CodeExtractor.cpp revision b97fce52528eb5d9a6e86c3c0e92a73a07341c83
1//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the interface to tear out a code region, such as an
11// individual loop or a parallel section, into a new function, replacing it with
12// a call to the new function.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/BasicBlock.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Module.h"
21#include "llvm/Pass.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/Transforms/Utils/BasicBlockUtils.h"
24#include "llvm/Transforms/Utils/FunctionUtils.h"
25#include "Support/Debug.h"
26#include "Support/StringExtras.h"
27#include <algorithm>
28#include <map>
29#include <vector>
30using namespace llvm;
31
32namespace {
33
34  inline bool contains(const std::vector<BasicBlock*> &V, const BasicBlock *BB){
35    return std::find(V.begin(), V.end(), BB) != V.end();
36  }
37
38  /// getFunctionArg - Return a pointer to F's ARGNOth argument.
39  ///
40  Argument *getFunctionArg(Function *F, unsigned argno) {
41    Function::aiterator ai = F->abegin();
42    while (argno) { ++ai; --argno; }
43    return &*ai;
44  }
45
46  struct CodeExtractor {
47    typedef std::vector<Value*> Values;
48    typedef std::vector<std::pair<unsigned, unsigned> > PhiValChangesTy;
49    typedef std::map<PHINode*, PhiValChangesTy> PhiVal2ArgTy;
50    PhiVal2ArgTy PhiVal2Arg;
51
52  public:
53    Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);
54
55  private:
56    void findInputsOutputs(const std::vector<BasicBlock*> &code,
57                           Values &inputs,
58                           Values &outputs,
59                           BasicBlock *newHeader,
60                           BasicBlock *newRootNode);
61
62    void processPhiNodeInputs(PHINode *Phi,
63                              const std::vector<BasicBlock*> &code,
64                              Values &inputs,
65                              BasicBlock *newHeader,
66                              BasicBlock *newRootNode);
67
68    void rewritePhiNodes(Function *F, BasicBlock *newFuncRoot);
69
70    Function *constructFunction(const Values &inputs,
71                                const Values &outputs,
72                                BasicBlock *newRootNode, BasicBlock *newHeader,
73                                const std::vector<BasicBlock*> &code,
74                                Function *oldFunction, Module *M);
75
76    void moveCodeToFunction(const std::vector<BasicBlock*> &code,
77                            Function *newFunction);
78
79    void emitCallAndSwitchStatement(Function *newFunction,
80                                    BasicBlock *newHeader,
81                                    const std::vector<BasicBlock*> &code,
82                                    Values &inputs,
83                                    Values &outputs);
84
85  };
86}
87
88void CodeExtractor::processPhiNodeInputs(PHINode *Phi,
89                                         const std::vector<BasicBlock*> &code,
90                                         Values &inputs,
91                                         BasicBlock *codeReplacer,
92                                         BasicBlock *newFuncRoot)
93{
94  // Separate incoming values and BasicBlocks as internal/external. We ignore
95  // the case where both the value and BasicBlock are internal, because we don't
96  // need to do a thing.
97  std::vector<unsigned> EValEBB;
98  std::vector<unsigned> EValIBB;
99  std::vector<unsigned> IValEBB;
100
101  for (unsigned i = 0, e = Phi->getNumIncomingValues(); i != e; ++i) {
102    Value *phiVal = Phi->getIncomingValue(i);
103    if (Instruction *Inst = dyn_cast<Instruction>(phiVal)) {
104      if (contains(code, Inst->getParent())) {
105        if (!contains(code, Phi->getIncomingBlock(i)))
106          IValEBB.push_back(i);
107      } else {
108        if (contains(code, Phi->getIncomingBlock(i)))
109          EValIBB.push_back(i);
110        else
111          EValEBB.push_back(i);
112      }
113    } else if (Constant *Const = dyn_cast<Constant>(phiVal)) {
114      // Constants are internal, but considered `external' if they are coming
115      // from an external block.
