SubtargetEmitter.cpp revision 4c5e43da7792f75567b693105cc53e3f1992ad98
1//===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits subtarget enumerations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenTarget.h"
15#include "CodeGenSchedule.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/MC/MCInstrItineraries.h"
19#include "llvm/Support/Debug.h"
20#include "llvm/Support/Format.h"
21#include "llvm/TableGen/Error.h"
22#include "llvm/TableGen/Record.h"
23#include "llvm/TableGen/TableGenBackend.h"
24#include <algorithm>
25#include <map>
26#include <string>
27#include <vector>
28using namespace llvm;
29
30#define DEBUG_TYPE "subtarget-emitter"
31
32namespace {
33class SubtargetEmitter {
34  // Each processor has a SchedClassDesc table with an entry for each SchedClass.
35  // The SchedClassDesc table indexes into a global write resource table, write
36  // latency table, and read advance table.
37  struct SchedClassTables {
38    std::vector<std::vector<MCSchedClassDesc> > ProcSchedClasses;
39    std::vector<MCWriteProcResEntry> WriteProcResources;
40    std::vector<MCWriteLatencyEntry> WriteLatencies;
41    std::vector<std::string> WriterNames;
42    std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
43
44    // Reserve an invalid entry at index 0
45    SchedClassTables() {
46      ProcSchedClasses.resize(1);
47      WriteProcResources.resize(1);
48      WriteLatencies.resize(1);
49      WriterNames.push_back("InvalidWrite");
50      ReadAdvanceEntries.resize(1);
51    }
52  };
53
54  struct LessWriteProcResources {
55    bool operator()(const MCWriteProcResEntry &LHS,
56                    const MCWriteProcResEntry &RHS) {
57      return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
58    }
59  };
60
61  RecordKeeper &Records;
62  CodeGenSchedModels &SchedModels;
63  std::string Target;
64
65  void Enumeration(raw_ostream &OS, const char *ClassName, bool isBits);
66  unsigned FeatureKeyValues(raw_ostream &OS);
67  unsigned CPUKeyValues(raw_ostream &OS);
68  void FormItineraryStageString(const std::string &Names,
69                                Record *ItinData, std::string &ItinString,
70                                unsigned &NStages);
71  void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
72                                       unsigned &NOperandCycles);
73  void FormItineraryBypassString(const std::string &Names,
74                                 Record *ItinData,
75                                 std::string &ItinString, unsigned NOperandCycles);
76  void EmitStageAndOperandCycleData(raw_ostream &OS,
77                                    std::vector<std::vector<InstrItinerary> >
78                                      &ProcItinLists);
79  void EmitItineraries(raw_ostream &OS,
80                       std::vector<std::vector<InstrItinerary> >
81                         &ProcItinLists);
82  void EmitProcessorProp(raw_ostream &OS, const Record *R, const char *Name,
83                         char Separator);
84  void EmitProcessorResources(const CodeGenProcModel &ProcModel,
85                              raw_ostream &OS);
86  Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
87                             const CodeGenProcModel &ProcModel);
88  Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
89                          const CodeGenProcModel &ProcModel);
90  void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles,
91                           const CodeGenProcModel &ProcModel);
92  void GenSchedClassTables(const CodeGenProcModel &ProcModel,
93                           SchedClassTables &SchedTables);
94  void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
95  void EmitProcessorModels(raw_ostream &OS);
96  void EmitProcessorLookup(raw_ostream &OS);
97  void EmitSchedModelHelpers(std::string ClassName, raw_ostream &OS);
98  void EmitSchedModel(raw_ostream &OS);
99  void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures,
100                             unsigned NumProcs);
101
102public:
103  SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT):
104    Records(R), SchedModels(TGT.getSchedModels()), Target(TGT.getName()) {}
105
106  void run(raw_ostream &o);
107
108};
109} // End anonymous namespace
110
111//
112// Enumeration - Emit the specified class as an enumeration.
113//
114void SubtargetEmitter::Enumeration(raw_ostream &OS,
115                                   const char *ClassName,
116                                   bool isBits) {
117  // Get all records of class and sort
118  std::vector<Record*> DefList = Records.getAllDerivedDefinitions(ClassName);
119  std::sort(DefList.begin(), DefList.end(), LessRecord());
120
121  unsigned N = DefList.size();
122  if (N == 0)
123    return;
124  if (N > 64) {
125    errs() << "Too many (> 64) subtarget features!\n";
126    exit(1);
127  }
128
129  OS << "namespace " << Target << " {\n";
130
131  // Open enumeration. Use a 64-bit underlying type.
132  OS << "enum : uint64_t {\n";
133
134  // For each record
135  for (unsigned i = 0; i < N;) {
136    // Next record
137    Record *Def = DefList[i];
138
139    // Get and emit name
140    OS << "  " << Def->getName();
141
142    // If bit flags then emit expression (1 << i)
143    if (isBits)  OS << " = " << " 1ULL << " << i;
144
145    // Depending on 'if more in the list' emit comma
146    if (++i < N) OS << ",";
147
148    OS << "\n";
149  }
150
151  // Close enumeration
152  OS << "};\n";
153
154  OS << "}\n";
155}
156
157//
158// FeatureKeyValues - Emit data of all the subtarget features.  Used by the
159// command line.
160//
161unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) {
162  // Gather and sort all the features
163  std::vector<Record*> FeatureList =
164                           Records.getAllDerivedDefinitions("SubtargetFeature");
165
166  if (FeatureList.empty())
167    return 0;
168
169  std::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName());
170
171  // Begin feature table
172  OS << "// Sorted (by key) array of values for CPU features.\n"
173     << "extern const llvm::SubtargetFeatureKV " << Target
174     << "FeatureKV[] = {\n";
175
176  // For each feature
177  unsigned NumFeatures = 0;
178  for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) {
179    // Next feature
180    Record *Feature = FeatureList[i];
181
182    const std::string &Name = Feature->getName();
183    const std::string &CommandLineName = Feature->getValueAsString("Name");
184    const std::string &Desc = Feature->getValueAsString("Desc");
185
186    if (CommandLineName.empty()) continue;
187
188    // Emit as { "feature", "description", featureEnum, i1 | i2 | ... | in }
189    OS << "  { "
190       << "\"" << CommandLineName << "\", "
191       << "\"" << Desc << "\", "
192       << Target << "::" << Name << ", ";
193
194    const std::vector<Record*> &ImpliesList =
195      Feature->getValueAsListOfDefs("Implies");
196
197    if (ImpliesList.empty()) {
198      OS << "0ULL";
199    } else {
200      for (unsigned j = 0, M = ImpliesList.size(); j < M;) {
201        OS << Target << "::" << ImpliesList[j]->getName();
202        if (++j < M) OS << " | ";
203      }
204    }
205
206    OS << " }";
207    ++NumFeatures;
208
209    // Depending on 'if more in the list' emit comma
210    if ((i + 1) < N) OS << ",";
211
212    OS << "\n";
213  }
214
215  // End feature table
216  OS << "};\n";
217
218  return NumFeatures;
219}
220
221//
222// CPUKeyValues - Emit data of all the subtarget processors.  Used by command
223// line.
