CodeExtractor.cpp revision 26a6908768a0139fff72bc07908d55872cba136b
1//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the interface to tear out a code region, such as an
11// individual loop or a parallel section, into a new function, replacing it with
12// a call to the new function.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/FunctionUtils.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/Module.h"
22#include "llvm/Pass.h"
23#include "llvm/Analysis/Dominators.h"
24#include "llvm/Analysis/LoopInfo.h"
25#include "llvm/Analysis/Verifier.h"
26#include "llvm/Transforms/Utils/BasicBlockUtils.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/ADT/StringExtras.h"
31#include <algorithm>
32#include <set>
33using namespace llvm;
34
35// Provide a command-line option to aggregate function arguments into a struct
36// for functions produced by the code extrator. This is useful when converting
37// extracted functions to pthread-based code, as only one argument (void*) can
38// be passed in to pthread_create().
39static cl::opt<bool>
40AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
41                 cl::desc("Aggregate arguments to code-extracted functions"));
42
43namespace {
44  class VISIBILITY_HIDDEN CodeExtractor {
45    typedef std::vector<Value*> Values;
46    std::set<BasicBlock*> BlocksToExtract;
47    ETForest *EF;
48    DominatorTree* DT;
49    bool AggregateArgs;
50    unsigned NumExitBlocks;
51    const Type *RetTy;
52  public:
53    CodeExtractor(ETForest *ef = 0, DominatorTree* dt = 0, bool AggArgs = false)
54      : EF(ef), DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {}
55
56    Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);
57
58    bool isEligible(const std::vector<BasicBlock*> &code);
59
60  private:
61    /// definedInRegion - Return true if the specified value is defined in the
62    /// extracted region.
63    bool definedInRegion(Value *V) const {
64      if (Instruction *I = dyn_cast<Instruction>(V))
65        if (BlocksToExtract.count(I->getParent()))
66          return true;
67      return false;
68    }
69
70    /// definedInCaller - Return true if the specified value is defined in the
71    /// function being code extracted, but not in the region being extracted.
72    /// These values must be passed in as live-ins to the function.
73    bool definedInCaller(Value *V) const {
74      if (isa<Argument>(V)) return true;
75      if (Instruction *I = dyn_cast<Instruction>(V))
76        if (!BlocksToExtract.count(I->getParent()))
77          return true;
78      return false;
79    }
80
81    void severSplitPHINodes(BasicBlock *&Header);
82    void splitReturnBlocks();
83    void findInputsOutputs(Values &inputs, Values &outputs);
84
85    Function *constructFunction(const Values &inputs,
86                                const Values &outputs,
87                                BasicBlock *header,
88                                BasicBlock *newRootNode, BasicBlock *newHeader,
89                                Function *oldFunction, Module *M);
90
91    void moveCodeToFunction(Function *newFunction);
92
93    void emitCallAndSwitchStatement(Function *newFunction,
94                                    BasicBlock *newHeader,
95                                    Values &inputs,
96                                    Values &outputs);
97
98  };
99}
100
101/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
102/// region, we need to split the entry block of the region so that the PHI node
103/// is easier to deal with.
104void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
105  bool HasPredsFromRegion = false;
106  unsigned NumPredsOutsideRegion = 0;
107
108  if (Header != &Header->getParent()->getEntryBlock()) {
109    PHINode *PN = dyn_cast<PHINode>(Header->begin());
110    if (!PN) return;  // No PHI nodes.
111
112    // If the header node contains any PHI nodes, check to see if there is more
113    // than one entry from outside the region.  If so, we need to sever the
114    // header block into two.
115    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
116      if (BlocksToExtract.count(PN->getIncomingBlock(i)))
117        HasPredsFromRegion = true;
118      else
119        ++NumPredsOutsideRegion;
120
121    // If there is one (or fewer) predecessor from outside the region, we don't
122    // need to do anything special.
123    if (NumPredsOutsideRegion <= 1) return;
124  }
125
126  // Otherwise, we need to split the header block into two pieces: one
127  // containing PHI nodes merging values from outside of the region, and a
128  // second that contains all of the code for the block and merges back any
129  // incoming values from inside of the region.
130  BasicBlock::iterator AfterPHIs = Header->begin();
131  while (isa<PHINode>(AfterPHIs)) ++AfterPHIs;
132  BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
133                                              Header->getName()+".ce");
134
135  // We only want to code extract the second block now, and it becomes the new
136  // header of the region.
