CodeExtractor.cpp revision 55a0f1e41f1b166eb924909eeec94a54417f95eb
1//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the interface to tear out a code region, such as an
11// individual loop or a parallel section, into a new function, replacing it with
12// a call to the new function.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/FunctionUtils.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/LLVMContext.h"
22#include "llvm/Module.h"
23#include "llvm/Pass.h"
24#include "llvm/Analysis/Dominators.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Analysis/Verifier.h"
27#include "llvm/Transforms/Utils/BasicBlockUtils.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/ADT/StringExtras.h"
34#include <algorithm>
35#include <set>
36using namespace llvm;
37
38// Provide a command-line option to aggregate function arguments into a struct
39// for functions produced by the code extractor. This is useful when converting
40// extracted functions to pthread-based code, as only one argument (void*) can
41// be passed in to pthread_create().
42static cl::opt<bool>
43AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
44                 cl::desc("Aggregate arguments to code-extracted functions"));
45
46namespace {
47  class VISIBILITY_HIDDEN CodeExtractor {
48    typedef std::vector<Value*> Values;
49    std::set<BasicBlock*> BlocksToExtract;
50    DominatorTree* DT;
51    bool AggregateArgs;
52    unsigned NumExitBlocks;
53    const Type *RetTy;
54  public:
55    CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false)
56      : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {}
57
58    Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);
59
60    bool isEligible(const std::vector<BasicBlock*> &code);
61
62  private:
63    /// definedInRegion - Return true if the specified value is defined in the
64    /// extracted region.
65    bool definedInRegion(Value *V) const {
66      if (Instruction *I = dyn_cast<Instruction>(V))
67        if (BlocksToExtract.count(I->getParent()))
68          return true;
69      return false;
70    }
71
72    /// definedInCaller - Return true if the specified value is defined in the
73    /// function being code extracted, but not in the region being extracted.
74    /// These values must be passed in as live-ins to the function.
75    bool definedInCaller(Value *V) const {
76      if (isa<Argument>(V)) return true;
77      if (Instruction *I = dyn_cast<Instruction>(V))
78        if (!BlocksToExtract.count(I->getParent()))
79          return true;
80      return false;
81    }
82
83    void severSplitPHINodes(BasicBlock *&Header);
84    void splitReturnBlocks();
85    void findInputsOutputs(Values &inputs, Values &outputs);
86
87    Function *constructFunction(const Values &inputs,
88                                const Values &outputs,
89                                BasicBlock *header,
90                                BasicBlock *newRootNode, BasicBlock *newHeader,
91                                Function *oldFunction, Module *M);
92
93    void moveCodeToFunction(Function *newFunction);
94
95    void emitCallAndSwitchStatement(Function *newFunction,
96                                    BasicBlock *newHeader,
97                                    Values &inputs,
98                                    Values &outputs);
99
100  };
101}
102
103/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
104/// region, we need to split the entry block of the region so that the PHI node
105/// is easier to deal with.
106void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
107  bool HasPredsFromRegion = false;
108  unsigned NumPredsOutsideRegion = 0;
109
110  if (Header != &Header->getParent()->getEntryBlock()) {
111    PHINode *PN = dyn_cast<PHINode>(Header->begin());
112    if (!PN) return;  // No PHI nodes.
113
114    // If the header node contains any PHI nodes, check to see if there is more
115    // than one entry from outside the region.  If so, we need to sever the
116    // header block into two.
117    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
118      if (BlocksToExtract.count(PN->getIncomingBlock(i)))
119        HasPredsFromRegion = true;
120      else
121        ++NumPredsOutsideRegion;
122
123    // If there is one (or fewer) predecessor from outside the region, we don't
124    // need to do anything special.
125    if (NumPredsOutsideRegion <= 1) return;
126  }
127
128  // Otherwise, we need to split the header block into two pieces: one
129  // containing PHI nodes merging values from outside of the region, and a
130  // second that contains all of the code for the block and merges back any
131  // incoming values from inside of the region.
132  BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
133  BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
134                                              Header->getName()+".ce");
135
136  // We only want to code extract the second block now, and it becomes the new
137  // header of the region.
138  BasicBlock *OldPred = Header;
139  BlocksToExtract.erase(OldPred);
140  BlocksToExtract.insert(NewBB);
141  Header = NewBB;
142
143  // Okay, update dominator sets. The blocks that dominate the new one are the
144  // blocks that dominate TIBB plus the new block itself.
