CodeExtractor.cpp revision 26a6908768a0139fff72bc07908d55872cba136b
1//===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the interface to tear out a code region, such as an 11// individual loop or a parallel section, into a new function, replacing it with 12// a call to the new function. 13// 14//===----------------------------------------------------------------------===// 15 16#include "llvm/Transforms/Utils/FunctionUtils.h" 17#include "llvm/Constants.h" 18#include "llvm/DerivedTypes.h" 19#include "llvm/Instructions.h" 20#include "llvm/Intrinsics.h" 21#include "llvm/Module.h" 22#include "llvm/Pass.h" 23#include "llvm/Analysis/Dominators.h" 24#include "llvm/Analysis/LoopInfo.h" 25#include "llvm/Analysis/Verifier.h" 26#include "llvm/Transforms/Utils/BasicBlockUtils.h" 27#include "llvm/Support/CommandLine.h" 28#include "llvm/Support/Compiler.h" 29#include "llvm/Support/Debug.h" 30#include "llvm/ADT/StringExtras.h" 31#include <algorithm> 32#include <set> 33using namespace llvm; 34 35// Provide a command-line option to aggregate function arguments into a struct 36// for functions produced by the code extrator. This is useful when converting 37// extracted functions to pthread-based code, as only one argument (void*) can 38// be passed in to pthread_create(). 39static cl::opt<bool> 40AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 41 cl::desc("Aggregate arguments to code-extracted functions")); 42 43namespace { 44 class VISIBILITY_HIDDEN CodeExtractor { 45 typedef std::vector<Value*> Values; 46 std::set<BasicBlock*> BlocksToExtract; 47 ETForest *EF; 48 DominatorTree* DT; 49 bool AggregateArgs; 50 unsigned NumExitBlocks; 51 const Type *RetTy; 52 public: 53 CodeExtractor(ETForest *ef = 0, DominatorTree* dt = 0, bool AggArgs = false) 54 : EF(ef), DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {} 55 56 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 57 58 bool isEligible(const std::vector<BasicBlock*> &code); 59 60 private: 61 /// definedInRegion - Return true if the specified value is defined in the 62 /// extracted region. 63 bool definedInRegion(Value *V) const { 64 if (Instruction *I = dyn_cast<Instruction>(V)) 65 if (BlocksToExtract.count(I->getParent())) 66 return true; 67 return false; 68 } 69 70 /// definedInCaller - Return true if the specified value is defined in the 71 /// function being code extracted, but not in the region being extracted. 72 /// These values must be passed in as live-ins to the function. 73 bool definedInCaller(Value *V) const { 74 if (isa<Argument>(V)) return true; 75 if (Instruction *I = dyn_cast<Instruction>(V)) 76 if (!BlocksToExtract.count(I->getParent())) 77 return true; 78 return false; 79 } 80 81 void severSplitPHINodes(BasicBlock *&Header); 82 void splitReturnBlocks(); 83 void findInputsOutputs(Values &inputs, Values &outputs); 84 85 Function *constructFunction(const Values &inputs, 86 const Values &outputs, 87 BasicBlock *header, 88 BasicBlock *newRootNode, BasicBlock *newHeader, 89 Function *oldFunction, Module *M); 90 91 void moveCodeToFunction(Function *newFunction); 92 93 void emitCallAndSwitchStatement(Function *newFunction, 94 BasicBlock *newHeader, 95 Values &inputs, 96 Values &outputs); 97 98 }; 99} 100 101/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 102/// region, we need to split the entry block of the region so that the PHI node 103/// is easier to deal with. 104void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 105 bool HasPredsFromRegion = false; 106 unsigned NumPredsOutsideRegion = 0; 107 108 if (Header != &Header->getParent()->getEntryBlock()) { 109 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 110 if (!PN) return; // No PHI nodes. 111 112 // If the header node contains any PHI nodes, check to see if there is more 113 // than one entry from outside the region. If so, we need to sever the 114 // header block into two. 115 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 116 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 117 HasPredsFromRegion = true; 118 else 119 ++NumPredsOutsideRegion; 120 121 // If there is one (or fewer) predecessor from outside the region, we don't 122 // need to do anything special. 123 if (NumPredsOutsideRegion <= 1) return; 124 } 125 126 // Otherwise, we need to split the header block into two pieces: one 127 // containing PHI nodes merging values from outside of the region, and a 128 // second that contains all of the code for the block and merges back any 129 // incoming values from inside of the region. 