CodeExtractor.cpp revision 30ba82933c433611e05b07ef95da36bba8721b8b
1//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the interface to tear out a code region, such as an
11// individual loop or a parallel section, into a new function, replacing it with
12// a call to the new function.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/CodeExtractor.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/LLVMContext.h"
22#include "llvm/Module.h"
23#include "llvm/Pass.h"
24#include "llvm/Analysis/Dominators.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Analysis/RegionInfo.h"
27#include "llvm/Analysis/RegionIterator.h"
28#include "llvm/Analysis/Verifier.h"
29#include "llvm/Transforms/Utils/BasicBlockUtils.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/SetVector.h"
35#include "llvm/ADT/StringExtras.h"
36#include <algorithm>
37#include <set>
38using namespace llvm;
39
40// Provide a command-line option to aggregate function arguments into a struct
41// for functions produced by the code extractor. This is useful when converting
42// extracted functions to pthread-based code, as only one argument (void*) can
43// be passed in to pthread_create().
44static cl::opt<bool>
45AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
46                 cl::desc("Aggregate arguments to code-extracted functions"));
47
48/// \brief Test whether a block is valid for extraction.
49static bool isBlockValidForExtraction(const BasicBlock &BB) {
50  // Landing pads must be in the function where they were inserted for cleanup.
51  if (BB.isLandingPad())
52    return false;
53
54  // Don't hoist code containing allocas, invokes, or vastarts.
55  for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
56    if (isa<AllocaInst>(I) || isa<InvokeInst>(I))
57      return false;
58    if (const CallInst *CI = dyn_cast<CallInst>(I))
59      if (const Function *F = CI->getCalledFunction())
60        if (F->getIntrinsicID() == Intrinsic::vastart)
61          return false;
62  }
63
64  return true;
65}
66
67/// \brief Build a set of blocks to extract if the input blocks are viable.
68template <typename IteratorT>
69static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin,
70                                                       IteratorT BBEnd) {
71  SetVector<BasicBlock *> Result;
72
73  assert(BBBegin != BBEnd);
74
75  // Loop over the blocks, adding them to our set-vector, and aborting with an
76  // empty set if we encounter invalid blocks.
77  for (IteratorT I = BBBegin, E = BBEnd; I != E; ++I) {
78    if (!Result.insert(*I))
79      llvm_unreachable("Repeated basic blocks in extraction input");
80
81    if (!isBlockValidForExtraction(**I)) {
82      Result.clear();
83      return Result;
84    }
85  }
86
87#ifndef NDEBUG
88  for (SetVector<BasicBlock *>::iterator I = llvm::next(Result.begin()),
89                                         E = Result.end();
90       I != E; ++I)
91    for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I);
92         PI != PE; ++PI)
93      assert(Result.count(*PI) &&
94             "No blocks in this region may have entries from outside the region"
95             " except for the first block!");
96#endif
97
98  return Result;
99}
100
101/// \brief Helper to call buildExtractionBlockSet with an ArrayRef.
102static SetVector<BasicBlock *>
103buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) {
104  return buildExtractionBlockSet(BBs.begin(), BBs.end());
105}
106
107/// \brief Helper to call buildExtractionBlockSet with a RegionNode.
108static SetVector<BasicBlock *>
109buildExtractionBlockSet(const RegionNode &RN) {
110  if (!RN.isSubRegion())
111    // Just a single BasicBlock.
112    return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>());
113
114  const Region &R = *RN.getNodeAs<Region>();
115
116  return buildExtractionBlockSet(R.block_begin(), R.block_end());
117}
118
119CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs)
120  : DT(0), AggregateArgs(AggregateArgs||AggregateArgsOpt),
121    Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {}
122
123CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
124                             bool AggregateArgs)
125  : DT(DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
126    Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {}
127
128CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs)
129  : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
130    Blocks(buildExtractionBlockSet(L.getBlocks())), NumExitBlocks(~0U) {}
131
132CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN,
133                             bool AggregateArgs)
134  : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
135    Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {}
136
137/// definedInRegion - Return true if the specified value is defined in the
138/// extracted region.
139static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
140  if (Instruction *I = dyn_cast<Instruction>(V))
141    if (Blocks.count(I->getParent()))
142      return true;
143  return false;
144}
145
146/// definedInCaller - Return true if the specified value is defined in the
147/// function being code extracted, but not in the region being extracted.
