SubtargetEmitter.cpp revision 4c5e43da7792f75567b693105cc53e3f1992ad98
1//===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This tablegen backend emits subtarget enumerations. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenTarget.h" 15#include "CodeGenSchedule.h" 16#include "llvm/ADT/STLExtras.h" 17#include "llvm/ADT/StringExtras.h" 18#include "llvm/MC/MCInstrItineraries.h" 19#include "llvm/Support/Debug.h" 20#include "llvm/Support/Format.h" 21#include "llvm/TableGen/Error.h" 22#include "llvm/TableGen/Record.h" 23#include "llvm/TableGen/TableGenBackend.h" 24#include <algorithm> 25#include <map> 26#include <string> 27#include <vector> 28using namespace llvm; 29 30#define DEBUG_TYPE "subtarget-emitter" 31 32namespace { 33class SubtargetEmitter { 34 // Each processor has a SchedClassDesc table with an entry for each SchedClass. 35 // The SchedClassDesc table indexes into a global write resource table, write 36 // latency table, and read advance table. 37 struct SchedClassTables { 38 std::vector<std::vector<MCSchedClassDesc> > ProcSchedClasses; 39 std::vector<MCWriteProcResEntry> WriteProcResources; 40 std::vector<MCWriteLatencyEntry> WriteLatencies; 41 std::vector<std::string> WriterNames; 42 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 43 44 // Reserve an invalid entry at index 0 45 SchedClassTables() { 46 ProcSchedClasses.resize(1); 47 WriteProcResources.resize(1); 48 WriteLatencies.resize(1); 49 WriterNames.push_back("InvalidWrite"); 50 ReadAdvanceEntries.resize(1); 51 } 52 }; 53 54 struct LessWriteProcResources { 55 bool operator()(const MCWriteProcResEntry &LHS, 56 const MCWriteProcResEntry &RHS) { 57 return LHS.ProcResourceIdx < RHS.ProcResourceIdx; 58 } 59 }; 60 61 RecordKeeper &Records; 62 CodeGenSchedModels &SchedModels; 63 std::string Target; 64 65 void Enumeration(raw_ostream &OS, const char *ClassName, bool isBits); 66 unsigned FeatureKeyValues(raw_ostream &OS); 67 unsigned CPUKeyValues(raw_ostream &OS); 68 void FormItineraryStageString(const std::string &Names, 69 Record *ItinData, std::string &ItinString, 70 unsigned &NStages); 71 void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString, 72 unsigned &NOperandCycles); 73 void FormItineraryBypassString(const std::string &Names, 74 Record *ItinData, 75 std::string &ItinString, unsigned NOperandCycles); 76 void EmitStageAndOperandCycleData(raw_ostream &OS, 77 std::vector<std::vector<InstrItinerary> > 78 &ProcItinLists); 79 void EmitItineraries(raw_ostream &OS, 80 std::vector<std::vector<InstrItinerary> > 81 &ProcItinLists); 82 void EmitProcessorProp(raw_ostream &OS, const Record *R, const char *Name, 83 char Separator); 84 void EmitProcessorResources(const CodeGenProcModel &ProcModel, 85 raw_ostream &OS); 86 Record *FindWriteResources(const CodeGenSchedRW &SchedWrite, 87 const CodeGenProcModel &ProcModel); 88 Record *FindReadAdvance(const CodeGenSchedRW &SchedRead, 89 const CodeGenProcModel &ProcModel); 90 void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles, 91 const CodeGenProcModel &ProcModel); 92 void GenSchedClassTables(const CodeGenProcModel &ProcModel, 93 SchedClassTables &SchedTables); 94 void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS); 95 void EmitProcessorModels(raw_ostream &OS); 96 void EmitProcessorLookup(raw_ostream &OS); 97 void EmitSchedModelHelpers(std::string ClassName, raw_ostream &OS); 98 void EmitSchedModel(raw_ostream &OS); 99 void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures, 100 unsigned NumProcs); 101 102public: 103 SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT): 104 Records(R), SchedModels(TGT.getSchedModels()), Target(TGT.getName()) {} 105 106 void run(raw_ostream &o); 107 108}; 109} // End anonymous namespace 110 111// 112// Enumeration - Emit the specified class as an enumeration. 113// 114void SubtargetEmitter::Enumeration(raw_ostream &OS, 115 const char *ClassName, 116 bool isBits) { 117 // Get all records of class and sort 118 std::vector<Record*> DefList = Records.getAllDerivedDefinitions(ClassName); 119 std::sort(DefList.begin(), DefList.end(), LessRecord()); 120 121 unsigned N = DefList.size(); 122 if (N == 0) 123 return; 124 if (N > 64) { 125 errs() << "Too many (> 64) subtarget features!\n"; 126 exit(1); 127 } 128 129 OS << "namespace " << Target << " {\n"; 130 131 // Open enumeration. Use a 64-bit underlying type. 132 OS << "enum : uint64_t {\n"; 133 134 // For each record 135 for (unsigned i = 0; i < N;) { 136 // Next record 137 Record *Def = DefList[i]; 138 139 // Get and emit name 140 OS << " " << Def->getName(); 141 142 // If bit flags then emit expression (1 << i) 143 if (isBits) OS << " = " << " 1ULL << " << i; 144 145 // Depending on 'if more in the list' emit comma 146 if (++i < N) OS << ","; 147 148 OS << "\n"; 149 } 150 151 // Close enumeration 152 OS << "};\n"; 153 154 OS << "}\n"; 155} 156 157// 158// FeatureKeyValues - Emit data of all the subtarget features. Used by the 159// command line. 160// 161unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) { 162 // Gather and sort all the features 163 std::vector<Record*> FeatureList = 164 Records.getAllDerivedDefinitions("SubtargetFeature"); 165 166 if (FeatureList.empty()) 167 return 0; 168 169 std::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName()); 170 171 // Begin feature table 172 OS << "// Sorted (by key) array of values for CPU features.\n" 173 << "extern const llvm::SubtargetFeatureKV " << Target 174 << "FeatureKV[] = {\n"; 175 176 // For each feature 177 unsigned NumFeatures = 0; 178 for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) { 179 // Next feature 180 Record *Feature = FeatureList[i]; 181 182 const std::string &Name = Feature->getName(); 183 const std::string &CommandLineName = Feature->getValueAsString("Name"); 184 const std::string &Desc = Feature->getValueAsString("Desc"); 185 186 if (CommandLineName.empty()) continue; 187 188 // Emit as { "feature", "description", featureEnum, i1 | i2 | ... | in } 189 OS << " { " 190 << "\"" << CommandLineName << "\", " 191 << "\"" << Desc << "\", " 192 << Target << "::" << Name << ", "; 193 194 const std::vector<Record*> &ImpliesList = 195 Feature->getValueAsListOfDefs("Implies"); 196 197 if (ImpliesList.empty()) { 198 OS << "0ULL"; 199 } else { 200 for (unsigned j = 0, M = ImpliesList.size(); j < M;) { 201 OS << Target << "::" << ImpliesList[j]->getName(); 202 if (++j < M) OS << " | "; 203 } 204 } 205 206 OS << " }"; 207 ++NumFeatures; 208 209 // Depending on 'if more in the list' emit comma 210 if ((i + 1) < N) OS << ","; 211 212 OS << "\n"; 213 } 214 215 // End feature table 216 OS << "};\n"; 217 218 return NumFeatures; 219} 220 221// 222// CPUKeyValues - Emit data of all the subtarget processors. Used by command 223// line. 224// 225unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) { 226 // Gather and sort processor information 227 std::vector<Record*> ProcessorList = 228 Records.getAllDerivedDefinitions("Processor"); 229 std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); 230 231 // Begin processor table 232 OS << "// Sorted (by key) array of values for CPU subtype.