CodeExtractor.cpp revision 6bc41e8a74d1756da0003641bfebd02a3d6d9586
1//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the interface to tear out a code region, such as an
11// individual loop or a parallel section, into a new function, replacing it with
12// a call to the new function.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/FunctionUtils.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/Module.h"
22#include "llvm/Pass.h"
23#include "llvm/Analysis/Dominators.h"
24#include "llvm/Analysis/LoopInfo.h"
25#include "llvm/Analysis/Verifier.h"
26#include "llvm/Transforms/Utils/BasicBlockUtils.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/ADT/StringExtras.h"
31#include <algorithm>
32#include <set>
33using namespace llvm;
34
35// Provide a command-line option to aggregate function arguments into a struct
36// for functions produced by the code extrator. This is useful when converting
37// extracted functions to pthread-based code, as only one argument (void*) can
38// be passed in to pthread_create().
39static cl::opt<bool>
40AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
41                 cl::desc("Aggregate arguments to code-extracted functions"));
42
43namespace {
44  class VISIBILITY_HIDDEN CodeExtractor {
45    typedef std::vector<Value*> Values;
46    std::set<BasicBlock*> BlocksToExtract;
47    DominatorTree* DT;
48    bool AggregateArgs;
49    unsigned NumExitBlocks;
50    const Type *RetTy;
51  public:
52    CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false)
53      : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {}
54
55    Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);
56
57    bool isEligible(const std::vector<BasicBlock*> &code);
58
59  private:
60    /// definedInRegion - Return true if the specified value is defined in the
61    /// extracted region.
62    bool definedInRegion(Value *V) const {
63      if (Instruction *I = dyn_cast<Instruction>(V))
64        if (BlocksToExtract.count(I->getParent()))
65          return true;
66      return false;
67    }
68
69    /// definedInCaller - Return true if the specified value is defined in the
70    /// function being code extracted, but not in the region being extracted.
71    /// These values must be passed in as live-ins to the function.
72    bool definedInCaller(Value *V) const {
73      if (isa<Argument>(V)) return true;
74      if (Instruction *I = dyn_cast<Instruction>(V))
75        if (!BlocksToExtract.count(I->getParent()))
76          return true;
77      return false;
78    }
79
80    void severSplitPHINodes(BasicBlock *&Header);
81    void splitReturnBlocks();
82    void findInputsOutputs(Values &inputs, Values &outputs);
83
84    Function *constructFunction(const Values &inputs,
85                                const Values &outputs,
86                                BasicBlock *header,
87                                BasicBlock *newRootNode, BasicBlock *newHeader,
88                                Function *oldFunction, Module *M);
89
90    void moveCodeToFunction(Function *newFunction);
91
92    void emitCallAndSwitchStatement(Function *newFunction,
93                                    BasicBlock *newHeader,
94                                    Values &inputs,
95                                    Values &outputs);
96
97  };
98}
99
100/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
101/// region, we need to split the entry block of the region so that the PHI node
102/// is easier to deal with.
103void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
104  bool HasPredsFromRegion = false;
105  unsigned NumPredsOutsideRegion = 0;
106
107  if (Header != &Header->getParent()->getEntryBlock()) {
108    PHINode *PN = dyn_cast<PHINode>(Header->begin());
109    if (!PN) return;  // No PHI nodes.
110
111    // If the header node contains any PHI nodes, check to see if there is more
112    // than one entry from outside the region.  If so, we need to sever the
113    // header block into two.
114    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
115      if (BlocksToExtract.count(PN->getIncomingBlock(i)))
116        HasPredsFromRegion = true;
117      else
118        ++NumPredsOutsideRegion;
119
120    // If there is one (or fewer) predecessor from outside the region, we don't
121    // need to do anything special.
122    if (NumPredsOutsideRegion <= 1) return;
123  }
124
125  // Otherwise, we need to split the header block into two pieces: one
126  // containing PHI nodes merging values from outside of the region, and a
127  // second that contains all of the code for the block and merges back any
128  // incoming values from inside of the region.
129  BasicBlock::iterator AfterPHIs = Header->begin();
130  while (isa<PHINode>(AfterPHIs)) ++AfterPHIs;
131  BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
132                                              Header->getName()+".ce");
133
134  // We only want to code extract the second block now, and it becomes the new
135  // header of the region.
