CodeExtractor.cpp revision 2da5c3dda6f5b9c4ec6d55008d33327764364bd4
1//===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the interface to tear out a code region, such as an 11// individual loop or a parallel section, into a new function, replacing it with 12// a call to the new function. 13// 14//===----------------------------------------------------------------------===// 15 16#include "llvm/Transforms/Utils/FunctionUtils.h" 17#include "llvm/Constants.h" 18#include "llvm/DerivedTypes.h" 19#include "llvm/Instructions.h" 20#include "llvm/Intrinsics.h" 21#include "llvm/Module.h" 22#include "llvm/Pass.h" 23#include "llvm/Analysis/Dominators.h" 24#include "llvm/Analysis/LoopInfo.h" 25#include "llvm/Analysis/Verifier.h" 26#include "llvm/Transforms/Utils/BasicBlockUtils.h" 27#include "llvm/Support/CommandLine.h" 28#include "llvm/Support/Debug.h" 29#include "llvm/ADT/StringExtras.h" 30#include <algorithm> 31#include <set> 32using namespace llvm; 33 34// Provide a command-line option to aggregate function arguments into a struct 35// for functions produced by the code extrator. This is useful when converting 36// extracted functions to pthread-based code, as only one argument (void*) can 37// be passed in to pthread_create(). 38static cl::opt<bool> 39AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 40 cl::desc("Aggregate arguments to code-extracted functions")); 41 42namespace { 43 class CodeExtractor { 44 typedef std::vector<Value*> Values; 45 std::set<BasicBlock*> BlocksToExtract; 46 DominatorSet *DS; 47 bool AggregateArgs; 48 unsigned NumExitBlocks; 49 const Type *RetTy; 50 public: 51 CodeExtractor(DominatorSet *ds = 0, bool AggArgs = false) 52 : DS(ds), AggregateArgs(AggregateArgsOpt), NumExitBlocks(~0U) {} 53 54 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 55 56 bool isEligible(const std::vector<BasicBlock*> &code); 57 58 private: 59 /// definedInRegion - Return true if the specified value is defined in the 60 /// extracted region. 61 bool definedInRegion(Value *V) const { 62 if (Instruction *I = dyn_cast<Instruction>(V)) 63 if (BlocksToExtract.count(I->getParent())) 64 return true; 65 return false; 66 } 67 68 /// definedInCaller - Return true if the specified value is defined in the 69 /// function being code extracted, but not in the region being extracted. 70 /// These values must be passed in as live-ins to the function. 71 bool definedInCaller(Value *V) const { 72 if (isa<Argument>(V)) return true; 73 if (Instruction *I = dyn_cast<Instruction>(V)) 74 if (!BlocksToExtract.count(I->getParent())) 75 return true; 76 return false; 77 } 78 79 void severSplitPHINodes(BasicBlock *&Header); 80 void splitReturnBlocks(); 81 void findInputsOutputs(Values &inputs, Values &outputs); 82 83 Function *constructFunction(const Values &inputs, 84 const Values &outputs, 85 BasicBlock *header, 86 BasicBlock *newRootNode, BasicBlock *newHeader, 87 Function *oldFunction, Module *M); 88 89 void moveCodeToFunction(Function *newFunction); 90 91 void emitCallAndSwitchStatement(Function *newFunction, 92 BasicBlock *newHeader, 93 Values &inputs, 94 Values &outputs); 95 96 }; 97} 98 99/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 100/// region, we need to split the entry block of the region so that the PHI node 101/// is easier to deal with. 102void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 103 bool HasPredsFromRegion = false; 104 unsigned NumPredsOutsideRegion = 0; 105 106 if (Header != &Header->getParent()->front()) { 107 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 108 if (!PN) return; // No PHI nodes. 109 110 // If the header node contains any PHI nodes, check to see if there is more 111 // than one entry from outside the region. If so, we need to sever the 112 // header block into two. 113 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 114 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 115 HasPredsFromRegion = true; 116 else 117 ++NumPredsOutsideRegion; 118 119 // If there is one (or fewer) predecessor from outside the region, we don't 120 // need to do anything special. 121 if (NumPredsOutsideRegion <= 1) return; 122 } 123 124 // Otherwise, we need to split the header block into two pieces: one 125 // containing PHI nodes merging values from outside of the region, and a 126 // second that contains all of the code for the block and merges back any 127 // incoming values from inside of the region. 