\n" 233 << "extern const llvm::SubtargetFeatureKV " << Target 234 << "SubTypeKV[] = {\n"; 235 236 // For each processor 237 for (unsigned i = 0, N = ProcessorList.size(); i < N;) { 238 // Next processor 239 Record *Processor = ProcessorList[i]; 240 241 const std::string &Name = Processor->getValueAsString("Name"); 242 const std::vector<Record*> &FeatureList = 243 Processor->getValueAsListOfDefs("Features"); 244 245 // Emit as { "cpu", "description", f1 | f2 | ... fn }, 246 OS << " { " 247 << "\"" << Name << "\", " 248 << "\"Select the " << Name << " processor\", "; 249 250 if (FeatureList.empty()) { 251 OS << "0ULL"; 252 } else { 253 for (unsigned j = 0, M = FeatureList.size(); j < M;) { 254 OS << Target << "::" << FeatureList[j]->getName(); 255 if (++j < M) OS << " | "; 256 } 257 } 258 259 // The "0" is for the "implies" section of this data structure. 260 OS << ", 0ULL }"; 261 262 // Depending on 'if more in the list' emit comma 263 if (++i < N) OS << ","; 264 265 OS << "\n"; 266 } 267 268 // End processor table 269 OS << "};\n"; 270 271 return ProcessorList.size(); 272} 273 274// 275// FormItineraryStageString - Compose a string containing the stage 276// data initialization for the specified itinerary. N is the number 277// of stages. 278// 279void SubtargetEmitter::FormItineraryStageString(const std::string &Name, 280 Record *ItinData, 281 std::string &ItinString, 282 unsigned &NStages) { 283 // Get states list 284 const std::vector<Record*> &StageList = 285 ItinData->getValueAsListOfDefs("Stages"); 286 287 // For each stage 288 unsigned N = NStages = StageList.size(); 289 for (unsigned i = 0; i < N;) { 290 // Next stage 291 const Record *Stage = StageList[i]; 292 293 // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind } 294 int Cycles = Stage->getValueAsInt("Cycles"); 295 ItinString += " { " + itostr(Cycles) + ", "; 296 297 // Get unit list 298 const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units"); 299 300 // For each unit 301 for (unsigned j = 0, M = UnitList.size(); j < M;) { 302 // Add name and bitwise or 303 ItinString += Name + "FU::" + UnitList[j]->getName(); 304 if (++j < M) ItinString += " | "; 305 } 306 307 int TimeInc = Stage->getValueAsInt("TimeInc"); 308 ItinString += ", " + itostr(TimeInc); 309 310 int Kind = Stage->getValueAsInt("Kind"); 311 ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind); 312 313 // Close off stage 314 ItinString += " }"; 315 if (++i < N) ItinString += ", "; 316 } 317} 318 319// 320// FormItineraryOperandCycleString - Compose a string containing the 321// operand cycle initialization for the specified itinerary. N is the 322// number of operands that has cycles specified. 323// 324void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData, 325 std::string &ItinString, unsigned &NOperandCycles) { 326 // Get operand cycle list 327 const std::vector<int64_t> &OperandCycleList = 328 ItinData->getValueAsListOfInts("OperandCycles"); 329 330 // For each operand cycle 331 unsigned N = NOperandCycles = OperandCycleList.size(); 332 for (unsigned i = 0; i < N;) { 333 // Next operand cycle 334 const int OCycle = OperandCycleList[i]; 335 336 ItinString += " " + itostr(OCycle); 337 if (++i < N) ItinString += ", "; 338 } 339} 340 341void SubtargetEmitter::FormItineraryBypassString(const std::string &Name, 342 Record *ItinData, 343 std::string &ItinString, 344 unsigned NOperandCycles) { 345 const std::vector<Record*> &BypassList = 346 ItinData->getValueAsListOfDefs("Bypasses"); 347 unsigned N = BypassList.size(); 348 unsigned i = 0; 349 for (; i < N;) { 350 ItinString += Name + "Bypass::" + BypassList[i]->getName(); 351 if (++i < NOperandCycles) ItinString += ", "; 352 } 353 for (; i < NOperandCycles;) { 354 ItinString += " 0"; 355 if (++i < NOperandCycles) ItinString += ", "; 356 } 357} 358 359// 360// EmitStageAndOperandCycleData - Generate unique itinerary stages and operand 361// cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed 362// by CodeGenSchedClass::Index. 363// 364void SubtargetEmitter:: 365EmitStageAndOperandCycleData(raw_ostream &OS, 366 std::vector<std::vector<InstrItinerary> > 367 &ProcItinLists) { 368 369 // Multiple processor models may share an itinerary record. Emit it once. 370 SmallPtrSet<Record*, 8> ItinsDefSet; 371 372 // Emit functional units for all the itineraries. 373 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 374 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 375 376 if (!ItinsDefSet.insert(PI->ItinsDef).second) 377 continue; 378 379 std::vector<Record*> FUs = PI->ItinsDef->getValueAsListOfDefs("FU"); 380 if (FUs.empty()) 381 continue; 382 383 const std::string &Name = PI->ItinsDef->getName(); 384 OS << "\n// Functional units for \"" << Name << "\"\n" 385 << "namespace " << Name << "FU {\n"; 386 387 for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j) 388 OS << " const unsigned " << FUs[j]->getName() 389 << " = 1 << " << j << ";\n"; 390 391 OS << "}\n"; 392 393 std::vector<Record*> BPs = PI->ItinsDef->getValueAsListOfDefs("BP"); 394 if (!BPs.empty()) { 395 OS << "\n// Pipeline forwarding pathes for itineraries \"" << Name 396 << "\"\n" << "namespace " << Name << "Bypass {\n"; 397 398 OS << " const unsigned NoBypass = 0;\n"; 399 for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j) 400 OS << " const unsigned " << BPs[j]->getName() 401 << " = 1 << " << j << ";\n"; 402 403 OS << "}\n"; 404 } 405 } 406 407 // Begin stages table 408 std::string StageTable = "\nextern const llvm::InstrStage " + Target + 409 "Stages[] = {\n"; 410 StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n"; 411 412 // Begin operand cycle table 413 std::string OperandCycleTable = "extern const unsigned " + Target + 414 "OperandCycles[] = {\n"; 415 OperandCycleTable += " 0, // No itinerary\n"; 416 417 // Begin pipeline bypass table 418 std::string BypassTable = "extern const unsigned " + Target + 419 "ForwardingPaths[] = {\n"; 420 BypassTable += " 0, // No itinerary\n"; 421 422 // For each Itinerary across all processors, add a unique entry to the stages, 423 // operand cycles, and pipepine bypess tables. Then add the new Itinerary 424 // object with computed offsets to the ProcItinLists result. 425 unsigned StageCount = 1, OperandCycleCount = 1; 426 std::map<std::string, unsigned> ItinStageMap, ItinOperandMap; 427 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 428 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 429 const CodeGenProcModel &ProcModel = *PI; 430 431 // Add process itinerary to the list. 432 ProcItinLists.resize(ProcItinLists.size()+1); 433 434 // If this processor defines no itineraries, then leave the itinerary list 435 // empty. 