Sink.cpp revision 6948897e478cbd66626159776a8017b3c18579b9
1//===-- Sink.cpp - Code Sinking -------------------------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass moves instructions into successor blocks, when possible, so that 11// they aren't executed on paths where their results aren't needed. 12// 13//===----------------------------------------------------------------------===// 14 15#include "llvm/Transforms/Scalar.h" 16#include "llvm/ADT/Statistic.h" 17#include "llvm/Analysis/AliasAnalysis.h" 18#include "llvm/Analysis/LoopInfo.h" 19#include "llvm/Analysis/ValueTracking.h" 20#include "llvm/IR/CFG.h" 21#include "llvm/IR/DataLayout.h" 22#include "llvm/IR/Dominators.h" 23#include "llvm/IR/IntrinsicInst.h" 24#include "llvm/IR/Module.h" 25#include "llvm/Support/Debug.h" 26#include "llvm/Support/raw_ostream.h" 27using namespace llvm; 28 29#define DEBUG_TYPE "sink" 30 31STATISTIC(NumSunk, "Number of instructions sunk"); 32STATISTIC(NumSinkIter, "Number of sinking iterations"); 33 34namespace { 35 class Sinking : public FunctionPass { 36 DominatorTree *DT; 37 LoopInfo *LI; 38 AliasAnalysis *AA; 39 40 public: 41 static char ID; // Pass identification 42 Sinking() : FunctionPass(ID) { 43 initializeSinkingPass(*PassRegistry::getPassRegistry()); 44 } 45 46 bool runOnFunction(Function &F) override; 47 48 void getAnalysisUsage(AnalysisUsage &AU) const override { 49 AU.setPreservesCFG(); 50 FunctionPass::getAnalysisUsage(AU); 51 AU.addRequired<AliasAnalysis>(); 52 AU.addRequired<DominatorTreeWrapperPass>(); 53 AU.addRequired<LoopInfoWrapperPass>(); 54 AU.addPreserved<DominatorTreeWrapperPass>(); 55 AU.addPreserved<LoopInfoWrapperPass>(); 56 } 57 private: 58 bool ProcessBlock(BasicBlock &BB); 59 bool SinkInstruction(Instruction *I, SmallPtrSetImpl<Instruction*> &Stores); 60 bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const; 61 bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo) const; 62 }; 63} // end anonymous namespace 64 65char Sinking::ID = 0; 66INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false) 67INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 68INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 69INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 70INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false) 71 72FunctionPass *llvm::createSinkingPass() { return new Sinking(); } 73 74/// AllUsesDominatedByBlock - Return true if all uses of the specified value 75/// occur in blocks dominated by the specified block. 76bool Sinking::AllUsesDominatedByBlock(Instruction *Inst, 77 BasicBlock *BB) const { 78 // Ignoring debug uses is necessary so debug info doesn't affect the code. 79 // This may leave a referencing dbg_value in the original block, before 80 // the definition of the vreg. Dwarf generator handles this although the 81 // user might not get the right info at runtime. 82 for (Use &U : Inst->uses()) { 83 // Determine the block of the use. 84 Instruction *UseInst = cast<Instruction>(U.getUser()); 85 BasicBlock *UseBlock = UseInst->getParent(); 86 if (PHINode *PN = dyn_cast<PHINode>(UseInst)) { 87 // PHI nodes use the operand in the predecessor block, not the block with 88 // the PHI. 89 unsigned Num = PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 90 UseBlock = PN->getIncomingBlock(Num); 91 } 92 // Check that it dominates. 93 if (!DT->dominates(BB, UseBlock)) 94 return false; 95 } 96 return true; 97} 98 99bool Sinking::runOnFunction(Function &F) { 100 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 101 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 102 AA = &getAnalysis<AliasAnalysis>(); 103 104 bool MadeChange, EverMadeChange = false; 105 106 do { 107 MadeChange = false; 108 DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n"); 109 // Process all basic blocks. 110 for (Function::iterator I = F.begin(), E = F.end(); 111 I != E; ++I) 112 MadeChange |= ProcessBlock(*I); 113 EverMadeChange |= MadeChange; 114 NumSinkIter++; 115 } while (MadeChange); 116 117 return EverMadeChange; 118} 119 120bool Sinking::ProcessBlock(BasicBlock &BB) { 121 // Can't sink anything out of a block that has less than two successors. 122 if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false; 123 124 // Don't bother sinking code out of unreachable blocks. In addition to being 125 // unprofitable, it can also lead to infinite looping, because in an 126 // unreachable loop there may be nowhere to stop. 127 if (!DT->isReachableFromEntry(&BB)) return false; 128 129 bool MadeChange = false; 130 131 // Walk the basic block bottom-up. Remember if we saw a store. 132 BasicBlock::iterator I = BB.end(); 133 --I; 134 bool ProcessedBegin = false; 135 SmallPtrSet<Instruction *, 8> Stores; 136 do { 137 Instruction *Inst = I; // The instruction to sink. 138 139 // Predecrement I (if it's not begin) so that it isn't invalidated by 140 // sinking. 