148/// These values must be passed in as live-ins to the function.
149static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
150  if (isa<Argument>(V)) return true;
151  if (Instruction *I = dyn_cast<Instruction>(V))
152    if (!Blocks.count(I->getParent()))
153      return true;
154  return false;
155}
156
157void CodeExtractor::findInputsOutputs(ValueSet &Inputs,
158                                      ValueSet &Outputs) const {
159  for (SetVector<BasicBlock *>::const_iterator I = Blocks.begin(),
160                                               E = Blocks.end();
161       I != E; ++I) {
162    BasicBlock *BB = *I;
163
164    // If a used value is defined outside the region, it's an input.  If an
165    // instruction is used outside the region, it's an output.
166    for (BasicBlock::iterator II = BB->begin(), IE = BB->end();
167         II != IE; ++II) {
168      for (User::op_iterator OI = II->op_begin(), OE = II->op_end();
169           OI != OE; ++OI)
170        if (definedInCaller(Blocks, *OI))
171          Inputs.insert(*OI);
172
173      for (Value::use_iterator UI = II->use_begin(), UE = II->use_end();
174           UI != UE; ++UI)
175        if (!definedInRegion(Blocks, *UI)) {
176          Outputs.insert(II);
177          break;
178        }
179    }
180  }
181}
182
183/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
184/// region, we need to split the entry block of the region so that the PHI node
185/// is easier to deal with.
186void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
187  unsigned NumPredsFromRegion = 0;
188  unsigned NumPredsOutsideRegion = 0;
189
190  if (Header != &Header->getParent()->getEntryBlock()) {
191    PHINode *PN = dyn_cast<PHINode>(Header->begin());
192    if (!PN) return;  // No PHI nodes.
193
194    // If the header node contains any PHI nodes, check to see if there is more
195    // than one entry from outside the region.  If so, we need to sever the
196    // header block into two.
197    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
198      if (Blocks.count(PN->getIncomingBlock(i)))
199        ++NumPredsFromRegion;
200      else
201        ++NumPredsOutsideRegion;
202
203    // If there is one (or fewer) predecessor from outside the region, we don't
204    // need to do anything special.
205    if (NumPredsOutsideRegion <= 1) return;
206  }
207
208  // Otherwise, we need to split the header block into two pieces: one
209  // containing PHI nodes merging values from outside of the region, and a
210  // second that contains all of the code for the block and merges back any
211  // incoming values from inside of the region.
212  BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
213  BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
214                                              Header->getName()+".ce");
215
216  // We only want to code extract the second block now, and it becomes the new
217  // header of the region.
218  BasicBlock *OldPred = Header;
219  Blocks.remove(OldPred);
220  Blocks.insert(NewBB);
221  Header = NewBB;
222
223  // Okay, update dominator sets. The blocks that dominate the new one are the
224  // blocks that dominate TIBB plus the new block itself.
225  if (DT)
226    DT->splitBlock(NewBB);
227
228  // Okay, now we need to adjust the PHI nodes and any branches from within the
229  // region to go to the new header block instead of the old header block.
230  if (NumPredsFromRegion) {
231    PHINode *PN = cast<PHINode>(OldPred->begin());
232    // Loop over all of the predecessors of OldPred that are in the region,
233    // changing them to branch to NewBB instead.
234    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
235      if (Blocks.count(PN->getIncomingBlock(i))) {
236        TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
237        TI->replaceUsesOfWith(OldPred, NewBB);
238      }
239
240    // Okay, everything within the region is now branching to the right block, we
241    // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
242    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
243      PHINode *PN = cast<PHINode>(AfterPHIs);
244      // Create a new PHI node in the new region, which has an incoming value
245      // from OldPred of PN.
246      PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
247                                       PN->getName()+".ce", NewBB->begin());
248      NewPN->addIncoming(PN, OldPred);
249
250      // Loop over all of the incoming value in PN, moving them to NewPN if they
251      // are from the extracted region.
252      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
253        if (Blocks.count(PN->getIncomingBlock(i))) {
254          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
255          PN->removeIncomingValue(i);
256          --i;
257        }
258      }
259    }
260  }
261}
262
263void CodeExtractor::splitReturnBlocks() {
264  for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
265       I != E; ++I)
266    if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
267      BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
268      if (DT) {
269        // Old dominates New. New node dominates all other nodes dominated
270        // by Old.