116      if (!contains(code, Phi->getIncomingBlock(i)))
117        EValEBB.push_back(i);
118    } else if (Argument *Arg = dyn_cast<Argument>(phiVal)) {
119      // arguments are external
120      if (contains(code, Phi->getIncomingBlock(i)))
121        EValIBB.push_back(i);
122      else
123        EValEBB.push_back(i);
124    } else {
125      phiVal->dump();
126      assert(0 && "Unhandled input in a Phi node");
127    }
128  }
129
130  // Both value and block are external. Need to group all of
131  // these, have an external phi, pass the result as an
132  // argument, and have THIS phi use that result.
133  if (EValEBB.size() > 0) {
134    if (EValEBB.size() == 1) {
135      // Now if it's coming from the newFuncRoot, it's that funky input
136      unsigned phiIdx = EValEBB[0];
137      if (!dyn_cast<Constant>(Phi->getIncomingValue(phiIdx)))
138      {
139        PhiVal2Arg[Phi].push_back(std::make_pair(phiIdx, inputs.size()));
140        // We can just pass this value in as argument
141        inputs.push_back(Phi->getIncomingValue(phiIdx));
142      }
143      Phi->setIncomingBlock(phiIdx, newFuncRoot);
144    } else {
145      PHINode *externalPhi = new PHINode(Phi->getType(), "extPhi");
146      codeReplacer->getInstList().insert(codeReplacer->begin(), externalPhi);
147      for (std::vector<unsigned>::iterator i = EValEBB.begin(),
148             e = EValEBB.end(); i != e; ++i)
149      {
150        externalPhi->addIncoming(Phi->getIncomingValue(*i),
151                                 Phi->getIncomingBlock(*i));
152
153        // We make these values invalid instead of deleting them because that
154        // would shift the indices of other values... The fixPhiNodes should
155        // clean these phi nodes up later.
156        Phi->setIncomingValue(*i, 0);
157        Phi->setIncomingBlock(*i, 0);
158      }
159      PhiVal2Arg[Phi].push_back(std::make_pair(Phi->getNumIncomingValues(),
160                                               inputs.size()));
161      // We can just pass this value in as argument
162      inputs.push_back(externalPhi);
163    }
164  }
165
166  // When the value is external, but block internal...
167  // just pass it in as argument, no change to phi node
168  for (std::vector<unsigned>::iterator i = EValIBB.begin(),
169         e = EValIBB.end(); i != e; ++i)
170  {
171    // rewrite the phi input node to be an argument
172    PhiVal2Arg[Phi].push_back(std::make_pair(*i, inputs.size()));
173    inputs.push_back(Phi->getIncomingValue(*i));
174  }
175
176  // Value internal, block external
177  // this can happen if we are extracting a part of a loop
178  for (std::vector<unsigned>::iterator i = IValEBB.begin(),
179         e = IValEBB.end(); i != e; ++i)
180  {
181    assert(0 && "Cannot (YET) handle internal values via external blocks");
182  }
183}
184
185
186void CodeExtractor::findInputsOutputs(const std::vector<BasicBlock*> &code,
187                                      Values &inputs,
188                                      Values &outputs,
189                                      BasicBlock *newHeader,
190                                      BasicBlock *newRootNode)
191{
192  for (std::vector<BasicBlock*>::const_iterator ci = code.begin(),
193       ce = code.end(); ci != ce; ++ci) {
194    BasicBlock *BB = *ci;
195    for (BasicBlock::iterator BBi = BB->begin(), BBe = BB->end();
196         BBi != BBe; ++BBi) {
197      // If a use is defined outside the region, it's an input.
198      // If a def is used outside the region, it's an output.