141 ProcessedBegin = I == BB.begin(); 142 if (!ProcessedBegin) 143 --I; 144 145 if (isa<DbgInfoIntrinsic>(Inst)) 146 continue; 147 148 if (SinkInstruction(Inst, Stores)) 149 ++NumSunk, MadeChange = true; 150 151 // If we just processed the first instruction in the block, we're done. 152 } while (!ProcessedBegin); 153 154 return MadeChange; 155} 156 157static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA, 158 SmallPtrSetImpl<Instruction *> &Stores) { 159 160 if (Inst->mayWriteToMemory()) { 161 Stores.insert(Inst); 162 return false; 163 } 164 165 if (LoadInst *L = dyn_cast<LoadInst>(Inst)) { 166 AliasAnalysis::Location Loc = MemoryLocation::get(L); 167 for (Instruction *S : Stores) 168 if (AA->getModRefInfo(S, Loc) & AliasAnalysis::Mod) 169 return false; 170 } 171 172 if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst)) 173 return false; 174 175 // Convergent operations can only be moved to control equivalent blocks. 176 if (auto CS = CallSite(Inst)) { 177 if (CS.hasFnAttr(Attribute::Convergent)) 178 return false; 179 } 180 181 return true; 182} 183 184/// IsAcceptableTarget - Return true if it is possible to sink the instruction 185/// in the specified basic block. 186bool Sinking::IsAcceptableTarget(Instruction *Inst, 187 BasicBlock *SuccToSinkTo) const { 188 assert(Inst && "Instruction to be sunk is null"); 189 assert(SuccToSinkTo && "Candidate sink target is null"); 190 191 // It is not possible to sink an instruction into its own block. This can 192 // happen with loops. 193 if (Inst->getParent() == SuccToSinkTo) 194 return false; 195 196 // If the block has multiple predecessors, this would introduce computation 197 // on different code paths. We could split the critical edge, but for now we 198 // just punt. 199 // FIXME: Split critical edges if not backedges. 200 if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) { 201 // We cannot sink a load across a critical edge - there may be stores in 202 // other code paths. 203 if (!isSafeToSpeculativelyExecute(Inst)) 204 return false; 205 206 // We don't want to sink across a critical edge if we don't dominate the 207 // successor. We could be introducing calculations to new code paths. 208 if (!DT->dominates(Inst->getParent(), SuccToSinkTo)) 209 return false; 210 211 // Don't sink instructions into a loop. 212 Loop *succ = LI->getLoopFor(SuccToSinkTo); 213 Loop *cur = LI->getLoopFor(Inst->getParent()); 214 if (succ != nullptr && succ != cur) 215 return false; 216 } 217 218 // Finally, check that all the uses of the instruction are actually 219 // dominated by the candidate 220 return AllUsesDominatedByBlock(Inst, SuccToSinkTo); 221} 222 223/// SinkInstruction - Determine whether it is safe to sink the specified machine 224/// instruction out of its current block into a successor. 225bool Sinking::SinkInstruction(Instruction *Inst, 226 SmallPtrSetImpl<Instruction *> &Stores) { 227 228 // Don't sink static alloca instructions. CodeGen assumes allocas outside the 229 // entry block are dynamically sized stack objects. 230 if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst)) 231 if (AI->isStaticAlloca()) 232 return false; 233 234 // Check if it's safe to move the instruction. 235 if (!isSafeToMove(Inst, AA, Stores)) 236 return false; 237 238 // FIXME: This should include support for sinking instructions within the 239 // block they are currently in to shorten the live ranges. We often get 240 // instructions sunk into the top of a large block, but it would be better to 241 // also sink them down before their first use in the block. This xform has to 242 // be careful not to *increase* register pressure though, e.g. sinking 243 // "x = y + z" down if it kills y and z would increase the live ranges of y 244 // and z and only shrink the live range of x. 245 246 // SuccToSinkTo - This is the successor to sink this instruction to, once we 247 // decide. 248 BasicBlock *SuccToSinkTo = nullptr; 249 250 // Instructions can only be sunk if all their uses are in blocks 251 // dominated by one of the successors. 252 // Look at all the postdominators and see if we can sink it in one. 253 DomTreeNode *DTN = DT->getNode(Inst->getParent()); 254 for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end(); 255 I != E && SuccToSinkTo == nullptr; ++I) { 256 BasicBlock *Candidate = (*I)->getBlock(); 257 if ((*I)->getIDom()->getBlock() == Inst->getParent() && 258 IsAcceptableTarget(Inst, Candidate)) 259 SuccToSinkTo = Candidate; 260 } 261 262 // If no suitable postdominator was found, look at all the successors and 263 // decide which one we should sink to, if any. 264 for (succ_iterator I = succ_begin(Inst->getParent()), 265 E = succ_end(Inst->getParent()); I != E && !SuccToSinkTo; ++I) { 266 if (IsAcceptableTarget(Inst, *I)) 267 SuccToSinkTo = *I; 268 } 269 270 // If we couldn't find a block to sink to, ignore this instruction. 271 if (!SuccToSinkTo) 272 return false; 273 274 DEBUG(dbgs() << "Sink" << *Inst << " ("; 275 Inst->getParent()->printAsOperand(dbgs(), false); 276 dbgs() << " -> "; 277 SuccToSinkTo->printAsOperand(dbgs(), false); 278 dbgs() << ")\n"); 279 280 // Move the instruction. 281 Inst->moveBefore(SuccToSinkTo->getFirstInsertionPt()); 282 return true; 283} 284