436 std::vector<InstrItinerary> &ItinList = ProcItinLists.back(); 437 if (!ProcModel.hasItineraries()) 438 continue; 439 440 const std::string &Name = ProcModel.ItinsDef->getName(); 441 442 ItinList.resize(SchedModels.numInstrSchedClasses()); 443 assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins"); 444 445 for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size(); 446 SchedClassIdx < SchedClassEnd; ++SchedClassIdx) { 447 448 // Next itinerary data 449 Record *ItinData = ProcModel.ItinDefList[SchedClassIdx]; 450 451 // Get string and stage count 452 std::string ItinStageString; 453 unsigned NStages = 0; 454 if (ItinData) 455 FormItineraryStageString(Name, ItinData, ItinStageString, NStages); 456 457 // Get string and operand cycle count 458 std::string ItinOperandCycleString; 459 unsigned NOperandCycles = 0; 460 std::string ItinBypassString; 461 if (ItinData) { 462 FormItineraryOperandCycleString(ItinData, ItinOperandCycleString, 463 NOperandCycles); 464 465 FormItineraryBypassString(Name, ItinData, ItinBypassString, 466 NOperandCycles); 467 } 468 469 // Check to see if stage already exists and create if it doesn't 470 unsigned FindStage = 0; 471 if (NStages > 0) { 472 FindStage = ItinStageMap[ItinStageString]; 473 if (FindStage == 0) { 474 // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices 475 StageTable += ItinStageString + ", // " + itostr(StageCount); 476 if (NStages > 1) 477 StageTable += "-" + itostr(StageCount + NStages - 1); 478 StageTable += "\n"; 479 // Record Itin class number. 480 ItinStageMap[ItinStageString] = FindStage = StageCount; 481 StageCount += NStages; 482 } 483 } 484 485 // Check to see if operand cycle already exists and create if it doesn't 486 unsigned FindOperandCycle = 0; 487 if (NOperandCycles > 0) { 488 std::string ItinOperandString = ItinOperandCycleString+ItinBypassString; 489 FindOperandCycle = ItinOperandMap[ItinOperandString]; 490 if (FindOperandCycle == 0) { 491 // Emit as cycle, // index 492 OperandCycleTable += ItinOperandCycleString + ", // "; 493 std::string OperandIdxComment = itostr(OperandCycleCount); 494 if (NOperandCycles > 1) 495 OperandIdxComment += "-" 496 + itostr(OperandCycleCount + NOperandCycles - 1); 497 OperandCycleTable += OperandIdxComment + "\n"; 498 // Record Itin class number. 499 ItinOperandMap[ItinOperandCycleString] = 500 FindOperandCycle = OperandCycleCount; 501 // Emit as bypass, // index 502 BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n"; 503 OperandCycleCount += NOperandCycles; 504 } 505 } 506 507 // Set up itinerary as location and location + stage count 508 int NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0; 509 InstrItinerary Intinerary = { NumUOps, FindStage, FindStage + NStages, 510 FindOperandCycle, 511 FindOperandCycle + NOperandCycles}; 512 513 // Inject - empty slots will be 0, 0 514 ItinList[SchedClassIdx] = Intinerary; 515 } 516 } 517 518 // Closing stage 519 StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n"; 520 StageTable += "};\n"; 521 522 // Closing operand cycles 523 OperandCycleTable += " 0 // End operand cycles\n"; 524 OperandCycleTable += "};\n"; 525 526 BypassTable += " 0 // End bypass tables\n"; 527 BypassTable += "};\n"; 528 529 // Emit tables. 530 OS << StageTable; 531 OS << OperandCycleTable; 532 OS << BypassTable; 533} 534 535// 536// EmitProcessorData - Generate data for processor itineraries that were 537// computed during EmitStageAndOperandCycleData(). ProcItinLists lists all 538// Itineraries for each processor. The Itinerary lists are indexed on 539// CodeGenSchedClass::Index. 540// 541void SubtargetEmitter:: 542EmitItineraries(raw_ostream &OS, 543 std::vector<std::vector<InstrItinerary> > &ProcItinLists) { 544 545 // Multiple processor models may share an itinerary record. Emit it once. 546 SmallPtrSet<Record*, 8> ItinsDefSet; 547 548 // For each processor's machine model 549 std::vector<std::vector<InstrItinerary> >::iterator 550 ProcItinListsIter = ProcItinLists.begin(); 551 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 552 PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) { 553 554 Record *ItinsDef = PI->ItinsDef; 555 if (!ItinsDefSet.insert(ItinsDef).second) 556 continue; 557 558 // Get processor itinerary name 559 const std::string &Name = ItinsDef->getName(); 560 561 // Get the itinerary list for the processor. 562 assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator"); 563 std::vector<InstrItinerary> &ItinList = *ProcItinListsIter; 564 565 // Empty itineraries aren't referenced anywhere in the tablegen output 566 // so don't emit them. 567 if (ItinList.empty()) 568 continue; 569 570 OS << "\n"; 571 OS << "static const llvm::InstrItinerary "; 572 573 // Begin processor itinerary table 574 OS << Name << "[] = {\n"; 575 576 // For each itinerary class in CodeGenSchedClass::Index order. 577 for (unsigned j = 0, M = ItinList.size(); j < M; ++j) { 578 InstrItinerary &Intinerary = ItinList[j]; 579 580 // Emit Itinerary in the form of 581 // { firstStage, lastStage, firstCycle, lastCycle } // index 582 OS << " { " << 583 Intinerary.NumMicroOps << ", " << 584 Intinerary.FirstStage << ", " << 585 Intinerary.LastStage << ", " << 586 Intinerary.FirstOperandCycle << ", " << 587 Intinerary.LastOperandCycle << " }" << 588 ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n"; 589 } 590 // End processor itinerary table 591 OS << " { 0, ~0U, ~0U, ~0U, ~0U } // end marker\n"; 592 OS << "};\n"; 593 } 594} 595 596// Emit either the value defined in the TableGen Record, or the default 597// value defined in the C++ header. The Record is null if the processor does not 598// define a model. 599void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R, 600 const char *Name, char Separator) { 601 OS << " "; 602 int V = R ? R->getValueAsInt(Name) : -1; 603 if (V >= 0) 604 OS << V << Separator << " // " << Name; 605 else 606 OS << "MCSchedModel::Default" << Name << Separator; 607 OS << '\n'; 608} 609 610void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel, 611 raw_ostream &OS) { 612 char Sep = ProcModel.ProcResourceDefs.empty() ? ' ' : ','; 613 614 OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered}\n"; 615 OS << "static const llvm::MCProcResourceDesc " 616 << ProcModel.ModelName << "ProcResources" << "[] = {\n" 617 << " {DBGFIELD(\"InvalidUnit\") 0, 0, 0}" << Sep << "\n"; 618 619 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 620 Record *PRDef = ProcModel.ProcResourceDefs[i]; 621 622 Record *SuperDef = nullptr; 623 unsigned SuperIdx = 0; 624 unsigned NumUnits = 0; 625 int BufferSize = PRDef->getValueAsInt("BufferSize"); 626 if (PRDef->isSubClassOf("ProcResGroup")) { 627 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 628 for (RecIter RUI = ResUnits.begin(), RUE = ResUnits.end(); 629 RUI != RUE; ++RUI) { 630 NumUnits += (*RUI)->getValueAsInt("NumUnits"); 631 } 632 } 633 else { 634 // Find the SuperIdx 635 if (PRDef->getValueInit("Super")->isComplete()) { 636 SuperDef = SchedModels.findProcResUnits( 637 PRDef->getValueAsDef("Super"), ProcModel); 638 SuperIdx = ProcModel.getProcResourceIdx(SuperDef); 639 } 640 NumUnits = PRDef->getValueAsInt("NumUnits"); 641 } 642 // Emit the ProcResourceDesc 643 if (i+1 == e) 644 Sep = ' '; 645 OS << " {DBGFIELD(\"" << PRDef->getName() << "\") "; 646 if (PRDef->getName().size() < 15) 647 OS.indent(15 - PRDef->getName().size()); 648 OS << NumUnits << ", " << SuperIdx << ", " 649 << BufferSize << "}" << Sep << " // #" << i+1; 650 if (SuperDef) 651 OS << ", Super=" << SuperDef->getName(); 652 OS << "\n"; 653 } 654 OS << "};\n"; 655} 656 657// Find the WriteRes Record that defines processor resources for this 658// SchedWrite. 