271        DomTreeNode *OldNode = DT->getNode(*I);
272        SmallVector<DomTreeNode*, 8> Children;
273        for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
274             DI != DE; ++DI)
275          Children.push_back(*DI);
276
277        DomTreeNode *NewNode = DT->addNewBlock(New, *I);
278
279        for (SmallVector<DomTreeNode*, 8>::iterator I = Children.begin(),
280               E = Children.end(); I != E; ++I)
281          DT->changeImmediateDominator(*I, NewNode);
282      }
283    }
284}
285
286/// constructFunction - make a function based on inputs and outputs, as follows:
287/// f(in0, ..., inN, out0, ..., outN)
288///
289Function *CodeExtractor::constructFunction(const ValueSet &inputs,
290                                           const ValueSet &outputs,
291                                           BasicBlock *header,
292                                           BasicBlock *newRootNode,
293                                           BasicBlock *newHeader,
294                                           Function *oldFunction,
295                                           Module *M) {
296  DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
297  DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
298
299  // This function returns unsigned, outputs will go back by reference.
300  switch (NumExitBlocks) {
301  case 0:
302  case 1: RetTy = Type::getVoidTy(header->getContext()); break;
303  case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
304  default: RetTy = Type::getInt16Ty(header->getContext()); break;
305  }
306
307  std::vector<Type*> paramTy;
308
309  // Add the types of the input values to the function's argument list
310  for (ValueSet::const_iterator i = inputs.begin(), e = inputs.end();
311       i != e; ++i) {
312    const Value *value = *i;
313    DEBUG(dbgs() << "value used in func: " << *value << "\n");
314    paramTy.push_back(value->getType());
315  }
316
317  // Add the types of the output values to the function's argument list.
318  for (ValueSet::const_iterator I = outputs.begin(), E = outputs.end();
319       I != E; ++I) {
320    DEBUG(dbgs() << "instr used in func: " << **I << "\n");
321    if (AggregateArgs)
322      paramTy.push_back((*I)->getType());
323    else
324      paramTy.push_back(PointerType::getUnqual((*I)->getType()));
325  }
326
327  DEBUG(dbgs() << "Function type: " << *RetTy << " f(");
328  for (std::vector<Type*>::iterator i = paramTy.begin(),
329         e = paramTy.end(); i != e; ++i)
330    DEBUG(dbgs() << **i << ", ");
331  DEBUG(dbgs() << ")\n");
332
333  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
334    PointerType *StructPtr =
335           PointerType::getUnqual(StructType::get(M->getContext(), paramTy));
336    paramTy.clear();
337    paramTy.push_back(StructPtr);
338  }
339  FunctionType *funcType =
340                  FunctionType::get(RetTy, paramTy, false);
341
342  // Create the new function
343  Function *newFunction = Function::Create(funcType,
344                                           GlobalValue::InternalLinkage,
345                                           oldFunction->getName() + "_" +
346                                           header->getName(), M);
347  // If the old function is no-throw, so is the new one.
348  if (oldFunction->doesNotThrow())
349    newFunction->setDoesNotThrow(true);
350
351  newFunction->getBasicBlockList().push_back(newRootNode);
352
353  // Create an iterator to name all of the arguments we inserted.
354  Function::arg_iterator AI = newFunction->arg_begin();
355
356  // Rewrite all users of the inputs in the extracted region to use the
357  // arguments (or appropriate addressing into struct) instead.
358  for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
359    Value *RewriteVal;
360    if (AggregateArgs) {
361      Value *Idx[2];
362      Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
363      Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
364      TerminatorInst *TI = newFunction->begin()->getTerminator();
365      GetElementPtrInst *GEP =
366        GetElementPtrInst::Create(AI, Idx, "gep_" + inputs[i]->getName(), TI);
367      RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
368    } else
369      RewriteVal = AI++;
370
371    std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
372    for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
373         use != useE; ++use)
374      if (Instruction* inst = dyn_cast<Instruction>(*use))
375        if (Blocks.count(inst->getParent()))
376          inst->replaceUsesOfWith(inputs[i], RewriteVal);
377  }
378
379  // Set names for input and output arguments.
