SubtargetEmitter.cpp revision a809c8db3d052e9b7dfaf8665ab3ce1a0b0dc859
1//===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This tablegen backend emits subtarget enumerations. 11// 12//===----------------------------------------------------------------------===// 13 14#define DEBUG_TYPE "subtarget-emitter" 15 16#include "CodeGenTarget.h" 17#include "CodeGenSchedule.h" 18#include "llvm/ADT/STLExtras.h" 19#include "llvm/ADT/StringExtras.h" 20#include "llvm/MC/MCInstrItineraries.h" 21#include "llvm/Support/Debug.h" 22#include "llvm/Support/Format.h" 23#include "llvm/TableGen/Error.h" 24#include "llvm/TableGen/Record.h" 25#include "llvm/TableGen/TableGenBackend.h" 26#include <algorithm> 27#include <map> 28#include <string> 29#include <vector> 30using namespace llvm; 31 32namespace { 33class SubtargetEmitter { 34 // Each processor has a SchedClassDesc table with an entry for each SchedClass. 35 // The SchedClassDesc table indexes into a global write resource table, write 36 // latency table, and read advance table. 37 struct SchedClassTables { 38 std::vector<std::vector<MCSchedClassDesc> > ProcSchedClasses; 39 std::vector<MCWriteProcResEntry> WriteProcResources; 40 std::vector<MCWriteLatencyEntry> WriteLatencies; 41 std::vector<std::string> WriterNames; 42 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 43 44 // Reserve an invalid entry at index 0 45 SchedClassTables() { 46 ProcSchedClasses.resize(1); 47 WriteProcResources.resize(1); 48 WriteLatencies.resize(1); 49 WriterNames.push_back("InvalidWrite"); 50 ReadAdvanceEntries.resize(1); 51 } 52 }; 53 54 struct LessWriteProcResources { 55 bool operator()(const MCWriteProcResEntry &LHS, 56 const MCWriteProcResEntry &RHS) { 57 return LHS.ProcResourceIdx < RHS.ProcResourceIdx; 58 } 59 }; 60 61 RecordKeeper &Records; 62 CodeGenSchedModels &SchedModels; 63 std::string Target; 64 65 void Enumeration(raw_ostream &OS, const char *ClassName, bool isBits); 66 unsigned FeatureKeyValues(raw_ostream &OS); 67 unsigned CPUKeyValues(raw_ostream &OS); 68 void FormItineraryStageString(const std::string &Names, 69 Record *ItinData, std::string &ItinString, 70 unsigned &NStages); 71 void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString, 72 unsigned &NOperandCycles); 73 void FormItineraryBypassString(const std::string &Names, 74 Record *ItinData, 75 std::string &ItinString, unsigned NOperandCycles); 76 void EmitStageAndOperandCycleData(raw_ostream &OS, 77 std::vector<std::vector<InstrItinerary> > 78 &ProcItinLists); 79 void EmitItineraries(raw_ostream &OS, 80 std::vector<std::vector<InstrItinerary> > 81 &ProcItinLists); 82 void EmitProcessorProp(raw_ostream &OS, const Record *R, const char *Name, 83 char Separator); 84 void EmitProcessorResources(const CodeGenProcModel &ProcModel, 85 raw_ostream &OS); 86 Record *FindWriteResources(const CodeGenSchedRW &SchedWrite, 87 const CodeGenProcModel &ProcModel); 88 Record *FindReadAdvance(const CodeGenSchedRW &SchedRead, 89 const CodeGenProcModel &ProcModel); 90 void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles, 91 const CodeGenProcModel &ProcModel); 92 void GenSchedClassTables(const CodeGenProcModel &ProcModel, 93 SchedClassTables &SchedTables); 94 void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS); 95 void EmitProcessorModels(raw_ostream &OS); 96 void EmitProcessorLookup(raw_ostream &OS); 97 void EmitSchedModelHelpers(std::string ClassName, raw_ostream &OS); 98 void EmitSchedModel(raw_ostream &OS); 99 void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures, 100 unsigned NumProcs); 101 102public: 103 SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT): 104 Records(R), SchedModels(TGT.getSchedModels()), Target(TGT.getName()) {} 105 106 void run(raw_ostream &o); 107 108}; 109} // End anonymous namespace 110 111// 112// Enumeration - Emit the specified class as an enumeration. 