659Record *SubtargetEmitter::FindWriteResources( 660 const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) { 661 662 // Check if the SchedWrite is already subtarget-specific and directly 663 // specifies a set of processor resources. 664 if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes")) 665 return SchedWrite.TheDef; 666 667 Record *AliasDef = nullptr; 668 for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); 669 AI != AE; ++AI) { 670 const CodeGenSchedRW &AliasRW = 671 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 672 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 673 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 674 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 675 continue; 676 } 677 if (AliasDef) 678 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 679 "defined for processor " + ProcModel.ModelName + 680 " Ensure only one SchedAlias exists per RW."); 681 AliasDef = AliasRW.TheDef; 682 } 683 if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes")) 684 return AliasDef; 685 686 // Check this processor's list of write resources. 687 Record *ResDef = nullptr; 688 for (RecIter WRI = ProcModel.WriteResDefs.begin(), 689 WRE = ProcModel.WriteResDefs.end(); WRI != WRE; ++WRI) { 690 if (!(*WRI)->isSubClassOf("WriteRes")) 691 continue; 692 if (AliasDef == (*WRI)->getValueAsDef("WriteType") 693 || SchedWrite.TheDef == (*WRI)->getValueAsDef("WriteType")) { 694 if (ResDef) { 695 PrintFatalError((*WRI)->getLoc(), "Resources are defined for both " 696 "SchedWrite and its alias on processor " + 697 ProcModel.ModelName); 698 } 699 ResDef = *WRI; 700 } 701 } 702 // TODO: If ProcModel has a base model (previous generation processor), 703 // then call FindWriteResources recursively with that model here. 704 if (!ResDef) { 705 PrintFatalError(ProcModel.ModelDef->getLoc(), 706 std::string("Processor does not define resources for ") 707 + SchedWrite.TheDef->getName()); 708 } 709 return ResDef; 710} 711 712/// Find the ReadAdvance record for the given SchedRead on this processor or 713/// return NULL. 714Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead, 715 const CodeGenProcModel &ProcModel) { 716 // Check for SchedReads that directly specify a ReadAdvance. 717 if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance")) 718 return SchedRead.TheDef; 719 720 // Check this processor's list of aliases for SchedRead. 721 Record *AliasDef = nullptr; 722 for (RecIter AI = SchedRead.Aliases.begin(), AE = SchedRead.Aliases.end(); 723 AI != AE; ++AI) { 724 const CodeGenSchedRW &AliasRW = 725 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 726 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 727 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 728 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 729 continue; 730 } 731 if (AliasDef) 732 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 733 "defined for processor " + ProcModel.ModelName + 734 " Ensure only one SchedAlias exists per RW."); 735 AliasDef = AliasRW.TheDef; 736 } 737 if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance")) 738 return AliasDef; 739 740 // Check this processor's ReadAdvanceList. 741 Record *ResDef = nullptr; 742 for (RecIter RAI = ProcModel.ReadAdvanceDefs.begin(), 743 RAE = ProcModel.ReadAdvanceDefs.end(); RAI != RAE; ++RAI) { 744 if (!(*RAI)->isSubClassOf("ReadAdvance")) 745 continue; 746 if (AliasDef == (*RAI)->getValueAsDef("ReadType") 747 || SchedRead.TheDef == (*RAI)->getValueAsDef("ReadType")) { 748 if (ResDef) { 749 PrintFatalError((*RAI)->getLoc(), "Resources are defined for both " 750 "SchedRead and its alias on processor " + 751 ProcModel.ModelName); 752 } 753 ResDef = *RAI; 754 } 755 } 756 // TODO: If ProcModel has a base model (previous generation processor), 757 // then call FindReadAdvance recursively with that model here. 758 if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") { 759 PrintFatalError(ProcModel.ModelDef->getLoc(), 760 std::string("Processor does not define resources for ") 761 + SchedRead.TheDef->getName()); 762 } 763 return ResDef; 764} 765 766// Expand an explicit list of processor resources into a full list of implied 767// resource groups and super resources that cover them. 768void SubtargetEmitter::ExpandProcResources(RecVec &PRVec, 769 std::vector<int64_t> &Cycles, 770 const CodeGenProcModel &PM) { 771 // Default to 1 resource cycle. 772 Cycles.resize(PRVec.size(), 1); 773 for (unsigned i = 0, e = PRVec.size(); i != e; ++i) { 774 Record *PRDef = PRVec[i]; 775 RecVec SubResources; 776 if (PRDef->isSubClassOf("ProcResGroup")) 777 SubResources = PRDef->getValueAsListOfDefs("Resources"); 778 else { 779 SubResources.push_back(PRDef); 780 PRDef = SchedModels.findProcResUnits(PRVec[i], PM); 781 for (Record *SubDef = PRDef; 782 SubDef->getValueInit("Super")->isComplete();) { 783 if (SubDef->isSubClassOf("ProcResGroup")) { 784 // Disallow this for simplicitly. 785 PrintFatalError(SubDef->getLoc(), "Processor resource group " 786 " cannot be a super resources."); 787 } 788 Record *SuperDef = 789 SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM); 790 PRVec.push_back(SuperDef); 791 Cycles.push_back(Cycles[i]); 792 SubDef = SuperDef; 793 } 794 } 795 for (RecIter PRI = PM.ProcResourceDefs.begin(), 796 PRE = PM.ProcResourceDefs.end(); 797 PRI != PRE; ++PRI) { 798 if (*PRI == PRDef || !(*PRI)->isSubClassOf("ProcResGroup")) 799 continue; 800 RecVec SuperResources = (*PRI)->getValueAsListOfDefs("Resources"); 801 RecIter SubI = SubResources.begin(), SubE = SubResources.end(); 802 for( ; SubI != SubE; ++SubI) { 803 if (std::find(SuperResources.begin(), SuperResources.end(), *SubI) 804 == SuperResources.end()) { 805 break; 806 } 807 } 808 if (SubI == SubE) { 809 PRVec.push_back(*PRI); 810 Cycles.push_back(Cycles[i]); 811 } 812 } 813 } 814} 815 816// Generate the SchedClass table for this processor and update global 817// tables. Must be called for each processor in order. 