130 BasicBlock::iterator AfterPHIs = Header->begin(); 131 while (isa<PHINode>(AfterPHIs)) ++AfterPHIs; 132 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 133 Header->getName()+".ce"); 134 135 // We only want to code extract the second block now, and it becomes the new 136 // header of the region. 137 BasicBlock *OldPred = Header; 138 BlocksToExtract.erase(OldPred); 139 BlocksToExtract.insert(NewBB); 140 Header = NewBB; 141 142 // Okay, update dominator sets. The blocks that dominate the new one are the 143 // blocks that dominate TIBB plus the new block itself. 144 if (EF) { 145 BasicBlock* idom = EF->getIDom(OldPred); 146 DT->createNewNode(NewBB, idom); 147 EF->addNewBlock(NewBB, idom); 148 149 // Additionally, NewBB replaces OldPred as the immediate dominator of blocks 150 Function *F = Header->getParent(); 151 for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) 152 if (EF->getIDom(I) == OldPred) { 153 DT->changeImmediateDominator(I, NewBB); 154 EF->setImmediateDominator(I, NewBB); 155 } 156 } 157 158 // Okay, now we need to adjust the PHI nodes and any branches from within the 159 // region to go to the new header block instead of the old header block. 160 if (HasPredsFromRegion) { 161 PHINode *PN = cast<PHINode>(OldPred->begin()); 162 // Loop over all of the predecessors of OldPred that are in the region, 163 // changing them to branch to NewBB instead. 164 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 165 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 166 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 167 TI->replaceUsesOfWith(OldPred, NewBB); 168 } 169 170 // Okay, everthing within the region is now branching to the right block, we 171 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 172 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 173 PHINode *PN = cast<PHINode>(AfterPHIs); 174 // Create a new PHI node in the new region, which has an incoming value 175 // from OldPred of PN. 176 PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".ce", 177 NewBB->begin()); 178 NewPN->addIncoming(PN, OldPred); 179 180 // Loop over all of the incoming value in PN, moving them to NewPN if they 181 // are from the extracted region. 182 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 183 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 184 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 185 PN->removeIncomingValue(i); 186 --i; 187 } 188 } 189 } 190 } 191} 192 193void CodeExtractor::splitReturnBlocks() { 194 for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(), 195 E = BlocksToExtract.end(); I != E; ++I) 196 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) 197 (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 198} 199 200// findInputsOutputs - Find inputs to, outputs from the code region. 201// 202void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 203 std::set<BasicBlock*> ExitBlocks; 204 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 205 ce = BlocksToExtract.end(); ci != ce; ++ci) { 206 BasicBlock *BB = *ci; 207 208 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 209 // If a used value is defined outside the region, it's an input. If an 210 // instruction is used outside the region, it's an output. 211 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 212 if (definedInCaller(*O)) 213 inputs.push_back(*O); 214 215 // Consider uses of this instruction (outputs). 216 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 217 UI != E; ++UI) 218 if (!definedInRegion(*UI)) { 219 outputs.push_back(I); 220 break; 221 } 222 } // for: insts 223 224 // Keep track of the exit blocks from the region. 225 TerminatorInst *TI = BB->getTerminator(); 226 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 227 if (!BlocksToExtract.count(TI->getSuccessor(i))) 228 ExitBlocks.insert(TI->getSuccessor(i)); 229 } // for: basic blocks 230 231 NumExitBlocks = ExitBlocks.size(); 232 233 // Eliminate duplicates. 234 std::sort(inputs.begin(), inputs.end()); 235 inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end()); 236 std::sort(outputs.begin(), outputs.end()); 237 outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end()); 238} 239 240/// constructFunction - make a function based on inputs and outputs, as follows: 241/// f(in0, ..., inN, out0, ..., outN) 242/// 243Function *CodeExtractor::constructFunction(const Values &inputs, 244 const Values &outputs, 245 BasicBlock *header, 246 BasicBlock *newRootNode, 247 BasicBlock *newHeader, 248 Function *oldFunction, 249 Module *M) { 250 DOUT << "inputs: " << inputs.size() << "\n"; 251 DOUT << "outputs: " << outputs.size() << "\n"; 252 253 // This function returns unsigned, outputs will go back by reference. 