137  BasicBlock *OldPred = Header;
138  BlocksToExtract.erase(OldPred);
139  BlocksToExtract.insert(NewBB);
140  Header = NewBB;
141
142  // Okay, update dominator sets. The blocks that dominate the new one are the
143  // blocks that dominate TIBB plus the new block itself.
144  if (EF) {
145    BasicBlock* idom = EF->getIDom(OldPred);
146    DT->createNewNode(NewBB, idom);
147    EF->addNewBlock(NewBB, idom);
148
149    // Additionally, NewBB replaces OldPred as the immediate dominator of blocks
150    Function *F = Header->getParent();
151    for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
152      if (EF->getIDom(I) == OldPred) {
153        DT->changeImmediateDominator(I, NewBB);
154        EF->setImmediateDominator(I, NewBB);
155      }
156  }
157
158  // Okay, now we need to adjust the PHI nodes and any branches from within the
159  // region to go to the new header block instead of the old header block.
160  if (HasPredsFromRegion) {
161    PHINode *PN = cast<PHINode>(OldPred->begin());
162    // Loop over all of the predecessors of OldPred that are in the region,
163    // changing them to branch to NewBB instead.
164    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
165      if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
166        TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
167        TI->replaceUsesOfWith(OldPred, NewBB);
168      }
169
170    // Okay, everthing within the region is now branching to the right block, we
171    // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
172    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
173      PHINode *PN = cast<PHINode>(AfterPHIs);
174      // Create a new PHI node in the new region, which has an incoming value
175      // from OldPred of PN.
176      PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".ce",
177                                   NewBB->begin());
178      NewPN->addIncoming(PN, OldPred);
179
180      // Loop over all of the incoming value in PN, moving them to NewPN if they
181      // are from the extracted region.
182      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
183        if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
184          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
185          PN->removeIncomingValue(i);
186          --i;
187        }
188      }
189    }
190  }
191}
192
193void CodeExtractor::splitReturnBlocks() {
194  for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(),
195         E = BlocksToExtract.end(); I != E; ++I)
196    if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator()))
197      (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
198}
199
200// findInputsOutputs - Find inputs to, outputs from the code region.
201//
202void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
203  std::set<BasicBlock*> ExitBlocks;
204  for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
205       ce = BlocksToExtract.end(); ci != ce; ++ci) {
206    BasicBlock *BB = *ci;
207
208    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
209      // If a used value is defined outside the region, it's an input.  If an
210      // instruction is used outside the region, it's an output.
211      for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O)
212        if (definedInCaller(*O))
213          inputs.push_back(*O);
214
215      // Consider uses of this instruction (outputs).
216      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
217           UI != E; ++UI)
218        if (!definedInRegion(*UI)) {
219          outputs.push_back(I);
220          break;
221        }
222    } // for: insts
223
224    // Keep track of the exit blocks from the region.
225    TerminatorInst *TI = BB->getTerminator();
226    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
227      if (!BlocksToExtract.count(TI->getSuccessor(i)))
228        ExitBlocks.insert(TI->getSuccessor(i));
229  } // for: basic blocks
230
231  NumExitBlocks = ExitBlocks.size();
232
233  // Eliminate duplicates.
234  std::sort(inputs.begin(), inputs.end());
235  inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end());
236  std::sort(outputs.begin(), outputs.end());
237  outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end());
238}
239
240/// constructFunction - make a function based on inputs and outputs, as follows:
241/// f(in0, ..., inN, out0, ..., outN)
242///
243Function *CodeExtractor::constructFunction(const Values &inputs,
244                                           const Values &outputs,
245                                           BasicBlock *header,
246                                           BasicBlock *newRootNode,
247                                           BasicBlock *newHeader,
248                                           Function *oldFunction,
249                                           Module *M) {
250  DOUT << "inputs: " << inputs.size() << "\n";
251  DOUT << "outputs: " << outputs.size() << "\n";
252
253  // This function returns unsigned, outputs will go back by reference.
254  switch (NumExitBlocks) {
255  case 0:
256  case 1: RetTy = Type::VoidTy; break;
257  case 2: RetTy = Type::Int1Ty; break;
258  default: RetTy = Type::Int16Ty; break;
259  }
260
261  std::vector<const Type*> paramTy;
262
263  // Add the types of the input values to the function's argument list
264  for (Values::const_iterator i = inputs.begin(),
265         e = inputs.end(); i != e; ++i) {
266    const Value *value = *i;
267    DOUT << "value used in func: " << *value << "\n";
268    paramTy.push_back(value->getType());
269  }
270
271  // Add the types of the output values to the function's argument list.
