CodeExtractor.cpp revision b97fce52528eb5d9a6e86c3c0e92a73a07341c83
1//===- CodeExtractor.cpp - Pull code region into a new function -----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the interface to tear out a code region, such as an 11// individual loop or a parallel section, into a new function, replacing it with 12// a call to the new function. 13// 14//===----------------------------------------------------------------------===// 15 16#include "llvm/BasicBlock.h" 17#include "llvm/Constants.h" 18#include "llvm/DerivedTypes.h" 19#include "llvm/Instructions.h" 20#include "llvm/Module.h" 21#include "llvm/Pass.h" 22#include "llvm/Analysis/LoopInfo.h" 23#include "llvm/Transforms/Utils/BasicBlockUtils.h" 24#include "llvm/Transforms/Utils/FunctionUtils.h" 25#include "Support/Debug.h" 26#include "Support/StringExtras.h" 27#include <algorithm> 28#include <map> 29#include <vector> 30using namespace llvm; 31 32namespace { 33 34 inline bool contains(const std::vector<BasicBlock*> &V, const BasicBlock *BB){ 35 return std::find(V.begin(), V.end(), BB) != V.end(); 36 } 37 38 /// getFunctionArg - Return a pointer to F's ARGNOth argument. 39 /// 40 Argument *getFunctionArg(Function *F, unsigned argno) { 41 Function::aiterator ai = F->abegin(); 42 while (argno) { ++ai; --argno; } 43 return &*ai; 44 } 45 46 struct CodeExtractor { 47 typedef std::vector<Value*> Values; 48 typedef std::vector<std::pair<unsigned, unsigned> > PhiValChangesTy; 49 typedef std::map<PHINode*, PhiValChangesTy> PhiVal2ArgTy; 50 PhiVal2ArgTy PhiVal2Arg; 51 52 public: 53 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); 54 55 private: 56 void findInputsOutputs(const std::vector<BasicBlock*> &code, 57 Values &inputs, 58 Values &outputs, 59 BasicBlock *newHeader, 60 BasicBlock *newRootNode); 61 62 void processPhiNodeInputs(PHINode *Phi, 63 const std::vector<BasicBlock*> &code, 64 Values &inputs, 65 BasicBlock *newHeader, 66 BasicBlock *newRootNode); 67 68 void rewritePhiNodes(Function *F, BasicBlock *newFuncRoot); 69 70 Function *constructFunction(const Values &inputs, 71 const Values &outputs, 72 BasicBlock *newRootNode, BasicBlock *newHeader, 73 const std::vector<BasicBlock*> &code, 74 Function *oldFunction, Module *M); 75 76 void moveCodeToFunction(const std::vector<BasicBlock*> &code, 77 Function *newFunction); 78 79 void emitCallAndSwitchStatement(Function *newFunction, 80 BasicBlock *newHeader, 81 const std::vector<BasicBlock*> &code, 82 Values &inputs, 83 Values &outputs); 84 85 }; 86} 87 88void CodeExtractor::processPhiNodeInputs(PHINode *Phi, 89 const std::vector<BasicBlock*> &code, 90 Values &inputs, 91 BasicBlock *codeReplacer, 92 BasicBlock *newFuncRoot) 93{ 94 // Separate incoming values and BasicBlocks as internal/external. We ignore 95 // the case where both the value and BasicBlock are internal, because we don't 96 // need to do a thing. 97 std::vector<unsigned> EValEBB; 98 std::vector<unsigned> EValIBB; 99 std::vector<unsigned> IValEBB; 100 101 for (unsigned i = 0, e = Phi->getNumIncomingValues(); i != e; ++i) { 102 Value *phiVal = Phi->getIncomingValue(i); 103 if (Instruction *Inst = dyn_cast<Instruction>(phiVal)) { 104 if (contains(code, Inst->getParent())) { 105 if (!contains(code, Phi->getIncomingBlock(i))) 106 IValEBB.push_back(i); 107 } else { 108 if (contains(code, Phi->getIncomingBlock(i))) 109 EValIBB.push_back(i); 110 else 111 EValEBB.push_back(i); 112 } 113 } else if (Constant *Const = dyn_cast<Constant>(phiVal)) { 114 // Constants are internal, but considered `external' if they are coming 115 // from an external block. 