199      if (Instruction *I = dyn_cast<Instruction>(&*BBi)) {
200        // If it's a phi node
201        if (PHINode *Phi = dyn_cast<PHINode>(I)) {
202          processPhiNodeInputs(Phi, code, inputs, newHeader, newRootNode);
203        } else {
204          // All other instructions go through the generic input finder
205          // Loop over the operands of each instruction (inputs)
206          for (User::op_iterator op = I->op_begin(), opE = I->op_end();
207               op != opE; ++op) {
208            if (Instruction *opI = dyn_cast<Instruction>(op->get())) {
209              // Check if definition of this operand is within the loop
210              if (!contains(code, opI->getParent())) {
211                // add this operand to the inputs
212                inputs.push_back(opI);
213              }
214            }
215          }
216        }
217
218        // Consider uses of this instruction (outputs)
219        for (Value::use_iterator use = I->use_begin(), useE = I->use_end();
220             use != useE; ++use) {
221          if (Instruction* inst = dyn_cast<Instruction>(*use)) {
222            if (!contains(code, inst->getParent())) {
223              // add this op to the outputs
224              outputs.push_back(I);
225            }
226          }
227        }
228      } /* if */
229    } /* for: insts */
230  } /* for: basic blocks */
231}
232
233void CodeExtractor::rewritePhiNodes(Function *F,
234                                    BasicBlock *newFuncRoot) {
235  // Write any changes that were saved before: use function arguments as inputs
236  for (PhiVal2ArgTy::iterator i = PhiVal2Arg.begin(), e = PhiVal2Arg.end();
237       i != e; ++i)
238  {
239    PHINode *phi = (*i).first;
240    PhiValChangesTy &values = (*i).second;
241    for (unsigned cIdx = 0, ce = values.size(); cIdx != ce; ++cIdx)
242    {
243      unsigned phiValueIdx = values[cIdx].first, argNum = values[cIdx].second;
244      if (phiValueIdx < phi->getNumIncomingValues())
245        phi->setIncomingValue(phiValueIdx, getFunctionArg(F, argNum));
246      else
247        phi->addIncoming(getFunctionArg(F, argNum), newFuncRoot);
248    }
249  }
250
251  // Delete any invalid Phi node inputs that were marked as NULL previously
252  for (PhiVal2ArgTy::iterator i = PhiVal2Arg.begin(), e = PhiVal2Arg.end();
253       i != e; ++i)
254  {
255    PHINode *phi = (*i).first;
256    for (unsigned idx = 0, end = phi->getNumIncomingValues(); idx != end; ++idx)
257    {
258      if (phi->getIncomingValue(idx) == 0 && phi->getIncomingBlock(idx) == 0) {
259        phi->removeIncomingValue(idx);
260        --idx;
261        --end;
262      }
263    }
264  }
265
266  // We are done with the saved values
267  PhiVal2Arg.clear();
268}
269
270
271/// constructFunction - make a function based on inputs and outputs, as follows:
272/// f(in0, ..., inN, out0, ..., outN)
273///
274Function *CodeExtractor::constructFunction(const Values &inputs,
275                                           const Values &outputs,
276                                           BasicBlock *newRootNode,
277                                           BasicBlock *newHeader,
278                                           const std::vector<BasicBlock*> &code,
279                                           Function *oldFunction, Module *M) {
280  DEBUG(std::cerr << "inputs: " << inputs.size() << "\n");
281  DEBUG(std::cerr << "outputs: " << outputs.size() << "\n");
282  BasicBlock *header = code[0];
283
284  // This function returns unsigned, outputs will go back by reference.