224//
225unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) {
226  // Gather and sort processor information
227  std::vector<Record*> ProcessorList =
228                          Records.getAllDerivedDefinitions("Processor");
229  std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
230
231  // Begin processor table
232  OS << "// Sorted (by key) array of values for CPU subtype.\n"
233     << "extern const llvm::SubtargetFeatureKV " << Target
234     << "SubTypeKV[] = {\n";
235
236  // For each processor
237  for (unsigned i = 0, N = ProcessorList.size(); i < N;) {
238    // Next processor
239    Record *Processor = ProcessorList[i];
240
241    const std::string &Name = Processor->getValueAsString("Name");
242    const std::vector<Record*> &FeatureList =
243      Processor->getValueAsListOfDefs("Features");
244
245    // Emit as { "cpu", "description", f1 | f2 | ... fn },
246    OS << "  { "
247       << "\"" << Name << "\", "
248       << "\"Select the " << Name << " processor\", ";
249
250    if (FeatureList.empty()) {
251      OS << "0ULL";
252    } else {
253      for (unsigned j = 0, M = FeatureList.size(); j < M;) {
254        OS << Target << "::" << FeatureList[j]->getName();
255        if (++j < M) OS << " | ";
256      }
257    }
258
259    // The "0" is for the "implies" section of this data structure.
260    OS << ", 0ULL }";
261
262    // Depending on 'if more in the list' emit comma
263    if (++i < N) OS << ",";
264
265    OS << "\n";
266  }
267
268  // End processor table
269  OS << "};\n";
270
271  return ProcessorList.size();
272}
273
274//
275// FormItineraryStageString - Compose a string containing the stage
276// data initialization for the specified itinerary.  N is the number
277// of stages.
278//
279void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
280                                                Record *ItinData,
281                                                std::string &ItinString,
282                                                unsigned &NStages) {
283  // Get states list
284  const std::vector<Record*> &StageList =
285    ItinData->getValueAsListOfDefs("Stages");
286
287  // For each stage
288  unsigned N = NStages = StageList.size();
289  for (unsigned i = 0; i < N;) {
290    // Next stage
291    const Record *Stage = StageList[i];
292
293    // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
294    int Cycles = Stage->getValueAsInt("Cycles");
295    ItinString += "  { " + itostr(Cycles) + ", ";
296
297    // Get unit list
298    const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units");
299
300    // For each unit
301    for (unsigned j = 0, M = UnitList.size(); j < M;) {
302      // Add name and bitwise or
303      ItinString += Name + "FU::" + UnitList[j]->getName();
304      if (++j < M) ItinString += " | ";
305    }
306
307    int TimeInc = Stage->getValueAsInt("TimeInc");
308    ItinString += ", " + itostr(TimeInc);
309
310    int Kind = Stage->getValueAsInt("Kind");
311    ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
312
313    // Close off stage
314    ItinString += " }";
315    if (++i < N) ItinString += ", ";
316  }
317}
318
319//
320// FormItineraryOperandCycleString - Compose a string containing the
321// operand cycle initialization for the specified itinerary.  N is the
322// number of operands that has cycles specified.
323//
324void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
325                         std::string &ItinString, unsigned &NOperandCycles) {
326  // Get operand cycle list
327  const std::vector<int64_t> &OperandCycleList =
328    ItinData->getValueAsListOfInts("OperandCycles");
329
330  // For each operand cycle
331  unsigned N = NOperandCycles = OperandCycleList.size();
332  for (unsigned i = 0; i < N;) {
333    // Next operand cycle
334    const int OCycle = OperandCycleList[i];
335
336    ItinString += "  " + itostr(OCycle);
337    if (++i < N) ItinString += ", ";
338  }
339}
340
341void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
342                                                 Record *ItinData,
343                                                 std::string &ItinString,
344                                                 unsigned NOperandCycles) {
345  const std::vector<Record*> &BypassList =
346    ItinData->getValueAsListOfDefs("Bypasses");
347  unsigned N = BypassList.size();
348  unsigned i = 0;
349  for (; i < N;) {
350    ItinString += Name + "Bypass::" + BypassList[i]->getName();
351    if (++i < NOperandCycles) ItinString += ", ";
352  }
353  for (; i < NOperandCycles;) {
354    ItinString += " 0";
355    if (++i < NOperandCycles) ItinString += ", ";
356  }
357}
358
359//
360// EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
361// cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
362// by CodeGenSchedClass::Index.
363//
364void SubtargetEmitter::
365EmitStageAndOperandCycleData(raw_ostream &OS,
366                             std::vector<std::vector<InstrItinerary> >
367                               &ProcItinLists) {
368
369  // Multiple processor models may share an itinerary record. Emit it once.
370  SmallPtrSet<Record*, 8> ItinsDefSet;
371
372  // Emit functional units for all the itineraries.
373  for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
374         PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
375
376    if (!ItinsDefSet.insert(PI->ItinsDef).second)
377      continue;
378
379    std::vector<Record*> FUs = PI->ItinsDef->getValueAsListOfDefs("FU");
380    if (FUs.empty())
381      continue;
382
383    const std::string &Name = PI->ItinsDef->getName();
384    OS << "\n// Functional units for \"" << Name << "\"\n"
385       << "namespace " << Name << "FU {\n";
386
387    for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
388      OS << "  const unsigned " << FUs[j]->getName()
389         << " = 1 << " << j << ";\n";
390
391    OS << "}\n";
392
393    std::vector<Record*> BPs = PI->ItinsDef->getValueAsListOfDefs("BP");
394    if (!BPs.empty()) {
395      OS << "\n// Pipeline forwarding pathes for itineraries \"" << Name
396         << "\"\n" << "namespace " << Name << "Bypass {\n";
397
398      OS << "  const unsigned NoBypass = 0;\n";
399      for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
400        OS << "  const unsigned " << BPs[j]->getName()
401           << " = 1 << " << j << ";\n";
402
403      OS << "}\n";
404    }
405  }
406
407  // Begin stages table
408  std::string StageTable = "\nextern const llvm::InstrStage " + Target +
409                           "Stages[] = {\n";
410  StageTable += "  { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
411
412  // Begin operand cycle table
413  std::string OperandCycleTable = "extern const unsigned " + Target +
414    "OperandCycles[] = {\n";
415  OperandCycleTable += "  0, // No itinerary\n";
416
417  // Begin pipeline bypass table
418  std::string BypassTable = "extern const unsigned " + Target +
419    "ForwardingPaths[] = {\n";
420  BypassTable += " 0, // No itinerary\n";
421
422  // For each Itinerary across all processors, add a unique entry to the stages,
423  // operand cycles, and pipepine bypess tables. Then add the new Itinerary
424  // object with computed offsets to the ProcItinLists result.
425  unsigned StageCount = 1, OperandCycleCount = 1;
426  std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
427  for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
428         PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
429    const CodeGenProcModel &ProcModel = *PI;
430
431    // Add process itinerary to the list.
432    ProcItinLists.resize(ProcItinLists.size()+1);
433
434    // If this processor defines no itineraries, then leave the itinerary list
435    // empty.