116 if (!contains(code, Phi->getIncomingBlock(i))) 117 EValEBB.push_back(i); 118 } else if (Argument *Arg = dyn_cast<Argument>(phiVal)) { 119 // arguments are external 120 if (contains(code, Phi->getIncomingBlock(i))) 121 EValIBB.push_back(i); 122 else 123 EValEBB.push_back(i); 124 } else { 125 phiVal->dump(); 126 assert(0 && "Unhandled input in a Phi node"); 127 } 128 } 129 130 // Both value and block are external. Need to group all of 131 // these, have an external phi, pass the result as an 132 // argument, and have THIS phi use that result. 133 if (EValEBB.size() > 0) { 134 if (EValEBB.size() == 1) { 135 // Now if it's coming from the newFuncRoot, it's that funky input 136 unsigned phiIdx = EValEBB[0]; 137 if (!dyn_cast<Constant>(Phi->getIncomingValue(phiIdx))) 138 { 139 PhiVal2Arg[Phi].push_back(std::make_pair(phiIdx, inputs.size())); 140 // We can just pass this value in as argument 141 inputs.push_back(Phi->getIncomingValue(phiIdx)); 142 } 143 Phi->setIncomingBlock(phiIdx, newFuncRoot); 144 } else { 145 PHINode *externalPhi = new PHINode(Phi->getType(), "extPhi"); 146 codeReplacer->getInstList().insert(codeReplacer->begin(), externalPhi); 147 for (std::vector<unsigned>::iterator i = EValEBB.begin(), 148 e = EValEBB.end(); i != e; ++i) 149 { 150 externalPhi->addIncoming(Phi->getIncomingValue(*i), 151 Phi->getIncomingBlock(*i)); 152 153 // We make these values invalid instead of deleting them because that 154 // would shift the indices of other values... The fixPhiNodes should 155 // clean these phi nodes up later. 156 Phi->setIncomingValue(*i, 0); 157 Phi->setIncomingBlock(*i, 0); 158 } 159 PhiVal2Arg[Phi].push_back(std::make_pair(Phi->getNumIncomingValues(), 160 inputs.size())); 161 // We can just pass this value in as argument 162 inputs.push_back(externalPhi); 163 } 164 } 165 166 // When the value is external, but block internal... 167 // just pass it in as argument, no change to phi node 168 for (std::vector<unsigned>::iterator i = EValIBB.begin(), 169 e = EValIBB.end(); i != e; ++i) 170 { 171 // rewrite the phi input node to be an argument 172 PhiVal2Arg[Phi].push_back(std::make_pair(*i, inputs.size())); 173 inputs.push_back(Phi->getIncomingValue(*i)); 174 } 175 176 // Value internal, block external 177 // this can happen if we are extracting a part of a loop 178 for (std::vector<unsigned>::iterator i = IValEBB.begin(), 179 e = IValEBB.end(); i != e; ++i) 180 { 181 assert(0 && "Cannot (YET) handle internal values via external blocks"); 182 } 183} 184 185 186void CodeExtractor::findInputsOutputs(const std::vector<BasicBlock*> &code, 187 Values &inputs, 188 Values &outputs, 189 BasicBlock *newHeader, 190 BasicBlock *newRootNode) 191{ 192 for (std::vector<BasicBlock*>::const_iterator ci = code.begin(), 193 ce = code.end(); ci != ce; ++ci) { 194 BasicBlock *BB = *ci; 195 for (BasicBlock::iterator BBi = BB->begin(), BBe = BB->end(); 196 BBi != BBe; ++BBi) { 197 // If a use is defined outside the region, it's an input. 198 // If a def is used outside the region, it's an output. 