128 BasicBlock::iterator AfterPHIs = Header->begin(); 129 while (isa<PHINode>(AfterPHIs)) ++AfterPHIs; 130 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 131 Header->getName()+".ce"); 132 133 // We only want to code extract the second block now, and it becomes the new 134 // header of the region. 135 BasicBlock *OldPred = Header; 136 BlocksToExtract.erase(OldPred); 137 BlocksToExtract.insert(NewBB); 138 Header = NewBB; 139 140 // Okay, update dominator sets. The blocks that dominate the new one are the 141 // blocks that dominate TIBB plus the new block itself. 142 if (DS) { 143 DominatorSet::DomSetType DomSet = DS->getDominators(OldPred); 144 DomSet.insert(NewBB); // A block always dominates itself. 145 DS->addBasicBlock(NewBB, DomSet); 146 147 // Additionally, NewBB dominates all blocks in the function that are 148 // dominated by OldPred. 149 Function *F = Header->getParent(); 150 for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) 151 if (DS->properlyDominates(OldPred, I)) 152 DS->addDominator(I, NewBB); 153 } 154 155 // Okay, now we need to adjust the PHI nodes and any branches from within the 156 // region to go to the new header block instead of the old header block. 157 if (HasPredsFromRegion) { 158 PHINode *PN = cast<PHINode>(OldPred->begin()); 159 // Loop over all of the predecessors of OldPred that are in the region, 160 // changing them to branch to NewBB instead. 161 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 162 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 163 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 164 TI->replaceUsesOfWith(OldPred, NewBB); 165 } 166 167 // Okay, everthing within the region is now branching to the right block, we 168 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 169 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 170 PHINode *PN = cast<PHINode>(AfterPHIs); 171 // Create a new PHI node in the new region, which has an incoming value 172 // from OldPred of PN. 173 PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".ce", 174 NewBB->begin()); 175 NewPN->addIncoming(PN, OldPred); 176 177 // Loop over all of the incoming value in PN, moving them to NewPN if they 178 // are from the extracted region. 179 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 180 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 181 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 182 PN->removeIncomingValue(i); 183 --i; 184 } 185 } 186 } 187 } 188} 189 190void CodeExtractor::splitReturnBlocks() { 191 for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(), 192 E = BlocksToExtract.end(); I != E; ++I) 193 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) 194 (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 195} 196 197// findInputsOutputs - Find inputs to, outputs from the code region. 198// 199void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 200 std::set<BasicBlock*> ExitBlocks; 201 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 202 ce = BlocksToExtract.end(); ci != ce; ++ci) { 203 BasicBlock *BB = *ci; 204 205 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 206 // If a used value is defined outside the region, it's an input. If an 207 // instruction is used outside the region, it's an output. 208 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 209 if (definedInCaller(*O)) 210 inputs.push_back(*O); 211 212 // Consider uses of this instruction (outputs). 213 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 214 UI != E; ++UI) 215 if (!definedInRegion(*UI)) { 216 outputs.push_back(I); 217 break; 218 } 219 } // for: insts 220 221 // Keep track of the exit blocks from the region. 222 TerminatorInst *TI = BB->getTerminator(); 223 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 224 if (!BlocksToExtract.count(TI->getSuccessor(i))) 225 ExitBlocks.insert(TI->getSuccessor(i)); 226 } // for: basic blocks 227 228 NumExitBlocks = ExitBlocks.size(); 229 230 // Eliminate duplicates. 231 std::sort(inputs.begin(), inputs.end()); 232 inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end()); 233 std::sort(outputs.begin(), outputs.end()); 234 outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end()); 235} 236 237/// constructFunction - make a function based on inputs and outputs, as follows: 238/// f(in0, ..., inN, out0, ..., outN) 239/// 240Function *CodeExtractor::constructFunction(const Values &inputs, 241 const Values &outputs, 242 BasicBlock *header, 243 BasicBlock *newRootNode, 244 BasicBlock *newHeader, 245 Function *oldFunction, 246 Module *M) { 247 DEBUG(std::cerr << "inputs: " << inputs.size() << "\n"); 248 DEBUG(std::cerr << "outputs: " << outputs.size() << "\n"); 249 250 // This function returns unsigned, outputs will go back by reference. 