145  if (DT)
146    DT->splitBlock(NewBB);
147
148  // Okay, now we need to adjust the PHI nodes and any branches from within the
149  // region to go to the new header block instead of the old header block.
150  if (HasPredsFromRegion) {
151    PHINode *PN = cast<PHINode>(OldPred->begin());
152    // Loop over all of the predecessors of OldPred that are in the region,
153    // changing them to branch to NewBB instead.
154    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
155      if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
156        TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
157        TI->replaceUsesOfWith(OldPred, NewBB);
158      }
159
160    // Okay, everthing within the region is now branching to the right block, we
161    // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
162    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
163      PHINode *PN = cast<PHINode>(AfterPHIs);
164      // Create a new PHI node in the new region, which has an incoming value
165      // from OldPred of PN.
166      PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce",
167                                       NewBB->begin());
168      NewPN->addIncoming(PN, OldPred);
169
170      // Loop over all of the incoming value in PN, moving them to NewPN if they
171      // are from the extracted region.
172      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
173        if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
174          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
175          PN->removeIncomingValue(i);
176          --i;
177        }
178      }
179    }
180  }
181}
182
183void CodeExtractor::splitReturnBlocks() {
184  for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(),
185         E = BlocksToExtract.end(); I != E; ++I)
186    if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
187      BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
188      if (DT) {
189        // Old dominates New. New node domiantes all other nodes dominated
190        //by Old.
191        DomTreeNode *OldNode = DT->getNode(*I);
192        SmallVector<DomTreeNode*, 8> Children;
193        for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
194             DI != DE; ++DI)
195          Children.push_back(*DI);
196
197        DomTreeNode *NewNode = DT->addNewBlock(New, *I);
198
199        for (SmallVector<DomTreeNode*, 8>::iterator I = Children.begin(),
200               E = Children.end(); I != E; ++I)
201          DT->changeImmediateDominator(*I, NewNode);
202      }
203    }
204}
205
206// findInputsOutputs - Find inputs to, outputs from the code region.
207//
208void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
209  std::set<BasicBlock*> ExitBlocks;
210  for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
211       ce = BlocksToExtract.end(); ci != ce; ++ci) {
212    BasicBlock *BB = *ci;
213
214    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
215      // If a used value is defined outside the region, it's an input.  If an
216      // instruction is used outside the region, it's an output.
217      for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O)
218        if (definedInCaller(*O))
219          inputs.push_back(*O);
220
221      // Consider uses of this instruction (outputs).
222      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
223           UI != E; ++UI)
224        if (!definedInRegion(*UI)) {
225          outputs.push_back(I);
226          break;
227        }
228    } // for: insts
229
230    // Keep track of the exit blocks from the region.
231    TerminatorInst *TI = BB->getTerminator();
232    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
233      if (!BlocksToExtract.count(TI->getSuccessor(i)))
234        ExitBlocks.insert(TI->getSuccessor(i));
235  } // for: basic blocks
236
237  NumExitBlocks = ExitBlocks.size();
238
239  // Eliminate duplicates.
240  std::sort(inputs.begin(), inputs.end());
241  inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end());
242  std::sort(outputs.begin(), outputs.end());
243  outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end());
244}
245
246/// constructFunction - make a function based on inputs and outputs, as follows:
247/// f(in0, ..., inN, out0, ..., outN)
248///
249Function *CodeExtractor::constructFunction(const Values &inputs,
250                                           const Values &outputs,
251                                           BasicBlock *header,
252                                           BasicBlock *newRootNode,
253                                           BasicBlock *newHeader,
254                                           Function *oldFunction,
255                                           Module *M) {
256  DEBUG(errs() << "inputs: " << inputs.size() << "\n");
257  DEBUG(errs() << "outputs: " << outputs.size() << "\n");
258
259  // This function returns unsigned, outputs will go back by reference.
260  switch (NumExitBlocks) {
261  case 0:
262  case 1: RetTy = Type::getVoidTy(header->getContext()); break;
263  case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
264  default: RetTy = Type::getInt16Ty(header->getContext()); break;
265  }
266
267  std::vector<const Type*> paramTy;
268
269  // Add the types of the input values to the function's argument list
270  for (Values::const_iterator i = inputs.begin(),
271         e = inputs.end(); i != e; ++i) {
272    const Value *value = *i;
273    DEBUG(errs() << "value used in func: " << *value << "\n");
274    paramTy.push_back(value->getType());
275  }
276
277  // Add the types of the output values to the function's argument list.
