CodeExtractor.cpp revision 43ad6b3e0d6ada51e9b23aab3e061187f1f5710c
1//===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the interface to tear out a code region, such as an 11// individual loop or a parallel section, into a new function, replacing it with 12// a call to the new function. 13// 14//===----------------------------------------------------------------------===// 15 16#include "llvm/Transforms/Utils/FunctionUtils.h" 17#include "llvm/Constants.h" 18#include "llvm/DerivedTypes.h" 19#include "llvm/Instructions.h" 20#include "llvm/Intrinsics.h" 21#include "llvm/Module.h" 22#include "llvm/Pass.h" 23#include "llvm/Analysis/Dominators.h" 24#include "llvm/Analysis/LoopInfo.h" 25#include "llvm/Analysis/Verifier.h" 26#include "llvm/Transforms/Utils/BasicBlockUtils.h" 27#include "llvm/Support/CommandLine.h" 28#include "llvm/Support/Compiler.h" 29#include "llvm/Support/Debug.h" 30#include "llvm/ADT/StringExtras.h" 31#include <algorithm> 32#include <set> 33using namespace llvm; 34 35// Provide a command-line option to aggregate function arguments into a struct 36// for functions produced by the code extrator. This is useful when converting 37// extracted functions to pthread-based code, as only one argument (void*) can 38// be passed in to pthread_create(). 39static cl::opt<bool> 40AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, 41 cl::desc("Aggregate arguments to code-extracted functions")); 42 43namespace { 44 class VISIBILITY_HIDDEN CodeExtractor { 45 typedef std::vector<Value*> Values; 46 std::set<BasicBlock*> BlocksToExtract; 47 DominatorTree* DT; 48 bool AggregateArgs; 49 unsigned NumExitBlocks; 50 const Type *RetTy; 51 public: 52 CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false) 53 : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {} 54 55 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 56 57 bool isEligible(const std::vector<BasicBlock*> &code); 58 59 private: 60 /// definedInRegion - Return true if the specified value is defined in the 61 /// extracted region. 62 bool definedInRegion(Value *V) const { 63 if (Instruction *I = dyn_cast<Instruction>(V)) 64 if (BlocksToExtract.count(I->getParent())) 65 return true; 66 return false; 67 } 68 69 /// definedInCaller - Return true if the specified value is defined in the 70 /// function being code extracted, but not in the region being extracted. 71 /// These values must be passed in as live-ins to the function. 72 bool definedInCaller(Value *V) const { 73 if (isa<Argument>(V)) return true; 74 if (Instruction *I = dyn_cast<Instruction>(V)) 75 if (!BlocksToExtract.count(I->getParent())) 76 return true; 77 return false; 78 } 79 80 void severSplitPHINodes(BasicBlock *&Header); 81 void splitReturnBlocks(); 82 void findInputsOutputs(Values &inputs, Values &outputs); 83 84 Function *constructFunction(const Values &inputs, 85 const Values &outputs, 86 BasicBlock *header, 87 BasicBlock *newRootNode, BasicBlock *newHeader, 88 Function *oldFunction, Module *M); 89 90 void moveCodeToFunction(Function *newFunction); 91 92 void emitCallAndSwitchStatement(Function *newFunction, 93 BasicBlock *newHeader, 94 Values &inputs, 95 Values &outputs); 96 97 }; 98} 99 100/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the 101/// region, we need to split the entry block of the region so that the PHI node 102/// is easier to deal with. 103void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { 104 bool HasPredsFromRegion = false; 105 unsigned NumPredsOutsideRegion = 0; 106 107 if (Header != &Header->getParent()->getEntryBlock()) { 108 PHINode *PN = dyn_cast<PHINode>(Header->begin()); 109 if (!PN) return; // No PHI nodes. 110 111 // If the header node contains any PHI nodes, check to see if there is more 112 // than one entry from outside the region. If so, we need to sever the 113 // header block into two. 114 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 115 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 116 HasPredsFromRegion = true; 117 else 118 ++NumPredsOutsideRegion; 119 120 // If there is one (or fewer) predecessor from outside the region, we don't 121 // need to do anything special. 122 if (NumPredsOutsideRegion <= 1) return; 123 } 124 125 // Otherwise, we need to split the header block into two pieces: one 126 // containing PHI nodes merging values from outside of the region, and a 127 // second that contains all of the code for the block and merges back any 128 // incoming values from inside of the region. 