436    std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
437    if (!ProcModel.hasItineraries())
438      continue;
439
440    const std::string &Name = ProcModel.ItinsDef->getName();
441
442    ItinList.resize(SchedModels.numInstrSchedClasses());
443    assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
444
445    for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
446         SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
447
448      // Next itinerary data
449      Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
450
451      // Get string and stage count
452      std::string ItinStageString;
453      unsigned NStages = 0;
454      if (ItinData)
455        FormItineraryStageString(Name, ItinData, ItinStageString, NStages);
456
457      // Get string and operand cycle count
458      std::string ItinOperandCycleString;
459      unsigned NOperandCycles = 0;
460      std::string ItinBypassString;
461      if (ItinData) {
462        FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
463                                        NOperandCycles);
464
465        FormItineraryBypassString(Name, ItinData, ItinBypassString,
466                                  NOperandCycles);
467      }
468
469      // Check to see if stage already exists and create if it doesn't
470      unsigned FindStage = 0;
471      if (NStages > 0) {
472        FindStage = ItinStageMap[ItinStageString];
473        if (FindStage == 0) {
474          // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
475          StageTable += ItinStageString + ", // " + itostr(StageCount);
476          if (NStages > 1)
477            StageTable += "-" + itostr(StageCount + NStages - 1);
478          StageTable += "\n";
479          // Record Itin class number.
480          ItinStageMap[ItinStageString] = FindStage = StageCount;
481          StageCount += NStages;
482        }
483      }
484
485      // Check to see if operand cycle already exists and create if it doesn't
486      unsigned FindOperandCycle = 0;
487      if (NOperandCycles > 0) {
488        std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
489        FindOperandCycle = ItinOperandMap[ItinOperandString];
490        if (FindOperandCycle == 0) {
491          // Emit as  cycle, // index
492          OperandCycleTable += ItinOperandCycleString + ", // ";
493          std::string OperandIdxComment = itostr(OperandCycleCount);
494          if (NOperandCycles > 1)
495            OperandIdxComment += "-"
496              + itostr(OperandCycleCount + NOperandCycles - 1);
497          OperandCycleTable += OperandIdxComment + "\n";
498          // Record Itin class number.
499          ItinOperandMap[ItinOperandCycleString] =
500            FindOperandCycle = OperandCycleCount;
501          // Emit as bypass, // index
502          BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
503          OperandCycleCount += NOperandCycles;
504        }
505      }
506
507      // Set up itinerary as location and location + stage count
508      int NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
509      InstrItinerary Intinerary = { NumUOps, FindStage, FindStage + NStages,
510                                    FindOperandCycle,
511                                    FindOperandCycle + NOperandCycles};
512
513      // Inject - empty slots will be 0, 0
514      ItinList[SchedClassIdx] = Intinerary;
515    }
516  }
517
518  // Closing stage
519  StageTable += "  { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
520  StageTable += "};\n";
521
522  // Closing operand cycles
523  OperandCycleTable += "  0 // End operand cycles\n";
524  OperandCycleTable += "};\n";
525
526  BypassTable += " 0 // End bypass tables\n";
527  BypassTable += "};\n";
528
529  // Emit tables.
530  OS << StageTable;
531  OS << OperandCycleTable;
532  OS << BypassTable;
533}
534
535//
536// EmitProcessorData - Generate data for processor itineraries that were
537// computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
538// Itineraries for each processor. The Itinerary lists are indexed on
539// CodeGenSchedClass::Index.
540//
541void SubtargetEmitter::
542EmitItineraries(raw_ostream &OS,
543                std::vector<std::vector<InstrItinerary> > &ProcItinLists) {
544
545  // Multiple processor models may share an itinerary record. Emit it once.
546  SmallPtrSet<Record*, 8> ItinsDefSet;
547
548  // For each processor's machine model
549  std::vector<std::vector<InstrItinerary> >::iterator
550      ProcItinListsIter = ProcItinLists.begin();
551  for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
552         PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
553
554    Record *ItinsDef = PI->ItinsDef;
555    if (!ItinsDefSet.insert(ItinsDef).second)
556      continue;
557
558    // Get processor itinerary name
559    const std::string &Name = ItinsDef->getName();
560
561    // Get the itinerary list for the processor.
562    assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
563    std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
564
565    // Empty itineraries aren't referenced anywhere in the tablegen output
566    // so don't emit them.
567    if (ItinList.empty())
568      continue;
569
570    OS << "\n";
571    OS << "static const llvm::InstrItinerary ";
572
573    // Begin processor itinerary table
574    OS << Name << "[] = {\n";
575
576    // For each itinerary class in CodeGenSchedClass::Index order.
577    for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
578      InstrItinerary &Intinerary = ItinList[j];
579
580      // Emit Itinerary in the form of
581      // { firstStage, lastStage, firstCycle, lastCycle } // index
582      OS << "  { " <<
583        Intinerary.NumMicroOps << ", " <<
584        Intinerary.FirstStage << ", " <<
585        Intinerary.LastStage << ", " <<
586        Intinerary.FirstOperandCycle << ", " <<
587        Intinerary.LastOperandCycle << " }" <<
588        ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
589    }
590    // End processor itinerary table
591    OS << "  { 0, ~0U, ~0U, ~0U, ~0U } // end marker\n";
592    OS << "};\n";
593  }
594}
595
596// Emit either the value defined in the TableGen Record, or the default
597// value defined in the C++ header. The Record is null if the processor does not
598// define a model.
599void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
600                                         const char *Name, char Separator) {
601  OS << "  ";
602  int V = R ? R->getValueAsInt(Name) : -1;
603  if (V >= 0)
604    OS << V << Separator << " // " << Name;
605  else
606    OS << "MCSchedModel::Default" << Name << Separator;
607  OS << '\n';
608}
609
610void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
611                                              raw_ostream &OS) {
612  char Sep = ProcModel.ProcResourceDefs.empty() ? ' ' : ',';
613
614  OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered}\n";
615  OS << "static const llvm::MCProcResourceDesc "
616     << ProcModel.ModelName << "ProcResources" << "[] = {\n"
617     << "  {DBGFIELD(\"InvalidUnit\")     0, 0, 0}" << Sep << "\n";
618
619  for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
620    Record *PRDef = ProcModel.ProcResourceDefs[i];
621
622    Record *SuperDef = nullptr;
623    unsigned SuperIdx = 0;
624    unsigned NumUnits = 0;
625    int BufferSize = PRDef->getValueAsInt("BufferSize");
626    if (PRDef->isSubClassOf("ProcResGroup")) {
627      RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
628      for (RecIter RUI = ResUnits.begin(), RUE = ResUnits.end();
629           RUI != RUE; ++RUI) {
630        NumUnits += (*RUI)->getValueAsInt("NumUnits");
631      }
632    }
633    else {
634      // Find the SuperIdx
635      if (PRDef->getValueInit("Super")->isComplete()) {
636        SuperDef = SchedModels.findProcResUnits(
637          PRDef->getValueAsDef("Super"), ProcModel);
638        SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
639      }
640      NumUnits = PRDef->getValueAsInt("NumUnits");
641    }
642    // Emit the ProcResourceDesc
643    if (i+1 == e)
644      Sep = ' ';
645    OS << "  {DBGFIELD(\"" << PRDef->getName() << "\") ";
646    if (PRDef->getName().size() < 15)
647      OS.indent(15 - PRDef->getName().size());
648    OS << NumUnits << ", " << SuperIdx << ", "
649       << BufferSize << "}" << Sep << " // #" << i+1;
650    if (SuperDef)
651      OS << ", Super=" << SuperDef->getName();
652    OS << "\n";
653  }
654  OS << "};\n";
655}
656
657// Find the WriteRes Record that defines processor resources for this
658// SchedWrite.