136  BasicBlock *OldPred = Header;
137  BlocksToExtract.erase(OldPred);
138  BlocksToExtract.insert(NewBB);
139  Header = NewBB;
140
141  // Okay, update dominator sets. The blocks that dominate the new one are the
142  // blocks that dominate TIBB plus the new block itself.
143  if (DT)
144    DT->splitBlock(NewBB);
145
146  // Okay, now we need to adjust the PHI nodes and any branches from within the
147  // region to go to the new header block instead of the old header block.
148  if (HasPredsFromRegion) {
149    PHINode *PN = cast<PHINode>(OldPred->begin());
150    // Loop over all of the predecessors of OldPred that are in the region,
151    // changing them to branch to NewBB instead.
152    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
153      if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
154        TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
155        TI->replaceUsesOfWith(OldPred, NewBB);
156      }
157
158    // Okay, everthing within the region is now branching to the right block, we
159    // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
160    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
161      PHINode *PN = cast<PHINode>(AfterPHIs);
162      // Create a new PHI node in the new region, which has an incoming value
163      // from OldPred of PN.
164      PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce",
165                                       NewBB->begin());
166      NewPN->addIncoming(PN, OldPred);
167
168      // Loop over all of the incoming value in PN, moving them to NewPN if they
169      // are from the extracted region.
170      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
171        if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
172          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
173          PN->removeIncomingValue(i);
174          --i;
175        }
176      }
177    }
178  }
179}
180
181void CodeExtractor::splitReturnBlocks() {
182  for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(),
183         E = BlocksToExtract.end(); I != E; ++I)
184    if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator()))
185      (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
186}
187
188// findInputsOutputs - Find inputs to, outputs from the code region.
189//
190void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
191  std::set<BasicBlock*> ExitBlocks;
192  for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
193       ce = BlocksToExtract.end(); ci != ce; ++ci) {
194    BasicBlock *BB = *ci;
195
196    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
197      // If a used value is defined outside the region, it's an input.  If an
198      // instruction is used outside the region, it's an output.
199      for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O)
200        if (definedInCaller(*O))
201          inputs.push_back(*O);
202
203      // Consider uses of this instruction (outputs).
204      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
205           UI != E; ++UI)
206        if (!definedInRegion(*UI)) {
207          outputs.push_back(I);
208          break;
209        }
210    } // for: insts
211
212    // Keep track of the exit blocks from the region.
213    TerminatorInst *TI = BB->getTerminator();
214    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
215      if (!BlocksToExtract.count(TI->getSuccessor(i)))
216        ExitBlocks.insert(TI->getSuccessor(i));
217  } // for: basic blocks
218
219  NumExitBlocks = ExitBlocks.size();
220
221  // Eliminate duplicates.
222  std::sort(inputs.begin(), inputs.end());
223  inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end());
224  std::sort(outputs.begin(), outputs.end());
225  outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end());
226}
227
228/// constructFunction - make a function based on inputs and outputs, as follows:
229/// f(in0, ..., inN, out0, ..., outN)
230///
231Function *CodeExtractor::constructFunction(const Values &inputs,
232                                           const Values &outputs,
233                                           BasicBlock *header,
234                                           BasicBlock *newRootNode,
235                                           BasicBlock *newHeader,
236                                           Function *oldFunction,
237                                           Module *M) {
238  DOUT << "inputs: " << inputs.size() << "\n";
239  DOUT << "outputs: " << outputs.size() << "\n";
240
241  // This function returns unsigned, outputs will go back by reference.
242  switch (NumExitBlocks) {
243  case 0:
244  case 1: RetTy = Type::VoidTy; break;
245  case 2: RetTy = Type::Int1Ty; break;
246  default: RetTy = Type::Int16Ty; break;
247  }
248
249  std::vector<const Type*> paramTy;
250
251  // Add the types of the input values to the function's argument list
252  for (Values::const_iterator i = inputs.begin(),
253         e = inputs.end(); i != e; ++i) {
254    const Value *value = *i;
255    DOUT << "value used in func: " << *value << "\n";
256    paramTy.push_back(value->getType());
257  }
258
259  // Add the types of the output values to the function's argument list.