251 switch (NumExitBlocks) { 252 case 0: 253 case 1: RetTy = Type::VoidTy; break; 254 case 2: RetTy = Type::BoolTy; break; 255 default: RetTy = Type::UShortTy; break; 256 } 257 258 std::vector<const Type*> paramTy; 259 260 // Add the types of the input values to the function's argument list 261 for (Values::const_iterator i = inputs.begin(), 262 e = inputs.end(); i != e; ++i) { 263 const Value *value = *i; 264 DEBUG(std::cerr << "value used in func: " << *value << "\n"); 265 paramTy.push_back(value->getType()); 266 } 267 268 // Add the types of the output values to the function's argument list. 269 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 270 I != E; ++I) { 271 DEBUG(std::cerr << "instr used in func: " << **I << "\n"); 272 if (AggregateArgs) 273 paramTy.push_back((*I)->getType()); 274 else 275 paramTy.push_back(PointerType::get((*I)->getType())); 276 } 277 278 DEBUG(std::cerr << "Function type: " << *RetTy << " f("); 279 DEBUG(for (std::vector<const Type*>::iterator i = paramTy.begin(), 280 e = paramTy.end(); i != e; ++i) std::cerr << **i << ", "); 281 DEBUG(std::cerr << ")\n"); 282 283 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 284 PointerType *StructPtr = PointerType::get(StructType::get(paramTy)); 285 paramTy.clear(); 286 paramTy.push_back(StructPtr); 287 } 288 const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false); 289 290 // Create the new function 291 Function *newFunction = new Function(funcType, 292 GlobalValue::InternalLinkage, 293 oldFunction->getName() + "_" + 294 header->getName(), M); 295 newFunction->getBasicBlockList().push_back(newRootNode); 296 297 // Create an iterator to name all of the arguments we inserted. 298 Function::aiterator AI = newFunction->abegin(); 299 300 // Rewrite all users of the inputs in the extracted region to use the 301 // arguments (or appropriate addressing into struct) instead. 302 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 303 Value *RewriteVal; 304 if (AggregateArgs) { 305 std::vector<Value*> Indices; 306 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 307 Indices.push_back(ConstantUInt::get(Type::UIntTy, i)); 308 std::string GEPname = "gep_" + inputs[i]->getName(); 309 TerminatorInst *TI = newFunction->begin()->getTerminator(); 310 GetElementPtrInst *GEP = new GetElementPtrInst(AI, Indices, GEPname, TI); 311 RewriteVal = new LoadInst(GEP, "load" + GEPname, TI); 312 } else 313 RewriteVal = AI++; 314 315 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 316 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 317 use != useE; ++use) 318 if (Instruction* inst = dyn_cast<Instruction>(*use)) 319 if (BlocksToExtract.count(inst->getParent())) 320 inst->replaceUsesOfWith(inputs[i], RewriteVal); 321 } 322 323 // Set names for input and output arguments. 324 if (!AggregateArgs) { 325 AI = newFunction->abegin(); 326 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 327 AI->setName(inputs[i]->getName()); 328 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 329 AI->setName(outputs[i]->getName()+".out"); 330 } 331 332 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 333 // within the new function. This must be done before we lose track of which 334 // blocks were originally in the code region. 335 std::vector<User*> Users(header->use_begin(), header->use_end()); 336 for (unsigned i = 0, e = Users.size(); i != e; ++i) 337 // The BasicBlock which contains the branch is not in the region 338 // modify the branch target to a new block 339 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 340 if (!BlocksToExtract.count(TI->getParent()) && 341 TI->getParent()->getParent() == oldFunction) 342 TI->replaceUsesOfWith(header, newHeader); 343 344 return newFunction; 345} 346 347/// emitCallAndSwitchStatement - This method sets up the caller side by adding 348/// the call instruction, splitting any PHI nodes in the header block as 349/// necessary. 