199 if (Instruction *I = dyn_cast<Instruction>(&*BBi)) { 200 // If it's a phi node 201 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 202 processPhiNodeInputs(Phi, code, inputs, newHeader, newRootNode); 203 } else { 204 // All other instructions go through the generic input finder 205 // Loop over the operands of each instruction (inputs) 206 for (User::op_iterator op = I->op_begin(), opE = I->op_end(); 207 op != opE; ++op) { 208 if (Instruction *opI = dyn_cast<Instruction>(op->get())) { 209 // Check if definition of this operand is within the loop 210 if (!contains(code, opI->getParent())) { 211 // add this operand to the inputs 212 inputs.push_back(opI); 213 } 214 } 215 } 216 } 217 218 // Consider uses of this instruction (outputs) 219 for (Value::use_iterator use = I->use_begin(), useE = I->use_end(); 220 use != useE; ++use) { 221 if (Instruction* inst = dyn_cast<Instruction>(*use)) { 222 if (!contains(code, inst->getParent())) { 223 // add this op to the outputs 224 outputs.push_back(I); 225 } 226 } 227 } 228 } /* if */ 229 } /* for: insts */ 230 } /* for: basic blocks */ 231} 232 233void CodeExtractor::rewritePhiNodes(Function *F, 234 BasicBlock *newFuncRoot) { 235 // Write any changes that were saved before: use function arguments as inputs 236 for (PhiVal2ArgTy::iterator i = PhiVal2Arg.begin(), e = PhiVal2Arg.end(); 237 i != e; ++i) 238 { 239 PHINode *phi = (*i).first; 240 PhiValChangesTy &values = (*i).second; 241 for (unsigned cIdx = 0, ce = values.size(); cIdx != ce; ++cIdx) 242 { 243 unsigned phiValueIdx = values[cIdx].first, argNum = values[cIdx].second; 244 if (phiValueIdx < phi->getNumIncomingValues()) 245 phi->setIncomingValue(phiValueIdx, getFunctionArg(F, argNum)); 246 else 247 phi->addIncoming(getFunctionArg(F, argNum), newFuncRoot); 248 } 249 } 250 251 // Delete any invalid Phi node inputs that were marked as NULL previously 252 for (PhiVal2ArgTy::iterator i = PhiVal2Arg.begin(), e = PhiVal2Arg.end(); 253 i != e; ++i) 254 { 255 PHINode *phi = (*i).first; 256 for (unsigned idx = 0, end = phi->getNumIncomingValues(); idx != end; ++idx) 257 { 258 if (phi->getIncomingValue(idx) == 0 && phi->getIncomingBlock(idx) == 0) { 259 phi->removeIncomingValue(idx); 260 --idx; 261 --end; 262 } 263 } 264 } 265 266 // We are done with the saved values 267 PhiVal2Arg.clear(); 268} 269 270 271/// constructFunction - make a function based on inputs and outputs, as follows: 272/// f(in0, ..., inN, out0, ..., outN) 273/// 274Function *CodeExtractor::constructFunction(const Values &inputs, 275 const Values &outputs, 276 BasicBlock *newRootNode, 277 BasicBlock *newHeader, 278 const std::vector<BasicBlock*> &code, 279 Function *oldFunction, Module *M) { 280 DEBUG(std::cerr << "inputs: " << inputs.size() << "\n"); 281 DEBUG(std::cerr << "outputs: " << outputs.size() << "\n"); 282 BasicBlock *header = code[0]; 283 284 // This function returns unsigned, outputs will go back by reference. 285 Type *retTy = Type::UShortTy; 286 std::vector<const Type*> paramTy; 287 288 // Add the types of the input values to the function's argument list 289 for (Values::const_iterator i = inputs.begin(), 290 e = inputs.end(); i != e; ++i) { 291 const Value *value = *i; 292 DEBUG(std::cerr << "value used in func: " << value << "\n"); 293 paramTy.push_back(value->getType()); 294 } 295 296 // Add the types of the output values to the function's argument list, but 297 // make them pointer types for scalars 298 for (Values::const_iterator i = outputs.begin(), 299 e = outputs.end(); i != e; ++i) { 300 const Value *value = *i; 301 DEBUG(std::cerr << "instr used in func: " << value << "\n"); 302 const Type *valueType = value->getType(); 303 // Convert scalar types into a pointer of that type 304 if (valueType->isPrimitiveType()) { 305 valueType = PointerType::get(valueType); 306 } 307 paramTy.push_back(valueType); 308 } 309 310 DEBUG(std::cerr << "Function type: " << retTy << " f("); 311 for (std::vector<const Type*>::iterator i = paramTy.begin(), 312 e = paramTy.end(); i != e; ++i) 313 DEBUG(std::cerr << (*i) << ", "); 314 DEBUG(std::cerr << ")\n"); 315 316 const FunctionType *funcType = FunctionType::get(retTy, paramTy, false); 317 318 // Create the new function 319 Function *newFunction = new Function(funcType, 320 GlobalValue::InternalLinkage, 321 oldFunction->getName() + "_code", M); 322 newFunction->getBasicBlockList().push_back(newRootNode); 323 324 for (unsigned i = 0, e = inputs.size(); i != e; ++i) { 325 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); 326 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); 327 use != useE; ++use) { 328 if (Instruction* inst = dyn_cast<Instruction>(*use)) { 329 if (contains(code, inst->getParent())) { 330 inst->replaceUsesOfWith(inputs[i], getFunctionArg(newFunction, i)); 331 } 332 } 333 } 334 } 335 336 // Rewrite branches to basic blocks outside of the loop to new dummy blocks 337 // within the new function. This must be done before we lose track of which 338 // blocks were originally in the code region. 339 std::vector<User*> Users(header->use_begin(), header->use_end()); 340 for (std::vector<User*>::iterator i = Users.begin(), e = Users.end(); 341 i != e; ++i) { 342 if (BranchInst *inst = dyn_cast<BranchInst>(*i)) { 343 BasicBlock *BB = inst->getParent(); 344 if (!contains(code, BB) && BB->getParent() == oldFunction) { 345 // The BasicBlock which contains the branch is not in the region 346 // modify the branch target to a new block 347 inst->replaceUsesOfWith(header, newHeader); 348 } 349 } 350 } 351 352 return newFunction; 353} 354 355void CodeExtractor::moveCodeToFunction(const std::vector<BasicBlock*> &code, 356 Function *newFunction) 357{ 358 for (std::vector<BasicBlock*>::const_iterator i = code.begin(), e =code.end(); 359 i != e; ++i) { 360 BasicBlock *BB = *i; 361 Function *oldFunc = BB->getParent(); 362 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); 363 364 // Delete the basic block from the old function, and the list of blocks 365 oldBlocks.remove(BB); 366 367 // Insert this basic block into the new function 368 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); 369 newBlocks.push_back(BB); 370 } 371} 372 373void 374CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, 375 BasicBlock *codeReplacer, 376 const std::vector<BasicBlock*> &code, 377 Values &inputs, 378 Values &outputs) 379{ 380 // Emit a call to the new function, passing allocated memory for outputs and 381 // just plain inputs for non-scalars 382 std::vector<Value*> params; 383 BasicBlock *codeReplacerTail = new BasicBlock("codeReplTail", 384 codeReplacer->getParent()); 385 for (Values::const_iterator i = inputs.begin(), 386 e = inputs.end(); i != e; ++i) 387 params.push_back(*i); 388 for (Values::const_iterator i = outputs.begin(), 389 e = outputs.end(); i != e; ++i) { 390 // Create allocas for scalar outputs 391 if ((*i)->getType()->isPrimitiveType()) { 392 Constant *one = ConstantUInt::get(Type::UIntTy, 1); 393 AllocaInst *alloca = new AllocaInst((*i)->getType(), one); 394 codeReplacer->getInstList().push_back(alloca); 395 params.push_back(alloca); 396 397 LoadInst *load = new LoadInst(alloca, "alloca"); 398 codeReplacerTail->getInstList().push_back(load); 399 std::vector<User*> Users((*i)->use_begin(), (*i)->use_end()); 400 for (std::vector<User*>::iterator use = Users.begin(), useE =Users.end(); 401 use != useE; ++use) { 402 if (Instruction* inst = dyn_cast<Instruction>(*use)) { 403 if (!contains(code, inst->getParent())) { 404 inst->replaceUsesOfWith(*i, load); 405 } 406 } 407 } 408 } else { 409 params.push_back(*i); 410 } 411 } 412 CallInst *call = new CallInst(newFunction, params, "targetBlock"); 413 codeReplacer->getInstList().push_back(call); 414 codeReplacer->getInstList().push_back(new BranchInst(codeReplacerTail)); 415 416 // Now we can emit a switch statement using the call as a value. 