129 BasicBlock::iterator AfterPHIs = Header->begin(); 130 while (isa<PHINode>(AfterPHIs)) ++AfterPHIs; 131 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, 132 Header->getName()+".ce"); 133 134 // We only want to code extract the second block now, and it becomes the new 135 // header of the region. 136 BasicBlock *OldPred = Header; 137 BlocksToExtract.erase(OldPred); 138 BlocksToExtract.insert(NewBB); 139 Header = NewBB; 140 141 // Okay, update dominator sets. The blocks that dominate the new one are the 142 // blocks that dominate TIBB plus the new block itself. 143 if (DT) 144 DT->splitBlock(NewBB); 145 146 // Okay, now we need to adjust the PHI nodes and any branches from within the 147 // region to go to the new header block instead of the old header block. 148 if (HasPredsFromRegion) { 149 PHINode *PN = cast<PHINode>(OldPred->begin()); 150 // Loop over all of the predecessors of OldPred that are in the region, 151 // changing them to branch to NewBB instead. 152 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 153 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 154 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); 155 TI->replaceUsesOfWith(OldPred, NewBB); 156 } 157 158 // Okay, everthing within the region is now branching to the right block, we 159 // just have to update the PHI nodes now, inserting PHI nodes into NewBB. 160 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { 161 PHINode *PN = cast<PHINode>(AfterPHIs); 162 // Create a new PHI node in the new region, which has an incoming value 163 // from OldPred of PN. 164 PHINode *NewPN = new PHINode(PN->getType(), PN->getName()+".ce", 165 NewBB->begin()); 166 NewPN->addIncoming(PN, OldPred); 167 168 // Loop over all of the incoming value in PN, moving them to NewPN if they 169 // are from the extracted region. 170 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { 171 if (BlocksToExtract.count(PN->getIncomingBlock(i))) { 172 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); 173 PN->removeIncomingValue(i); 174 --i; 175 } 176 } 177 } 178 } 179} 180 181void CodeExtractor::splitReturnBlocks() { 182 for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(), 183 E = BlocksToExtract.end(); I != E; ++I) 184 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) 185 (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); 186} 187 188// findInputsOutputs - Find inputs to, outputs from the code region. 189// 190void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { 191 std::set<BasicBlock*> ExitBlocks; 192 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), 193 ce = BlocksToExtract.end(); ci != ce; ++ci) { 194 BasicBlock *BB = *ci; 195 196 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 197 // If a used value is defined outside the region, it's an input. If an 198 // instruction is used outside the region, it's an output. 199 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) 200 if (definedInCaller(*O)) 201 inputs.push_back(*O); 202 203 // Consider uses of this instruction (outputs). 204 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); 205 UI != E; ++UI) 206 if (!definedInRegion(*UI)) { 207 outputs.push_back(I); 208 break; 209 } 210 } // for: insts 211 212 // Keep track of the exit blocks from the region. 213 TerminatorInst *TI = BB->getTerminator(); 214 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 215 if (!BlocksToExtract.count(TI->getSuccessor(i))) 216 ExitBlocks.insert(TI->getSuccessor(i)); 217 } // for: basic blocks 218 219 NumExitBlocks = ExitBlocks.size(); 220 221 // Eliminate duplicates. 222 std::sort(inputs.begin(), inputs.end()); 223 inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end()); 224 std::sort(outputs.begin(), outputs.end()); 225 outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end()); 226} 227 228/// constructFunction - make a function based on inputs and outputs, as follows: 229/// f(in0, ..., inN, out0, ..., outN) 230/// 231Function *CodeExtractor::constructFunction(const Values &inputs, 232 const Values &outputs, 233 BasicBlock *header, 234 BasicBlock *newRootNode, 235 BasicBlock *newHeader, 236 Function *oldFunction, 237 Module *M) { 238 DOUT << "inputs: " << inputs.size() << "\n"; 239 DOUT << "outputs: " << outputs.size() << "\n"; 240 241 // This function returns unsigned, outputs will go back by reference. 