659Record *SubtargetEmitter::FindWriteResources(
660  const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
661
662  // Check if the SchedWrite is already subtarget-specific and directly
663  // specifies a set of processor resources.
664  if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
665    return SchedWrite.TheDef;
666
667  Record *AliasDef = nullptr;
668  for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end();
669       AI != AE; ++AI) {
670    const CodeGenSchedRW &AliasRW =
671      SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
672    if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
673      Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
674      if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
675        continue;
676    }
677    if (AliasDef)
678      PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
679                    "defined for processor " + ProcModel.ModelName +
680                    " Ensure only one SchedAlias exists per RW.");
681    AliasDef = AliasRW.TheDef;
682  }
683  if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
684    return AliasDef;
685
686  // Check this processor's list of write resources.
687  Record *ResDef = nullptr;
688  for (RecIter WRI = ProcModel.WriteResDefs.begin(),
689         WRE = ProcModel.WriteResDefs.end(); WRI != WRE; ++WRI) {
690    if (!(*WRI)->isSubClassOf("WriteRes"))
691      continue;
692    if (AliasDef == (*WRI)->getValueAsDef("WriteType")
693        || SchedWrite.TheDef == (*WRI)->getValueAsDef("WriteType")) {
694      if (ResDef) {
695        PrintFatalError((*WRI)->getLoc(), "Resources are defined for both "
696                      "SchedWrite and its alias on processor " +
697                      ProcModel.ModelName);
698      }
699      ResDef = *WRI;
700    }
701  }
702  // TODO: If ProcModel has a base model (previous generation processor),
703  // then call FindWriteResources recursively with that model here.
704  if (!ResDef) {
705    PrintFatalError(ProcModel.ModelDef->getLoc(),
706                  std::string("Processor does not define resources for ")
707                  + SchedWrite.TheDef->getName());
708  }
709  return ResDef;
710}
711
712/// Find the ReadAdvance record for the given SchedRead on this processor or
713/// return NULL.
714Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
715                                          const CodeGenProcModel &ProcModel) {
716  // Check for SchedReads that directly specify a ReadAdvance.
717  if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
718    return SchedRead.TheDef;
719
720  // Check this processor's list of aliases for SchedRead.
721  Record *AliasDef = nullptr;
722  for (RecIter AI = SchedRead.Aliases.begin(), AE = SchedRead.Aliases.end();
723       AI != AE; ++AI) {
724    const CodeGenSchedRW &AliasRW =
725      SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
726    if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
727      Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
728      if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
729        continue;
730    }
731    if (AliasDef)
732      PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
733                    "defined for processor " + ProcModel.ModelName +
734                    " Ensure only one SchedAlias exists per RW.");
735    AliasDef = AliasRW.TheDef;
736  }
737  if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
738    return AliasDef;
739
740  // Check this processor's ReadAdvanceList.
741  Record *ResDef = nullptr;
742  for (RecIter RAI = ProcModel.ReadAdvanceDefs.begin(),
743         RAE = ProcModel.ReadAdvanceDefs.end(); RAI != RAE; ++RAI) {
744    if (!(*RAI)->isSubClassOf("ReadAdvance"))
745      continue;
746    if (AliasDef == (*RAI)->getValueAsDef("ReadType")
747        || SchedRead.TheDef == (*RAI)->getValueAsDef("ReadType")) {
748      if (ResDef) {
749        PrintFatalError((*RAI)->getLoc(), "Resources are defined for both "
750                      "SchedRead and its alias on processor " +
751                      ProcModel.ModelName);
752      }
753      ResDef = *RAI;
754    }
755  }
756  // TODO: If ProcModel has a base model (previous generation processor),
757  // then call FindReadAdvance recursively with that model here.
758  if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
759    PrintFatalError(ProcModel.ModelDef->getLoc(),
760                  std::string("Processor does not define resources for ")
761                  + SchedRead.TheDef->getName());
762  }
763  return ResDef;
764}
765
766// Expand an explicit list of processor resources into a full list of implied
767// resource groups and super resources that cover them.
768void SubtargetEmitter::ExpandProcResources(RecVec &PRVec,
769                                           std::vector<int64_t> &Cycles,
770                                           const CodeGenProcModel &PM) {
771  // Default to 1 resource cycle.
772  Cycles.resize(PRVec.size(), 1);
773  for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
774    Record *PRDef = PRVec[i];
775    RecVec SubResources;
776    if (PRDef->isSubClassOf("ProcResGroup"))
777      SubResources = PRDef->getValueAsListOfDefs("Resources");
778    else {
779      SubResources.push_back(PRDef);
780      PRDef = SchedModels.findProcResUnits(PRVec[i], PM);
781      for (Record *SubDef = PRDef;
782           SubDef->getValueInit("Super")->isComplete();) {
783        if (SubDef->isSubClassOf("ProcResGroup")) {
784          // Disallow this for simplicitly.
785          PrintFatalError(SubDef->getLoc(), "Processor resource group "
786                          " cannot be a super resources.");
787        }
788        Record *SuperDef =
789          SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM);
790        PRVec.push_back(SuperDef);
791        Cycles.push_back(Cycles[i]);
792        SubDef = SuperDef;
793      }
794    }
795    for (RecIter PRI = PM.ProcResourceDefs.begin(),
796           PRE = PM.ProcResourceDefs.end();
797         PRI != PRE; ++PRI) {
798      if (*PRI == PRDef || !(*PRI)->isSubClassOf("ProcResGroup"))
799        continue;
800      RecVec SuperResources = (*PRI)->getValueAsListOfDefs("Resources");
801      RecIter SubI = SubResources.begin(), SubE = SubResources.end();
802      for( ; SubI != SubE; ++SubI) {
803        if (std::find(SuperResources.begin(), SuperResources.end(), *SubI)
804            == SuperResources.end()) {
805          break;
806        }
807      }
808      if (SubI == SubE) {
809        PRVec.push_back(*PRI);
810        Cycles.push_back(Cycles[i]);
811      }
812    }
813  }
814}
815
816// Generate the SchedClass table for this processor and update global
817// tables. Must be called for each processor in order.
818void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
819                                           SchedClassTables &SchedTables) {
820  SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
821  if (!ProcModel.hasInstrSchedModel())
822    return;
823
824  std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
825  for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(),
826         SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) {
827    DEBUG(SCI->dump(&SchedModels));
828
829    SCTab.resize(SCTab.size() + 1);
830    MCSchedClassDesc &SCDesc = SCTab.back();
831    // SCDesc.Name is guarded by NDEBUG
832    SCDesc.NumMicroOps = 0;
833    SCDesc.BeginGroup = false;
834    SCDesc.EndGroup = false;
835    SCDesc.WriteProcResIdx = 0;
836    SCDesc.WriteLatencyIdx = 0;
837    SCDesc.ReadAdvanceIdx = 0;
838
839    // A Variant SchedClass has no resources of its own.