272  for (Values::const_iterator I = outputs.begin(), E = outputs.end();
273       I != E; ++I) {
274    DOUT << "instr used in func: " << **I << "\n";
275    if (AggregateArgs)
276      paramTy.push_back((*I)->getType());
277    else
278      paramTy.push_back(PointerType::get((*I)->getType()));
279  }
280
281  DOUT << "Function type: " << *RetTy << " f(";
282  for (std::vector<const Type*>::iterator i = paramTy.begin(),
283         e = paramTy.end(); i != e; ++i)
284    DOUT << **i << ", ";
285  DOUT << ")\n";
286
287  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
288    PointerType *StructPtr = PointerType::get(StructType::get(paramTy));
289    paramTy.clear();
290    paramTy.push_back(StructPtr);
291  }
292  const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false);
293
294  // Create the new function
295  Function *newFunction = new Function(funcType,
296                                       GlobalValue::InternalLinkage,
297                                       oldFunction->getName() + "_" +
298                                       header->getName(), M);
299  newFunction->getBasicBlockList().push_back(newRootNode);
300
301  // Create an iterator to name all of the arguments we inserted.
302  Function::arg_iterator AI = newFunction->arg_begin();
303
304  // Rewrite all users of the inputs in the extracted region to use the
305  // arguments (or appropriate addressing into struct) instead.
306  for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
307    Value *RewriteVal;
308    if (AggregateArgs) {
309      Value *Idx0 = Constant::getNullValue(Type::Int32Ty);
310      Value *Idx1 = ConstantInt::get(Type::Int32Ty, i);
311      std::string GEPname = "gep_" + inputs[i]->getName();
312      TerminatorInst *TI = newFunction->begin()->getTerminator();
313      GetElementPtrInst *GEP = new GetElementPtrInst(AI, Idx0, Idx1,
314                                                     GEPname, TI);
315      RewriteVal = new LoadInst(GEP, "load" + GEPname, TI);
316    } else
317      RewriteVal = AI++;
318
319    std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
320    for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
321         use != useE; ++use)
322      if (Instruction* inst = dyn_cast<Instruction>(*use))
323        if (BlocksToExtract.count(inst->getParent()))
324          inst->replaceUsesOfWith(inputs[i], RewriteVal);
325  }
326
327  // Set names for input and output arguments.
328  if (!AggregateArgs) {
329    AI = newFunction->arg_begin();
330    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
331      AI->setName(inputs[i]->getName());
332    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
333      AI->setName(outputs[i]->getName()+".out");
334  }
335
336  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
337  // within the new function. This must be done before we lose track of which
338  // blocks were originally in the code region.
339  std::vector<User*> Users(header->use_begin(), header->use_end());
340  for (unsigned i = 0, e = Users.size(); i != e; ++i)
341    // The BasicBlock which contains the branch is not in the region
342    // modify the branch target to a new block
343    if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
344      if (!BlocksToExtract.count(TI->getParent()) &&
345          TI->getParent()->getParent() == oldFunction)
346        TI->replaceUsesOfWith(header, newHeader);
347
348  return newFunction;
349}
350
351/// emitCallAndSwitchStatement - This method sets up the caller side by adding
352/// the call instruction, splitting any PHI nodes in the header block as
353/// necessary.