260  for (Values::const_iterator I = outputs.begin(), E = outputs.end();
261       I != E; ++I) {
262    DOUT << "instr used in func: " << **I << "\n";
263    if (AggregateArgs)
264      paramTy.push_back((*I)->getType());
265    else
266      paramTy.push_back(PointerType::getUnqual((*I)->getType()));
267  }
268
269  DOUT << "Function type: " << *RetTy << " f(";
270  for (std::vector<const Type*>::iterator i = paramTy.begin(),
271         e = paramTy.end(); i != e; ++i)
272    DOUT << **i << ", ";
273  DOUT << ")\n";
274
275  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
276    PointerType *StructPtr = PointerType::getUnqual(StructType::get(paramTy));
277    paramTy.clear();
278    paramTy.push_back(StructPtr);
279  }
280  const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false);
281
282  // Create the new function
283  Function *newFunction = Function::Create(funcType,
284                                           GlobalValue::InternalLinkage,
285                                           oldFunction->getName() + "_" +
286                                           header->getName(), M);
287  newFunction->getBasicBlockList().push_back(newRootNode);
288
289  // Create an iterator to name all of the arguments we inserted.
290  Function::arg_iterator AI = newFunction->arg_begin();
291
292  // Rewrite all users of the inputs in the extracted region to use the
293  // arguments (or appropriate addressing into struct) instead.
294  for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
295    Value *RewriteVal;
296    if (AggregateArgs) {
297      Value *Idx[2];
298      Idx[0] = Constant::getNullValue(Type::Int32Ty);
299      Idx[1] = ConstantInt::get(Type::Int32Ty, i);
300      std::string GEPname = "gep_" + inputs[i]->getName();
301      TerminatorInst *TI = newFunction->begin()->getTerminator();
302      GetElementPtrInst *GEP = GetElementPtrInst::Create(AI, Idx, Idx+2,
303                                                         GEPname, TI);
304      RewriteVal = new LoadInst(GEP, "load" + GEPname, TI);
305    } else
306      RewriteVal = AI++;
307
308    std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
309    for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
310         use != useE; ++use)
311      if (Instruction* inst = dyn_cast<Instruction>(*use))
312        if (BlocksToExtract.count(inst->getParent()))
313          inst->replaceUsesOfWith(inputs[i], RewriteVal);
314  }
315
316  // Set names for input and output arguments.
317  if (!AggregateArgs) {
318    AI = newFunction->arg_begin();
319    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
320      AI->setName(inputs[i]->getName());
321    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
322      AI->setName(outputs[i]->getName()+".out");
323  }
324
325  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
326  // within the new function. This must be done before we lose track of which
327  // blocks were originally in the code region.
328  std::vector<User*> Users(header->use_begin(), header->use_end());
329  for (unsigned i = 0, e = Users.size(); i != e; ++i)
330    // The BasicBlock which contains the branch is not in the region
331    // modify the branch target to a new block
332    if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
333      if (!BlocksToExtract.count(TI->getParent()) &&
334          TI->getParent()->getParent() == oldFunction)
335        TI->replaceUsesOfWith(header, newHeader);
336
337  return newFunction;
338}
339
340/// emitCallAndSwitchStatement - This method sets up the caller side by adding
341/// the call instruction, splitting any PHI nodes in the header block as
342/// necessary.