113// 114void SubtargetEmitter::Enumeration(raw_ostream &OS, 115 const char *ClassName, 116 bool isBits) { 117 // Get all records of class and sort 118 std::vector<Record*> DefList = Records.getAllDerivedDefinitions(ClassName); 119 std::sort(DefList.begin(), DefList.end(), LessRecord()); 120 121 unsigned N = DefList.size(); 122 if (N == 0) 123 return; 124 if (N > 64) { 125 errs() << "Too many (> 64) subtarget features!\n"; 126 exit(1); 127 } 128 129 OS << "namespace " << Target << " {\n"; 130 131 // For bit flag enumerations with more than 32 items, emit constants. 132 // Emit an enum for everything else. 133 if (isBits && N > 32) { 134 // For each record 135 for (unsigned i = 0; i < N; i++) { 136 // Next record 137 Record *Def = DefList[i]; 138 139 // Get and emit name and expression (1 << i) 140 OS << " const uint64_t " << Def->getName() << " = 1ULL << " << i << ";\n"; 141 } 142 } else { 143 // Open enumeration 144 OS << "enum {\n"; 145 146 // For each record 147 for (unsigned i = 0; i < N;) { 148 // Next record 149 Record *Def = DefList[i]; 150 151 // Get and emit name 152 OS << " " << Def->getName(); 153 154 // If bit flags then emit expression (1 << i) 155 if (isBits) OS << " = " << " 1ULL << " << i; 156 157 // Depending on 'if more in the list' emit comma 158 if (++i < N) OS << ","; 159 160 OS << "\n"; 161 } 162 163 // Close enumeration 164 OS << "};\n"; 165 } 166 167 OS << "}\n"; 168} 169 170// 171// FeatureKeyValues - Emit data of all the subtarget features. Used by the 172// command line. 173// 174unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) { 175 // Gather and sort all the features 176 std::vector<Record*> FeatureList = 177 Records.getAllDerivedDefinitions("SubtargetFeature"); 178 179 if (FeatureList.empty()) 180 return 0; 181 182 std::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName()); 183 184 // Begin feature table 185 OS << "// Sorted (by key) array of values for CPU features.\n" 186 << "extern const llvm::SubtargetFeatureKV " << Target 187 << "FeatureKV[] = {\n"; 188 189 // For each feature 190 unsigned NumFeatures = 0; 191 for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) { 192 // Next feature 193 Record *Feature = FeatureList[i]; 194 195 const std::string &Name = Feature->getName(); 196 const std::string &CommandLineName = Feature->getValueAsString("Name"); 197 const std::string &Desc = Feature->getValueAsString("Desc"); 198 199 if (CommandLineName.empty()) continue; 200 201 // Emit as { "feature", "description", featureEnum, i1 | i2 | ... | in } 202 OS << " { " 203 << "\"" << CommandLineName << "\", " 204 << "\"" << Desc << "\", " 205 << Target << "::" << Name << ", "; 206 207 const std::vector<Record*> &ImpliesList = 208 Feature->getValueAsListOfDefs("Implies"); 209 210 if (ImpliesList.empty()) { 211 OS << "0ULL"; 212 } else { 213 for (unsigned j = 0, M = ImpliesList.size(); j < M;) { 214 OS << Target << "::" << ImpliesList[j]->getName(); 215 if (++j < M) OS << " | "; 216 } 217 } 218 219 OS << " }"; 220 ++NumFeatures; 221 222 // Depending on 'if more in the list' emit comma 223 if ((i + 1) < N) OS << ","; 224 225 OS << "\n"; 226 } 227 228 // End feature table 229 OS << "};\n"; 230 231 return NumFeatures; 232} 233 234// 235// CPUKeyValues - Emit data of all the subtarget processors. Used by command 236// line. 237// 238unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) { 239 // Gather and sort processor information 240 std::vector<Record*> ProcessorList = 241 Records.getAllDerivedDefinitions("Processor"); 242 std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); 243 244 // Begin processor table 245 OS << "// Sorted (by key) array of values for CPU subtype.