350void CodeExtractor:: 351emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 352 Values &inputs, Values &outputs) { 353 // Emit a call to the new function, passing in: *pointer to struct (if 354 // aggregating parameters), or plan inputs and allocated memory for outputs 355 std::vector<Value*> params, StructValues, ReloadOutputs; 356 357 // Add inputs as params, or to be filled into the struct 358 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 359 if (AggregateArgs) 360 StructValues.push_back(*i); 361 else 362 params.push_back(*i); 363 364 // Create allocas for the outputs 365 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 366 if (AggregateArgs) { 367 StructValues.push_back(*i); 368 } else { 369 AllocaInst *alloca = 370 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 371 codeReplacer->getParent()->begin()->begin()); 372 ReloadOutputs.push_back(alloca); 373 params.push_back(alloca); 374 } 375 } 376 377 AllocaInst *Struct = 0; 378 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 379 std::vector<const Type*> ArgTypes; 380 for (Values::iterator v = StructValues.begin(), 381 ve = StructValues.end(); v != ve; ++v) 382 ArgTypes.push_back((*v)->getType()); 383 384 // Allocate a struct at the beginning of this function 385 Type *StructArgTy = StructType::get(ArgTypes); 386 Struct = 387 new AllocaInst(StructArgTy, 0, "structArg", 388 codeReplacer->getParent()->begin()->begin()); 389 params.push_back(Struct); 390 391 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 392 std::vector<Value*> Indices; 393 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 394 Indices.push_back(ConstantUInt::get(Type::UIntTy, i)); 395 GetElementPtrInst *GEP = 396 new GetElementPtrInst(Struct, Indices, 397 "gep_" + StructValues[i]->getName()); 398 codeReplacer->getInstList().push_back(GEP); 399 StoreInst *SI = new StoreInst(StructValues[i], GEP); 400 codeReplacer->getInstList().push_back(SI); 401 } 402 } 403 404 // Emit the call to the function 405 CallInst *call = new CallInst(newFunction, params, 406 NumExitBlocks > 1 ? "targetBlock": ""); 407 codeReplacer->getInstList().push_back(call); 408 409 Function::aiterator OutputArgBegin = newFunction->abegin(); 410 unsigned FirstOut = inputs.size(); 411 if (!AggregateArgs) 412 std::advance(OutputArgBegin, inputs.size()); 413 414 // Reload the outputs passed in by reference 415 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 416 Value *Output = 0; 417 if (AggregateArgs) { 418 std::vector<Value*> Indices; 419 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 420 Indices.push_back(ConstantUInt::get(Type::UIntTy, FirstOut + i)); 421 GetElementPtrInst *GEP 422 = new GetElementPtrInst(Struct, Indices, 423 "gep_reload_" + outputs[i]->getName()); 424 codeReplacer->getInstList().push_back(GEP); 425 Output = GEP; 426 } else { 427 Output = ReloadOutputs[i]; 428 } 429 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 430 codeReplacer->getInstList().push_back(load); 431 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 432 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 433 Instruction *inst = cast<Instruction>(Users[u]); 434 if (!BlocksToExtract.count(inst->getParent())) 435 inst->replaceUsesOfWith(outputs[i], load); 436 } 437 } 438 439 // Now we can emit a switch statement using the call as a value. 440 SwitchInst *TheSwitch = 441 new SwitchInst(ConstantUInt::getNullValue(Type::UShortTy), 442 codeReplacer, codeReplacer); 443 444 // Since there may be multiple exits from the original region, make the new 445 // function return an unsigned, switch on that number. This loop iterates 446 // over all of the blocks in the extracted region, updating any terminator 447 // instructions in the to-be-extracted region that branch to blocks that are 448 // not in the region to be extracted. 449 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 450 451 unsigned switchVal = 0; 452 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 453 e = BlocksToExtract.end(); i != e; ++i) { 454 TerminatorInst *TI = (*i)->getTerminator(); 455 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 456 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 457 BasicBlock *OldTarget = TI->getSuccessor(i); 458 // add a new basic block which returns the appropriate value 459 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 460 if (!NewTarget) { 461 // If we don't already have an exit stub for this non-extracted 462 // destination, create one now! 463 NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", 464 newFunction); 465 unsigned SuccNum = switchVal++; 466 467 Value *brVal = 0; 468 switch (NumExitBlocks) { 469 case 0: 470 case 1: break; // No value needed. 471 case 2: // Conditional branch, return a bool 472 brVal = SuccNum ? ConstantBool::False : ConstantBool::True; 473 break; 474 default: 475 brVal = ConstantUInt::get(Type::UShortTy, SuccNum); 476 break; 477 } 478 479 ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); 480 481 // Update the switch instruction. 