380  if (!AggregateArgs) {
381    AI = newFunction->arg_begin();
382    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
383      AI->setName(inputs[i]->getName());
384    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
385      AI->setName(outputs[i]->getName()+".out");
386  }
387
388  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
389  // within the new function. This must be done before we lose track of which
390  // blocks were originally in the code region.
391  std::vector<User*> Users(header->use_begin(), header->use_end());
392  for (unsigned i = 0, e = Users.size(); i != e; ++i)
393    // The BasicBlock which contains the branch is not in the region
394    // modify the branch target to a new block
395    if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
396      if (!Blocks.count(TI->getParent()) &&
397          TI->getParent()->getParent() == oldFunction)
398        TI->replaceUsesOfWith(header, newHeader);
399
400  return newFunction;
401}
402
403/// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
404/// that uses the value within the basic block, and return the predecessor
405/// block associated with that use, or return 0 if none is found.
406static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
407  for (Value::use_iterator UI = Used->use_begin(),
408       UE = Used->use_end(); UI != UE; ++UI) {
409     PHINode *P = dyn_cast<PHINode>(*UI);
410     if (P && P->getParent() == BB)
411       return P->getIncomingBlock(UI);
412  }
413
414  return 0;
415}
416
417/// emitCallAndSwitchStatement - This method sets up the caller side by adding
418/// the call instruction, splitting any PHI nodes in the header block as
419/// necessary.
420void CodeExtractor::
421emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
422                           ValueSet &inputs, ValueSet &outputs) {
423  // Emit a call to the new function, passing in: *pointer to struct (if
424  // aggregating parameters), or plan inputs and allocated memory for outputs
425  std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
426
427  LLVMContext &Context = newFunction->getContext();
428
429  // Add inputs as params, or to be filled into the struct
430  for (ValueSet::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
431    if (AggregateArgs)
432      StructValues.push_back(*i);
433    else
434      params.push_back(*i);
435
436  // Create allocas for the outputs
437  for (ValueSet::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
438    if (AggregateArgs) {
439      StructValues.push_back(*i);
440    } else {
441      AllocaInst *alloca =
442        new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
443                       codeReplacer->getParent()->begin()->begin());
444      ReloadOutputs.push_back(alloca);
445      params.push_back(alloca);
446    }
447  }
448
449  AllocaInst *Struct = 0;
450  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
451    std::vector<Type*> ArgTypes;
452    for (ValueSet::iterator v = StructValues.begin(),
453           ve = StructValues.end(); v != ve; ++v)
454      ArgTypes.push_back((*v)->getType());
455
456    // Allocate a struct at the beginning of this function
457    Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
458    Struct =
459      new AllocaInst(StructArgTy, 0, "structArg",
460                     codeReplacer->getParent()->begin()->begin());
461    params.push_back(Struct);
462
463    for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
464      Value *Idx[2];
465      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
466      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
467      GetElementPtrInst *GEP =
468        GetElementPtrInst::Create(Struct, Idx,
469                                  "gep_" + StructValues[i]->getName());
470      codeReplacer->getInstList().push_back(GEP);
471      StoreInst *SI = new StoreInst(StructValues[i], GEP);
472      codeReplacer->getInstList().push_back(SI);
473    }
474  }
475
476  // Emit the call to the function
477  CallInst *call = CallInst::Create(newFunction, params,
478                                    NumExitBlocks > 1 ? "targetBlock" : "");
479  codeReplacer->getInstList().push_back(call);
480
481  Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
482  unsigned FirstOut = inputs.size();
483  if (!AggregateArgs)
484    std::advance(OutputArgBegin, inputs.size());
485
486  // Reload the outputs passed in by reference
487  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
488    Value *Output = 0;
489    if (AggregateArgs) {
490      Value *Idx[2];
491      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
492      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
493      GetElementPtrInst *GEP
494        = GetElementPtrInst::Create(Struct, Idx,
495                                    "gep_reload_" + outputs[i]->getName());
496      codeReplacer->getInstList().push_back(GEP);
497      Output = GEP;
498    } else {
499      Output = ReloadOutputs[i];
500    }
501    LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
502    Reloads.push_back(load);
503    codeReplacer->getInstList().push_back(load);
504    std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
505    for (unsigned u = 0, e = Users.size(); u != e; ++u) {
506      Instruction *inst = cast<Instruction>(Users[u]);
507      if (!Blocks.count(inst->getParent()))
508        inst->replaceUsesOfWith(outputs[i], load);
509    }
510  }
511
512  // Now we can emit a switch statement using the call as a value.