354void CodeExtractor::
355emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
356                           Values &inputs, Values &outputs) {
357  // Emit a call to the new function, passing in: *pointer to struct (if
358  // aggregating parameters), or plan inputs and allocated memory for outputs
359  std::vector<Value*> params, StructValues, ReloadOutputs;
360
361  // Add inputs as params, or to be filled into the struct
362  for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
363    if (AggregateArgs)
364      StructValues.push_back(*i);
365    else
366      params.push_back(*i);
367
368  // Create allocas for the outputs
369  for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
370    if (AggregateArgs) {
371      StructValues.push_back(*i);
372    } else {
373      AllocaInst *alloca =
374        new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
375                       codeReplacer->getParent()->begin()->begin());
376      ReloadOutputs.push_back(alloca);
377      params.push_back(alloca);
378    }
379  }
380
381  AllocaInst *Struct = 0;
382  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
383    std::vector<const Type*> ArgTypes;
384    for (Values::iterator v = StructValues.begin(),
385           ve = StructValues.end(); v != ve; ++v)
386      ArgTypes.push_back((*v)->getType());
387
388    // Allocate a struct at the beginning of this function
389    Type *StructArgTy = StructType::get(ArgTypes);
390    Struct =
391      new AllocaInst(StructArgTy, 0, "structArg",
392                     codeReplacer->getParent()->begin()->begin());
393    params.push_back(Struct);
394
395    for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
396      Value *Idx0 = Constant::getNullValue(Type::Int32Ty);
397      Value *Idx1 = ConstantInt::get(Type::Int32Ty, i);
398      GetElementPtrInst *GEP =
399        new GetElementPtrInst(Struct, Idx0, Idx1,
400                              "gep_" + StructValues[i]->getName());
401      codeReplacer->getInstList().push_back(GEP);
402      StoreInst *SI = new StoreInst(StructValues[i], GEP);
403      codeReplacer->getInstList().push_back(SI);
404    }
405  }
406
407  // Emit the call to the function
408  CallInst *call = new CallInst(newFunction, &params[0], params.size(),
409                                NumExitBlocks > 1 ? "targetBlock" : "");
410  codeReplacer->getInstList().push_back(call);
411
412  Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
413  unsigned FirstOut = inputs.size();
414  if (!AggregateArgs)
415    std::advance(OutputArgBegin, inputs.size());
416
417  // Reload the outputs passed in by reference
418  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
419    Value *Output = 0;
420    if (AggregateArgs) {
421      Value *Idx0 = Constant::getNullValue(Type::Int32Ty);
422      Value *Idx1 = ConstantInt::get(Type::Int32Ty, FirstOut + i);
423      GetElementPtrInst *GEP
424        = new GetElementPtrInst(Struct, Idx0, Idx1,
425                                "gep_reload_" + outputs[i]->getName());
426      codeReplacer->getInstList().push_back(GEP);
427      Output = GEP;
428    } else {
429      Output = ReloadOutputs[i];
430    }
431    LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
432    codeReplacer->getInstList().push_back(load);
433    std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
434    for (unsigned u = 0, e = Users.size(); u != e; ++u) {
435      Instruction *inst = cast<Instruction>(Users[u]);
436      if (!BlocksToExtract.count(inst->getParent()))
437        inst->replaceUsesOfWith(outputs[i], load);
438    }
439  }
440
441  // Now we can emit a switch statement using the call as a value.
442  SwitchInst *TheSwitch =
443    new SwitchInst(ConstantInt::getNullValue(Type::Int16Ty),
444                   codeReplacer, 0, codeReplacer);
445
446  // Since there may be multiple exits from the original region, make the new
447  // function return an unsigned, switch on that number.  This loop iterates
448  // over all of the blocks in the extracted region, updating any terminator
449  // instructions in the to-be-extracted region that branch to blocks that are
450  // not in the region to be extracted.
451  std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
452
453  unsigned switchVal = 0;
454  for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
455         e = BlocksToExtract.end(); i != e; ++i) {
456    TerminatorInst *TI = (*i)->getTerminator();
457    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
458      if (!BlocksToExtract.count(TI->getSuccessor(i))) {
459        BasicBlock *OldTarget = TI->getSuccessor(i);
460        // add a new basic block which returns the appropriate value
461        BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
462        if (!NewTarget) {
463          // If we don't already have an exit stub for this non-extracted
464          // destination, create one now!
465          NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub",
466                                     newFunction);
467          unsigned SuccNum = switchVal++;
468
469          Value *brVal = 0;
470          switch (NumExitBlocks) {
471          case 0:
472          case 1: break;  // No value needed.
473          case 2:         // Conditional branch, return a bool
474            brVal = ConstantInt::get(Type::Int1Ty, !SuccNum);
475            break;
476          default:
477            brVal = ConstantInt::get(Type::Int16Ty, SuccNum);
478            break;
479          }
480
481          ReturnInst *NTRet = new ReturnInst(brVal, NewTarget);
482
483          // Update the switch instruction.
484          TheSwitch->addCase(ConstantInt::get(Type::Int16Ty, SuccNum),
485                             OldTarget);
486
487          // Restore values just before we exit
488          Function::arg_iterator OAI = OutputArgBegin;
489          for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
490            // For an invoke, the normal destination is the only one that is
491            // dominated by the result of the invocation
492            BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
493
494            bool DominatesDef = true;
495
496            if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
497              DefBlock = Invoke->getNormalDest();
498
499              // Make sure we are looking at the original successor block, not
500              // at a newly inserted exit block, which won't be in the dominator
501              // info.