278  for (Values::const_iterator I = outputs.begin(), E = outputs.end();
279       I != E; ++I) {
280    DEBUG(errs() << "instr used in func: " << **I << "\n");
281    if (AggregateArgs)
282      paramTy.push_back((*I)->getType());
283    else
284      paramTy.push_back(PointerType::getUnqual((*I)->getType()));
285  }
286
287  DEBUG(errs() << "Function type: " << *RetTy << " f(");
288  for (std::vector<const Type*>::iterator i = paramTy.begin(),
289         e = paramTy.end(); i != e; ++i)
290    DEBUG(errs() << **i << ", ");
291  DEBUG(errs() << ")\n");
292
293  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
294    PointerType *StructPtr =
295           PointerType::getUnqual(StructType::get(M->getContext(), paramTy));
296    paramTy.clear();
297    paramTy.push_back(StructPtr);
298  }
299  const FunctionType *funcType =
300                  FunctionType::get(RetTy, paramTy, false);
301
302  // Create the new function
303  Function *newFunction = Function::Create(funcType,
304                                           GlobalValue::InternalLinkage,
305                                           oldFunction->getName() + "_" +
306                                           header->getName(), M);
307  // If the old function is no-throw, so is the new one.
308  if (oldFunction->doesNotThrow())
309    newFunction->setDoesNotThrow(true);
310
311  newFunction->getBasicBlockList().push_back(newRootNode);
312
313  // Create an iterator to name all of the arguments we inserted.
314  Function::arg_iterator AI = newFunction->arg_begin();
315
316  // Rewrite all users of the inputs in the extracted region to use the
317  // arguments (or appropriate addressing into struct) instead.
318  for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
319    Value *RewriteVal;
320    if (AggregateArgs) {
321      Value *Idx[2];
322      Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
323      Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
324      TerminatorInst *TI = newFunction->begin()->getTerminator();
325      GetElementPtrInst *GEP =
326        GetElementPtrInst::Create(AI, Idx, Idx+2,
327                                  "gep_" + inputs[i]->getName(), TI);
328      RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
329    } else
330      RewriteVal = AI++;
331
332    std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
333    for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
334         use != useE; ++use)
335      if (Instruction* inst = dyn_cast<Instruction>(*use))
336        if (BlocksToExtract.count(inst->getParent()))
337          inst->replaceUsesOfWith(inputs[i], RewriteVal);
338  }
339
340  // Set names for input and output arguments.
341  if (!AggregateArgs) {
342    AI = newFunction->arg_begin();
343    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
344      AI->setName(inputs[i]->getName());
345    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
346      AI->setName(outputs[i]->getName()+".out");
347  }
348
349  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
350  // within the new function. This must be done before we lose track of which
351  // blocks were originally in the code region.
352  std::vector<User*> Users(header->use_begin(), header->use_end());
353  for (unsigned i = 0, e = Users.size(); i != e; ++i)
354    // The BasicBlock which contains the branch is not in the region
355    // modify the branch target to a new block
356    if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
357      if (!BlocksToExtract.count(TI->getParent()) &&
358          TI->getParent()->getParent() == oldFunction)
359        TI->replaceUsesOfWith(header, newHeader);
360
361  return newFunction;
362}
363
364static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
365  for (Value::use_iterator UI = Used->use_begin(),
366       UE = Used->use_end(); UI != UE; ++UI) {
367     PHINode *P = dyn_cast<PHINode>(*UI);
368     if (P && P->getParent() == BB)
369       return P->getIncomingBlock(UI);
370  }
371
372  return 0;
373}
374
375/// emitCallAndSwitchStatement - This method sets up the caller side by adding
376/// the call instruction, splitting any PHI nodes in the header block as
377/// necessary.