242 switch (NumExitBlocks) { 243 case 0: 244 case 1: RetTy = Type::VoidTy; break; 245 case 2: RetTy = Type::Int1Ty; break; 246 default: RetTy = Type::Int16Ty; break; 247 } 248 249 std::vector<const Type*> paramTy; 250 251 // Add the types of the input values to the function's argument list 252 for (Values::const_iterator i = inputs.begin(), 253 e = inputs.end(); i != e; ++i) { 254 const Value *value = *i; 255 DOUT << "value used in func: " << *value << "\n"; 256 paramTy.push_back(value->getType()); 257 } 258 259 // Add the types of the output values to the function's argument list. 260 for (Values::const_iterator I = outputs.begin(), E = outputs.end(); 261 I != E; ++I) { 262 DOUT << "instr used in func: " << **I << "\n"; 263 if (AggregateArgs) 264 paramTy.push_back((*I)->getType()); 265 else 266 paramTy.push_back(PointerType::getUnqual((*I)->getType())); 267 } 268 269 DOUT << "Function type: " << *RetTy << " f("; 270 for (std::vector<const Type*>::iterator i = paramTy.begin(), 271 e = paramTy.end(); i != e; ++i) 272 DOUT << **i << ", "; 273 DOUT << ")\n"; 274 275 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 276 PointerType *StructPtr = PointerType::getUnqual(StructType::get(paramTy)); 277 paramTy.clear(); 278 paramTy.push_back(StructPtr); 279 } 280 const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false); 281 282 // Create the new function 283 Function *newFunction = new Function(funcType, 284 GlobalValue::InternalLinkage, 285 oldFunction->getName() + "_" + 286 header->getName(), M); 287 newFunction->getBasicBlockList().push_back(newRootNode); 288 289 // Create an iterator to name all of the arguments we inserted. 290 Function::arg_iterator AI = newFunction->arg_begin(); 291 292 // Rewrite all users of the inputs in the extracted region to use the 293 // arguments (or appropriate addressing into struct) instead. 294 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 295 Value *RewriteVal; 296 if (AggregateArgs) { 297 Value *Idx[2]; 298 Idx[0] = Constant::getNullValue(Type::Int32Ty); 299 Idx[1] = ConstantInt::get(Type::Int32Ty, i); 300 std::string GEPname = "gep_" + inputs[i]->getName(); 301 TerminatorInst *TI = newFunction->begin()->getTerminator(); 302 GetElementPtrInst *GEP = new GetElementPtrInst(AI, Idx, Idx+2, 303 GEPname, TI); 304 RewriteVal = new LoadInst(GEP, "load" + GEPname, TI); 305 } else 306 RewriteVal = AI++; 307 308 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 309 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 310 use != useE; ++use) 311 if (Instruction* inst = dyn_cast<Instruction>(*use)) 312 if (BlocksToExtract.count(inst->getParent())) 313 inst->replaceUsesOfWith(inputs[i], RewriteVal); 314 } 315 316 // Set names for input and output arguments. 317 if (!AggregateArgs) { 318 AI = newFunction->arg_begin(); 319 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) 320 AI->setName(inputs[i]->getName()); 321 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) 322 AI->setName(outputs[i]->getName()+".out"); 323 } 324 325 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 326 // within the new function. This must be done before we lose track of which 327 // blocks were originally in the code region. 328 std::vector<User*> Users(header->use_begin(), header->use_end()); 329 for (unsigned i = 0, e = Users.size(); i != e; ++i) 330 // The BasicBlock which contains the branch is not in the region 331 // modify the branch target to a new block 332 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) 333 if (!BlocksToExtract.count(TI->getParent()) && 334 TI->getParent()->getParent() == oldFunction) 335 TI->replaceUsesOfWith(header, newHeader); 336 337 return newFunction; 338} 339 340/// emitCallAndSwitchStatement - This method sets up the caller side by adding 341/// the call instruction, splitting any PHI nodes in the header block as 342/// necessary. 343void CodeExtractor:: 344emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, 345 Values &inputs, Values &outputs) { 346 // Emit a call to the new function, passing in: *pointer to struct (if 347 // aggregating parameters), or plan inputs and allocated memory for outputs 348 std::vector<Value*> params, StructValues, ReloadOutputs; 349 350 // Add inputs as params, or to be filled into the struct 351 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) 352 if (AggregateArgs) 353 StructValues.push_back(*i); 354 else 355 params.push_back(*i); 356 357 // Create allocas for the outputs 358 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { 359 if (AggregateArgs) { 360 StructValues.push_back(*i); 361 } else { 362 AllocaInst *alloca = 363 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", 364 codeReplacer->getParent()->begin()->begin()); 365 ReloadOutputs.push_back(alloca); 366 params.push_back(alloca); 367 } 368 } 369 370 AllocaInst *Struct = 0; 371 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { 372 std::vector<const Type*> ArgTypes; 373 for (Values::iterator v = StructValues.begin(), 374 ve = StructValues.end(); v != ve; ++v) 375 ArgTypes.push_back((*v)->getType()); 376 377 // Allocate a struct at the beginning of this function 378 Type *StructArgTy = StructType::get(ArgTypes); 379 Struct = 380 new AllocaInst(StructArgTy, 0, "structArg", 381 codeReplacer->getParent()->begin()->begin()); 382 params.push_back(Struct); 383 384 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 385 Value *Idx[2]; 386 Idx[0] = Constant::getNullValue(Type::Int32Ty); 387 Idx[1] = ConstantInt::get(Type::Int32Ty, i); 388 GetElementPtrInst *GEP = 389 new GetElementPtrInst(Struct, Idx, Idx + 2, 390 "gep_" + StructValues[i]->getName()); 391 codeReplacer->getInstList().push_back(GEP); 392 StoreInst *SI = new StoreInst(StructValues[i], GEP); 393 codeReplacer->getInstList().push_back(SI); 394 } 395 } 396 397 // Emit the call to the function 398 CallInst *call = new CallInst(newFunction, params.begin(), params.end(), 399 NumExitBlocks > 1 ? "targetBlock" : ""); 400 codeReplacer->getInstList().push_back(call); 401 402 Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); 403 unsigned FirstOut = inputs.size(); 404 if (!AggregateArgs) 405 std::advance(OutputArgBegin, inputs.size()); 406 407 // Reload the outputs passed in by reference 408 for (unsigned i = 0, e = outputs.size(); i != e; ++i) { 409 Value *Output = 0; 410 if (AggregateArgs) { 411 Value *Idx[2]; 412 Idx[0] = Constant::getNullValue(Type::Int32Ty); 413 Idx[1] = ConstantInt::get(Type::Int32Ty, FirstOut + i); 414 GetElementPtrInst *GEP 415 = new GetElementPtrInst(Struct, Idx, Idx + 2, 416 "gep_reload_" + outputs[i]->getName()); 417 codeReplacer->getInstList().push_back(GEP); 418 Output = GEP; 419 } else { 420 Output = ReloadOutputs[i]; 421 } 422 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); 423 codeReplacer->getInstList().push_back(load); 424 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); 425 for (unsigned u = 0, e = Users.size(); u != e; ++u) { 426 Instruction *inst = cast<Instruction>(Users[u]); 427 if (!BlocksToExtract.count(inst->getParent())) 428 inst->replaceUsesOfWith(outputs[i], load); 429 } 430 } 431 432 // Now we can emit a switch statement using the call as a value. 433 SwitchInst *TheSwitch = 434 new SwitchInst(ConstantInt::getNullValue(Type::Int16Ty), 435 codeReplacer, 0, codeReplacer); 436 437 // Since there may be multiple exits from the original region, make the new 438 // function return an unsigned, switch on that number. This loop iterates 439 // over all of the blocks in the extracted region, updating any terminator 440 // instructions in the to-be-extracted region that branch to blocks that are 441 // not in the region to be extracted. 442 std::map<BasicBlock*, BasicBlock*> ExitBlockMap; 443 444 unsigned switchVal = 0; 445 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 446 e = BlocksToExtract.end(); i != e; ++i) { 447 TerminatorInst *TI = (*i)->getTerminator(); 448 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 449 if (!BlocksToExtract.count(TI->getSuccessor(i))) { 450 BasicBlock *OldTarget = TI->getSuccessor(i); 451 // add a new basic block which returns the appropriate value 452 BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; 453 if (!NewTarget) { 454 // If we don't already have an exit stub for this non-extracted 455 // destination, create one now! 456 NewTarget = new BasicBlock(OldTarget->getName() + ".exitStub", 457 newFunction); 458 unsigned SuccNum = switchVal++; 459 460 Value *brVal = 0; 461 switch (NumExitBlocks) { 462 case 0: 463 case 1: break; // No value needed. 464 case 2: // Conditional branch, return a bool 465 brVal = ConstantInt::get(Type::Int1Ty, !SuccNum); 466 break; 467 default: 468 brVal = ConstantInt::get(Type::Int16Ty, SuccNum); 469 break; 470 } 471 472 ReturnInst *NTRet = new ReturnInst(brVal, NewTarget); 473 474 // Update the switch instruction. 