\n" 246 << "extern const llvm::SubtargetFeatureKV " << Target 247 << "SubTypeKV[] = {\n"; 248 249 // For each processor 250 for (unsigned i = 0, N = ProcessorList.size(); i < N;) { 251 // Next processor 252 Record *Processor = ProcessorList[i]; 253 254 const std::string &Name = Processor->getValueAsString("Name"); 255 const std::vector<Record*> &FeatureList = 256 Processor->getValueAsListOfDefs("Features"); 257 258 // Emit as { "cpu", "description", f1 | f2 | ... fn }, 259 OS << " { " 260 << "\"" << Name << "\", " 261 << "\"Select the " << Name << " processor\", "; 262 263 if (FeatureList.empty()) { 264 OS << "0ULL"; 265 } else { 266 for (unsigned j = 0, M = FeatureList.size(); j < M;) { 267 OS << Target << "::" << FeatureList[j]->getName(); 268 if (++j < M) OS << " | "; 269 } 270 } 271 272 // The "0" is for the "implies" section of this data structure. 273 OS << ", 0ULL }"; 274 275 // Depending on 'if more in the list' emit comma 276 if (++i < N) OS << ","; 277 278 OS << "\n"; 279 } 280 281 // End processor table 282 OS << "};\n"; 283 284 return ProcessorList.size(); 285} 286 287// 288// FormItineraryStageString - Compose a string containing the stage 289// data initialization for the specified itinerary. N is the number 290// of stages. 291// 292void SubtargetEmitter::FormItineraryStageString(const std::string &Name, 293 Record *ItinData, 294 std::string &ItinString, 295 unsigned &NStages) { 296 // Get states list 297 const std::vector<Record*> &StageList = 298 ItinData->getValueAsListOfDefs("Stages"); 299 300 // For each stage 301 unsigned N = NStages = StageList.size(); 302 for (unsigned i = 0; i < N;) { 303 // Next stage 304 const Record *Stage = StageList[i]; 305 306 // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind } 307 int Cycles = Stage->getValueAsInt("Cycles"); 308 ItinString += " { " + itostr(Cycles) + ", "; 309 310 // Get unit list 311 const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units"); 312 313 // For each unit 314 for (unsigned j = 0, M = UnitList.size(); j < M;) { 315 // Add name and bitwise or 316 ItinString += Name + "FU::" + UnitList[j]->getName(); 317 if (++j < M) ItinString += " | "; 318 } 319 320 int TimeInc = Stage->getValueAsInt("TimeInc"); 321 ItinString += ", " + itostr(TimeInc); 322 323 int Kind = Stage->getValueAsInt("Kind"); 324 ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind); 325 326 // Close off stage 327 ItinString += " }"; 328 if (++i < N) ItinString += ", "; 329 } 330} 331 332// 333// FormItineraryOperandCycleString - Compose a string containing the 334// operand cycle initialization for the specified itinerary. N is the 335// number of operands that has cycles specified. 336// 337void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData, 338 std::string &ItinString, unsigned &NOperandCycles) { 339 // Get operand cycle list 340 const std::vector<int64_t> &OperandCycleList = 341 ItinData->getValueAsListOfInts("OperandCycles"); 342 343 // For each operand cycle 344 unsigned N = NOperandCycles = OperandCycleList.size(); 345 for (unsigned i = 0; i < N;) { 346 // Next operand cycle 347 const int OCycle = OperandCycleList[i]; 348 349 ItinString += " " + itostr(OCycle); 350 if (++i < N) ItinString += ", "; 351 } 352} 353 354void SubtargetEmitter::FormItineraryBypassString(const