
148  inline InstVal &getValueState(Value *V) {
149    std::map<Value*, InstVal>::iterator I = ValueState.find(V);
150    if (I != ValueState.end()) return I->second;  // Common case, in the map
151
152    if (Constant *CPV = dyn_cast<Constant>(V)) {  // Constants are constant
153      ValueState[CPV].markConstant(CPV);
154    } else if (isa<Argument>(V)) {                // Arguments are overdefined
155      ValueState[V].markOverdefined();
156    }
157    // All others are underdefined by default...
158    return ValueState[V];
159  }
160
161  // markExecutable - Mark a basic block as executable, adding it to the BB
162  // work list if it is not already executable...
163  //
164  void markExecutable(BasicBlock *BB) {
165    if (BBExecutable.count(BB)) return;
166    DEBUG(cerr << "Marking BB Executable: " << *BB);
167    BBExecutable.insert(BB);   // Basic block is executable!
168    BBWorkList.push_back(BB);  // Add the block to the work list!
169  }
170
171
172  // visit implementations - Something changed in this instruction... Either an
173  // operand made a transition, or the instruction is newly executable.  Change
174  // the value type of I to reflect these changes if appropriate.
175  //
176  void visitPHINode(PHINode &I);
177
178  // Terminators
179  void visitReturnInst(ReturnInst &I) { /*does not have an effect*/ }
180  void visitTerminatorInst(TerminatorInst &TI);
181
182  void visitUnaryOperator(Instruction &I);
183  void visitCastInst(CastInst &I) { visitUnaryOperator(I); }
184  void visitBinaryOperator(Instruction &I);
185  void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
186
187  // Instructions that cannot be folded away...
188  void visitStoreInst     (Instruction &I) { /*returns void*/ }
189  void visitMemAccessInst (Instruction &I) { markOverdefined(&I); }
190  void visitCallInst      (Instruction &I) { markOverdefined(&I); }
191  void visitInvokeInst    (Instruction &I) { markOverdefined(&I); }
192  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
193  void visitFreeInst      (Instruction &I) { /*returns void*/ }
194
195  void visitInstruction(Instruction &I) {
196    // If a new instruction is added to LLVM that we don't handle...
197    cerr << "SCCP: Don't know how to handle: " << I;
198    markOverdefined(&I);   // Just in case
199  }
200
201  // getFeasibleSuccessors - Return a vector of booleans to indicate which
202  // successors are reachable from a given terminator instruction.
203  //
204  void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs);
205
206  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
207  // block to the 'To' basic block is currently feasible...
208  //
209  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
210
211  // OperandChangedState - This method is invoked on all of the users of an
212  // instruction that was just changed state somehow....  Based on this
213  // information, we need to update the specified user of this instruction.
214  //
215  void OperandChangedState(User *U) {
216    // Only instructions use other variable values!
217    Instruction &I = cast<Instruction>(*U);
218    if (!BBExecutable.count(I.getParent())) return;// Inst not executable yet!
219    visit(I);
220  }
221};
222
223  RegisterPass<SCCP> X("sccp", "Sparse Conditional Constant Propogation");
224} // end anonymous namespace
225
226
227// createSCCPPass - This is the public interface to this file...
228//
229Pass *createSCCPPass() {
230  return new SCCP();
231}
232
233
234//===----------------------------------------------------------------------===//
235// SCCP Class Implementation
236
237
238// runOnFunction() - Run the Sparse Conditional Constant Propogation algorithm,
239// and return true if the function was modified.
240//
241bool SCCP::runOnFunction(Function &F) {
242  // Mark the first block of the function as being executable...
243  markExecutable(&F.front());
244
245  // Process the work lists until their are empty!
246  while (!BBWorkList.empty() || !InstWorkList.empty()) {
247    // Process the instruction work list...
248    while (!InstWorkList.empty()) {
249      Instruction *I = InstWorkList.back();
250      InstWorkList.pop_back();
251
252      DEBUG(cerr << "\nPopped off I-WL: " << I);
253
254
255      // "I" got into the work list because it either made the transition from
256      // bottom to constant, or to Overdefined.
257      //
258      // Update all of the users of this instruction's value...
259      //
260      for_each(I->use_begin(), I->use_end(),
261	       bind_obj(this, &SCCP::OperandChangedState));
262    }
263
264    // Process the basic block work list...
265    while (!BBWorkList.empty()) {
266      BasicBlock *BB = BBWorkList.back();
267      BBWorkList.pop_back();
268
269      DEBUG(cerr << "\nPopped off BBWL: " << BB);
270
271      // If this block only has a single successor, mark it as executable as
272      // well... if not, terminate the do loop.