818void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel, 819 SchedClassTables &SchedTables) { 820 SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1); 821 if (!ProcModel.hasInstrSchedModel()) 822 return; 823 824 std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back(); 825 for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(), 826 SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) { 827 DEBUG(SCI->dump(&SchedModels)); 828 829 SCTab.resize(SCTab.size() + 1); 830 MCSchedClassDesc &SCDesc = SCTab.back(); 831 // SCDesc.Name is guarded by NDEBUG 832 SCDesc.NumMicroOps = 0; 833 SCDesc.BeginGroup = false; 834 SCDesc.EndGroup = false; 835 SCDesc.WriteProcResIdx = 0; 836 SCDesc.WriteLatencyIdx = 0; 837 SCDesc.ReadAdvanceIdx = 0; 838 839 // A Variant SchedClass has no resources of its own. 840 bool HasVariants = false; 841 for (std::vector<CodeGenSchedTransition>::const_iterator 842 TI = SCI->Transitions.begin(), TE = SCI->Transitions.end(); 843 TI != TE; ++TI) { 844 if (TI->ProcIndices[0] == 0) { 845 HasVariants = true; 846 break; 847 } 848 IdxIter PIPos = std::find(TI->ProcIndices.begin(), 849 TI->ProcIndices.end(), ProcModel.Index); 850 if (PIPos != TI->ProcIndices.end()) { 851 HasVariants = true; 852 break; 853 } 854 } 855 if (HasVariants) { 856 SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps; 857 continue; 858 } 859 860 // Determine if the SchedClass is actually reachable on this processor. If 861 // not don't try to locate the processor resources, it will fail. 862 // If ProcIndices contains 0, this class applies to all processors. 863 assert(!SCI->ProcIndices.empty() && "expect at least one procidx"); 864 if (SCI->ProcIndices[0] != 0) { 865 IdxIter PIPos = std::find(SCI->ProcIndices.begin(), 866 SCI->ProcIndices.end(), ProcModel.Index); 867 if (PIPos == SCI->ProcIndices.end()) 868 continue; 869 } 870 IdxVec Writes = SCI->Writes; 871 IdxVec Reads = SCI->Reads; 872 if (!SCI->InstRWs.empty()) { 873 // This class has a default ReadWrite list which can be overriden by 874 // InstRW definitions. 875 Record *RWDef = nullptr; 876 for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end(); 877 RWI != RWE; ++RWI) { 878 Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel"); 879 if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) { 880 RWDef = *RWI; 881 break; 882 } 883 } 884 if (RWDef) { 885 Writes.clear(); 886 Reads.clear(); 887 SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 888 Writes, Reads); 889 } 890 } 891 if (Writes.empty()) { 892 // Check this processor's itinerary class resources. 893 for (RecIter II = ProcModel.ItinRWDefs.begin(), 894 IE = ProcModel.ItinRWDefs.end(); II != IE; ++II) { 895 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 896 if (std::find(Matched.begin(), Matched.end(), SCI->ItinClassDef) 897 != Matched.end()) { 898 SchedModels.findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), 899 Writes, Reads); 900 break; 901 } 902 } 903 if (Writes.empty()) { 904 DEBUG(dbgs() << ProcModel.ModelName 905 << " does not have resources for class " << SCI->Name << '\n'); 906 } 907 } 908 // Sum resources across all operand writes. 909 std::vector<MCWriteProcResEntry> WriteProcResources; 910 std::vector<MCWriteLatencyEntry> WriteLatencies; 911 std::vector<std::string> WriterNames; 912 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 913 for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) { 914 IdxVec WriteSeq; 915 SchedModels.expandRWSeqForProc(*WI, WriteSeq, /*IsRead=*/false, 916 ProcModel); 917 918 // For each operand, create a latency entry. 919 MCWriteLatencyEntry WLEntry; 920 WLEntry.Cycles = 0; 921 unsigned WriteID = WriteSeq.back(); 922 WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name); 923 // If this Write is not referenced by a ReadAdvance, don't distinguish it 924 // from other WriteLatency entries. 925 if (!SchedModels.hasReadOfWrite( 926 SchedModels.getSchedWrite(WriteID).TheDef)) { 927 WriteID = 0; 928 } 929 WLEntry.WriteResourceID = WriteID; 930 931 for (IdxIter WSI = WriteSeq.begin(), WSE = WriteSeq.end(); 932 WSI != WSE; ++WSI) { 933 934 Record *WriteRes = 935 FindWriteResources(SchedModels.getSchedWrite(*WSI), ProcModel); 936 937 // Mark the parent class as invalid for unsupported write types. 938 if (WriteRes->getValueAsBit("Unsupported")) { 939 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 940 break; 941 } 942 WLEntry.Cycles += WriteRes->getValueAsInt("Latency"); 943 SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps"); 944 SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup"); 945 SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup"); 946 947 // Create an entry for each ProcResource listed in WriteRes. 948 RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources"); 949 std::vector<int64_t> Cycles = 950 WriteRes->getValueAsListOfInts("ResourceCycles"); 951 952 ExpandProcResources(PRVec, Cycles, ProcModel); 953 954 for (unsigned PRIdx = 0, PREnd = PRVec.size(); 955 PRIdx != PREnd; ++PRIdx) { 956 MCWriteProcResEntry WPREntry; 957 WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]); 958 assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx"); 959 WPREntry.Cycles = Cycles[PRIdx]; 960 // If this resource is already used in this sequence, add the current 961 // entry's cycles so that the same resource appears to be used 962 // serially, rather than multiple parallel uses. This is important for 963 // in-order machine where the resource consumption is a hazard. 964 unsigned WPRIdx = 0, WPREnd = WriteProcResources.size(); 965 for( ; WPRIdx != WPREnd; ++WPRIdx) { 966 if (WriteProcResources[WPRIdx].ProcResourceIdx 967 == WPREntry.ProcResourceIdx) { 968 WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles; 969 break; 970 } 971 } 972 if (WPRIdx == WPREnd) 973 WriteProcResources.push_back(WPREntry); 974 } 975 } 976 WriteLatencies.push_back(WLEntry); 977 } 978 // Create an entry for each operand Read in this SchedClass. 979 // Entries must be sorted first by UseIdx then by WriteResourceID. 980 for (unsigned UseIdx = 0, EndIdx = Reads.size(); 981 UseIdx != EndIdx; ++UseIdx) { 982 Record *ReadAdvance = 983 FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel); 984 if (!ReadAdvance) 985 continue; 986 987 // Mark the parent class as invalid for unsupported write types. 988 if (ReadAdvance->getValueAsBit("Unsupported")) { 989 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 990 break; 991 } 992 RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites"); 993 IdxVec WriteIDs; 994 if (ValidWrites.empty()) 995 WriteIDs.push_back(0); 996 else { 997 for (RecIter VWI = ValidWrites.begin(), VWE = ValidWrites.end(); 998 VWI != VWE; ++VWI) { 999 WriteIDs.push_back(SchedModels.getSchedRWIdx(*VWI, /*IsRead=*/false)); 1000 } 1001 } 1002 std::sort(WriteIDs.begin(), WriteIDs.end()); 1003 for(IdxIter WI = WriteIDs.begin(), WE = WriteIDs.end(); WI != WE; ++WI) { 1004 MCReadAdvanceEntry RAEntry; 1005 RAEntry.UseIdx = UseIdx; 1006 RAEntry.WriteResourceID = *WI; 1007 RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles"); 1008 ReadAdvanceEntries.push_back(RAEntry); 1009 } 1010 } 1011 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) { 1012 WriteProcResources.clear(); 1013 WriteLatencies.clear(); 1014 ReadAdvanceEntries.clear(); 1015 } 1016 // Add the information for this SchedClass to the global tables using basic 1017 // compression. 