840    bool HasVariants = false;
841    for (std::vector<CodeGenSchedTransition>::const_iterator
842           TI = SCI->Transitions.begin(), TE = SCI->Transitions.end();
843         TI != TE; ++TI) {
844      if (TI->ProcIndices[0] == 0) {
845        HasVariants = true;
846        break;
847      }
848      IdxIter PIPos = std::find(TI->ProcIndices.begin(),
849                                TI->ProcIndices.end(), ProcModel.Index);
850      if (PIPos != TI->ProcIndices.end()) {
851        HasVariants = true;
852        break;
853      }
854    }
855    if (HasVariants) {
856      SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
857      continue;
858    }
859
860    // Determine if the SchedClass is actually reachable on this processor. If
861    // not don't try to locate the processor resources, it will fail.
862    // If ProcIndices contains 0, this class applies to all processors.
863    assert(!SCI->ProcIndices.empty() && "expect at least one procidx");
864    if (SCI->ProcIndices[0] != 0) {
865      IdxIter PIPos = std::find(SCI->ProcIndices.begin(),
866                                SCI->ProcIndices.end(), ProcModel.Index);
867      if (PIPos == SCI->ProcIndices.end())
868        continue;
869    }
870    IdxVec Writes = SCI->Writes;
871    IdxVec Reads = SCI->Reads;
872    if (!SCI->InstRWs.empty()) {
873      // This class has a default ReadWrite list which can be overriden by
874      // InstRW definitions.
875      Record *RWDef = nullptr;
876      for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end();
877           RWI != RWE; ++RWI) {
878        Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel");
879        if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
880          RWDef = *RWI;
881          break;
882        }
883      }
884      if (RWDef) {
885        Writes.clear();
886        Reads.clear();
887        SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
888                            Writes, Reads);
889      }
890    }
891    if (Writes.empty()) {
892      // Check this processor's itinerary class resources.
893      for (RecIter II = ProcModel.ItinRWDefs.begin(),
894             IE = ProcModel.ItinRWDefs.end(); II != IE; ++II) {
895        RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
896        if (std::find(Matched.begin(), Matched.end(), SCI->ItinClassDef)
897            != Matched.end()) {
898          SchedModels.findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"),
899                              Writes, Reads);
900          break;
901        }
902      }
903      if (Writes.empty()) {
904        DEBUG(dbgs() << ProcModel.ModelName
905              << " does not have resources for class " << SCI->Name << '\n');
906      }
907    }
908    // Sum resources across all operand writes.
909    std::vector<MCWriteProcResEntry> WriteProcResources;
910    std::vector<MCWriteLatencyEntry> WriteLatencies;
911    std::vector<std::string> WriterNames;
912    std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
913    for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) {
914      IdxVec WriteSeq;
915      SchedModels.expandRWSeqForProc(*WI, WriteSeq, /*IsRead=*/false,
916                                     ProcModel);
917
918      // For each operand, create a latency entry.
919      MCWriteLatencyEntry WLEntry;
920      WLEntry.Cycles = 0;
921      unsigned WriteID = WriteSeq.back();
922      WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
923      // If this Write is not referenced by a ReadAdvance, don't distinguish it
924      // from other WriteLatency entries.
925      if (!SchedModels.hasReadOfWrite(
926            SchedModels.getSchedWrite(WriteID).TheDef)) {
927        WriteID = 0;
928      }
929      WLEntry.WriteResourceID = WriteID;
930
931      for (IdxIter WSI = WriteSeq.begin(), WSE = WriteSeq.end();
932           WSI != WSE; ++WSI) {
933
934        Record *WriteRes =
935          FindWriteResources(SchedModels.getSchedWrite(*WSI), ProcModel);
936
937        // Mark the parent class as invalid for unsupported write types.
938        if (WriteRes->getValueAsBit("Unsupported")) {
939          SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
940          break;
941        }
942        WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
943        SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
944        SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
945        SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
946
947        // Create an entry for each ProcResource listed in WriteRes.
948        RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
949        std::vector<int64_t> Cycles =
950          WriteRes->getValueAsListOfInts("ResourceCycles");
951
952        ExpandProcResources(PRVec, Cycles, ProcModel);
953
954        for (unsigned PRIdx = 0, PREnd = PRVec.size();
955             PRIdx != PREnd; ++PRIdx) {
956          MCWriteProcResEntry WPREntry;
957          WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
958          assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
959          WPREntry.Cycles = Cycles[PRIdx];
960          // If this resource is already used in this sequence, add the current
961          // entry's cycles so that the same resource appears to be used
962          // serially, rather than multiple parallel uses. This is important for
963          // in-order machine where the resource consumption is a hazard.
964          unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
965          for( ; WPRIdx != WPREnd; ++WPRIdx) {
966            if (WriteProcResources[WPRIdx].ProcResourceIdx
967                == WPREntry.ProcResourceIdx) {
968              WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles;
969              break;
970            }
971          }
972          if (WPRIdx == WPREnd)
973            WriteProcResources.push_back(WPREntry);
974        }
975      }
976      WriteLatencies.push_back(WLEntry);
977    }
978    // Create an entry for each operand Read in this SchedClass.
979    // Entries must be sorted first by UseIdx then by WriteResourceID.
980    for (unsigned UseIdx = 0, EndIdx = Reads.size();
981         UseIdx != EndIdx; ++UseIdx) {
982      Record *ReadAdvance =
983        FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
984      if (!ReadAdvance)
985        continue;
986
987      // Mark the parent class as invalid for unsupported write types.
988      if (ReadAdvance->getValueAsBit("Unsupported")) {
989        SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
990        break;
991      }
992      RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
993      IdxVec WriteIDs;
994      if (ValidWrites.empty())
995        WriteIDs.push_back(0);
996      else {
997        for (RecIter VWI = ValidWrites.begin(), VWE = ValidWrites.end();
998             VWI != VWE; ++VWI) {
999          WriteIDs.push_back(SchedModels.getSchedRWIdx(*VWI, /*IsRead=*/false));
1000        }
1001      }
1002      std::sort(WriteIDs.begin(), WriteIDs.end());
1003      for(IdxIter WI = WriteIDs.begin(), WE = WriteIDs.end(); WI != WE; ++WI) {
1004        MCReadAdvanceEntry RAEntry;
1005        RAEntry.UseIdx = UseIdx;
1006        RAEntry.WriteResourceID = *WI;
1007        RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
1008        ReadAdvanceEntries.push_back(RAEntry);
1009      }
1010    }
1011    if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
1012      WriteProcResources.clear();
1013      WriteLatencies.clear();
1014      ReadAdvanceEntries.clear();
1015    }
1016    // Add the information for this SchedClass to the global tables using basic
1017    // compression.
1018    //
1019    // WritePrecRes entries are sorted by ProcResIdx.
1020    std::sort(WriteProcResources.begin(), WriteProcResources.end(),
1021              LessWriteProcResources());
1022
1023    SCDesc.NumWriteProcResEntries = WriteProcResources.size();
1024    std::vector<MCWriteProcResEntry>::iterator WPRPos =
1025      std::search(SchedTables.WriteProcResources.begin(),
1026                  SchedTables.WriteProcResources.end(),
1027                  WriteProcResources.begin(), WriteProcResources.end());
1028    if (WPRPos != SchedTables.WriteProcResources.end())
1029      SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
1030    else {
1031      SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
1032      SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
1033                                            WriteProcResources.end());
1034    }
1035    // Latency entries must remain in operand order.
