Sink.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- Sink.cpp - Code Sinking -------------------------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass moves instructions into successor blocks, when possible, so that 11// they aren't executed on paths where their results aren't needed. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "sink" 16#include "llvm/Transforms/Scalar.h" 17#include "llvm/ADT/Statistic.h" 18#include "llvm/Analysis/AliasAnalysis.h" 19#include "llvm/Analysis/LoopInfo.h" 20#include "llvm/Analysis/ValueTracking.h" 21#include "llvm/IR/CFG.h" 22#include "llvm/IR/Dominators.h" 23#include "llvm/IR/IntrinsicInst.h" 24#include "llvm/Support/Debug.h" 25#include "llvm/Support/raw_ostream.h" 26using namespace llvm; 27 28STATISTIC(NumSunk, "Number of instructions sunk"); 29STATISTIC(NumSinkIter, "Number of sinking iterations"); 30 31namespace { 32 class Sinking : public FunctionPass { 33 DominatorTree *DT; 34 LoopInfo *LI; 35 AliasAnalysis *AA; 36 37 public: 38 static char ID; // Pass identification 39 Sinking() : FunctionPass(ID) { 40 initializeSinkingPass(*PassRegistry::getPassRegistry()); 41 } 42 43 bool runOnFunction(Function &F) override; 44 45 void getAnalysisUsage(AnalysisUsage &AU) const override { 46 AU.setPreservesCFG(); 47 FunctionPass::getAnalysisUsage(AU); 48 AU.addRequired<AliasAnalysis>(); 49 AU.addRequired<DominatorTreeWrapperPass>(); 50 AU.addRequired<LoopInfo>(); 51 AU.addPreserved<DominatorTreeWrapperPass>(); 52 AU.addPreserved<LoopInfo>(); 53 } 54 private: 55 bool ProcessBlock(BasicBlock &BB); 56 bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores); 57 bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const; 58 bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo) const; 59 }; 60} // end anonymous namespace 61 62char Sinking::ID = 0; 63INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false) 64INITIALIZE_PASS_DEPENDENCY(LoopInfo) 65INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 66INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 67INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false) 68 69FunctionPass *llvm::createSinkingPass() { return new Sinking(); } 70 71/// AllUsesDominatedByBlock - Return true if all uses of the specified value 72/// occur in blocks dominated by the specified block. 73bool Sinking::AllUsesDominatedByBlock(Instruction *Inst, 74 BasicBlock *BB) const { 75 // Ignoring debug uses is necessary so debug info doesn't affect the code. 76 // This may leave a referencing dbg_value in the original block, before 77 // the definition of the vreg. Dwarf generator handles this although the 78 // user might not get the right info at runtime. 79 for (Use &U : Inst->uses()) { 80 // Determine the block of the use. 81 Instruction *UseInst = cast<Instruction>(U.getUser()); 82 BasicBlock *UseBlock = UseInst->getParent(); 83 if (PHINode *PN = dyn_cast<PHINode>(UseInst)) { 84 // PHI nodes use the operand in the predecessor block, not the block with 85 // the PHI. 86 unsigned Num = PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 87 UseBlock = PN->getIncomingBlock(Num); 88 } 89 // Check that it dominates. 90 if (!DT->dominates(BB, UseBlock)) 91 return false; 92 } 93 return true; 94} 95 96bool Sinking::runOnFunction(Function &F) { 97 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 98 LI = &getAnalysis<LoopInfo>(); 99 AA = &getAnalysis<AliasAnalysis>(); 100 101 bool MadeChange, EverMadeChange = false; 102 103 do { 104 MadeChange = false; 105 DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n"); 106 // Process all basic blocks. 107 for (Function::iterator I = F.begin(), E = F.end(); 108 I != E; ++I) 109 MadeChange |= ProcessBlock(*I); 110 EverMadeChange |= MadeChange; 111 NumSinkIter++; 112 } while (MadeChange); 113 114 return EverMadeChange; 115} 116 117bool Sinking::ProcessBlock(BasicBlock &BB) { 118 // Can't sink anything out of a block that has less than two successors. 119 if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false; 120 121 // Don't bother sinking code out of unreachable blocks. In addition to being 122 // unprofitable, it can also lead to infinite looping, because in an 123 // unreachable loop there may be nowhere to stop. 124 if (!DT->isReachableFromEntry(&BB)) return false; 125 126 bool MadeChange = false; 127 128 // Walk the basic block bottom-up. Remember if we saw a store. 129 BasicBlock::iterator I = BB.end(); 130 --I; 131 bool ProcessedBegin = false; 132 SmallPtrSet<Instruction *, 8> Stores; 133 do { 134 Instruction *Inst = I; // The instruction to sink. 135 136 // Predecrement I (if it's not begin) so that it isn't invalidated by 137 // sinking. 