1018 // 1019 // WritePrecRes entries are sorted by ProcResIdx. 1020 std::sort(WriteProcResources.begin(), WriteProcResources.end(), 1021 LessWriteProcResources()); 1022 1023 SCDesc.NumWriteProcResEntries = WriteProcResources.size(); 1024 std::vector<MCWriteProcResEntry>::iterator WPRPos = 1025 std::search(SchedTables.WriteProcResources.begin(), 1026 SchedTables.WriteProcResources.end(), 1027 WriteProcResources.begin(), WriteProcResources.end()); 1028 if (WPRPos != SchedTables.WriteProcResources.end()) 1029 SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin(); 1030 else { 1031 SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size(); 1032 SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(), 1033 WriteProcResources.end()); 1034 } 1035 // Latency entries must remain in operand order. 1036 SCDesc.NumWriteLatencyEntries = WriteLatencies.size(); 1037 std::vector<MCWriteLatencyEntry>::iterator WLPos = 1038 std::search(SchedTables.WriteLatencies.begin(), 1039 SchedTables.WriteLatencies.end(), 1040 WriteLatencies.begin(), WriteLatencies.end()); 1041 if (WLPos != SchedTables.WriteLatencies.end()) { 1042 unsigned idx = WLPos - SchedTables.WriteLatencies.begin(); 1043 SCDesc.WriteLatencyIdx = idx; 1044 for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i) 1045 if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) == 1046 std::string::npos) { 1047 SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i]; 1048 } 1049 } 1050 else { 1051 SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size(); 1052 SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(), 1053 WriteLatencies.begin(), 1054 WriteLatencies.end()); 1055 SchedTables.WriterNames.insert(SchedTables.WriterNames.end(), 1056 WriterNames.begin(), WriterNames.end()); 1057 } 1058 // ReadAdvanceEntries must remain in operand order. 1059 SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size(); 1060 std::vector<MCReadAdvanceEntry>::iterator RAPos = 1061 std::search(SchedTables.ReadAdvanceEntries.begin(), 1062 SchedTables.ReadAdvanceEntries.end(), 1063 ReadAdvanceEntries.begin(), ReadAdvanceEntries.end()); 1064 if (RAPos != SchedTables.ReadAdvanceEntries.end()) 1065 SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin(); 1066 else { 1067 SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size(); 1068 SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(), 1069 ReadAdvanceEntries.end()); 1070 } 1071 } 1072} 1073 1074// Emit SchedClass tables for all processors and associated global tables. 1075void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables, 1076 raw_ostream &OS) { 1077 // Emit global WriteProcResTable. 1078 OS << "\n// {ProcResourceIdx, Cycles}\n" 1079 << "extern const llvm::MCWriteProcResEntry " 1080 << Target << "WriteProcResTable[] = {\n" 1081 << " { 0, 0}, // Invalid\n"; 1082 for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size(); 1083 WPRIdx != WPREnd; ++WPRIdx) { 1084 MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx]; 1085 OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", " 1086 << format("%2d", WPREntry.Cycles) << "}"; 1087 if (WPRIdx + 1 < WPREnd) 1088 OS << ','; 1089 OS << " // #" << WPRIdx << '\n'; 1090 } 1091 OS << "}; // " << Target << "WriteProcResTable\n"; 1092 1093 // Emit global WriteLatencyTable. 1094 OS << "\n// {Cycles, WriteResourceID}\n" 1095 << "extern const llvm::MCWriteLatencyEntry " 1096 << Target << "WriteLatencyTable[] = {\n" 1097 << " { 0, 0}, // Invalid\n"; 1098 for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size(); 1099 WLIdx != WLEnd; ++WLIdx) { 1100 MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx]; 1101 OS << " {" << format("%2d", WLEntry.Cycles) << ", " 1102 << format("%2d", WLEntry.WriteResourceID) << "}"; 1103 if (WLIdx + 1 < WLEnd) 1104 OS << ','; 1105 OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n'; 1106 } 1107 OS << "}; // " << Target << "WriteLatencyTable\n"; 1108 1109 // Emit global ReadAdvanceTable. 1110 OS << "\n// {UseIdx, WriteResourceID, Cycles}\n" 1111 << "extern const llvm::MCReadAdvanceEntry " 1112 << Target << "ReadAdvanceTable[] = {\n" 1113 << " {0, 0, 0}, // Invalid\n"; 1114 for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size(); 1115 RAIdx != RAEnd; ++RAIdx) { 1116 MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx]; 1117 OS << " {" << RAEntry.UseIdx << ", " 1118 << format("%2d", RAEntry.WriteResourceID) << ", " 1119 << format("%2d", RAEntry.Cycles) << "}"; 1120 if (RAIdx + 1 < RAEnd) 1121 OS << ','; 1122 OS << " // #" << RAIdx << '\n'; 1123 } 1124 OS << "}; // " << Target << "ReadAdvanceTable\n"; 1125 1126 // Emit a SchedClass table for each processor. 1127 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1128 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1129 if (!PI->hasInstrSchedModel()) 1130 continue; 1131 1132 std::vector<MCSchedClassDesc> &SCTab = 1133 SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())]; 1134 1135 OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup," 1136 << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n"; 1137 OS << "static const llvm::MCSchedClassDesc " 1138 << PI->ModelName << "SchedClasses[] = {\n"; 1139 1140 // The first class is always invalid. We no way to distinguish it except by 1141 // name and position. 1142 assert(SchedModels.getSchedClass(0).Name == "NoInstrModel" 1143 && "invalid class not first"); 1144 OS << " {DBGFIELD(\"InvalidSchedClass\") " 1145 << MCSchedClassDesc::InvalidNumMicroOps 1146 << ", 0, 0, 0, 0, 0, 0, 0, 0},\n"; 1147 1148 for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) { 1149 MCSchedClassDesc &MCDesc = SCTab[SCIdx]; 1150 const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx); 1151 OS << " {DBGFIELD(\"" << SchedClass.Name << "\") "; 1152 if (SchedClass.Name.size() < 18) 1153 OS.indent(18 - SchedClass.Name.size()); 1154 OS << MCDesc.NumMicroOps 1155 << ", " << MCDesc.BeginGroup << ", " << MCDesc.EndGroup 1156 << ", " << format("%2d", MCDesc.WriteProcResIdx) 1157 << ", " << MCDesc.NumWriteProcResEntries 1158 << ", " << format("%2d", MCDesc.WriteLatencyIdx) 1159 << ", " << MCDesc.NumWriteLatencyEntries 1160 << ", " << format("%2d", MCDesc.ReadAdvanceIdx) 1161 << ", " << MCDesc.NumReadAdvanceEntries << "}"; 1162 if (SCIdx + 1 < SCEnd) 1163 OS << ','; 1164 OS << " // #" << SCIdx << '\n'; 1165 } 1166 OS << "}; // " << PI->ModelName << "SchedClasses\n"; 1167 } 1168} 1169 1170void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) { 1171 // For each processor model. 1172 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1173 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1174 // Emit processor resource table. 