343void CodeExtractor::
344emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
345                           Values &inputs, Values &outputs) {
346  // Emit a call to the new function, passing in: *pointer to struct (if
347  // aggregating parameters), or plan inputs and allocated memory for outputs
348  std::vector<Value*> params, StructValues, ReloadOutputs;
349
350  // Add inputs as params, or to be filled into the struct
351  for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
352    if (AggregateArgs)
353      StructValues.push_back(*i);
354    else
355      params.push_back(*i);
356
357  // Create allocas for the outputs
358  for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
359    if (AggregateArgs) {
360      StructValues.push_back(*i);
361    } else {
362      AllocaInst *alloca =
363        new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
364                       codeReplacer->getParent()->begin()->begin());
365      ReloadOutputs.push_back(alloca);
366      params.push_back(alloca);
367    }
368  }
369
370  AllocaInst *Struct = 0;
371  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
372    std::vector<const Type*> ArgTypes;
373    for (Values::iterator v = StructValues.begin(),
374           ve = StructValues.end(); v != ve; ++v)
375      ArgTypes.push_back((*v)->getType());
376
377    // Allocate a struct at the beginning of this function
378    Type *StructArgTy = StructType::get(ArgTypes);
379    Struct =
380      new AllocaInst(StructArgTy, 0, "structArg",
381                     codeReplacer->getParent()->begin()->begin());
382    params.push_back(Struct);
383
384    for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
385      Value *Idx[2];
386      Idx[0] = Constant::getNullValue(Type::Int32Ty);
387      Idx[1] = ConstantInt::get(Type::Int32Ty, i);
388      GetElementPtrInst *GEP =
389        GetElementPtrInst::Create(Struct, Idx, Idx + 2,
390                                  "gep_" + StructValues[i]->getName());
391      codeReplacer->getInstList().push_back(GEP);
392      StoreInst *SI = new StoreInst(StructValues[i], GEP);
393      codeReplacer->getInstList().push_back(SI);
394    }
395  }
396
397  // Emit the call to the function
398  CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(),
399                                    NumExitBlocks > 1 ? "targetBlock" : "");
400  codeReplacer->getInstList().push_back(call);
401
402  Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
403  unsigned FirstOut = inputs.size();
404  if (!AggregateArgs)
405    std::advance(OutputArgBegin, inputs.size());
406
407  // Reload the outputs passed in by reference
408  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
409    Value *Output = 0;
410    if (AggregateArgs) {
411      Value *Idx[2];
412      Idx[0] = Constant::getNullValue(Type::Int32Ty);
413      Idx[1] = ConstantInt::get(Type::Int32Ty, FirstOut + i);
414      GetElementPtrInst *GEP
415        = GetElementPtrInst::Create(Struct, Idx, Idx + 2,
416                                    "gep_reload_" + outputs[i]->getName());
417      codeReplacer->getInstList().push_back(GEP);
418      Output = GEP;
419    } else {
420      Output = ReloadOutputs[i];
421    }
422    LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
423    codeReplacer->getInstList().push_back(load);
424    std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
425    for (unsigned u = 0, e = Users.size(); u != e; ++u) {
426      Instruction *inst = cast<Instruction>(Users[u]);
427      if (!BlocksToExtract.count(inst->getParent()))
428        inst->replaceUsesOfWith(outputs[i], load);
429    }
430  }
431
432  // Now we can emit a switch statement using the call as a value.
433  SwitchInst *TheSwitch =
434      SwitchInst::Create(ConstantInt::getNullValue(Type::Int16Ty),
435                         codeReplacer, 0, codeReplacer);
436
437  // Since there may be multiple exits from the original region, make the new
438  // function return an unsigned, switch on that number.  This loop iterates
439  // over all of the blocks in the extracted region, updating any terminator
440  // instructions in the to-be-extracted region that branch to blocks that are
441  // not in the region to be extracted.
442  std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
443
444  unsigned switchVal = 0;
445  for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
446         e = BlocksToExtract.end(); i != e; ++i) {
447    TerminatorInst *TI = (*i)->getTerminator();
448    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
449      if (!BlocksToExtract.count(TI->getSuccessor(i))) {
450        BasicBlock *OldTarget = TI->getSuccessor(i);
451        // add a new basic block which returns the appropriate value
452        BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
453        if (!NewTarget) {
454          // If we don't already have an exit stub for this non-extracted
455          // destination, create one now!
456          NewTarget = BasicBlock::Create(OldTarget->getName() + ".exitStub",
457                                         newFunction);
458          unsigned SuccNum = switchVal++;
459
460          Value *brVal = 0;
461          switch (NumExitBlocks) {
462          case 0:
463          case 1: break;  // No value needed.
464          case 2:         // Conditional branch, return a bool
465            brVal = ConstantInt::get(Type::Int1Ty, !SuccNum);
466            break;
467          default:
468            brVal = ConstantInt::get(Type::Int16Ty, SuccNum);
469            break;
470          }
471
472          ReturnInst *NTRet = ReturnInst::Create(brVal, NewTarget);
473
474          // Update the switch instruction.
475          TheSwitch->addCase(ConstantInt::get(Type::Int16Ty, SuccNum),
476                             OldTarget);
477
478          // Restore values just before we exit
479          Function::arg_iterator OAI = OutputArgBegin;
480          for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
481            // For an invoke, the normal destination is the only one that is
482            // dominated by the result of the invocation
483            BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
484
485            bool DominatesDef = true;
486
487            if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
488              DefBlock = Invoke->getNormalDest();
489
490              // Make sure we are looking at the original successor block, not
491              // at a newly inserted exit block, which won't be in the dominator
492              // info.