138 ProcessedBegin = I == BB.begin(); 139 if (!ProcessedBegin) 140 --I; 141 142 if (isa<DbgInfoIntrinsic>(Inst)) 143 continue; 144 145 if (SinkInstruction(Inst, Stores)) 146 ++NumSunk, MadeChange = true; 147 148 // If we just processed the first instruction in the block, we're done. 149 } while (!ProcessedBegin); 150 151 return MadeChange; 152} 153 154static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA, 155 SmallPtrSet<Instruction *, 8> &Stores) { 156 157 if (Inst->mayWriteToMemory()) { 158 Stores.insert(Inst); 159 return false; 160 } 161 162 if (LoadInst *L = dyn_cast<LoadInst>(Inst)) { 163 AliasAnalysis::Location Loc = AA->getLocation(L); 164 for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(), 165 E = Stores.end(); I != E; ++I) 166 if (AA->getModRefInfo(*I, Loc) & AliasAnalysis::Mod) 167 return false; 168 } 169 170 if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst)) 171 return false; 172 173 return true; 174} 175 176/// IsAcceptableTarget - Return true if it is possible to sink the instruction 177/// in the specified basic block. 178bool Sinking::IsAcceptableTarget(Instruction *Inst, 179 BasicBlock *SuccToSinkTo) const { 180 assert(Inst && "Instruction to be sunk is null"); 181 assert(SuccToSinkTo && "Candidate sink target is null"); 182 183 // It is not possible to sink an instruction into its own block. This can 184 // happen with loops. 185 if (Inst->getParent() == SuccToSinkTo) 186 return false; 187 188 // If the block has multiple predecessors, this would introduce computation 189 // on different code paths. We could split the critical edge, but for now we 190 // just punt. 191 // FIXME: Split critical edges if not backedges. 192 if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) { 193 // We cannot sink a load across a critical edge - there may be stores in 194 // other code paths. 195 if (!isSafeToSpeculativelyExecute(Inst)) 196 return false; 197 198 // We don't want to sink across a critical edge if we don't dominate the 199 // successor. We could be introducing calculations to new code paths. 200 if (!DT->dominates(Inst->getParent(), SuccToSinkTo)) 201 return false; 202 203 // Don't sink instructions into a loop. 204 Loop *succ = LI->getLoopFor(SuccToSinkTo); 205 Loop *cur = LI->getLoopFor(Inst->getParent()); 206 if (succ != 0 && succ != cur) 207 return false; 208 } 209 210 // Finally, check that all the uses of the instruction are actually 211 // dominated by the candidate 212 return AllUsesDominatedByBlock(Inst, SuccToSinkTo); 213} 214 215/// SinkInstruction - Determine whether it is safe to sink the specified machine 216/// instruction out of its current block into a successor. 217bool Sinking::SinkInstruction(Instruction *Inst, 218 SmallPtrSet<Instruction *, 8> &Stores) { 219 220 // Don't sink static alloca instructions. CodeGen assumes allocas outside the 221 // entry block are dynamically sized stack objects. 222 if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst)) 223 if (AI->isStaticAlloca()) 224 return false; 225 226 // Check if it's safe to move the instruction. 227 if (!isSafeToMove(Inst, AA, Stores)) 228 return false; 229 230 // FIXME: This should include support for sinking instructions within the 231 // block they are currently in to shorten the live ranges. We often get 232 // instructions sunk into the top of a large block, but it would be better to 233 // also sink them down before their first use in the block. This xform has to 234 // be careful not to *increase* register pressure though, e.g. sinking 235 // "x = y + z" down if it kills y and z would increase the live ranges of y 236 // and z and only shrink the live range of x. 237 238 // SuccToSinkTo - This is the successor to sink this instruction to, once we 239 // decide. 240 BasicBlock *SuccToSinkTo = 0; 241 242 // Instructions can only be sunk if all their uses are in blocks 243 // dominated by one of the successors. 244 // Look at all the postdominators and see if we can sink it in one. 245 DomTreeNode *DTN = DT->getNode(Inst->getParent()); 246 for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end(); 247 I != E && SuccToSinkTo == 0; ++I) { 248 BasicBlock *Candidate = (*I)->getBlock(); 249 if ((*I)->getIDom()->getBlock() == Inst->getParent() && 250 IsAcceptableTarget(Inst, Candidate)) 251 SuccToSinkTo = Candidate; 252 } 253 254 // If no suitable postdominator was found, look at all the successors and 255 // decide which one we should sink to, if any. 256 for (succ_iterator I = succ_begin(Inst->getParent()), 257 E = succ_end(Inst->getParent()); I != E && SuccToSinkTo == 0; ++I) { 258 if (IsAcceptableTarget(Inst, *I)) 259 SuccToSinkTo = *I; 260 } 261 262 // If we couldn't find a block to sink to, ignore this instruction. 263 if (SuccToSinkTo == 0) 264 return false; 265 266 DEBUG(dbgs() << "Sink" << *Inst << " ("; 267 Inst->getParent()->printAsOperand(dbgs(), false); 268 dbgs() << " -> "; 269 SuccToSinkTo->printAsOperand(dbgs(), false); 270 dbgs() << ")\n"); 271 272 // Move the instruction. 273 Inst->moveBefore(SuccToSinkTo->getFirstInsertionPt()); 274 return true; 275} 276