std::string &Name, 355 Record *ItinData, 356 std::string &ItinString, 357 unsigned NOperandCycles) { 358 const std::vector<Record*> &BypassList = 359 ItinData->getValueAsListOfDefs("Bypasses"); 360 unsigned N = BypassList.size(); 361 unsigned i = 0; 362 for (; i < N;) { 363 ItinString += Name + "Bypass::" + BypassList[i]->getName(); 364 if (++i < NOperandCycles) ItinString += ", "; 365 } 366 for (; i < NOperandCycles;) { 367 ItinString += " 0"; 368 if (++i < NOperandCycles) ItinString += ", "; 369 } 370} 371 372// 373// EmitStageAndOperandCycleData - Generate unique itinerary stages and operand 374// cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed 375// by CodeGenSchedClass::Index. 376// 377void SubtargetEmitter:: 378EmitStageAndOperandCycleData(raw_ostream &OS, 379 std::vector<std::vector<InstrItinerary> > 380 &ProcItinLists) { 381 382 // Multiple processor models may share an itinerary record. Emit it once. 383 SmallPtrSet<Record*, 8> ItinsDefSet; 384 385 // Emit functional units for all the itineraries. 386 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 387 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 388 389 if (!ItinsDefSet.insert(PI->ItinsDef)) 390 continue; 391 392 std::vector<Record*> FUs = PI->ItinsDef->getValueAsListOfDefs("FU"); 393 if (FUs.empty()) 394 continue; 395 396 const std::string &Name = PI->ItinsDef->getName(); 397 OS << "\n// Functional units for \"" << Name << "\"\n" 398 << "namespace " << Name << "FU {\n"; 399 400 for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j) 401 OS << " const unsigned " << FUs[j]->getName() 402 << " = 1 << " << j << ";\n"; 403 404 OS << "}\n"; 405 406 std::vector<Record*> BPs = PI->ItinsDef->getValueAsListOfDefs("BP"); 407 if (BPs.size()) { 408 OS << "\n// Pipeline forwarding pathes for itineraries \"" << Name 409 << "\"\n" << "namespace " << Name << "Bypass {\n"; 410 411 OS << " const unsigned NoBypass = 0;\n"; 412 for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j) 413 OS << " const unsigned " << BPs[j]->getName() 414 << " = 1 << " << j << ";\n"; 415 416 OS << "}\n"; 417 } 418 } 419 420 // Begin stages table 421 std::string StageTable = "\nextern const llvm::InstrStage " + Target + 422 "Stages[] = {\n"; 423 StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n"; 424 425 // Begin operand cycle table 426 std::string OperandCycleTable = "extern const unsigned " + Target + 427 "OperandCycles[] = {\n"; 428 OperandCycleTable += " 0, // No itinerary\n"; 429 430 // Begin pipeline bypass table 431 std::string BypassTable = "extern const unsigned " + Target + 432 "ForwardingPaths[] = {\n"; 433 BypassTable += " 0, // No itinerary\n"; 434 435 // For each Itinerary across all processors, add a unique entry to the stages, 436 // operand cycles, and pipepine bypess tables. Then add the new Itinerary 437 // object with computed offsets to the ProcItinLists result. 438 unsigned StageCount = 1, OperandCycleCount = 1; 439 std::map<std::string, unsigned> ItinStageMap, ItinOperandMap; 440 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 441 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 442 const CodeGenProcModel &ProcModel = *PI; 443 444 // Add process itinerary to the list. 445 ProcItinLists.resize(ProcItinLists.size()+1); 446 447 // If this processor defines no itineraries, then leave the itinerary list 448 // empty. 