493              for (std::map<BasicBlock*, BasicBlock*>::iterator I =
494                     ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
495                if (DefBlock == I->second) {
496                  DefBlock = I->first;
497                  break;
498                }
499
500              // In the extract block case, if the block we are extracting ends
501              // with an invoke instruction, make sure that we don't emit a
502              // store of the invoke value for the unwind block.
503              if (!DT && DefBlock != OldTarget)
504                DominatesDef = false;
505            }
506
507            if (DT)
508              DominatesDef = DT->dominates(DefBlock, OldTarget);
509
510            if (DominatesDef) {
511              if (AggregateArgs) {
512                Value *Idx[2];
513                Idx[0] = Constant::getNullValue(Type::Int32Ty);
514                Idx[1] = ConstantInt::get(Type::Int32Ty,FirstOut+out);
515                GetElementPtrInst *GEP =
516                  GetElementPtrInst::Create(OAI, Idx, Idx + 2,
517                                            "gep_" + outputs[out]->getName(),
518                                            NTRet);
519                new StoreInst(outputs[out], GEP, NTRet);
520              } else {
521                new StoreInst(outputs[out], OAI, NTRet);
522              }
523            }
524            // Advance output iterator even if we don't emit a store
525            if (!AggregateArgs) ++OAI;
526          }
527        }
528
529        // rewrite the original branch instruction with this new target
530        TI->setSuccessor(i, NewTarget);
531      }
532  }
533
534  // Now that we've done the deed, simplify the switch instruction.
535  const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
536  switch (NumExitBlocks) {
537  case 0:
538    // There are no successors (the block containing the switch itself), which
539    // means that previously this was the last part of the function, and hence
540    // this should be rewritten as a `ret'
541
542    // Check if the function should return a value
543    if (OldFnRetTy == Type::VoidTy) {
544      ReturnInst::Create(0, TheSwitch);  // Return void
545    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
546      // return what we have
547      ReturnInst::Create(TheSwitch->getCondition(), TheSwitch);
548    } else {
549      // Otherwise we must have code extracted an unwind or something, just
550      // return whatever we want.
551      ReturnInst::Create(Constant::getNullValue(OldFnRetTy), TheSwitch);
552    }
553
554    TheSwitch->getParent()->getInstList().erase(TheSwitch);
555    break;
556  case 1:
557    // Only a single destination, change the switch into an unconditional
558    // branch.
559    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
560    TheSwitch->getParent()->getInstList().erase(TheSwitch);
561    break;
562  case 2:
563    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
564                       call, TheSwitch);
565    TheSwitch->getParent()->getInstList().erase(TheSwitch);
566    break;
567  default:
568    // Otherwise, make the default destination of the switch instruction be one
569    // of the other successors.
570    TheSwitch->setOperand(0, call);
571    TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks));
572    TheSwitch->removeCase(NumExitBlocks);  // Remove redundant case
573    break;
574  }
575}
576
577void CodeExtractor::moveCodeToFunction(Function *newFunction) {
578  Function *oldFunc = (*BlocksToExtract.begin())->getParent();
579  Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
580  Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
581
582  for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
583         e = BlocksToExtract.end(); i != e; ++i) {
584    // Delete the basic block from the old function, and the list of blocks
585    oldBlocks.remove(*i);
586
587    // Insert this basic block into the new function
588    newBlocks.push_back(*i);
589  }
590}
591
592/// ExtractRegion - Removes a loop from a function, replaces it with a call to
593/// new function. Returns pointer to the new function.
594///
595/// algorithm:
596///
597/// find inputs and outputs for the region
598///
599/// for inputs: add to function as args, map input instr* to arg#
600/// for outputs: add allocas for scalars,
601///             add to func as args, map output instr* to arg#
602///
603/// rewrite func to use argument #s instead of instr*
604///
605/// for each scalar output in the function: at every exit, store intermediate
606/// computed result back into memory.