254 switch (NumExitBlocks) { 255 case 0: 256 case 1: RetTy = Type::VoidTy; break; 257 case 2: RetTy = Type::Int1Ty; break; 258 default: RetTy = Type::Int16Ty; break; 259 } 260 261 std::vector<const Type*> paramTy; 262 263 // Add the types of the input values to the function's argument list 264 for (Values::const_iterator i = inputs.begin(), 265 e = inputs.end(); i != e; ++i) { 266 const Value *value = *i; 267 DOUT << "value used in func: " << *value << "\n"; 268 paramTy.push_back(value->getType()); 269 } 270 271 // Add the types of the output values to the function's argument list. 272 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 273 I != E; ++I) { 274 DOUT << "instr used in func: " << **I << "\n"; 275 if (AggregateArgs) 276 paramTy.push_back((*I)->getType()); 277 else 278 paramTy.push_back(PointerType::get((*I)->getType())); 279 } 280 281 DOUT << "Function type: " << *RetTy << " f("; 282 for (std::vector<const Type*>::iterator i = paramTy.begin(), 283 e = paramTy.end(); i != e; ++i) 284 DOUT << **i << ", "; 285 DOUT << ")\n"; 286 287 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 288 PointerType *StructPtr = PointerType::get(StructType::get(paramTy)); 289 paramTy.clear(); 290 paramTy.push_back(StructPtr); 291 } 292 const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false); 293 294 // Create the new function 295 Function *newFunction = new Function(funcType, 296 GlobalValue::InternalLinkage, 297 oldFunction->getName() + "_" + 298 header->getName(), M); 299 newFunction->getBasicBlockList().push_back(newRootNode); 300 301 // Create an iterator to name all of the arguments we inserted. 302 Function::arg_iterator AI = newFunction->arg_begin(); 303 304 // Rewrite all users of the inputs in the extracted region to use the 305 // arguments (or appropriate addressing into struct) instead. 306 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 307 Value *RewriteVal; 308 if (AggregateArgs) { 309 Value *Idx0 = Constant::getNullValue(Type::Int32Ty); 310 Value *Idx1 = ConstantInt::get(Type::Int32Ty, i); 311 std::string GEPname = "gep_" + inputs[i]->getName(); 312 TerminatorInst *TI = newFunction->begin()->getTerminator(); 313 GetElementPtrInst *GEP = new GetElementPtrInst(AI, Idx0, Idx1, 314 GEPname, TI); 315 RewriteVal = new LoadInst(GEP, "load" + GEPname, TI); 316 } else 317 RewriteVal = AI++; 318 319 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 320 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 321 use != useE; ++use) 322 if (Instruction* inst = dyn_cast<Instruction>(*use)) 323 if (BlocksToExtract.count(inst->getParent())) 324 inst->replaceUsesOfWith(inputs[i], RewriteVal); 325 } 326 327 // Set names for input and output arguments. 328 if (!AggregateArgs) { 329 AI = newFunction->arg_begin(); 330 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 331 AI->setName(inputs[i]->getName()); 332 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 333 AI->setName(outputs[i]->getName()+".out"); 334 } 335 336 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 337 // within the new function. This must be done before we lose track of which 338 // blocks were originally in the code region. 339 std::vector<User*> Users(header->use_begin(), header->use_end()); 340 for (unsigned i = 0, e = Users.size(); i != e; ++i) 341 // The BasicBlock which contains the branch is not in the region 342 // modify the branch target to a new block 343 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 344 if (!BlocksToExtract.count(TI->getParent()) && 345 TI->getParent()->getParent() == oldFunction) 346 TI->replaceUsesOfWith(header, newHeader); 347 348 return newFunction; 349} 350 351/// emitCallAndSwitchStatement - This method sets up the caller side by adding 352/// the call instruction, splitting any PHI nodes in the header block as 353/// necessary. 354void CodeExtractor:: 355emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 356 Values &inputs, Values &outputs) { 357 // Emit a call to the new function, passing in: *pointer to struct (if 358 // aggregating parameters), or plan inputs and allocated memory for outputs 359 std::vector<Value*> params, StructValues, ReloadOutputs; 360 361 // Add inputs as params, or to be filled into the struct 362 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 363 if (AggregateArgs) 364 StructValues.push_back(*i); 365 else 366 params.push_back(*i); 367 368 // Create allocas for the outputs 369 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 370 if (AggregateArgs) { 371 StructValues.push_back(*i); 372 } else { 373 AllocaInst *alloca = 374 