449 std::vector<InstrItinerary> &ItinList = ProcItinLists.back(); 450 if (!ProcModel.hasItineraries()) 451 continue; 452 453 const std::string &Name = ProcModel.ItinsDef->getName(); 454 455 ItinList.resize(SchedModels.numInstrSchedClasses()); 456 assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins"); 457 458 for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size(); 459 SchedClassIdx < SchedClassEnd; ++SchedClassIdx) { 460 461 // Next itinerary data 462 Record *ItinData = ProcModel.ItinDefList[SchedClassIdx]; 463 464 // Get string and stage count 465 std::string ItinStageString; 466 unsigned NStages = 0; 467 if (ItinData) 468 FormItineraryStageString(Name, ItinData, ItinStageString, NStages); 469 470 // Get string and operand cycle count 471 std::string ItinOperandCycleString; 472 unsigned NOperandCycles = 0; 473 std::string ItinBypassString; 474 if (ItinData) { 475 FormItineraryOperandCycleString(ItinData, ItinOperandCycleString, 476 NOperandCycles); 477 478 FormItineraryBypassString(Name, ItinData, ItinBypassString, 479 NOperandCycles); 480 } 481 482 // Check to see if stage already exists and create if it doesn't 483 unsigned FindStage = 0; 484 if (NStages > 0) { 485 FindStage = ItinStageMap[ItinStageString]; 486 if (FindStage == 0) { 487 // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices 488 StageTable += ItinStageString + ", // " + itostr(StageCount); 489 if (NStages > 1) 490 StageTable += "-" + itostr(StageCount + NStages - 1); 491 StageTable += "\n"; 492 // Record Itin class number. 493 ItinStageMap[ItinStageString] = FindStage = StageCount; 494 StageCount += NStages; 495 } 496 } 497 498 // Check to see if operand cycle already exists and create if it doesn't 499 unsigned FindOperandCycle = 0; 500 if (NOperandCycles > 0) { 501 std::string ItinOperandString = ItinOperandCycleString+ItinBypassString; 502 FindOperandCycle = ItinOperandMap[ItinOperandString]; 503 if (FindOperandCycle == 0) { 504 // Emit as cycle, // index 505 OperandCycleTable += ItinOperandCycleString + ", // "; 506 std::string OperandIdxComment = itostr(OperandCycleCount); 507 if (NOperandCycles > 1) 508 OperandIdxComment += "-" 509 + itostr(OperandCycleCount + NOperandCycles - 1); 510 OperandCycleTable += OperandIdxComment + "\n"; 511 // Record Itin class number. 512 ItinOperandMap[ItinOperandCycleString] = 513 FindOperandCycle = OperandCycleCount; 514 // Emit as bypass, // index 515 BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n"; 516 OperandCycleCount += NOperandCycles; 517 } 518 } 519 520 // Set up itinerary as location and location + stage count 521 int NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0; 522 InstrItinerary Intinerary = { NumUOps, FindStage, FindStage + NStages, 523 FindOperandCycle, 524 FindOperandCycle + NOperandCycles}; 525 526 // Inject - empty slots will be 0, 0 527 ItinList[SchedClassIdx] = Intinerary; 528 } 529 } 530 531 // Closing stage 532 StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n"; 533 StageTable += "};\n"; 534 535 // Closing operand cycles 536 OperandCycleTable += " 0 // End operand cycles\n"; 537 OperandCycleTable += "};\n"; 538 539 BypassTable += " 0 // End bypass tables\n"; 540 BypassTable += "};\n"; 541 542 // Emit tables. 543 OS << StageTable; 544 OS << OperandCycleTable; 545 OS << BypassTable; 546} 547 548// 549// EmitProcessorData - Generate data for processor itineraries that were 550// computed during EmitStageAndOperandCycleData(). ProcItinLists lists all 551// Itineraries for each processor. The Itinerary lists are indexed on 552// CodeGenSchedClass::Index. 