475 TheSwitch->addCase(ConstantInt::get(Type::Int16Ty, SuccNum), 476 OldTarget); 477 478 // Restore values just before we exit 479 Function::arg_iterator OAI = OutputArgBegin; 480 for (unsigned out = 0, e = outputs.size(); out != e; ++out) { 481 // For an invoke, the normal destination is the only one that is 482 // dominated by the result of the invocation 483 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); 484 485 bool DominatesDef = true; 486 487 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { 488 DefBlock = Invoke->getNormalDest(); 489 490 // Make sure we are looking at the original successor block, not 491 // at a newly inserted exit block, which won't be in the dominator 492 // info. 493 for (std::map<BasicBlock*, BasicBlock*>::iterator I = 494 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) 495 if (DefBlock == I->second) { 496 DefBlock = I->first; 497 break; 498 } 499 500 // In the extract block case, if the block we are extracting ends 501 // with an invoke instruction, make sure that we don't emit a 502 // store of the invoke value for the unwind block. 503 if (!DT && DefBlock != OldTarget) 504 DominatesDef = false; 505 } 506 507 if (DT) 508 DominatesDef = DT->dominates(DefBlock, OldTarget); 509 510 if (DominatesDef) { 511 if (AggregateArgs) { 512 Value *Idx[2]; 513 Idx[0] = Constant::getNullValue(Type::Int32Ty); 514 Idx[1] = ConstantInt::get(Type::Int32Ty,FirstOut+out); 515 GetElementPtrInst *GEP = 516 new GetElementPtrInst(OAI, Idx, Idx + 2, 517 "gep_" + outputs[out]->getName(), 518 NTRet); 519 new StoreInst(outputs[out], GEP, NTRet); 520 } else { 521 new StoreInst(outputs[out], OAI, NTRet); 522 } 523 } 524 // Advance output iterator even if we don't emit a store 525 if (!AggregateArgs) ++OAI; 526 } 527 } 528 529 // rewrite the original branch instruction with this new target 530 TI->setSuccessor(i, NewTarget); 531 } 532 } 533 534 // Now that we've done the deed, simplify the switch instruction. 535 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); 536 switch (NumExitBlocks) { 537 case 0: 538 // There are no successors (the block containing the switch itself), which 539 // means that previously this was the last part of the function, and hence 540 // this should be rewritten as a `ret' 541 542 // Check if the function should return a value 543 if (OldFnRetTy == Type::VoidTy) { 544 new ReturnInst(0, TheSwitch); // Return void 545 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { 546 // return what we have 547 new ReturnInst(TheSwitch->getCondition(), TheSwitch); 548 } else { 549 // Otherwise we must have code extracted an unwind or something, just 550 // return whatever we want. 551 new ReturnInst(Constant::getNullValue(OldFnRetTy), TheSwitch); 552 } 553 554 TheSwitch->getParent()->getInstList().erase(TheSwitch); 555 break; 556 case 1: 557 // Only a single destination, change the switch into an unconditional 558 // branch. 559 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch); 560 TheSwitch->getParent()->getInstList().erase(TheSwitch); 561 break; 562 case 2: 563 new BranchInst(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), 564 call, TheSwitch); 565 TheSwitch->getParent()->getInstList().erase(TheSwitch); 566 break; 567 default: 568 // Otherwise, make the default destination of the switch instruction be one 569 // of the other successors. 570 TheSwitch->setOperand(0, call); 571 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); 572 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case 573 break; 574 } 575} 576 577void CodeExtractor::moveCodeToFunction(Function *newFunction) { 578 Function *oldFunc = (*BlocksToExtract.begin())->getParent(); 579 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 580 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 581 582 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), 583 e = BlocksToExtract.end(); i != e; ++i) { 584 // Delete the basic block from the old function, and the list of blocks 585 oldBlocks.remove(*i); 586 587 // Insert this basic block into the new function 588 newBlocks.push_back(*i); 589 } 590} 591 592/// ExtractRegion - Removes a loop from a function, replaces it with a call to 593/// new function. Returns pointer to the new function. 594/// 595/// algorithm: 596/// 597/// find inputs and outputs for the region 598/// 599/// for inputs: add to function as args, map input instr* to arg# 600/// for outputs: add allocas for scalars, 601/// add to func as args, map output instr* to arg# 602/// 603/// rewrite func to use argument #s instead of instr* 604/// 605/// for each scalar output in the function: at every exit, store intermediate 606/// computed result back into memory. 607/// 608Function *CodeExtractor:: 609ExtractCodeRegion(const std::vector<BasicBlock*> &code) { 610 if (!isEligible(code)) 611 return 0; 612 613 // 1) Find inputs, outputs 614 // 2) Construct new function 615 // * Add allocas for defs, pass as args by reference 616 // * Pass in uses as args 617 // 3) Move code region, add call instr to func 618 // 619 BlocksToExtract.insert(code.begin(), code.end()); 620 621 Values inputs, outputs; 622 623 // Assumption: this is a single-entry code region, and the header is the first 624 // block in the region. 