285  Type *retTy = Type::UShortTy;
286  std::vector<const Type*> paramTy;
287
288  // Add the types of the input values to the function's argument list
289  for (Values::const_iterator i = inputs.begin(),
290         e = inputs.end(); i != e; ++i) {
291    const Value *value = *i;
292    DEBUG(std::cerr << "value used in func: " << value << "\n");
293    paramTy.push_back(value->getType());
294  }
295
296  // Add the types of the output values to the function's argument list, but
297  // make them pointer types for scalars
298  for (Values::const_iterator i = outputs.begin(),
299         e = outputs.end(); i != e; ++i) {
300    const Value *value = *i;
301    DEBUG(std::cerr << "instr used in func: " << value << "\n");
302    const Type *valueType = value->getType();
303    // Convert scalar types into a pointer of that type
304    if (valueType->isPrimitiveType()) {
305      valueType = PointerType::get(valueType);
306    }
307    paramTy.push_back(valueType);
308  }
309
310  DEBUG(std::cerr << "Function type: " << retTy << " f(");
311  for (std::vector<const Type*>::iterator i = paramTy.begin(),
312         e = paramTy.end(); i != e; ++i)
313    DEBUG(std::cerr << (*i) << ", ");
314  DEBUG(std::cerr << ")\n");
315
316  const FunctionType *funcType = FunctionType::get(retTy, paramTy, false);
317
318  // Create the new function
319  Function *newFunction = new Function(funcType,
320                                       GlobalValue::InternalLinkage,
321                                       oldFunction->getName() + "_code", M);
322  newFunction->getBasicBlockList().push_back(newRootNode);
323
324  for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
325    std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
326    for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
327         use != useE; ++use) {
328      if (Instruction* inst = dyn_cast<Instruction>(*use)) {
329        if (contains(code, inst->getParent())) {
330          inst->replaceUsesOfWith(inputs[i], getFunctionArg(newFunction, i));
331        }
332      }
333    }
334  }
335
336  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
337  // within the new function. This must be done before we lose track of which
338  // blocks were originally in the code region.
339  std::vector<User*> Users(header->use_begin(), header->use_end());
340  for (std::vector<User*>::iterator i = Users.begin(), e = Users.end();
341       i != e; ++i) {
342    if (BranchInst *inst = dyn_cast<BranchInst>(*i)) {
343      BasicBlock *BB = inst->getParent();
344      if (!contains(code, BB) && BB->getParent() == oldFunction) {
345        // The BasicBlock which contains the branch is not in the region
346        // modify the branch target to a new block
347        inst->replaceUsesOfWith(header, newHeader);
348      }
349    }
350  }
351
352  return newFunction;
353}
354
355void CodeExtractor::moveCodeToFunction(const std::vector<BasicBlock*> &code,
356                                       Function *newFunction)
357{
358  for (std::vector<BasicBlock*>::const_iterator i = code.begin(), e =code.end();
359       i != e; ++i) {
360    BasicBlock *BB = *i;
361    Function *oldFunc = BB->getParent();
362    Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
363
364    // Delete the basic block from the old function, and the list of blocks
365    oldBlocks.remove(BB);
366
367    // Insert this basic block into the new function
368    Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
369    newBlocks.push_back(BB);
370  }
371}
372
373void
374CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
375                                          BasicBlock *codeReplacer,
376                                          const std::vector<BasicBlock*> &code,
377                                          Values &inputs,
378                                          Values &outputs)
379{
380  // Emit a call to the new function, passing allocated memory for outputs and
381  // just plain inputs for non-scalars
382  std::vector<Value*> params;
383  BasicBlock *codeReplacerTail = new BasicBlock("codeReplTail",
384                                                codeReplacer->getParent());
385  for (Values::const_iterator i = inputs.begin(),
386         e = inputs.end(); i != e; ++i)
387    params.push_back(*i);
388  for (Values::const_iterator i = outputs.begin(),
389         e = outputs.end(); i != e; ++i) {
390    // Create allocas for scalar outputs
391    if ((*i)->getType()->isPrimitiveType()) {
392      Constant *one = ConstantUInt::get(Type::UIntTy, 1);
393      AllocaInst *alloca = new AllocaInst((*i)->getType(), one);
394      codeReplacer->getInstList().push_back(alloca);
395      params.push_back(alloca);
396
397      LoadInst *load = new LoadInst(alloca, "alloca");
398      codeReplacerTail->getInstList().push_back(load);
399      std::vector<User*> Users((*i)->use_begin(), (*i)->use_end());
400      for (std::vector<User*>::iterator use = Users.begin(), useE =Users.end();
401           use != useE; ++use) {
402        if (Instruction* inst = dyn_cast<Instruction>(*use)) {
403          if (!contains(code, inst->getParent())) {
404            inst->replaceUsesOfWith(*i, load);
405          }
406        }
407      }
408    } else {
409      params.push_back(*i);
410    }
411  }
412  CallInst *call = new CallInst(newFunction, params, "targetBlock");
413  codeReplacer->getInstList().push_back(call);
414  codeReplacer->getInstList().push_back(new BranchInst(codeReplacerTail));
415
416  // Now we can emit a switch statement using the call as a value.