482 TheSwitch->addCase(ConstantUInt::get(Type::UShortTy, SuccNum), 483 OldTarget); 484 485 // Restore values just before we exit 486 Function::aiterator OAI = OutputArgBegin; 487 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 488 // For an invoke, the normal destination is the only one that is 489 // dominated by the result of the invocation 490 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 491 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) 492 DefBlock = Invoke->getNormalDest(); 493 if (!DS || DS->dominates(DefBlock, TI->getParent())) 494 if (AggregateArgs) { 495 std::vector<Value*> Indices; 496 Indices.push_back(Constant::getNullValue(Type::UIntTy)); 497 Indices.push_back(ConstantUInt::get(Type::UIntTy,FirstOut+out)); 498 GetElementPtrInst *GEP = 499 new GetElementPtrInst(OAI, Indices, 500 "gep_" + outputs[out]->getName(), 501 NTRet); 502 new StoreInst(outputs[out], GEP, NTRet); 503 } else 504 new StoreInst(outputs[out], OAI, NTRet); 505 // Advance output iterator even if we don't emit a store 506 if (!AggregateArgs) ++OAI; 507 } 508 } 509 510 // rewrite the original branch instruction with this new target 511 TI->setSuccessor(i, NewTarget); 512 } 513 } 514 515 // Now that we've done the deed, simplify the switch instruction. 516 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 517 switch (NumExitBlocks) { 518 case 0: 519 // There are no successors (the block containing the switch itself), which 520 // means that previously this was the last part of the function, and hence 521 // this should be rewritten as a `ret' 522 523 // Check if the function should return a value 524 if (OldFnRetTy == Type::VoidTy) { 525 new ReturnInst(0, TheSwitch); // Return void 526 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 527 // return what we have 528 new ReturnInst(TheSwitch->getCondition(), TheSwitch); 529 } else { 530 // Otherwise we must have code extracted an unwind or something, just 531 // return whatever we want. 532 new ReturnInst(Constant::getNullValue(OldFnRetTy), TheSwitch); 533 } 534 535 TheSwitch->getParent()->getInstList().erase(TheSwitch); 536 break; 537 case 1: 538 // Only a single destination, change the switch into an unconditional 539 // branch. 540 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch); 541 TheSwitch->getParent()->getInstList().erase(TheSwitch); 542 break; 543 case 2: 544 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 545 call, TheSwitch); 546 TheSwitch->getParent()->getInstList().erase(TheSwitch); 547 break; 548 default: 549 // Otherwise, make the default destination of the switch instruction be one 550 // of the other successors. 551 TheSwitch->setOperand(0, call); 552 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 553 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 554 break; 555 } 556} 557 558void CodeExtractor::moveCodeToFunction(Function *newFunction) { 559 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 560 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 561 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 562 563 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 564 e = BlocksToExtract.end(); i != e; ++i) { 565 // Delete the basic block from the old function, and the list of blocks 566 oldBlocks.remove(*i); 567 568 // Insert this basic block into the new function 569 newBlocks.push_back(*i); 570 } 571} 572 573/// ExtractRegion - Removes a loop from a function, replaces it with a call to 574/// new function. Returns pointer to the new function. 575/// 576/// algorithm: 577/// 578/// find inputs and outputs for the region 579/// 580/// for inputs: add to function as args, map input instr* to arg# 581/// for outputs: add allocas for scalars, 582/// add to func as args, map output instr* to arg# 583/// 584/// rewrite func to use argument #s instead of instr* 585/// 586/// for each scalar output in the function: at every exit, store intermediate 587/// computed result back into memory. 588/// 589Function *CodeExtractor:: 590ExtractCodeRegion(const std::vector<BasicBlock*> &code) { 591 if (!isEligible(code)) 592 return 0; 593 594 // 1) Find inputs, outputs 595 // 2) Construct new function 596 // * Add allocas for defs, pass as args by reference 597 // * Pass in uses as args 598 // 3) Move code region, add call instr to func 599 // 600 BlocksToExtract.insert(code.begin(), code.end()); 601 602 Values inputs, outputs; 603 604 // Assumption: this is a single-entry code region, and the header is the first 605 // block in the region. 