1036    SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
1037    std::vector<MCWriteLatencyEntry>::iterator WLPos =
1038      std::search(SchedTables.WriteLatencies.begin(),
1039                  SchedTables.WriteLatencies.end(),
1040                  WriteLatencies.begin(), WriteLatencies.end());
1041    if (WLPos != SchedTables.WriteLatencies.end()) {
1042      unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
1043      SCDesc.WriteLatencyIdx = idx;
1044      for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
1045        if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
1046            std::string::npos) {
1047          SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
1048        }
1049    }
1050    else {
1051      SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
1052      SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(),
1053                                        WriteLatencies.begin(),
1054                                        WriteLatencies.end());
1055      SchedTables.WriterNames.insert(SchedTables.WriterNames.end(),
1056                                     WriterNames.begin(), WriterNames.end());
1057    }
1058    // ReadAdvanceEntries must remain in operand order.
1059    SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
1060    std::vector<MCReadAdvanceEntry>::iterator RAPos =
1061      std::search(SchedTables.ReadAdvanceEntries.begin(),
1062                  SchedTables.ReadAdvanceEntries.end(),
1063                  ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
1064    if (RAPos != SchedTables.ReadAdvanceEntries.end())
1065      SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
1066    else {
1067      SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
1068      SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(),
1069                                            ReadAdvanceEntries.end());
1070    }
1071  }
1072}
1073
1074// Emit SchedClass tables for all processors and associated global tables.
1075void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
1076                                            raw_ostream &OS) {
1077  // Emit global WriteProcResTable.
1078  OS << "\n// {ProcResourceIdx, Cycles}\n"
1079     << "extern const llvm::MCWriteProcResEntry "
1080     << Target << "WriteProcResTable[] = {\n"
1081     << "  { 0,  0}, // Invalid\n";
1082  for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
1083       WPRIdx != WPREnd; ++WPRIdx) {
1084    MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
1085    OS << "  {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
1086       << format("%2d", WPREntry.Cycles) << "}";
1087    if (WPRIdx + 1 < WPREnd)
1088      OS << ',';
1089    OS << " // #" << WPRIdx << '\n';
1090  }
1091  OS << "}; // " << Target << "WriteProcResTable\n";
1092
1093  // Emit global WriteLatencyTable.
1094  OS << "\n// {Cycles, WriteResourceID}\n"
1095     << "extern const llvm::MCWriteLatencyEntry "
1096     << Target << "WriteLatencyTable[] = {\n"
1097     << "  { 0,  0}, // Invalid\n";
1098  for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
1099       WLIdx != WLEnd; ++WLIdx) {
1100    MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
1101    OS << "  {" << format("%2d", WLEntry.Cycles) << ", "
1102       << format("%2d", WLEntry.WriteResourceID) << "}";
1103    if (WLIdx + 1 < WLEnd)
1104      OS << ',';
1105    OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
1106  }
1107  OS << "}; // " << Target << "WriteLatencyTable\n";
1108
1109  // Emit global ReadAdvanceTable.
1110  OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
1111     << "extern const llvm::MCReadAdvanceEntry "
1112     << Target << "ReadAdvanceTable[] = {\n"
1113     << "  {0,  0,  0}, // Invalid\n";
1114  for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
1115       RAIdx != RAEnd; ++RAIdx) {
1116    MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
1117    OS << "  {" << RAEntry.UseIdx << ", "
1118       << format("%2d", RAEntry.WriteResourceID) << ", "
1119       << format("%2d", RAEntry.Cycles) << "}";
1120    if (RAIdx + 1 < RAEnd)
1121      OS << ',';
1122    OS << " // #" << RAIdx << '\n';
1123  }
1124  OS << "}; // " << Target << "ReadAdvanceTable\n";
1125
1126  // Emit a SchedClass table for each processor.
1127  for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1128         PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1129    if (!PI->hasInstrSchedModel())
1130      continue;
1131
1132    std::vector<MCSchedClassDesc> &SCTab =
1133      SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
1134
1135    OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup,"
1136       << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
1137    OS << "static const llvm::MCSchedClassDesc "
1138       << PI->ModelName << "SchedClasses[] = {\n";
1139
1140    // The first class is always invalid. We no way to distinguish it except by
1141    // name and position.
1142    assert(SchedModels.getSchedClass(0).Name == "NoInstrModel"
1143           && "invalid class not first");
1144    OS << "  {DBGFIELD(\"InvalidSchedClass\")  "
1145       << MCSchedClassDesc::InvalidNumMicroOps
1146       << ", 0, 0,  0, 0,  0, 0,  0, 0},\n";
1147
1148    for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
1149      MCSchedClassDesc &MCDesc = SCTab[SCIdx];
1150      const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
1151      OS << "  {DBGFIELD(\"" << SchedClass.Name << "\") ";
1152      if (SchedClass.Name.size() < 18)
1153        OS.indent(18 - SchedClass.Name.size());
1154      OS << MCDesc.NumMicroOps
1155         << ", " << MCDesc.BeginGroup << ", " << MCDesc.EndGroup
1156         << ", " << format("%2d", MCDesc.WriteProcResIdx)
1157         << ", " << MCDesc.NumWriteProcResEntries
1158         << ", " << format("%2d", MCDesc.WriteLatencyIdx)
1159         << ", " << MCDesc.NumWriteLatencyEntries
1160         << ", " << format("%2d", MCDesc.ReadAdvanceIdx)
1161         << ", " << MCDesc.NumReadAdvanceEntries << "}";
1162      if (SCIdx + 1 < SCEnd)
1163        OS << ',';
1164      OS << " // #" << SCIdx << '\n';
1165    }
1166    OS << "}; // " << PI->ModelName << "SchedClasses\n";
1167  }
1168}
1169
1170void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
1171  // For each processor model.
1172  for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1173         PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1174    // Emit processor resource table.
1175    if (PI->hasInstrSchedModel())
1176      EmitProcessorResources(*PI, OS);
1177    else if(!PI->ProcResourceDefs.empty())
1178      PrintFatalError(PI->ModelDef->getLoc(), "SchedMachineModel defines "
1179                    "ProcResources without defining WriteRes SchedWriteRes");