273      //
274      if (BB->getTerminator()->getNumSuccessors() == 1)
275        markExecutable(BB->getTerminator()->getSuccessor(0));
276
277      // Notify all instructions in this basic block that they are newly
278      // executable.
279      visit(BB);
280    }
281  }
282
283  if (DebugFlag) {
284    for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
285      if (!BBExecutable.count(I))
286        cerr << "BasicBlock Dead:" << *I;
287  }
288
289  // Iterate over all of the instructions in a function, replacing them with
290  // constants if we have found them to be of constant values.
291  //
292  bool MadeChanges = false;
293  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB)
294    for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) {
295      Instruction &Inst = *BI;
296      InstVal &IV = ValueState[&Inst];
297      if (IV.isConstant()) {
298        Constant *Const = IV.getConstant();
299        DEBUG(cerr << "Constant: " << Const << " = " << Inst);
300
301        // Replaces all of the uses of a variable with uses of the constant.
302        Inst.replaceAllUsesWith(Const);
303
304        // Remove the operator from the list of definitions... and delete it.
305        BI = BB->getInstList().erase(BI);
306
307        // Hey, we just changed something!
308        MadeChanges = true;
309        ++NumInstRemoved;
310      } else {
311        ++BI;
312      }
313    }
314
315  // Reset state so that the next invocation will have empty data structures
316  BBExecutable.clear();
317  ValueState.clear();
318
319  return MadeChanges;
320}
321
322
323// getFeasibleSuccessors - Return a vector of booleans to indicate which
324// successors are reachable from a given terminator instruction.
325//
326void SCCP::getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs) {
327  assert(Succs.size() == TI.getNumSuccessors() && "Succs vector wrong size!");
328  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
329    if (BI->isUnconditional()) {
330      Succs[0] = true;
331    } else {
332      InstVal &BCValue = getValueState(BI->getCondition());
333      if (BCValue.isOverdefined()) {
334        // Overdefined condition variables mean the branch could go either way.
335        Succs[0] = Succs[1] = true;
336      } else if (BCValue.isConstant()) {
337        // Constant condition variables mean the branch can only go a single way
338        Succs[BCValue.getConstant() == ConstantBool::False] = true;
339      }
340    }
341  } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) {
342    // Invoke instructions successors are always executable.
343    Succs[0] = Succs[1] = true;
344  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
345    InstVal &SCValue = getValueState(SI->getCondition());
346    if (SCValue.isOverdefined()) {  // Overdefined condition?
347      // All destinations are executable!
348      Succs.assign(TI.getNumSuccessors(), true);
349    } else if (SCValue.isConstant()) {
350      Constant *CPV = SCValue.getConstant();
351      // Make sure to skip the "default value" which isn't a value
352      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
353        if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
354          Succs[i] = true;
355          return;
356        }
357      }
358
359      // Constant value not equal to any of the branches... must execute
360      // default branch then...
361      Succs[0] = true;
362    }
363  } else {
364    cerr << "SCCP: Don't know how to handle: " << TI;
365    Succs.assign(TI.getNumSuccessors(), true);
366  }
367}
368
369
370// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
371// block to the 'To' basic block is currently feasible...
372//
373bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
374  assert(BBExecutable.count(To) && "Dest should always be alive!");
375
376  // Make sure the source basic block is executable!!
377  if (!BBExecutable.count(From)) return false;
378
379  // Check to make sure this edge itself is actually feasible now...
380  TerminatorInst *FT = From->getTerminator();
381  std::vector<bool> SuccFeasible(FT->getNumSuccessors());
382  getFeasibleSuccessors(*FT, SuccFeasible);
383
384  // Check all edges from From to To.  If any are feasible, return true.
385  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
386    if (FT->getSuccessor(i) == To && SuccFeasible[i])
387      return true;
388
389  // Otherwise, none of the edges are actually feasible at this time...
390  return false;
391}
392
393// visit Implementations - Something changed in this instruction... Either an
394// operand made a transition, or the instruction is newly executable.  Change
395// the value type of I to reflect these changes if appropriate.  This method
396// makes sure to do the following actions:
397//
398// 1. If a phi node merges two constants in, and has conflicting value coming
399//    from different branches, or if the PHI node merges in an overdefined
400//    value, then the PHI node becomes overdefined.
401// 2. If a phi node merges only constants in, and they all agree on value, the
402//    PHI node becomes a constant value equal to that.
403// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
404// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
405// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
406// 6. If a conditional branch has a value that is constant, make the selected
407//    destination executable
408// 7. If a conditional branch has a value that is overdefined, make all
409//    successors executable.