513  SwitchInst *TheSwitch =
514      SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
515                         codeReplacer, 0, codeReplacer);
516
517  // Since there may be multiple exits from the original region, make the new
518  // function return an unsigned, switch on that number.  This loop iterates
519  // over all of the blocks in the extracted region, updating any terminator
520  // instructions in the to-be-extracted region that branch to blocks that are
521  // not in the region to be extracted.
522  std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
523
524  unsigned switchVal = 0;
525  for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(),
526         e = Blocks.end(); i != e; ++i) {
527    TerminatorInst *TI = (*i)->getTerminator();
528    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
529      if (!Blocks.count(TI->getSuccessor(i))) {
530        BasicBlock *OldTarget = TI->getSuccessor(i);
531        // add a new basic block which returns the appropriate value
532        BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
533        if (!NewTarget) {
534          // If we don't already have an exit stub for this non-extracted
535          // destination, create one now!
536          NewTarget = BasicBlock::Create(Context,
537                                         OldTarget->getName() + ".exitStub",
538                                         newFunction);
539          unsigned SuccNum = switchVal++;
540
541          Value *brVal = 0;
542          switch (NumExitBlocks) {
543          case 0:
544          case 1: break;  // No value needed.
545          case 2:         // Conditional branch, return a bool
546            brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
547            break;
548          default:
549            brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
550            break;
551          }
552
553          ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
554
555          // Update the switch instruction.
556          TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
557                                              SuccNum),
558                             OldTarget);
559
560          // Restore values just before we exit
561          Function::arg_iterator OAI = OutputArgBegin;
562          for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
563            // For an invoke, the normal destination is the only one that is
564            // dominated by the result of the invocation
565            BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
566
567            bool DominatesDef = true;
568
569            if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
570              DefBlock = Invoke->getNormalDest();
571
572              // Make sure we are looking at the original successor block, not
573              // at a newly inserted exit block, which won't be in the dominator
574              // info.
575              for (std::map<BasicBlock*, BasicBlock*>::iterator I =
576                     ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
577                if (DefBlock == I->second) {
578                  DefBlock = I->first;
579                  break;
580                }
581
582              // In the extract block case, if the block we are extracting ends
583              // with an invoke instruction, make sure that we don't emit a
584              // store of the invoke value for the unwind block.
585              if (!DT && DefBlock != OldTarget)
586                DominatesDef = false;
587            }
588
589            if (DT) {
590              DominatesDef = DT->dominates(DefBlock, OldTarget);
591
592              // If the output value is used by a phi in the target block,
593              // then we need to test for dominance of the phi's predecessor
594              // instead.  Unfortunately, this a little complicated since we
595              // have already rewritten uses of the value to uses of the reload.
596              BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
597                                                          OldTarget);
598              if (pred && DT && DT->dominates(DefBlock, pred))
599                DominatesDef = true;
600            }
601
602            if (DominatesDef) {
603              if (AggregateArgs) {
604                Value *Idx[2];
605                Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
606                Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
607                                          FirstOut+out);
608                GetElementPtrInst *GEP =
609                  GetElementPtrInst::Create(OAI, Idx,
610                                            "gep_" + outputs[out]->getName(),
611                                            NTRet);
612                new StoreInst(outputs[out], GEP, NTRet);
613              } else {
614                new StoreInst(outputs[out], OAI, NTRet);
615              }
616            }
617            // Advance output iterator even if we don't emit a store
618            if (!AggregateArgs) ++OAI;
619          }
620        }
621
622        // rewrite the original branch instruction with this new target
623        TI->setSuccessor(i, NewTarget);
624      }
625  }
626
627  // Now that we've done the deed, simplify the switch instruction.
628  Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
629  switch (NumExitBlocks) {
630  case 0:
631    // There are no successors (the block containing the switch itself), which
632    // means that previously this was the last part of the function, and hence
633    // this should be rewritten as a `ret'
634
635    // Check if the function should return a value
636    if (OldFnRetTy->isVoidTy()) {
637      ReturnInst::Create(Context, 0, TheSwitch);  // Return void
638    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
639      // return what we have
640      ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
641    } else {
642      // Otherwise we must have code extracted an unwind or something, just
643      // return whatever we want.