502              for (std::map<BasicBlock*, BasicBlock*>::iterator I =
503                     ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
504                if (DefBlock == I->second) {
505                  DefBlock = I->first;
506                  break;
507                }
508
509              // In the extract block case, if the block we are extracting ends
510              // with an invoke instruction, make sure that we don't emit a
511              // store of the invoke value for the unwind block.
512              if (!EF && DefBlock != OldTarget)
513                DominatesDef = false;
514            }
515
516            if (EF)
517              DominatesDef = EF->dominates(DefBlock, OldTarget);
518
519            if (DominatesDef) {
520              if (AggregateArgs) {
521                Value *Idx0 = Constant::getNullValue(Type::Int32Ty);
522                Value *Idx1 = ConstantInt::get(Type::Int32Ty,FirstOut+out);
523                GetElementPtrInst *GEP =
524                  new GetElementPtrInst(OAI, Idx0, Idx1,
525                                        "gep_" + outputs[out]->getName(),
526                                        NTRet);
527                new StoreInst(outputs[out], GEP, NTRet);
528              } else {
529                new StoreInst(outputs[out], OAI, NTRet);
530              }
531            }
532            // Advance output iterator even if we don't emit a store
533            if (!AggregateArgs) ++OAI;
534          }
535        }
536
537        // rewrite the original branch instruction with this new target
538        TI->setSuccessor(i, NewTarget);
539      }
540  }
541
542  // Now that we've done the deed, simplify the switch instruction.
543  const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
544  switch (NumExitBlocks) {
545  case 0:
546    // There are no successors (the block containing the switch itself), which
547    // means that previously this was the last part of the function, and hence
548    // this should be rewritten as a `ret'
549
550    // Check if the function should return a value
551    if (OldFnRetTy == Type::VoidTy) {
552      new ReturnInst(0, TheSwitch);  // Return void
553    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
554      // return what we have
555      new ReturnInst(TheSwitch->getCondition(), TheSwitch);
556    } else {
557      // Otherwise we must have code extracted an unwind or something, just
558      // return whatever we want.
559      new ReturnInst(Constant::getNullValue(OldFnRetTy), TheSwitch);
560    }
561
562    TheSwitch->getParent()->getInstList().erase(TheSwitch);
563    break;
564  case 1:
565    // Only a single destination, change the switch into an unconditional
566    // branch.
567    new BranchInst(TheSwitch->getSuccessor(1), TheSwitch);
568    TheSwitch->getParent()->getInstList().erase(TheSwitch);
569    break;
570  case 2:
571    new BranchInst(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
572                   call, TheSwitch);
573    TheSwitch->getParent()->getInstList().erase(TheSwitch);
574    break;
575  default:
576    // Otherwise, make the default destination of the switch instruction be one
577    // of the other successors.
578    TheSwitch->setOperand(0, call);
579    TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks));
580    TheSwitch->removeCase(NumExitBlocks);  // Remove redundant case
581    break;
582  }
583}
584
585void CodeExtractor::moveCodeToFunction(Function *newFunction) {
586  Function *oldFunc = (*BlocksToExtract.begin())->getParent();
587  Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
588  Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
589
590  for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
591         e = BlocksToExtract.end(); i != e; ++i) {
592    // Delete the basic block from the old function, and the list of blocks
593    oldBlocks.remove(*i);
594
595    // Insert this basic block into the new function
596    newBlocks.push_back(*i);
597  }
598}
599
600/// ExtractRegion - Removes a loop from a function, replaces it with a call to
601/// new function. Returns pointer to the new function.
602///
603/// algorithm:
604///
605/// find inputs and outputs for the region
606///
607/// for inputs: add to function as args, map input instr* to arg#
608/// for outputs: add allocas for scalars,
609///             add to func as args, map output instr* to arg#
610///
611/// rewrite func to use argument #s instead of instr*
612///
613/// for each scalar output in the function: at every exit, store intermediate
614/// computed result back into memory.
615///
616Function *CodeExtractor::
617ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
618  if (!isEligible(code))
619    return 0;
620
621  // 1) Find inputs, outputs
622  // 2) Construct new function
623  //  * Add allocas for defs, pass as args by reference
624  //  * Pass in uses as args
625  // 3) Move code region, add call instr to func
626  //
627  BlocksToExtract.insert(code.begin(), code.end());
628
629  Values inputs, outputs;
630
631  // Assumption: this is a single-entry code region, and the header is the first
632  // block in the region.