417  // FIXME: perhaps instead of default being self BB, it should be a second
418  // dummy block which asserts that the value is not within the range...?
419  //BasicBlock *defaultBlock = new BasicBlock("defaultBlock", oldF);
420  //insert abort() ?
421  //defaultBlock->getInstList().push_back(new BranchInst(codeReplacer));
422
423  SwitchInst *switchInst = new SwitchInst(call, codeReplacerTail,
424                                          codeReplacerTail);
425
426  // Since there may be multiple exits from the original region, make the new
427  // function return an unsigned, switch on that number
428  unsigned switchVal = 0;
429  for (std::vector<BasicBlock*>::const_iterator i =code.begin(), e = code.end();
430       i != e; ++i) {
431    BasicBlock *BB = *i;
432
433    // rewrite the terminator of the original BasicBlock
434    Instruction *term = BB->getTerminator();
435    if (BranchInst *brInst = dyn_cast<BranchInst>(term)) {
436
437      // Restore values just before we exit
438      // FIXME: Use a GetElementPtr to bunch the outputs in a struct
439      for (unsigned outIdx = 0, outE = outputs.size(); outIdx != outE; ++outIdx)
440      {
441        new StoreInst(outputs[outIdx],
442                      getFunctionArg(newFunction, outIdx),
443                      brInst);
444      }
445
446      // Rewrite branches into exists which return a value based on which
447      // exit we take from this function
448      if (brInst->isUnconditional()) {
449        if (!contains(code, brInst->getSuccessor(0))) {
450          ConstantUInt *brVal = ConstantUInt::get(Type::UShortTy, switchVal);
451          ReturnInst *newRet = new ReturnInst(brVal);
452          // add a new target to the switch
453          switchInst->addCase(brVal, brInst->getSuccessor(0));
454          ++switchVal;
455          // rewrite the branch with a return
456          BasicBlock::iterator ii(brInst);
457          ReplaceInstWithInst(BB->getInstList(), ii, newRet);
458          delete brInst;
459        }
460      } else {
461        // Replace the conditional branch to branch
462        // to two new blocks, each of which returns a different code.
463        for (unsigned idx = 0; idx < 2; ++idx) {
464          BasicBlock *oldTarget = brInst->getSuccessor(idx);
465          if (!contains(code, oldTarget)) {
466            // add a new basic block which returns the appropriate value
467            BasicBlock *newTarget = new BasicBlock("newTarget", newFunction);
468            ConstantUInt *brVal = ConstantUInt::get(Type::UShortTy, switchVal);
469            ReturnInst *newRet = new ReturnInst(brVal);
470            newTarget->getInstList().push_back(newRet);
471            // rewrite the original branch instruction with this new target
472            brInst->setSuccessor(idx, newTarget);
473            // the switch statement knows what to do with this value
474            switchInst->addCase(brVal, oldTarget);
475            ++switchVal;
476          }
477        }
478      }
479    } else if (ReturnInst *retTerm = dyn_cast<ReturnInst>(term)) {
480      assert(0 && "Cannot handle return instructions just yet.");
481      // FIXME: what if the terminator is a return!??!