378void CodeExtractor::
379emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
380                           Values &inputs, Values &outputs) {
381  // Emit a call to the new function, passing in: *pointer to struct (if
382  // aggregating parameters), or plan inputs and allocated memory for outputs
383  std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
384
385  LLVMContext &Context = newFunction->getContext();
386
387  // Add inputs as params, or to be filled into the struct
388  for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
389    if (AggregateArgs)
390      StructValues.push_back(*i);
391    else
392      params.push_back(*i);
393
394  // Create allocas for the outputs
395  for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
396    if (AggregateArgs) {
397      StructValues.push_back(*i);
398    } else {
399      AllocaInst *alloca =
400        new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
401                       codeReplacer->getParent()->begin()->begin());
402      ReloadOutputs.push_back(alloca);
403      params.push_back(alloca);
404    }
405  }
406
407  AllocaInst *Struct = 0;
408  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
409    std::vector<const Type*> ArgTypes;
410    for (Values::iterator v = StructValues.begin(),
411           ve = StructValues.end(); v != ve; ++v)
412      ArgTypes.push_back((*v)->getType());
413
414    // Allocate a struct at the beginning of this function
415    Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
416    Struct =
417      new AllocaInst(StructArgTy, 0, "structArg",
418                     codeReplacer->getParent()->begin()->begin());
419    params.push_back(Struct);
420
421    for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
422      Value *Idx[2];
423      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
424      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
425      GetElementPtrInst *GEP =
426        GetElementPtrInst::Create(Struct, Idx, Idx + 2,
427                                  "gep_" + StructValues[i]->getName());
428      codeReplacer->getInstList().push_back(GEP);
429      StoreInst *SI = new StoreInst(StructValues[i], GEP);
430      codeReplacer->getInstList().push_back(SI);
431    }
432  }
433
434  // Emit the call to the function
435  CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(),
436                                    NumExitBlocks > 1 ? "targetBlock" : "");
437  codeReplacer->getInstList().push_back(call);
438
439  Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
440  unsigned FirstOut = inputs.size();
441  if (!AggregateArgs)
442    std::advance(OutputArgBegin, inputs.size());
443
444  // Reload the outputs passed in by reference
445  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
446    Value *Output = 0;
447    if (AggregateArgs) {
448      Value *Idx[2];
449      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
450      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
451      GetElementPtrInst *GEP
452        = GetElementPtrInst::Create(Struct, Idx, Idx + 2,
453                                    "gep_reload_" + outputs[i]->getName());
454      codeReplacer->getInstList().push_back(GEP);
455      Output = GEP;
456    } else {
457      Output = ReloadOutputs[i];
458    }
459    LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
460    Reloads.push_back(load);
461    codeReplacer->getInstList().push_back(load);
462    std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
463    for (unsigned u = 0, e = Users.size(); u != e; ++u) {
464      Instruction *inst = cast<Instruction>(Users[u]);
465      if (!BlocksToExtract.count(inst->getParent()))
466        inst->replaceUsesOfWith(outputs[i], load);
467    }
468  }
469
470  // Now we can emit a switch statement using the call as a value.
471  SwitchInst *TheSwitch =
472      SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
473                         codeReplacer, 0, codeReplacer);
474
475  // Since there may be multiple exits from the original region, make the new
476  // function return an unsigned, switch on that number.  This loop iterates
477  // over all of the blocks in the extracted region, updating any terminator
478  // instructions in the to-be-extracted region that branch to blocks that are
479  // not in the region to be extracted.
480  std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
481
482  unsigned switchVal = 0;
483  for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
484         e = BlocksToExtract.end(); i != e; ++i) {
485    TerminatorInst *TI = (*i)->getTerminator();
486    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
487      if (!BlocksToExtract.count(TI->getSuccessor(i))) {
488        BasicBlock *OldTarget = TI->getSuccessor(i);
489        // add a new basic block which returns the appropriate value
490        BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
491        if (!NewTarget) {
492          // If we don't already have an exit stub for this non-extracted
493          // destination, create one now!
494          NewTarget = BasicBlock::Create(Context,
495                                         OldTarget->getName() + ".exitStub",
496                                         newFunction);
497          unsigned SuccNum = switchVal++;
498
499          Value *brVal = 0;
500          switch (NumExitBlocks) {
501          case 0:
502          case 1: break;  // No value needed.
503          case 2:         // Conditional branch, return a bool
504            brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
505            break;
506          default:
507            brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
508            break;
509          }
510
511          ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
512
513          // Update the switch instruction.