417 // FIXME: perhaps instead of default being self BB, it should be a second 418 // dummy block which asserts that the value is not within the range...? 419 //BasicBlock *defaultBlock = new BasicBlock("defaultBlock", oldF); 420 //insert abort() ? 421 //defaultBlock->getInstList().push_back(new BranchInst(codeReplacer)); 422 423 SwitchInst *switchInst = new SwitchInst(call, codeReplacerTail, 424 codeReplacerTail); 425 426 // Since there may be multiple exits from the original region, make the new 427 // function return an unsigned, switch on that number 428 unsigned switchVal = 0; 429 for (std::vector<BasicBlock*>::const_iterator i =code.begin(), e = code.end(); 430 i != e; ++i) { 431 BasicBlock *BB = *i; 432 433 // rewrite the terminator of the original BasicBlock 434 Instruction *term = BB->getTerminator(); 435 if (BranchInst *brInst = dyn_cast<BranchInst>(term)) { 436 437 // Restore values just before we exit 438 // FIXME: Use a GetElementPtr to bunch the outputs in a struct 439 for (unsigned outIdx = 0, outE = outputs.size(); outIdx != outE; ++outIdx) 440 { 441 new StoreInst(outputs[outIdx], 442 getFunctionArg(newFunction, outIdx), 443 brInst); 444 } 445 446 // Rewrite branches into exists which return a value based on which 447 // exit we take from this function 448 if (brInst->isUnconditional()) { 449 if (!contains(code, brInst->getSuccessor(0))) { 450 ConstantUInt *brVal = ConstantUInt::get(Type::UShortTy, switchVal); 451 ReturnInst *newRet = new ReturnInst(brVal); 452 // add a new target to the switch 453 switchInst->addCase(brVal, brInst->getSuccessor(0)); 454 ++switchVal; 455 // rewrite the branch with a return 456 BasicBlock::iterator ii(brInst); 457 ReplaceInstWithInst(BB->getInstList(), ii, newRet); 458 delete brInst; 459 } 460 } else { 461 // Replace the conditional branch to branch 462 // to two new blocks, each of which returns a different code. 463 for (unsigned idx = 0; idx < 2; ++idx) { 464 BasicBlock *oldTarget = brInst->getSuccessor(idx); 465 if (!contains(code, oldTarget)) { 466 // add a new basic block which returns the appropriate value 467 BasicBlock *newTarget = new BasicBlock("newTarget", newFunction); 468 ConstantUInt *brVal = ConstantUInt::get(Type::UShortTy, switchVal); 469 ReturnInst *newRet = new ReturnInst(brVal); 470 newTarget->getInstList().push_back(newRet); 471 // rewrite the original branch instruction with this new target 472 brInst->setSuccessor(idx, newTarget); 473 // the switch statement knows what to do with this value 474 switchInst->addCase(brVal, oldTarget); 475 ++switchVal; 476 } 477 } 478 } 479 } else if (ReturnInst *retTerm = dyn_cast<ReturnInst>(term)) { 480 assert(0 && "Cannot handle return instructions just yet."); 481 // FIXME: what if the terminator is a return!??! 482 // Need to rewrite: add new basic block, move the return there 483 // treat the original as an unconditional branch to that basicblock 484 } else if (SwitchInst *swTerm = dyn_cast<SwitchInst>(term)) { 485 assert(0 && "Cannot handle switch instructions just yet."); 486 } else if (InvokeInst *invInst = dyn_cast<InvokeInst>(term)) { 487 assert(0 && "Cannot handle invoke instructions just yet."); 488 } else { 489 assert(0 && "Unrecognized terminator, or badly-formed BasicBlock."); 490 } 491 } 492} 493 494 495/// ExtractRegion - Removes a loop from a function, replaces it with a call to 496/// new function. Returns pointer to the new function. 