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 375 codeReplacer->getParent()->begin()->begin()); 376 ReloadOutputs.push_back(alloca); 377 params.push_back(alloca); 378 } 379 } 380 381 AllocaInst *Struct = 0; 382 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 383 std::vector<const Type*> ArgTypes; 384 for (Values::iterator v = StructValues.begin(), 385 ve = StructValues.end(); v != ve; ++v) 386 ArgTypes.push_back((*v)->getType()); 387 388 // Allocate a struct at the beginning of this function 389 Type *StructArgTy = StructType::get(ArgTypes); 390 Struct = 391 new AllocaInst(StructArgTy, 0, "structArg", 392 codeReplacer->getParent()->begin()->begin()); 393 params.push_back(Struct); 394 395 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 396 Value *Idx0 = Constant::getNullValue(Type::Int32Ty); 397 Value *Idx1 = ConstantInt::get(Type::Int32Ty, i); 398 GetElementPtrInst *GEP = 399 new GetElementPtrInst(Struct, Idx0, Idx1, 400 "gep_" + StructValues[i]->getName()); 401 codeReplacer->getInstList().push_back(GEP); 402 StoreInst *SI = new StoreInst(StructValues[i], GEP); 403 codeReplacer->getInstList().push_back(SI); 404 } 405 } 406 407 // Emit the call to the function 408 CallInst *call = new CallInst(newFunction, ¶ms[0], params.size(), 409 NumExitBlocks > 1 ? "targetBlock" : ""); 410 codeReplacer->getInstList().push_back(call); 411 412 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 413 unsigned FirstOut = inputs.size(); 414 if (!AggregateArgs) 415 std::advance(OutputArgBegin, inputs.size()); 416 417 // Reload the outputs passed in by reference 418 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 419 Value *Output = 0; 420 if (AggregateArgs) { 421 Value *Idx0 = Constant::getNullValue(Type::Int32Ty); 422 Value *Idx1 = ConstantInt::get(Type::Int32Ty, FirstOut + i); 423 GetElementPtrInst *GEP 424 = new GetElementPtrInst(Struct, Idx0, Idx1, 425 "gep_reload_" + outputs[i]->getName()); 426 codeReplacer->getInstList().push_back(GEP); 427 Output = GEP; 428 } else { 429 Output = ReloadOutputs[i]; 430 } 431 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 432 codeReplacer->getInstList().push_back(load); 433 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 434 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 435 Instruction *inst = cast<Instruction>(Users[u]); 436 if (!BlocksToExtract.count(inst->getParent())) 437 inst->replaceUsesOfWith(outputs[i], load); 438 } 439 } 440 441 // Now we can emit a switch statement using the call as a value. 442 SwitchInst *TheSwitch = 443 new SwitchInst(ConstantInt::getNullValue(Type::Int16Ty), 444 codeReplacer, 0, codeReplacer); 445 446 // Since there may be multiple exits from the original region, make the new 447 // function return an unsigned, switch on that number. This loop iterates 448 // over all of the blocks in the extracted region, updating any terminator 449 // instructions in the to-be-extracted region that branch to blocks that are 450 // not in the region to be extracted. 451 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 452 453 unsigned switchVal = 0; 454 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 455 e = BlocksToExtract.end(); i != e; ++i) { 456 TerminatorInst *TI = (*i)->getTerminator(); 457 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 458 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 459 BasicBlock *OldTarget = TI->getSuccessor(i); 460 // add a new basic block which returns the appropriate value 461 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 462 if (!NewTarget) { 463 // If we don't already have an exit stub for this non-extracted 464 // destination, create one now! 465 NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", 466 newFunction); 467 unsigned SuccNum = switchVal++; 468 469 Value *brVal = 0; 470 switch (NumExitBlocks) { 471 case 0: 472 case 1: break; // No value needed. 473 case 2: // Conditional branch, return a bool 474 brVal = ConstantInt::get(Type::Int1Ty, !SuccNum); 475 break; 476 default: 477 brVal = ConstantInt::get(Type::Int16Ty, SuccNum); 478 break; 479 } 480 481 ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); 482 483 // Update the switch instruction. 