644      ReturnInst::Create(Context,
645                         Constant::getNullValue(OldFnRetTy), TheSwitch);
646    }
647
648    TheSwitch->eraseFromParent();
649    break;
650  case 1:
651    // Only a single destination, change the switch into an unconditional
652    // branch.
653    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
654    TheSwitch->eraseFromParent();
655    break;
656  case 2:
657    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
658                       call, TheSwitch);
659    TheSwitch->eraseFromParent();
660    break;
661  default:
662    // Otherwise, make the default destination of the switch instruction be one
663    // of the other successors.
664    TheSwitch->setCondition(call);
665    TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
666    // Remove redundant case
667    TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
668    break;
669  }
670}
671
672void CodeExtractor::moveCodeToFunction(Function *newFunction) {
673  Function *oldFunc = (*Blocks.begin())->getParent();
674  Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
675  Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
676
677  for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(),
678         e = Blocks.end(); i != e; ++i) {
679    // Delete the basic block from the old function, and the list of blocks
680    oldBlocks.remove(*i);
681
682    // Insert this basic block into the new function
683    newBlocks.push_back(*i);
684  }
685}
686
687Function *CodeExtractor::extractCodeRegion() {
688  if (!isEligible())
689    return 0;
690
691  ValueSet inputs, outputs;
692
693  // Assumption: this is a single-entry code region, and the header is the first
694  // block in the region.
695  BasicBlock *header = *Blocks.begin();
696
697  // If we have to split PHI nodes or the entry block, do so now.
698  severSplitPHINodes(header);
699
700  // If we have any return instructions in the region, split those blocks so
701  // that the return is not in the region.
702  splitReturnBlocks();
703
704  Function *oldFunction = header->getParent();
705
706  // This takes place of the original loop
707  BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
708                                                "codeRepl", oldFunction,
709                                                header);
710
711  // The new function needs a root node because other nodes can branch to the
712  // head of the region, but the entry node of a function cannot have preds.
713  BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
714                                               "newFuncRoot");
715  newFuncRoot->getInstList().push_back(BranchInst::Create(header));
716
717  // Find inputs to, outputs from the code region.
718  findInputsOutputs(inputs, outputs);
719
720  SmallPtrSet<BasicBlock *, 1> ExitBlocks;
721  for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
722       I != E; ++I)
723    for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
724      if (!Blocks.count(*SI))
725        ExitBlocks.insert(*SI);
726  NumExitBlocks = ExitBlocks.size();
727
728  // Construct new function based on inputs/outputs & add allocas for all defs.
729  Function *newFunction = constructFunction(inputs, outputs, header,
730                                            newFuncRoot,
731                                            codeReplacer, oldFunction,
732                                            oldFunction->getParent());
733
734  emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
735
736  moveCodeToFunction(newFunction);
737
738  // Loop over all of the PHI nodes in the header block, and change any
739  // references to the old incoming edge to be the new incoming edge.
740  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
741    PHINode *PN = cast<PHINode>(I);
742    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
743      if (!Blocks.count(PN->getIncomingBlock(i)))
744        PN->setIncomingBlock(i, newFuncRoot);
745  }
746
747  // Look at all successors of the codeReplacer block.  If any of these blocks
748  // had PHI nodes in them, we need to update the "from" block to be the code
749  // replacer, not the original block in the extracted region.
750  std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
751                                 succ_end(codeReplacer));
752  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
753    for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
754      PHINode *PN = cast<PHINode>(I);
755      std::set<BasicBlock*> ProcessedPreds;
756      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
757        if (Blocks.count(PN->getIncomingBlock(i))) {
758          if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
759            PN->setIncomingBlock(i, codeReplacer);
760          else {
761            // There were multiple entries in the PHI for this block, now there
762            // is only one, so remove the duplicated entries.
763            PN->removeIncomingValue(i, false);
764            --i; --e;
765          }
766        }
767    }
768
769  //cerr << "NEW FUNCTION: " << *newFunction;
770  //  verifyFunction(*newFunction);
771
772  //  cerr << "OLD FUNCTION: " << *oldFunction;
773  //  verifyFunction(*oldFunction);
774
775  DEBUG(if (verifyFunction(*newFunction))
776        report_fatal_error("verifyFunction failed!"));
777  return newFunction;
778}
779