625 BasicBlock *header = code[0]; 626 627 for (unsigned i = 1, e = code.size(); i != e; ++i) 628 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); 629 PI != E; ++PI) 630 assert(BlocksToExtract.count(*PI) && 631 "No blocks in this region may have entries from outside the region" 632 " except for the first block!"); 633 634 // If we have to split PHI nodes or the entry block, do so now. 635 severSplitPHINodes(header); 636 637 // If we have any return instructions in the region, split those blocks so 638 // that the return is not in the region. 639 splitReturnBlocks(); 640 641 Function *oldFunction = header->getParent(); 642 643 // This takes place of the original loop 644 BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction, header); 645 646 // The new function needs a root node because other nodes can branch to the 647 // head of the region, but the entry node of a function cannot have preds. 648 BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); 649 newFuncRoot->getInstList().push_back(new BranchInst(header)); 650 651 // Find inputs to, outputs from the code region. 652 findInputsOutputs(inputs, outputs); 653 654 // Construct new function based on inputs/outputs & add allocas for all defs. 655 Function *newFunction = constructFunction(inputs, outputs, header, 656 newFuncRoot, 657 codeReplacer, oldFunction, 658 oldFunction->getParent()); 659 660 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); 661 662 moveCodeToFunction(newFunction); 663 664 // Loop over all of the PHI nodes in the header block, and change any 665 // references to the old incoming edge to be the new incoming edge. 666 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { 667 PHINode *PN = cast<PHINode>(I); 668 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 669 if (!BlocksToExtract.count(PN->getIncomingBlock(i))) 670 PN->setIncomingBlock(i, newFuncRoot); 671 } 672 673 // Look at all successors of the codeReplacer block. If any of these blocks 674 // had PHI nodes in them, we need to update the "from" block to be the code 675 // replacer, not the original block in the extracted region. 676 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), 677 succ_end(codeReplacer)); 678 for (unsigned i = 0, e = Succs.size(); i != e; ++i) 679 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { 680 PHINode *PN = cast<PHINode>(I); 681 std::set<BasicBlock*> ProcessedPreds; 682 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 683 if (BlocksToExtract.count(PN->getIncomingBlock(i))) 684 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) 685 PN->setIncomingBlock(i, codeReplacer); 686 else { 687 // There were multiple entries in the PHI for this block, now there 688 // is only one, so remove the duplicated entries. 689 PN->removeIncomingValue(i, false); 690 --i; --e; 691 } 692 } 693 694 //cerr << "NEW FUNCTION: " << *newFunction; 695 // verifyFunction(*newFunction); 696 697 // cerr << "OLD FUNCTION: " << *oldFunction; 698 // verifyFunction(*oldFunction); 699 700 DEBUG(if (verifyFunction(*newFunction)) abort()); 701 return newFunction; 702} 703 704bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { 705 // Deny code region if it contains allocas or vastarts. 706 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); 707 BB != e; ++BB) 708 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); 709 I != Ie; ++I) 710 if (isa<AllocaInst>(*I)) 711 return false; 712 else if (const CallInst *CI = dyn_cast<CallInst>(I)) 713 if (const Function *F = CI->getCalledFunction()) 714 if (F->getIntrinsicID() == Intrinsic::vastart) 715 return false; 716 return true; 717} 718 719 720/// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new 721/// function 722/// 723Function* llvm::ExtractCodeRegion(DominatorTree &DT, 724 const std::vector<BasicBlock*> &code, 725 bool AggregateArgs) { 726 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code); 727} 728 729/// ExtractBasicBlock - slurp a natural loop into a brand new function 730/// 731Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) { 732 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks()); 733} 734 735/// ExtractBasicBlock - slurp a basic block into a brand new function 736/// 737Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { 738 std::vector<BasicBlock*> Blocks; 739 Blocks.push_back(BB); 740 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); 741} 742