484 TheSwitch->addCase(ConstantInt::get(Type::Int16Ty, SuccNum), 485 OldTarget); 486 487 // Restore values just before we exit 488 Function::arg_iterator OAI = OutputArgBegin; 489 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 490 // For an invoke, the normal destination is the only one that is 491 // dominated by the result of the invocation 492 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 493 494 bool DominatesDef = true; 495 496 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { 497 DefBlock = Invoke->getNormalDest(); 498 499 // Make sure we are looking at the original successor block, not 500 // at a newly inserted exit block, which won't be in the dominator 501 // info. 502 for (std::map<BasicBlock*, BasicBlock*>::iterator I = 503 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) 504 if (DefBlock == I->second) { 505 DefBlock = I->first; 506 break; 507 } 508 509 // In the extract block case, if the block we are extracting ends 510 // with an invoke instruction, make sure that we don't emit a 511 // store of the invoke value for the unwind block. 512 if (!EF && DefBlock != OldTarget) 513 DominatesDef = false; 514 } 515 516 if (EF) 517 DominatesDef = EF->dominates(DefBlock, OldTarget); 518 519 if (DominatesDef) { 520 if (AggregateArgs) { 521 Value *Idx0 = Constant::getNullValue(Type::Int32Ty); 522 Value *Idx1 = ConstantInt::get(Type::Int32Ty,FirstOut+out); 523 GetElementPtrInst *GEP = 524 new GetElementPtrInst(OAI, Idx0, Idx1, 525 "gep_" + outputs[out]->getName(), 526 NTRet); 527 new StoreInst(outputs[out], GEP, NTRet); 528 } else { 529 new StoreInst(outputs[out], OAI, NTRet); 530 } 531 } 532 // Advance output iterator even if we don't emit a store 533 if (!AggregateArgs) ++OAI; 534 } 535 } 536 537 // rewrite the original branch instruction with this new target 538 TI->setSuccessor(i, NewTarget); 539 } 540 } 541 542 // Now that we've done the deed, simplify the switch instruction. 543 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 544 switch (NumExitBlocks) { 545 case 0: 546 // There are no successors (the block containing the switch itself), which 547 // means that previously this was the last part of the function, and hence 548 // this should be rewritten as a `ret' 549 550 // Check if the function should return a value 551 if (OldFnRetTy == Type::VoidTy) { 552 new ReturnInst(0, TheSwitch); // Return void 553 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 554 // return what we have 555 new ReturnInst(TheSwitch->getCondition(), TheSwitch); 556 } else { 557 // Otherwise we must have code extracted an unwind or something, just 558 // return whatever we want. 559 new ReturnInst(Constant::getNullValue(OldFnRetTy), TheSwitch); 560 } 561 562 TheSwitch->getParent()->getInstList().erase(TheSwitch); 563 break; 564 case 1: 565 // Only a single destination, change the switch into an unconditional 566 // branch. 567 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch); 568 TheSwitch->getParent()->getInstList().erase(TheSwitch); 569 break; 570 case 2: 571 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 572 call, TheSwitch); 573 TheSwitch->getParent()->getInstList().erase(TheSwitch); 574 break; 575 default: 576 // Otherwise, make the default destination of the switch instruction be one 577 // of the other successors. 578 TheSwitch->setOperand(0, call); 579 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 580 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 581 break; 582 } 583} 584 585void CodeExtractor::moveCodeToFunction(Function *newFunction) { 586 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 587 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 588 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 589 590 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 591 e = BlocksToExtract.end(); i != e; ++i) { 592 // Delete the basic block from the old function, and the list of blocks 593 oldBlocks.remove(*i); 594 595 // Insert this basic block into the new function 596 newBlocks.push_back(*i); 597 } 598} 599 600/// ExtractRegion - Removes a loop from a function, replaces it with a call to 601/// new function. Returns pointer to the new function. 602/// 603/// algorithm: 604/// 605/// find inputs and outputs for the region 606/// 607/// for inputs: add to function as args, map input instr* to arg# 608/// for outputs: add allocas for scalars, 609/// add to func as args, map output instr* to arg# 610/// 611/// rewrite func to use argument #s instead of instr* 612/// 613/// for each scalar output in the function: at every exit, store intermediate 614/// computed result back into memory. 615/// 616Function *CodeExtractor:: 617ExtractCodeRegion(const std::vector<BasicBlock*> &code) { 618 if (!isEligible(code)) 619 return 0; 620 621 // 1) Find inputs, outputs 622 // 2) Construct new function 623 // * Add allocas for defs, pass as args by reference 624 // * Pass in uses as args 625 // 3) Move code region, add call instr to func 626 // 627 BlocksToExtract.insert(code.begin(), code.end()); 628 629 Values inputs, outputs; 630 631 // Assumption: this is a single-entry code region, and the header is the first 632 // block in the region. 