497/// 498/// algorithm: 499/// 500/// find inputs and outputs for the region 501/// 502/// for inputs: add to function as args, map input instr* to arg# 503/// for outputs: add allocas for scalars, 504/// add to func as args, map output instr* to arg# 505/// 506/// rewrite func to use argument #s instead of instr* 507/// 508/// for each scalar output in the function: at every exit, store intermediate 509/// computed result back into memory. 510/// 511Function *CodeExtractor::ExtractCodeRegion(const std::vector<BasicBlock*> &code) 512{ 513 // 1) Find inputs, outputs 514 // 2) Construct new function 515 // * Add allocas for defs, pass as args by reference 516 // * Pass in uses as args 517 // 3) Move code region, add call instr to func 518 // 519 520 Values inputs, outputs; 521 522 // Assumption: this is a single-entry code region, and the header is the first 523 // block in the region. FIXME: is this true for a list of blocks from a 524 // natural function? 525 BasicBlock *header = code[0]; 526 Function *oldFunction = header->getParent(); 527 Module *module = oldFunction->getParent(); 528 529 // This takes place of the original loop 530 BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction); 531 532 // The new function needs a root node because other nodes can branch to the 533 // head of the loop, and the root cannot have predecessors 534 BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot"); 535 newFuncRoot->getInstList().push_back(new BranchInst(header)); 536 537 // Find inputs to, outputs from the code region 538 // 539 // If one of the inputs is coming from a different basic block and it's in a 540 // phi node, we need to rewrite the phi node: 541 // 542 // * All the inputs which involve basic blocks OUTSIDE of this region go into 543 // a NEW phi node that takes care of finding which value really came in. 544 // The result of this phi is passed to the function as an argument. 545 // 546 // * All the other phi values stay. 547 // 548 // FIXME: PHI nodes' incoming blocks aren't being rewritten to accomodate for 549 // blocks moving to a new function. 550 // SOLUTION: move Phi nodes out of the loop header into the codeReplacer, pass 551 // the values as parameters to the function 552 findInputsOutputs(code, inputs, outputs, codeReplacer, newFuncRoot); 553 554 // Step 2: Construct new function based on inputs/outputs, 555 // Add allocas for all defs 556 Function *newFunction = constructFunction(inputs, outputs, newFuncRoot, 557 codeReplacer, code, 558 oldFunction, module); 559 560 rewritePhiNodes(newFunction, newFuncRoot); 561 562 emitCallAndSwitchStatement(newFunction, codeReplacer, code, inputs, outputs); 563 564 moveCodeToFunction(code, newFunction); 565 566 return newFunction; 567} 568 569/// ExtractBasicBlock - slurp a natural loop into a brand new function 570/// 571Function* llvm::ExtractLoop(Loop *L) { 572 CodeExtractor CE; 573 return CE.ExtractCodeRegion(L->getBlocks()); 574} 575 576/// ExtractBasicBlock - slurp a basic block into a brand new function 577/// 578Function* llvm::ExtractBasicBlock(BasicBlock *BB) { 579 CodeExtractor CE; 580 std::vector<BasicBlock*> Blocks; 581 Blocks.push_back(BB); 582 return CE.ExtractCodeRegion(Blocks); 583} 584