514          TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
515                                              SuccNum),
516                             OldTarget);
517
518          // Restore values just before we exit
519          Function::arg_iterator OAI = OutputArgBegin;
520          for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
521            // For an invoke, the normal destination is the only one that is
522            // dominated by the result of the invocation
523            BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
524
525            bool DominatesDef = true;
526
527            if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
528              DefBlock = Invoke->getNormalDest();
529
530              // Make sure we are looking at the original successor block, not
531              // at a newly inserted exit block, which won't be in the dominator
532              // info.
533              for (std::map<BasicBlock*, BasicBlock*>::iterator I =
534                     ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
535                if (DefBlock == I->second) {
536                  DefBlock = I->first;
537                  break;
538                }
539
540              // In the extract block case, if the block we are extracting ends
541              // with an invoke instruction, make sure that we don't emit a
542              // store of the invoke value for the unwind block.
543              if (!DT && DefBlock != OldTarget)
544                DominatesDef = false;
545            }
546
547            if (DT) {
548              DominatesDef = DT->dominates(DefBlock, OldTarget);
549
550              // If the output value is used by a phi in the target block,
551              // then we need to test for dominance of the phi's predecessor
552              // instead.  Unfortunately, this a little complicated since we
553              // have already rewritten uses of the value to uses of the reload.
554              BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
555                                                          OldTarget);
556              if (pred && DT && DT->dominates(DefBlock, pred))
557                DominatesDef = true;
558            }
559
560            if (DominatesDef) {
561              if (AggregateArgs) {
562                Value *Idx[2];
563                Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
564                Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
565                                          FirstOut+out);
566                GetElementPtrInst *GEP =
567                  GetElementPtrInst::Create(OAI, Idx, Idx + 2,
568                                            "gep_" + outputs[out]->getName(),
569                                            NTRet);
570                new StoreInst(outputs[out], GEP, NTRet);
571              } else {
572                new StoreInst(outputs[out], OAI, NTRet);
573              }
574            }
575            // Advance output iterator even if we don't emit a store
576            if (!AggregateArgs) ++OAI;
577          }
578        }
579
580        // rewrite the original branch instruction with this new target
581        TI->setSuccessor(i, NewTarget);
582      }
583  }
584
585  // Now that we've done the deed, simplify the switch instruction.
586  const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
587  switch (NumExitBlocks) {
588  case 0:
589    // There are no successors (the block containing the switch itself), which
590    // means that previously this was the last part of the function, and hence
591    // this should be rewritten as a `ret'
592
593    // Check if the function should return a value
594    if (OldFnRetTy == Type::getVoidTy(Context)) {
595      ReturnInst::Create(Context, 0, TheSwitch);  // Return void
596    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
597      // return what we have
598      ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
599    } else {
600      // Otherwise we must have code extracted an unwind or something, just
601      // return whatever we want.
602      ReturnInst::Create(Context,
603                         Constant::getNullValue(OldFnRetTy), TheSwitch);
604    }
605
606    TheSwitch->eraseFromParent();
607    break;
608  case 1:
609    // Only a single destination, change the switch into an unconditional
610    // branch.
611    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
612    TheSwitch->eraseFromParent();
613    break;
614  case 2:
615    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
616                       call, TheSwitch);
617    TheSwitch->eraseFromParent();
618    break;
619  default:
620    // Otherwise, make the default destination of the switch instruction be one
621    // of the other successors.
622    TheSwitch->setOperand(0, call);
623    TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks));
624    TheSwitch->removeCase(NumExitBlocks);  // Remove redundant case
625    break;
626  }
627}
628
629void CodeExtractor::moveCodeToFunction(Function *newFunction) {
630  Function *oldFunc = (*BlocksToExtract.begin())->getParent();
631  Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
632  Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
633
634  for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
635         e = BlocksToExtract.end(); i != e; ++i) {
636    // Delete the basic block from the old function, and the list of blocks
637    oldBlocks.remove(*i);
638
639    // Insert this basic block into the new function
640    newBlocks.push_back(*i);
641  }
642}
643
644/// ExtractRegion - Removes a loop from a function, replaces it with a call to
645/// new function. Returns pointer to the new function.
646///
647/// algorithm:
648///
649/// find inputs and outputs for the region
650///
651/// for inputs: add to function as args, map input instr* to arg#
652/// for outputs: add allocas for scalars,
653///             add to func as args, map output instr* to arg#
654///
655/// rewrite func to use argument #s instead of instr*
656///
657/// for each scalar output in the function: at every exit, store intermediate
658/// computed result back into memory.