410//
411
412void SCCP::visitPHINode(PHINode &PN) {
413  unsigned NumValues = PN.getNumIncomingValues(), i;
414  InstVal *OperandIV = 0;
415
416  // Look at all of the executable operands of the PHI node.  If any of them
417  // are overdefined, the PHI becomes overdefined as well.  If they are all
418  // constant, and they agree with each other, the PHI becomes the identical
419  // constant.  If they are constant and don't agree, the PHI is overdefined.
420  // If there are no executable operands, the PHI remains undefined.
421  //
422  for (i = 0; i < NumValues; ++i) {
423    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
424      InstVal &IV = getValueState(PN.getIncomingValue(i));
425      if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
426      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
427        markOverdefined(&PN);
428        return;
429      }
430
431      if (OperandIV == 0) {   // Grab the first value...
432        OperandIV = &IV;
433      } else {                // Another value is being merged in!
434        // There is already a reachable operand.  If we conflict with it,
435        // then the PHI node becomes overdefined.  If we agree with it, we
436        // can continue on.
437
438        // Check to see if there are two different constants merging...
439        if (IV.getConstant() != OperandIV->getConstant()) {
440          // Yes there is.  This means the PHI node is not constant.
441          // You must be overdefined poor PHI.
442          //
443          markOverdefined(&PN);         // The PHI node now becomes overdefined
444          return;    // I'm done analyzing you
445        }
446      }
447    }
448  }
449
450  // If we exited the loop, this means that the PHI node only has constant
451  // arguments that agree with each other(and OperandIV is a pointer to one
452  // of their InstVal's) or OperandIV is null because there are no defined
453  // incoming arguments.  If this is the case, the PHI remains undefined.
454  //
455  if (OperandIV) {
456    assert(OperandIV->isConstant() && "Should only be here for constants!");
457    markConstant(&PN, OperandIV->getConstant());  // Aquire operand value
458  }
459}
460
461void SCCP::visitTerminatorInst(TerminatorInst &TI) {
462  std::vector<bool> SuccFeasible(TI.getNumSuccessors());
463  getFeasibleSuccessors(TI, SuccFeasible);
464
465  // Mark all feasible successors executable...
466  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
467    if (SuccFeasible[i]) {
468      BasicBlock *Succ = TI.getSuccessor(i);
469      markExecutable(Succ);
470
471      // Visit all of the PHI nodes that merge values from this block...
472      // Because this edge may be new executable, and PHI nodes that used to be
473      // constant now may not be.
474      //
475      for (BasicBlock::iterator I = Succ->begin();
476           PHINode *PN = dyn_cast<PHINode>(&*I); ++I)
477        visitPHINode(*PN);
478    }
479}
480
481void SCCP::visitUnaryOperator(Instruction &I) {
482  Value *V = I.getOperand(0);
483  InstVal &VState = getValueState(V);
484  if (VState.isOverdefined()) {        // Inherit overdefinedness of operand
485    markOverdefined(&I);
486  } else if (VState.isConstant()) {    // Propogate constant value
487    Constant *Result = isa<CastInst>(I)
488      ? ConstantFoldCastInstruction(VState.getConstant(), I.getType())
489      : ConstantFoldUnaryInstruction(I.getOpcode(), VState.getConstant());
490
491    if (Result) {
492      // This instruction constant folds!
493      markConstant(&I, Result);
494    } else {
495      markOverdefined(&I);   // Don't know how to fold this instruction.  :(
496    }
497  }
498}
499
500// Handle BinaryOperators and Shift Instructions...
501void SCCP::visitBinaryOperator(Instruction &I) {
502  InstVal &V1State = getValueState(I.getOperand(0));
503  InstVal &V2State = getValueState(I.getOperand(1));
504  if (V1State.isOverdefined() || V2State.isOverdefined()) {
505    markOverdefined(&I);
506  } else if (V1State.isConstant() && V2State.isConstant()) {
507    Constant *Result = 0;
508    if (isa<BinaryOperator>(I))
509      Result = ConstantFoldBinaryInstruction(I.getOpcode(),
510                                             V1State.getConstant(),
511                                             V2State.getConstant());
512    else if (isa<ShiftInst>(I))
513      Result = ConstantFoldShiftInstruction(I.getOpcode(),
514                                            V1State.getConstant(),
515                                            V2State.getConstant());
516    if (Result)
517      markConstant(&I, Result);      // This instruction constant folds!
518    else
519      markOverdefined(&I);   // Don't know how to fold this instruction.  :(
520  }
521}
522