553// 554void SubtargetEmitter:: 555EmitItineraries(raw_ostream &OS, 556 std::vector<std::vector<InstrItinerary> > &ProcItinLists) { 557 558 // Multiple processor models may share an itinerary record. Emit it once. 559 SmallPtrSet<Record*, 8> ItinsDefSet; 560 561 // For each processor's machine model 562 std::vector<std::vector<InstrItinerary> >::iterator 563 ProcItinListsIter = ProcItinLists.begin(); 564 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 565 PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) { 566 567 Record *ItinsDef = PI->ItinsDef; 568 if (!ItinsDefSet.insert(ItinsDef)) 569 continue; 570 571 // Get processor itinerary name 572 const std::string &Name = ItinsDef->getName(); 573 574 // Get the itinerary list for the processor. 575 assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator"); 576 std::vector<InstrItinerary> &ItinList = *ProcItinListsIter; 577 578 OS << "\n"; 579 OS << "static const llvm::InstrItinerary "; 580 if (ItinList.empty()) { 581 OS << '*' << Name << " = 0;\n"; 582 continue; 583 } 584 585 // Begin processor itinerary table 586 OS << Name << "[] = {\n"; 587 588 // For each itinerary class in CodeGenSchedClass::Index order. 589 for (unsigned j = 0, M = ItinList.size(); j < M; ++j) { 590 InstrItinerary &Intinerary = ItinList[j]; 591 592 // Emit Itinerary in the form of 593 // { firstStage, lastStage, firstCycle, lastCycle } // index 594 OS << " { " << 595 Intinerary.NumMicroOps << ", " << 596 Intinerary.FirstStage << ", " << 597 Intinerary.LastStage << ", " << 598 Intinerary.FirstOperandCycle << ", " << 599 Intinerary.LastOperandCycle << " }" << 600 ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n"; 601 } 602 // End processor itinerary table 603 OS << " { 0, ~0U, ~0U, ~0U, ~0U } // end marker\n"; 604 OS << "};\n"; 605 } 606} 607 608// Emit either the value defined in the TableGen Record, or the default 609// value defined in the C++ header. The Record is null if the processor does not 610// define a model. 611void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R, 612 const char *Name, char Separator) { 613 OS << " "; 614 int V = R ? R->getValueAsInt(Name) : -1; 615 if (V >= 0) 616 OS << V << Separator << " // " << Name; 617 else 618 OS << "MCSchedModel::Default" << Name << Separator; 619 OS << '\n'; 620} 621 622void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel, 623 raw_ostream &OS) { 624 char Sep = ProcModel.ProcResourceDefs.empty() ? ' ' : ','; 625 626 OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered}\n"; 627 OS << "static const llvm::MCProcResourceDesc " 628 << ProcModel.ModelName << "ProcResources" << "[] = {\n" 629 << " {DBGFIELD(\"InvalidUnit\") 0, 0, 0}" << Sep << "\n"; 630 631 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 632 Record *PRDef = ProcModel.ProcResourceDefs[i]; 633 634 Record *SuperDef = 0; 635 unsigned SuperIdx = 0; 636 unsigned NumUnits = 0; 637 bool IsBuffered = true; 638 if (PRDef->isSubClassOf("ProcResGroup")) { 639 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 640 for (RecIter RUI = ResUnits.begin(), RUE = ResUnits.end(); 641 RUI != RUE; ++RUI) { 642 if (!NumUnits) 643 IsBuffered = (*RUI)->getValueAsBit("Buffered"); 644 else if(IsBuffered != (*RUI)->getValueAsBit("Buffered")) 645 PrintFatalError(PRDef->getLoc(), 646 "Mixing buffered and unbuffered resources."); 647 NumUnits += (*RUI)->getValueAsInt("NumUnits"); 648 } 649 } 650 else { 651 // Find the SuperIdx 652 if (PRDef->getValueInit("Super")->isComplete()) { 653 SuperDef = SchedModels.findProcResUnits( 654 PRDef->getValueAsDef("Super"), ProcModel); 655 SuperIdx = ProcModel.getProcResourceIdx(SuperDef); 656 } 657 NumUnits = PRDef->getValueAsInt("NumUnits"); 658 IsBuffered = PRDef->getValueAsBit("Buffered"); 659 } 660 // Emit the ProcResourceDesc 661 if (i+1 == e) 662 Sep = ' '; 663 OS << " {DBGFIELD(\"" << PRDef->getName() << "\") "; 664 if (PRDef->getName().size() < 15) 665 OS.indent(15 - PRDef->getName().size()); 666 OS << NumUnits << ", " << SuperIdx << ", " 667 << IsBuffered << "}" << Sep << " // #" << i+1; 668 if (SuperDef) 669 OS << ", Super=" << SuperDef->getName(); 670 OS << "\n"; 671 } 672 OS << "};\n"; 673} 674 675// Find the WriteRes Record that defines processor resources for this 676// SchedWrite. 