606 BasicBlock *header = code[0]; 607 608 for (unsigned i = 1, e = code.size(); i != e; ++i) 609 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 610 PI != E; ++PI) 611 assert(BlocksToExtract.count(*PI) && 612 "No blocks in this region may have entries from outside the region" 613 " except for the first block!"); 614 615 // If we have to split PHI nodes or the entry block, do so now. 616 severSplitPHINodes(header); 617 618 // If we have any return instructions in the region, split those blocks so 619 // that the return is not in the region. 620 splitReturnBlocks(); 621 622 Function *oldFunction = header->getParent(); 623 624 // This takes place of the original loop 625 BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction, header); 626 627 // The new function needs a root node because other nodes can branch to the 628 // head of the region, but the entry node of a function cannot have preds. 629 BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); 630 newFuncRoot->getInstList().push_back(new BranchInst(header)); 631 632 // Find inputs to, outputs from the code region. 633 findInputsOutputs(inputs, outputs); 634 635 // Construct new function based on inputs/outputs & add allocas for all defs. 636 Function *newFunction = constructFunction(inputs, outputs, header, 637 newFuncRoot, 638 codeReplacer, oldFunction, 639 oldFunction->getParent()); 640 641 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 642 643 moveCodeToFunction(newFunction); 644 645 // Loop over all of the PHI nodes in the header block, and change any 646 // references to the old incoming edge to be the new incoming edge. 647 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 648 PHINode *PN = cast<PHINode>(I); 649 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 650 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 651 PN->setIncomingBlock(i, newFuncRoot); 652 } 653 654 // Look at all successors of the codeReplacer block. If any of these blocks 655 // had PHI nodes in them, we need to update the "from" block to be the code 656 // replacer, not the original block in the extracted region. 657 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 658 succ_end(codeReplacer)); 659 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 660 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 661 PHINode *PN = cast<PHINode>(I); 662 std::set<BasicBlock*> ProcessedPreds; 663 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 664 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 665 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 666 PN->setIncomingBlock(i, codeReplacer); 667 else { 668 // There were multiple entries in the PHI for this block, now there 669 // is only one, so remove the duplicated entries. 670 PN->removeIncomingValue(i, false); 671 --i; --e; 672 } 673 } 674 675 //std::cerr << "NEW FUNCTION: " << *newFunction; 676 // verifyFunction(*newFunction); 677 678 // std::cerr << "OLD FUNCTION: " << *oldFunction; 679 // verifyFunction(*oldFunction); 680 681 DEBUG(if (verifyFunction(*newFunction)) abort()); 682 return newFunction; 683} 684 685bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 686 // Deny code region if it contains allocas or vastarts. 687 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 688 BB != e; ++BB) 689 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 690 I != Ie; ++I) 691 if (isa<AllocaInst>(*I)) 692 return false; 693 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 694 if (const Function *F = CI->getCalledFunction()) 695 if (F->getIntrinsicID() == Intrinsic::vastart) 696 return false; 697 return true; 698} 699 700 701/// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 702/// function 703/// 704Function* llvm::ExtractCodeRegion(DominatorSet &DS, 705 const std::vector<BasicBlock*> &code, 706 bool AggregateArgs) { 707 return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(code); 708} 709 710/// ExtractBasicBlock - slurp a natural loop into a brand new function 711/// 712Function* llvm::ExtractLoop(DominatorSet &DS, Loop *L, bool AggregateArgs) { 713 return CodeExtractor(&DS, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 714} 715 716/// ExtractBasicBlock - slurp a basic block into a brand new function 717/// 718Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 719 std::vector<BasicBlock*> Blocks; 720 Blocks.push_back(BB); 721 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 722} 723