633 BasicBlock *header = code[0]; 634 635 for (unsigned i = 1, e = code.size(); i != e; ++i) 636 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 637 PI != E; ++PI) 638 assert(BlocksToExtract.count(*PI) && 639 "No blocks in this region may have entries from outside the region" 640 " except for the first block!"); 641 642 // If we have to split PHI nodes or the entry block, do so now. 643 severSplitPHINodes(header); 644 645 // If we have any return instructions in the region, split those blocks so 646 // that the return is not in the region. 647 splitReturnBlocks(); 648 649 Function *oldFunction = header->getParent(); 650 651 // This takes place of the original loop 652 BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction, header); 653 654 // The new function needs a root node because other nodes can branch to the 655 // head of the region, but the entry node of a function cannot have preds. 656 BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); 657 newFuncRoot->getInstList().push_back(new BranchInst(header)); 658 659 // Find inputs to, outputs from the code region. 660 findInputsOutputs(inputs, outputs); 661 662 // Construct new function based on inputs/outputs & add allocas for all defs. 663 Function *newFunction = constructFunction(inputs, outputs, header, 664 newFuncRoot, 665 codeReplacer, oldFunction, 666 oldFunction->getParent()); 667 668 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 669 670 moveCodeToFunction(newFunction); 671 672 // Loop over all of the PHI nodes in the header block, and change any 673 // references to the old incoming edge to be the new incoming edge. 674 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 675 PHINode *PN = cast<PHINode>(I); 676 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 677 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 678 PN->setIncomingBlock(i, newFuncRoot); 679 } 680 681 // Look at all successors of the codeReplacer block. If any of these blocks 682 // had PHI nodes in them, we need to update the "from" block to be the code 683 // replacer, not the original block in the extracted region. 684 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 685 succ_end(codeReplacer)); 686 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 687 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 688 PHINode *PN = cast<PHINode>(I); 689 std::set<BasicBlock*> ProcessedPreds; 690 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 691 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 692 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 693 PN->setIncomingBlock(i, codeReplacer); 694 else { 695 // There were multiple entries in the PHI for this block, now there 696 // is only one, so remove the duplicated entries. 697 PN->removeIncomingValue(i, false); 698 --i; --e; 699 } 700 } 701 702 //cerr << "NEW FUNCTION: " << *newFunction; 703 // verifyFunction(*newFunction); 704 705 // cerr << "OLD FUNCTION: " << *oldFunction; 706 // verifyFunction(*oldFunction); 707 708 DEBUG(if (verifyFunction(*newFunction)) abort()); 709 return newFunction; 710} 711 712bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 713 // Deny code region if it contains allocas or vastarts. 714 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 715 BB != e; ++BB) 716 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 717 I != Ie; ++I) 718 if (isa<AllocaInst>(*I)) 719 return false; 720 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 721 if (const Function *F = CI->getCalledFunction()) 722 if (F->getIntrinsicID() == Intrinsic::vastart) 723 return false; 724 return true; 725} 726 727 728/// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 729/// function 730/// 731Function* llvm::ExtractCodeRegion(ETForest &EF, DominatorTree &DT, 732 const std::vector<BasicBlock*> &code, 733 bool AggregateArgs) { 734 return CodeExtractor(&EF, &DT, AggregateArgs).ExtractCodeRegion(code); 735} 736 737/// ExtractBasicBlock - slurp a natural loop into a brand new function 738/// 739Function* llvm::ExtractLoop(ETForest &EF, DominatorTree &DF, Loop *L, bool AggregateArgs) { 740 return CodeExtractor(&EF, &DF, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 741} 742 743/// ExtractBasicBlock - slurp a basic block into a brand new function 744/// 745Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 746 std::vector<BasicBlock*> Blocks; 747 Blocks.push_back(BB); 748 return CodeExtractor(0, 0, AggregateArgs).ExtractCodeRegion(Blocks); 749} 750