1180
1181    // Begin processor itinerary properties
1182    OS << "\n";
1183    OS << "static const llvm::MCSchedModel " << PI->ModelName << " = {\n";
1184    EmitProcessorProp(OS, PI->ModelDef, "IssueWidth", ',');
1185    EmitProcessorProp(OS, PI->ModelDef, "MicroOpBufferSize", ',');
1186    EmitProcessorProp(OS, PI->ModelDef, "LoopMicroOpBufferSize", ',');
1187    EmitProcessorProp(OS, PI->ModelDef, "LoadLatency", ',');
1188    EmitProcessorProp(OS, PI->ModelDef, "HighLatency", ',');
1189    EmitProcessorProp(OS, PI->ModelDef, "MispredictPenalty", ',');
1190
1191    OS << "  " << (bool)(PI->ModelDef ?
1192                         PI->ModelDef->getValueAsBit("PostRAScheduler") : 0)
1193       << ", // " << "PostRAScheduler\n";
1194
1195    OS << "  " << (bool)(PI->ModelDef ?
1196                         PI->ModelDef->getValueAsBit("CompleteModel") : 0)
1197       << ", // " << "CompleteModel\n";
1198
1199    OS << "  " << PI->Index << ", // Processor ID\n";
1200    if (PI->hasInstrSchedModel())
1201      OS << "  " << PI->ModelName << "ProcResources" << ",\n"
1202         << "  " << PI->ModelName << "SchedClasses" << ",\n"
1203         << "  " << PI->ProcResourceDefs.size()+1 << ",\n"
1204         << "  " << (SchedModels.schedClassEnd()
1205                     - SchedModels.schedClassBegin()) << ",\n";
1206    else
1207      OS << "  0, 0, 0, 0, // No instruction-level machine model.\n";
1208    if (PI->hasItineraries())
1209      OS << "  " << PI->ItinsDef->getName() << "};\n";
1210    else
1211      OS << "  nullptr}; // No Itinerary\n";
1212  }
1213}
1214
1215//
1216// EmitProcessorLookup - generate cpu name to itinerary lookup table.
1217//
1218void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) {
1219  // Gather and sort processor information
1220  std::vector<Record*> ProcessorList =
1221                          Records.getAllDerivedDefinitions("Processor");
1222  std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
1223
1224  // Begin processor table
1225  OS << "\n";
1226  OS << "// Sorted (by key) array of itineraries for CPU subtype.\n"
1227     << "extern const llvm::SubtargetInfoKV "
1228     << Target << "ProcSchedKV[] = {\n";
1229
1230  // For each processor
1231  for (unsigned i = 0, N = ProcessorList.size(); i < N;) {
1232    // Next processor
1233    Record *Processor = ProcessorList[i];
1234
1235    const std::string &Name = Processor->getValueAsString("Name");
1236    const std::string &ProcModelName =
1237      SchedModels.getModelForProc(Processor).ModelName;
1238
1239    // Emit as { "cpu", procinit },
1240    OS << "  { \"" << Name << "\", (const void *)&" << ProcModelName << " }";
1241
1242    // Depending on ''if more in the list'' emit comma
1243    if (++i < N) OS << ",";
1244
1245    OS << "\n";
1246  }
1247
1248  // End processor table
1249  OS << "};\n";
1250}
1251
1252//
1253// EmitSchedModel - Emits all scheduling model tables, folding common patterns.
1254//
1255void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
1256  OS << "#ifdef DBGFIELD\n"
1257     << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
1258     << "#endif\n"
1259     << "#ifndef NDEBUG\n"
1260     << "#define DBGFIELD(x) x,\n"
1261     << "#else\n"
1262     << "#define DBGFIELD(x)\n"
1263     << "#endif\n";
1264
1265  if (SchedModels.hasItineraries()) {
1266    std::vector<std::vector<InstrItinerary> > ProcItinLists;
1267    // Emit the stage data
1268    EmitStageAndOperandCycleData(OS, ProcItinLists);
1269    EmitItineraries(OS, ProcItinLists);
1270  }
1271  OS << "\n// ===============================================================\n"
1272     << "// Data tables for the new per-operand machine model.\n";
1273
1274  SchedClassTables SchedTables;
1275  for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1276         PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1277    GenSchedClassTables(*PI, SchedTables);
1278  }
1279  EmitSchedClassTables(SchedTables, OS);
1280
1281  // Emit the processor machine model
1282  EmitProcessorModels(OS);
1283  // Emit the processor lookup data
1284  EmitProcessorLookup(OS);
1285
1286  OS << "#undef DBGFIELD";
1287}
1288
1289void SubtargetEmitter::EmitSchedModelHelpers(std::string ClassName,
1290                                             raw_ostream &OS) {
1291  OS << "unsigned " << ClassName
1292     << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
1293     << " const TargetSchedModel *SchedModel) const {\n";
1294
1295  std::vector<Record*> Prologs = Records.getAllDerivedDefinitions("PredicateProlog");
1296  std::sort(Prologs.begin(), Prologs.end(), LessRecord());
1297  for (std::vector<Record*>::const_iterator
1298         PI = Prologs.begin(), PE = Prologs.end(); PI != PE; ++PI) {
1299    OS << (*PI)->getValueAsString("Code") << '\n';
1300  }
1301  IdxVec VariantClasses;
1302  for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(),
1303         SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) {
1304    if (SCI->Transitions.empty())
1305      continue;
1306    VariantClasses.push_back(SCI->Index);
1307  }
1308  if (!VariantClasses.empty()) {
1309    OS << "  switch (SchedClass) {\n";
1310    for (IdxIter VCI = VariantClasses.begin(), VCE = VariantClasses.end();
1311         VCI != VCE; ++VCI) {
1312      const CodeGenSchedClass &SC = SchedModels.getSchedClass(*VCI);
1313      OS << "  case " << *VCI << ": // " << SC.Name << '\n';
1314      IdxVec ProcIndices;
1315      for (std::vector<CodeGenSchedTransition>::const_iterator
1316             TI = SC.Transitions.begin(), TE = SC.Transitions.end();
1317           TI != TE; ++TI) {
1318        IdxVec PI;
1319        std::set_union(TI->ProcIndices.begin(), TI->ProcIndices.end(),
1320                       ProcIndices.begin(), ProcIndices.end(),
1321                       std::back_inserter(PI));
1322        ProcIndices.swap(PI);
1323      }
1324      for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end();
1325           PI != PE; ++PI) {
1326        OS << "    ";
1327        if (*PI != 0)
1328          OS << "if (SchedModel->getProcessorID() == " << *PI << ") ";
1329        OS << "{ // " << (SchedModels.procModelBegin() + *PI)->ModelName
1330           << '\n';
1331        for (std::vector<CodeGenSchedTransition>::const_iterator
1332               TI = SC.Transitions.begin(), TE = SC.Transitions.end();
1333             TI != TE; ++TI) {
1334          if (*PI != 0 && !std::count(TI->ProcIndices.begin(),
1335                                      TI->ProcIndices.end(), *PI)) {
1336              continue;
1337          }
1338          OS << "      if (";
1339          for (RecIter RI = TI->PredTerm.begin(), RE = TI->PredTerm.end();
1340               RI != RE; ++RI) {
1341            if (RI != TI->PredTerm.begin())
1342              OS << "\n          && ";
1343            OS << "(" << (*RI)->getValueAsString("Predicate") << ")";
1344          }
1345          OS << ")\n"
1346             << "        return " << TI->ToClassIdx << "; // "
1347             << SchedModels.getSchedClass(TI->ToClassIdx).Name << '\n';
1348        }
1349        OS << "    }\n";
1350        if (*PI == 0)
1351          break;
1352      }
1353      if (SC.isInferred())
1354        OS << "    return " << SC.Index << ";\n";
1355      OS << "    break;\n";
1356    }
1357    OS << "  };\n";
1358  }
1359  OS << "  report_fatal_error(\"Expected a variant SchedClass\");\n"
1360     << "} // " << ClassName << "::resolveSchedClass\n";
1361}
1362
1363//
1364// ParseFeaturesFunction - Produces a subtarget specific function for parsing
1365// the subtarget features string.