1175 if (PI->hasInstrSchedModel()) 1176 EmitProcessorResources(*PI, OS); 1177 else if(!PI->ProcResourceDefs.empty()) 1178 PrintFatalError(PI->ModelDef->getLoc(), "SchedMachineModel defines " 1179 "ProcResources without defining WriteRes SchedWriteRes"); 1180 1181 // Begin processor itinerary properties 1182 OS << "\n"; 1183 OS << "static const llvm::MCSchedModel " << PI->ModelName << " = {\n"; 1184 EmitProcessorProp(OS, PI->ModelDef, "IssueWidth", ','); 1185 EmitProcessorProp(OS, PI->ModelDef, "MicroOpBufferSize", ','); 1186 EmitProcessorProp(OS, PI->ModelDef, "LoopMicroOpBufferSize", ','); 1187 EmitProcessorProp(OS, PI->ModelDef, "LoadLatency", ','); 1188 EmitProcessorProp(OS, PI->ModelDef, "HighLatency", ','); 1189 EmitProcessorProp(OS, PI->ModelDef, "MispredictPenalty", ','); 1190 1191 OS << " " << (bool)(PI->ModelDef ? 1192 PI->ModelDef->getValueAsBit("PostRAScheduler") : 0) 1193 << ", // " << "PostRAScheduler\n"; 1194 1195 OS << " " << (bool)(PI->ModelDef ? 1196 PI->ModelDef->getValueAsBit("CompleteModel") : 0) 1197 << ", // " << "CompleteModel\n"; 1198 1199 OS << " " << PI->Index << ", // Processor ID\n"; 1200 if (PI->hasInstrSchedModel()) 1201 OS << " " << PI->ModelName << "ProcResources" << ",\n" 1202 << " " << PI->ModelName << "SchedClasses" << ",\n" 1203 << " " << PI->ProcResourceDefs.size()+1 << ",\n" 1204 << " " << (SchedModels.schedClassEnd() 1205 - SchedModels.schedClassBegin()) << ",\n"; 1206 else 1207 OS << " 0, 0, 0, 0, // No instruction-level machine model.\n"; 1208 if (PI->hasItineraries()) 1209 OS << " " << PI->ItinsDef->getName() << "};\n"; 1210 else 1211 OS << " nullptr}; // No Itinerary\n"; 1212 } 1213} 1214 1215// 1216// EmitProcessorLookup - generate cpu name to itinerary lookup table. 1217// 1218void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) { 1219 // Gather and sort processor information 1220 std::vector<Record*> ProcessorList = 1221 Records.getAllDerivedDefinitions("Processor"); 1222 std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); 1223 1224 // Begin processor table 1225 OS << "\n"; 1226 OS << "// Sorted (by key) array of itineraries for CPU subtype.\n" 1227 << "extern const llvm::SubtargetInfoKV " 1228 << Target << "ProcSchedKV[] = {\n"; 1229 1230 // For each processor 1231 for (unsigned i = 0, N = ProcessorList.size(); i < N;) { 1232 // Next processor 1233 Record *Processor = ProcessorList[i]; 1234 1235 const std::string &Name = Processor->getValueAsString("Name"); 1236 const std::string &ProcModelName = 1237 SchedModels.getModelForProc(Processor).ModelName; 1238 1239 // Emit as { "cpu", procinit }, 1240 OS << " { \"" << Name << "\", (const void *)&" << ProcModelName << " }"; 1241 1242 // Depending on ''if more in the list'' emit comma 1243 if (++i < N) OS << ","; 1244 1245 OS << "\n"; 1246 } 1247 1248 // End processor table 1249 OS << "};\n"; 1250} 1251 1252// 1253// EmitSchedModel - Emits all scheduling model tables, folding common patterns. 1254// 1255void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) { 1256 OS << "#ifdef DBGFIELD\n" 1257 << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n" 1258 << "#endif\n" 1259 << "#ifndef NDEBUG\n" 1260 << "#define DBGFIELD(x) x,\n" 1261 << "#else\n" 1262 << "#define DBGFIELD(x)\n" 1263 << "#endif\n"; 1264 1265 if (SchedModels.hasItineraries()) { 1266 std::vector<std::vector<InstrItinerary> > ProcItinLists; 1267 // Emit the stage data 1268 EmitStageAndOperandCycleData(OS, ProcItinLists); 1269 EmitItineraries(OS, ProcItinLists); 1270 } 1271 OS << "\n// ===============================================================\n" 1272 << "// Data tables for the new per-operand machine model.\n"; 1273 1274 SchedClassTables SchedTables; 1275 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1276 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1277 GenSchedClassTables(*PI, SchedTables); 1278 } 1279 EmitSchedClassTables(SchedTables, OS); 1280 1281 // Emit the processor machine model 1282 EmitProcessorModels(OS); 1283 // Emit the processor lookup data 1284 EmitProcessorLookup(OS); 1285 1286 OS << "#undef DBGFIELD"; 1287} 1288 1289void SubtargetEmitter::EmitSchedModelHelpers(std::string ClassName, 1290 raw_ostream &OS) { 1291 OS << "unsigned " << ClassName 1292 << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI," 1293 << " const TargetSchedModel *SchedModel) const {\n"; 1294 1295 std::vector<Record*> Prologs = Records.getAllDerivedDefinitions("PredicateProlog"); 1296 std::sort(Prologs.begin(), Prologs.end(), LessRecord()); 1297 for (std::vector<Record*>::const_iterator 1298 PI = Prologs.begin(), PE = Prologs.end(); PI != PE; ++PI) { 1299 OS << (*PI)->getValueAsString("Code") << '\n'; 1300 } 1301 IdxVec VariantClasses; 1302 for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(), 1303 SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) { 1304 if (SCI->Transitions.empty()) 1305 continue; 1306 VariantClasses.push_back(SCI->Index); 1307 } 1308 if (!VariantClasses.empty()) { 1309 OS << " switch (SchedClass) {\n"; 1310 for (IdxIter VCI = VariantClasses.begin(), VCE = VariantClasses.end(); 1311 VCI != VCE; ++VCI) { 1312 const CodeGenSchedClass &SC = SchedModels.getSchedClass(*VCI); 1313 OS << " case " << *VCI << ": // " << SC.Name << '\n'; 1314 IdxVec ProcIndices; 1315 for (std::vector<CodeGenSchedTransition>::const_iterator 1316 TI = SC.Transitions.begin(), TE = SC.Transitions.end(); 1317 TI != TE; ++TI) { 1318 IdxVec PI; 1319 std::set_union(TI->ProcIndices.begin(), TI->ProcIndices.end(), 1320 ProcIndices.begin(), ProcIndices.end(), 1321 std::back_inserter(PI)); 1322 ProcIndices.swap(PI); 1323 } 1324 for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end(); 1325 PI != PE; ++PI) { 1326 OS << " "; 1327 if (*PI != 0) 1328 OS << "if (SchedModel->getProcessorID() == " << *PI << ") "; 1329 OS << "{ // " << (SchedModels.procModelBegin() + *PI)->ModelName 1330 << '\n'; 1331 for (std::vector<CodeGenSchedTransition>::const_iterator 1332 TI = SC.Transitions.begin(), TE = SC.Transitions.end(); 1333 TI != TE; ++TI) { 1334 if (*PI != 0 && !std::count(TI->ProcIndices.begin(), 1335 TI->ProcIndices.end(), *PI)) { 1336 continue; 1337 } 1338 OS << " if ("; 1339 for (RecIter RI = TI->PredTerm.begin(), RE = TI->PredTerm.end(); 1340 RI != RE; ++RI) { 1341 if (RI != TI->PredTerm.begin()) 1342 OS << "\n && "; 1343 OS << "(" << (*RI)->getValueAsString("Predicate") << ")"; 1344 } 1345 OS << ")\n" 1346 << " return " << TI->ToClassIdx << "; // " 1347 << SchedModels.getSchedClass(TI->ToClassIdx).Name << '\n'; 1348 } 1349 OS << " }\n"; 1350 if (*PI == 0) 1351 break; 1352 } 1353 if (SC.isInferred()) 1354 OS << " return " << SC.Index << ";\n"; 1355 OS << " break;\n"; 1356 } 1357 OS << " };\n"; 1358 } 1359 OS << " report_fatal_error(\"Expected a variant SchedClass\");\n" 1360 << "} // " << ClassName << "::resolveSchedClass\n"; 1361} 1362 1363// 1364// ParseFeaturesFunction - Produces a subtarget specific function for parsing 1365// the subtarget features string. 