659///
660Function *CodeExtractor::
661ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
662  if (!isEligible(code))
663    return 0;
664
665  // 1) Find inputs, outputs
666  // 2) Construct new function
667  //  * Add allocas for defs, pass as args by reference
668  //  * Pass in uses as args
669  // 3) Move code region, add call instr to func
670  //
671  BlocksToExtract.insert(code.begin(), code.end());
672
673  Values inputs, outputs;
674
675  // Assumption: this is a single-entry code region, and the header is the first
676  // block in the region.
677  BasicBlock *header = code[0];
678
679  for (unsigned i = 1, e = code.size(); i != e; ++i)
680    for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]);
681         PI != E; ++PI)
682      assert(BlocksToExtract.count(*PI) &&
683             "No blocks in this region may have entries from outside the region"
684             " except for the first block!");
685
686  // If we have to split PHI nodes or the entry block, do so now.
687  severSplitPHINodes(header);
688
689  // If we have any return instructions in the region, split those blocks so
690  // that the return is not in the region.
691  splitReturnBlocks();
692
693  Function *oldFunction = header->getParent();
694
695  // This takes place of the original loop
696  BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
697                                                "codeRepl", oldFunction,
698                                                header);
699
700  // The new function needs a root node because other nodes can branch to the
701  // head of the region, but the entry node of a function cannot have preds.
702  BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
703                                               "newFuncRoot");
704  newFuncRoot->getInstList().push_back(BranchInst::Create(header));
705
706  // Find inputs to, outputs from the code region.
707  findInputsOutputs(inputs, outputs);
708
709  // Construct new function based on inputs/outputs & add allocas for all defs.
710  Function *newFunction = constructFunction(inputs, outputs, header,
711                                            newFuncRoot,
712                                            codeReplacer, oldFunction,
713                                            oldFunction->getParent());
714
715  emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
716
717  moveCodeToFunction(newFunction);
718
719  // Loop over all of the PHI nodes in the header block, and change any
720  // references to the old incoming edge to be the new incoming edge.
721  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
722    PHINode *PN = cast<PHINode>(I);
723    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
724      if (!BlocksToExtract.count(PN->getIncomingBlock(i)))
725        PN->setIncomingBlock(i, newFuncRoot);
726  }
727
728  // Look at all successors of the codeReplacer block.  If any of these blocks
729  // had PHI nodes in them, we need to update the "from" block to be the code
730  // replacer, not the original block in the extracted region.
731  std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
732                                 succ_end(codeReplacer));
733  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
734    for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
735      PHINode *PN = cast<PHINode>(I);
736      std::set<BasicBlock*> ProcessedPreds;
737      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
738        if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
739          if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
740            PN->setIncomingBlock(i, codeReplacer);
741          else {
742            // There were multiple entries in the PHI for this block, now there
743            // is only one, so remove the duplicated entries.
744            PN->removeIncomingValue(i, false);
745            --i; --e;
746          }
747        }
748    }
749
750  //cerr << "NEW FUNCTION: " << *newFunction;
751  //  verifyFunction(*newFunction);
752
753  //  cerr << "OLD FUNCTION: " << *oldFunction;
754  //  verifyFunction(*oldFunction);
755
756  DEBUG(if (verifyFunction(*newFunction))
757        llvm_report_error("verifyFunction failed!"));
758  return newFunction;
759}
760
761bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) {
762  // Deny code region if it contains allocas or vastarts.
763  for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end();
764       BB != e; ++BB)
765    for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end();
766         I != Ie; ++I)
767      if (isa<AllocaInst>(*I))
768        return false;
769      else if (const CallInst *CI = dyn_cast<CallInst>(I))
770        if (const Function *F = CI->getCalledFunction())
771          if (F->getIntrinsicID() == Intrinsic::vastart)
772            return false;
773  return true;
774}
775
776
777/// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
778/// function
779///
780Function* llvm::ExtractCodeRegion(DominatorTree &DT,
781                                  const std::vector<BasicBlock*> &code,
782                                  bool AggregateArgs) {
783  return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code);
784}
785
786/// ExtractBasicBlock - slurp a natural loop into a brand new function
787///
788Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) {
789  return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks());
790}
791
792/// ExtractBasicBlock - slurp a basic block into a brand new function
793///
794Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) {
795  std::vector<BasicBlock*> Blocks;
796  Blocks.push_back(BB);
797  return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks);
798}
799