482      // Need to rewrite: add new basic block, move the return there
483      // treat the original as an unconditional branch to that basicblock
484    } else if (SwitchInst *swTerm = dyn_cast<SwitchInst>(term)) {
485      assert(0 && "Cannot handle switch instructions just yet.");
486    } else if (InvokeInst *invInst = dyn_cast<InvokeInst>(term)) {
487      assert(0 && "Cannot handle invoke instructions just yet.");
488    } else {
489      assert(0 && "Unrecognized terminator, or badly-formed BasicBlock.");
490    }
491  }
492}
493
494
495/// ExtractRegion - Removes a loop from a function, replaces it with a call to
496/// new function. Returns pointer to the new function.
497///
498/// algorithm:
499///
500/// find inputs and outputs for the region
501///
502/// for inputs: add to function as args, map input instr* to arg#
503/// for outputs: add allocas for scalars,
504///             add to func as args, map output instr* to arg#
505///
506/// rewrite func to use argument #s instead of instr*
507///
508/// for each scalar output in the function: at every exit, store intermediate
509/// computed result back into memory.
510///
511Function *CodeExtractor::ExtractCodeRegion(const std::vector<BasicBlock*> &code)
512{
513  // 1) Find inputs, outputs
514  // 2) Construct new function
515  //  * Add allocas for defs, pass as args by reference
516  //  * Pass in uses as args
517  // 3) Move code region, add call instr to func
518  //
519
520  Values inputs, outputs;
521
522  // Assumption: this is a single-entry code region, and the header is the first
523  // block in the region. FIXME: is this true for a list of blocks from a
524  // natural function?
525  BasicBlock *header = code[0];
526  Function *oldFunction = header->getParent();
527  Module *module = oldFunction->getParent();
528
529  // This takes place of the original loop
530  BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction);
531
532  // The new function needs a root node because other nodes can branch to the
533  // head of the loop, and the root cannot have predecessors
534  BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot");
535  newFuncRoot->getInstList().push_back(new BranchInst(header));
536
537  // Find inputs to, outputs from the code region
538  //
539  // If one of the inputs is coming from a different basic block and it's in a
540  // phi node, we need to rewrite the phi node:
541  //
542  // * All the inputs which involve basic blocks OUTSIDE of this region go into
543  //   a NEW phi node that takes care of finding which value really came in.
544  //   The result of this phi is passed to the function as an argument.
545  //
546  // * All the other phi values stay.
547  //
548  // FIXME: PHI nodes' incoming blocks aren't being rewritten to accomodate for
549  // blocks moving to a new function.
550  // SOLUTION: move Phi nodes out of the loop header into the codeReplacer, pass
551  // the values as parameters to the function
552  findInputsOutputs(code, inputs, outputs, codeReplacer, newFuncRoot);
553
554  // Step 2: Construct new function based on inputs/outputs,
555  // Add allocas for all defs
556  Function *newFunction = constructFunction(inputs, outputs, newFuncRoot,
557                                            codeReplacer, code,
558                                            oldFunction, module);
559
560  rewritePhiNodes(newFunction, newFuncRoot);
561
562  emitCallAndSwitchStatement(newFunction, codeReplacer, code, inputs, outputs);
563
564  moveCodeToFunction(code, newFunction);
565
566  return newFunction;
567}
568
569/// ExtractBasicBlock - slurp a natural loop into a brand new function
570///
571Function* llvm::ExtractLoop(Loop *L) {
572  CodeExtractor CE;
573  return CE.ExtractCodeRegion(L->getBlocks());
574}
575
576/// ExtractBasicBlock - slurp a basic block into a brand new function
577///
578Function* llvm::ExtractBasicBlock(BasicBlock *BB) {
579  CodeExtractor CE;
580  std::vector<BasicBlock*> Blocks;
581  Blocks.push_back(BB);
582  return CE.ExtractCodeRegion(Blocks);
583}
584