1366//
1367void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS,
1368                                             unsigned NumFeatures,
1369                                             unsigned NumProcs) {
1370  std::vector<Record*> Features =
1371                       Records.getAllDerivedDefinitions("SubtargetFeature");
1372  std::sort(Features.begin(), Features.end(), LessRecord());
1373
1374  OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
1375     << "// subtarget options.\n"
1376     << "void llvm::";
1377  OS << Target;
1378  OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n"
1379     << "  DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
1380     << "  DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n";
1381
1382  if (Features.empty()) {
1383    OS << "}\n";
1384    return;
1385  }
1386
1387  OS << "  InitMCProcessorInfo(CPU, FS);\n"
1388     << "  uint64_t Bits = getFeatureBits();\n";
1389
1390  for (unsigned i = 0; i < Features.size(); i++) {
1391    // Next record
1392    Record *R = Features[i];
1393    const std::string &Instance = R->getName();
1394    const std::string &Value = R->getValueAsString("Value");
1395    const std::string &Attribute = R->getValueAsString("Attribute");
1396
1397    if (Value=="true" || Value=="false")
1398      OS << "  if ((Bits & " << Target << "::"
1399         << Instance << ") != 0) "
1400         << Attribute << " = " << Value << ";\n";
1401    else
1402      OS << "  if ((Bits & " << Target << "::"
1403         << Instance << ") != 0 && "
1404         << Attribute << " < " << Value << ") "
1405         << Attribute << " = " << Value << ";\n";
1406  }
1407
1408  OS << "}\n";
1409}
1410
1411//
1412// SubtargetEmitter::run - Main subtarget enumeration emitter.
1413//
1414void SubtargetEmitter::run(raw_ostream &OS) {
1415  emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
1416
1417  OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
1418  OS << "#undef GET_SUBTARGETINFO_ENUM\n";
1419
1420  OS << "namespace llvm {\n";
1421  Enumeration(OS, "SubtargetFeature", true);
1422  OS << "} // End llvm namespace \n";
1423  OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
1424
1425  OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
1426  OS << "#undef GET_SUBTARGETINFO_MC_DESC\n";
1427
1428  OS << "namespace llvm {\n";
1429#if 0
1430  OS << "namespace {\n";
1431#endif
1432  unsigned NumFeatures = FeatureKeyValues(OS);
1433  OS << "\n";
1434  unsigned NumProcs = CPUKeyValues(OS);
1435  OS << "\n";
1436  EmitSchedModel(OS);
1437  OS << "\n";
1438#if 0
1439  OS << "}\n";
1440#endif
1441
1442  // MCInstrInfo initialization routine.
1443  OS << "static inline void Init" << Target
1444     << "MCSubtargetInfo(MCSubtargetInfo *II, "
1445     << "StringRef TT, StringRef CPU, StringRef FS) {\n";
1446  OS << "  II->InitMCSubtargetInfo(TT, CPU, FS, ";
1447  if (NumFeatures)
1448    OS << Target << "FeatureKV, ";
1449  else
1450    OS << "None, ";
1451  if (NumProcs)
1452    OS << Target << "SubTypeKV, ";
1453  else
1454    OS << "None, ";
1455  OS << '\n'; OS.indent(22);
1456  OS << Target << "ProcSchedKV, "
1457     << Target << "WriteProcResTable, "
1458     << Target << "WriteLatencyTable, "
1459     << Target << "ReadAdvanceTable, ";
1460  if (SchedModels.hasItineraries()) {
1461    OS << '\n'; OS.indent(22);
1462    OS << Target << "Stages, "
1463       << Target << "OperandCycles, "
1464       << Target << "ForwardingPaths";
1465  } else
1466    OS << "0, 0, 0";
1467  OS << ");\n}\n\n";
1468
1469  OS << "} // End llvm namespace \n";
1470
1471  OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
1472
1473  OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
1474  OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n";
1475
1476  OS << "#include \"llvm/Support/Debug.h\"\n";
1477  OS << "#include \"llvm/Support/raw_ostream.h\"\n";
1478  ParseFeaturesFunction(OS, NumFeatures, NumProcs);
1479
1480  OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
1481
1482  // Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
1483  OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
1484  OS << "#undef GET_SUBTARGETINFO_HEADER\n";
1485
1486  std::string ClassName = Target + "GenSubtargetInfo";
1487  OS << "namespace llvm {\n";
1488  OS << "class DFAPacketizer;\n";
1489  OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
1490     << "  explicit " << ClassName << "(StringRef TT, StringRef CPU, "
1491     << "StringRef FS);\n"
1492     << "public:\n"
1493     << "  unsigned resolveSchedClass(unsigned SchedClass, const MachineInstr *DefMI,"
1494     << " const TargetSchedModel *SchedModel) const override;\n"
1495     << "  DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
1496     << " const;\n"
1497     << "};\n";
1498  OS << "} // End llvm namespace \n";
1499
1500  OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
1501
1502  OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
1503  OS << "#undef GET_SUBTARGETINFO_CTOR\n";
1504
1505  OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n";
1506  OS << "namespace llvm {\n";
1507  OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
1508  OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n";
1509  OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n";
1510  OS << "extern const llvm::MCWriteProcResEntry "
1511     << Target << "WriteProcResTable[];\n";
1512  OS << "extern const llvm::MCWriteLatencyEntry "
1513     << Target << "WriteLatencyTable[];\n";
1514  OS << "extern const llvm::MCReadAdvanceEntry "
1515     << Target << "ReadAdvanceTable[];\n";
1516
1517  if (SchedModels.hasItineraries()) {
1518    OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
1519    OS << "extern const unsigned " << Target << "OperandCycles[];\n";
1520    OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
1521  }
1522
1523  OS << ClassName << "::" << ClassName << "(StringRef TT, StringRef CPU, "
1524     << "StringRef FS)\n"
1525     << "  : TargetSubtargetInfo() {\n"
1526     << "  InitMCSubtargetInfo(TT, CPU, FS, ";
1527  if (NumFeatures)
1528    OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";
1529  else
1530    OS << "None, ";
1531  if (NumProcs)
1532    OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), ";
1533  else
1534    OS << "None, ";
1535  OS << '\n'; OS.indent(22);
1536  OS << Target << "ProcSchedKV, "
1537     << Target << "WriteProcResTable, "
1538     << Target << "WriteLatencyTable, "
1539     << Target << "ReadAdvanceTable, ";
1540  OS << '\n'; OS.indent(22);
1541  if (SchedModels.hasItineraries()) {
1542    OS << Target << "Stages, "
1543       << Target << "OperandCycles, "
1544       << Target << "ForwardingPaths";
1545  } else
1546    OS << "0, 0, 0";
1547  OS << ");\n}\n\n";
1548
1549  EmitSchedModelHelpers(ClassName, OS);
1550
1551  OS << "} // End llvm namespace \n";
1552
1553  OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
1554}
1555
1556namespace llvm {
1557
1558void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) {
1559  CodeGenTarget CGTarget(RK);
1560  SubtargetEmitter(RK, CGTarget).run(OS);
1561}
1562
1563} // End llvm namespace
1564