633  BasicBlock *header = code[0];
634
635  for (unsigned i = 1, e = code.size(); i != e; ++i)
636    for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]);
637         PI != E; ++PI)
638      assert(BlocksToExtract.count(*PI) &&
639             "No blocks in this region may have entries from outside the region"
640             " except for the first block!");
641
642  // If we have to split PHI nodes or the entry block, do so now.
643  severSplitPHINodes(header);
644
645  // If we have any return instructions in the region, split those blocks so
646  // that the return is not in the region.
647  splitReturnBlocks();
648
649  Function *oldFunction = header->getParent();
650
651  // This takes place of the original loop
652  BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction, header);
653
654  // The new function needs a root node because other nodes can branch to the
655  // head of the region, but the entry node of a function cannot have preds.
656  BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot");
657  newFuncRoot->getInstList().push_back(new BranchInst(header));
658
659  // Find inputs to, outputs from the code region.
660  findInputsOutputs(inputs, outputs);
661
662  // Construct new function based on inputs/outputs & add allocas for all defs.
663  Function *newFunction = constructFunction(inputs, outputs, header,
664                                            newFuncRoot,
665                                            codeReplacer, oldFunction,
666                                            oldFunction->getParent());
667
668  emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
669
670  moveCodeToFunction(newFunction);
671
672  // Loop over all of the PHI nodes in the header block, and change any
673  // references to the old incoming edge to be the new incoming edge.
674  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
675    PHINode *PN = cast<PHINode>(I);
676    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
677      if (!BlocksToExtract.count(PN->getIncomingBlock(i)))
678        PN->setIncomingBlock(i, newFuncRoot);
679  }
680
681  // Look at all successors of the codeReplacer block.  If any of these blocks
682  // had PHI nodes in them, we need to update the "from" block to be the code
683  // replacer, not the original block in the extracted region.
684  std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
685                                 succ_end(codeReplacer));
686  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
687    for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
688      PHINode *PN = cast<PHINode>(I);
689      std::set<BasicBlock*> ProcessedPreds;
690      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
691        if (BlocksToExtract.count(PN->getIncomingBlock(i)))
692          if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
693            PN->setIncomingBlock(i, codeReplacer);
694          else {
695            // There were multiple entries in the PHI for this block, now there
696            // is only one, so remove the duplicated entries.
697            PN->removeIncomingValue(i, false);
698            --i; --e;
699          }
700    }
701
702  //cerr << "NEW FUNCTION: " << *newFunction;
703  //  verifyFunction(*newFunction);
704
705  //  cerr << "OLD FUNCTION: " << *oldFunction;
706  //  verifyFunction(*oldFunction);
707
708  DEBUG(if (verifyFunction(*newFunction)) abort());
709  return newFunction;
710}
711
712bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) {
713  // Deny code region if it contains allocas or vastarts.
714  for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end();
715       BB != e; ++BB)
716    for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end();
717         I != Ie; ++I)
718      if (isa<AllocaInst>(*I))
719        return false;
720      else if (const CallInst *CI = dyn_cast<CallInst>(I))
721        if (const Function *F = CI->getCalledFunction())
722          if (F->getIntrinsicID() == Intrinsic::vastart)
723            return false;
724  return true;
725}
726
727
728/// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
729/// function
730///
731Function* llvm::ExtractCodeRegion(ETForest &EF, DominatorTree &DT,
732                                  const std::vector<BasicBlock*> &code,
733                                  bool AggregateArgs) {
734  return CodeExtractor(&EF, &DT, AggregateArgs).ExtractCodeRegion(code);
735}
736
737/// ExtractBasicBlock - slurp a natural loop into a brand new function
738///
739Function* llvm::ExtractLoop(ETForest &EF, DominatorTree &DF, Loop *L, bool AggregateArgs) {
740  return CodeExtractor(&EF, &DF, AggregateArgs).ExtractCodeRegion(L->getBlocks());
741}
742
743/// ExtractBasicBlock - slurp a basic block into a brand new function
744///
745Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) {
746  std::vector<BasicBlock*> Blocks;
747  Blocks.push_back(BB);
748  return CodeExtractor(0, 0, AggregateArgs).ExtractCodeRegion(Blocks);
749}
750