1366// 1367void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS, 1368 unsigned NumFeatures, 1369 unsigned NumProcs) { 1370 std::vector<Record*> Features = 1371 Records.getAllDerivedDefinitions("SubtargetFeature"); 1372 std::sort(Features.begin(), Features.end(), LessRecord()); 1373 1374 OS << "// ParseSubtargetFeatures - Parses features string setting specified\n" 1375 << "// subtarget options.\n" 1376 << "void llvm::"; 1377 OS << Target; 1378 OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n" 1379 << " DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n" 1380 << " DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n"; 1381 1382 if (Features.empty()) { 1383 OS << "}\n"; 1384 return; 1385 } 1386 1387 OS << " InitMCProcessorInfo(CPU, FS);\n" 1388 << " uint64_t Bits = getFeatureBits();\n"; 1389 1390 for (unsigned i = 0; i < Features.size(); i++) { 1391 // Next record 1392 Record *R = Features[i]; 1393 const std::string &Instance = R->getName(); 1394 const std::string &Value = R->getValueAsString("Value"); 1395 const std::string &Attribute = R->getValueAsString("Attribute"); 1396 1397 if (Value=="true" || Value=="false") 1398 OS << " if ((Bits & " << Target << "::" 1399 << Instance << ") != 0) " 1400 << Attribute << " = " << Value << ";\n"; 1401 else 1402 OS << " if ((Bits & " << Target << "::" 1403 << Instance << ") != 0 && " 1404 << Attribute << " < " << Value << ") " 1405 << Attribute << " = " << Value << ";\n"; 1406 } 1407 1408 OS << "}\n"; 1409} 1410 1411// 1412// SubtargetEmitter::run - Main subtarget enumeration emitter. 1413// 1414void SubtargetEmitter::run(raw_ostream &OS) { 1415 emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS); 1416 1417 OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n"; 1418 OS << "#undef GET_SUBTARGETINFO_ENUM\n"; 1419 1420 OS << "namespace llvm {\n"; 1421 Enumeration(OS, "SubtargetFeature", true); 1422 OS << "} // End llvm namespace \n"; 1423 OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n"; 1424 1425 OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n"; 1426 OS << "#undef GET_SUBTARGETINFO_MC_DESC\n"; 1427 1428 OS << "namespace llvm {\n"; 1429#if 0 1430 OS << "namespace {\n"; 1431#endif 1432 unsigned NumFeatures = FeatureKeyValues(OS); 1433 OS << "\n"; 1434 unsigned NumProcs = CPUKeyValues(OS); 1435 OS << "\n"; 1436 EmitSchedModel(OS); 1437 OS << "\n"; 1438#if 0 1439 OS << "}\n"; 1440#endif 1441 1442 // MCInstrInfo initialization routine. 1443 OS << "static inline void Init" << Target 1444 << "MCSubtargetInfo(MCSubtargetInfo *II, " 1445 << "StringRef TT, StringRef CPU, StringRef FS) {\n"; 1446 OS << " II->InitMCSubtargetInfo(TT, CPU, FS, "; 1447 if (NumFeatures) 1448 OS << Target << "FeatureKV, "; 1449 else 1450 OS << "None, "; 1451 if (NumProcs) 1452 OS << Target << "SubTypeKV, "; 1453 else 1454 OS << "None, "; 1455 OS << '\n'; OS.indent(22); 1456 OS << Target << "ProcSchedKV, " 1457 << Target << "WriteProcResTable, " 1458 << Target << "WriteLatencyTable, " 1459 << Target << "ReadAdvanceTable, "; 1460 if (SchedModels.hasItineraries()) { 1461 OS << '\n'; OS.indent(22); 1462 OS << Target << "Stages, " 1463 << Target << "OperandCycles, " 1464 << Target << "ForwardingPaths"; 1465 } else 1466 OS << "0, 0, 0"; 1467 OS << ");\n}\n\n"; 1468 1469 OS << "} // End llvm namespace \n"; 1470 1471 OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n"; 1472 1473 OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n"; 1474 OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n"; 1475 1476 OS << "#include \"llvm/Support/Debug.h\"\n"; 1477 OS << "#include \"llvm/Support/raw_ostream.h\"\n"; 1478 ParseFeaturesFunction(OS, NumFeatures, NumProcs); 1479 1480 OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1481 1482 // Create a TargetSubtargetInfo subclass to hide the MC layer initialization. 1483 OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n"; 1484 OS << "#undef GET_SUBTARGETINFO_HEADER\n"; 1485 1486 std::string ClassName = Target + "GenSubtargetInfo"; 1487 OS << "namespace llvm {\n"; 1488 OS << "class DFAPacketizer;\n"; 1489 OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n" 1490 << " explicit " << ClassName << "(StringRef TT, StringRef CPU, " 1491 << "StringRef FS);\n" 1492 << "public:\n" 1493 << " unsigned resolveSchedClass(unsigned SchedClass, const MachineInstr *DefMI," 1494 << " const TargetSchedModel *SchedModel) const override;\n" 1495 << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)" 1496 << " const;\n" 1497 << "};\n"; 1498 OS << "} // End llvm namespace \n"; 1499 1500 OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n"; 1501 1502 OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n"; 1503 OS << "#undef GET_SUBTARGETINFO_CTOR\n"; 1504 1505 OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n"; 1506 OS << "namespace llvm {\n"; 1507 OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n"; 1508 OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n"; 1509 OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n"; 1510 OS << "extern const llvm::MCWriteProcResEntry " 1511 << Target << "WriteProcResTable[];\n"; 1512 OS << "extern const llvm::MCWriteLatencyEntry " 1513 << Target << "WriteLatencyTable[];\n"; 1514 OS << "extern const llvm::MCReadAdvanceEntry " 1515 << Target << "ReadAdvanceTable[];\n"; 1516 1517 if (SchedModels.hasItineraries()) { 1518 OS << "extern const llvm::InstrStage " << Target << "Stages[];\n"; 1519 OS << "extern const unsigned " << Target << "OperandCycles[];\n"; 1520 OS << "extern const unsigned " << Target << "ForwardingPaths[];\n"; 1521 } 1522 1523 OS << ClassName << "::" << ClassName << "(StringRef TT, StringRef CPU, " 1524 << "StringRef FS)\n" 1525 << " : TargetSubtargetInfo() {\n" 1526 << " InitMCSubtargetInfo(TT, CPU, FS, "; 1527 if (NumFeatures) 1528 OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), "; 1529 else 1530 OS << "None, "; 1531 if (NumProcs) 1532 OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), "; 1533 else 1534 OS << "None, "; 1535 OS << '\n'; OS.indent(22); 1536 OS << Target << "ProcSchedKV, " 1537 << Target << "WriteProcResTable, " 1538 << Target << "WriteLatencyTable, " 1539 << Target << "ReadAdvanceTable, "; 1540 OS << '\n'; OS.indent(22); 1541 if (SchedModels.hasItineraries()) { 1542 OS << Target << "Stages, " 1543 << Target << "OperandCycles, " 1544 << Target << "ForwardingPaths"; 1545 } else 1546 OS << "0, 0, 0"; 1547 OS << ");\n}\n\n"; 1548 1549 EmitSchedModelHelpers(ClassName, OS); 1550 1551 OS << "} // End llvm namespace \n"; 1552 1553 OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n"; 1554} 1555 1556namespace llvm { 1557 1558void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) { 1559 CodeGenTarget CGTarget(RK); 1560 SubtargetEmitter(RK, CGTarget).run(OS); 1561} 1562 1563} // End llvm namespace 1564