607///
608Function *CodeExtractor::
609ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
610  if (!isEligible(code))
611    return 0;
612
613  // 1) Find inputs, outputs
614  // 2) Construct new function
615  //  * Add allocas for defs, pass as args by reference
616  //  * Pass in uses as args
617  // 3) Move code region, add call instr to func
618  //
619  BlocksToExtract.insert(code.begin(), code.end());
620
621  Values inputs, outputs;
622
623  // Assumption: this is a single-entry code region, and the header is the first
624  // block in the region.
625  BasicBlock *header = code[0];
626
627  for (unsigned i = 1, e = code.size(); i != e; ++i)
628    for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]);
629         PI != E; ++PI)
630      assert(BlocksToExtract.count(*PI) &&
631             "No blocks in this region may have entries from outside the region"
632             " except for the first block!");
633
634  // If we have to split PHI nodes or the entry block, do so now.
635  severSplitPHINodes(header);
636
637  // If we have any return instructions in the region, split those blocks so
638  // that the return is not in the region.
639  splitReturnBlocks();
640
641  Function *oldFunction = header->getParent();
642
643  // This takes place of the original loop
644  BasicBlock *codeReplacer = BasicBlock::Create("codeRepl", oldFunction, header);
645
646  // The new function needs a root node because other nodes can branch to the
647  // head of the region, but the entry node of a function cannot have preds.
648  BasicBlock *newFuncRoot = BasicBlock::Create("newFuncRoot");
649  newFuncRoot->getInstList().push_back(BranchInst::Create(header));
650
651  // Find inputs to, outputs from the code region.
652  findInputsOutputs(inputs, outputs);
653
654  // Construct new function based on inputs/outputs & add allocas for all defs.
655  Function *newFunction = constructFunction(inputs, outputs, header,
656                                            newFuncRoot,
657                                            codeReplacer, oldFunction,
658                                            oldFunction->getParent());
659
660  emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
661
662  moveCodeToFunction(newFunction);
663
664  // Loop over all of the PHI nodes in the header block, and change any
665  // references to the old incoming edge to be the new incoming edge.
666  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
667    PHINode *PN = cast<PHINode>(I);
668    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
669      if (!BlocksToExtract.count(PN->getIncomingBlock(i)))
670        PN->setIncomingBlock(i, newFuncRoot);
671  }
672
673  // Look at all successors of the codeReplacer block.  If any of these blocks
674  // had PHI nodes in them, we need to update the "from" block to be the code
675  // replacer, not the original block in the extracted region.
676  std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
677                                 succ_end(codeReplacer));
678  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
679    for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
680      PHINode *PN = cast<PHINode>(I);
681      std::set<BasicBlock*> ProcessedPreds;
682      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
683        if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
684          if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
685            PN->setIncomingBlock(i, codeReplacer);
686          else {
687            // There were multiple entries in the PHI for this block, now there
688            // is only one, so remove the duplicated entries.
689            PN->removeIncomingValue(i, false);
690            --i; --e;
691          }
692        }
693    }
694
695  //cerr << "NEW FUNCTION: " << *newFunction;
696  //  verifyFunction(*newFunction);
697
698  //  cerr << "OLD FUNCTION: " << *oldFunction;
699  //  verifyFunction(*oldFunction);
700
701  DEBUG(if (verifyFunction(*newFunction)) abort());
702  return newFunction;
703}
704
705bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) {
706  // Deny code region if it contains allocas or vastarts.
707  for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end();
708       BB != e; ++BB)
709    for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end();
710         I != Ie; ++I)
711      if (isa<AllocaInst>(*I))
712        return false;
713      else if (const CallInst *CI = dyn_cast<CallInst>(I))
714        if (const Function *F = CI->getCalledFunction())
715          if (F->getIntrinsicID() == Intrinsic::vastart)
716            return false;
717  return true;
718}
719
720
721/// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
722/// function
723///
724Function* llvm::ExtractCodeRegion(DominatorTree &DT,
725                                  const std::vector<BasicBlock*> &code,
726                                  bool AggregateArgs) {
727  return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code);
728}
729
730/// ExtractBasicBlock - slurp a natural loop into a brand new function
731///
732Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) {
733  return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks());
734}
735
736/// ExtractBasicBlock - slurp a basic block into a brand new function
737///
738Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) {
739  std::vector<BasicBlock*> Blocks;
740  Blocks.push_back(BB);
741  return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks);
742}
743