677Record *SubtargetEmitter::FindWriteResources( 678 const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) { 679 680 // Check if the SchedWrite is already subtarget-specific and directly 681 // specifies a set of processor resources. 682 if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes")) 683 return SchedWrite.TheDef; 684 685 Record *AliasDef = 0; 686 for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); 687 AI != AE; ++AI) { 688 const CodeGenSchedRW &AliasRW = 689 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 690 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 691 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 692 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 693 continue; 694 } 695 if (AliasDef) 696 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 697 "defined for processor " + ProcModel.ModelName + 698 " Ensure only one SchedAlias exists per RW."); 699 AliasDef = AliasRW.TheDef; 700 } 701 if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes")) 702 return AliasDef; 703 704 // Check this processor's list of write resources. 705 Record *ResDef = 0; 706 for (RecIter WRI = ProcModel.WriteResDefs.begin(), 707 WRE = ProcModel.WriteResDefs.end(); WRI != WRE; ++WRI) { 708 if (!(*WRI)->isSubClassOf("WriteRes")) 709 continue; 710 if (AliasDef == (*WRI)->getValueAsDef("WriteType") 711 || SchedWrite.TheDef == (*WRI)->getValueAsDef("WriteType")) { 712 if (ResDef) { 713 PrintFatalError((*WRI)->getLoc(), "Resources are defined for both " 714 "SchedWrite and its alias on processor " + 715 ProcModel.ModelName); 716 } 717 ResDef = *WRI; 718 } 719 } 720 // TODO: If ProcModel has a base model (previous generation processor), 721 // then call FindWriteResources recursively with that model here. 722 if (!ResDef) { 723 PrintFatalError(ProcModel.ModelDef->getLoc(), 724 std::string("Processor does not define resources for ") 725 + SchedWrite.TheDef->getName()); 726 } 727 return ResDef; 728} 729 730/// Find the ReadAdvance record for the given SchedRead on this processor or 731/// return NULL. 732Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead, 733 const CodeGenProcModel &ProcModel) { 734 // Check for SchedReads that directly specify a ReadAdvance. 735 if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance")) 736 return SchedRead.TheDef; 737 738 // Check this processor's list of aliases for SchedRead. 739 Record *AliasDef = 0; 740 for (RecIter AI = SchedRead.Aliases.begin(), AE = SchedRead.Aliases.end(); 741 AI != AE; ++AI) { 742 const CodeGenSchedRW &AliasRW = 743 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 744 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 745 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 746 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 747 continue; 748 } 749 if (AliasDef) 750 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 751 "defined for processor " + ProcModel.ModelName + 752 " Ensure only one SchedAlias exists per RW."); 753 AliasDef = AliasRW.TheDef; 754 } 755 if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance")) 756 return AliasDef; 757 758 // Check this processor's ReadAdvanceList. 759 Record *ResDef = 0; 760 for (RecIter RAI = ProcModel.ReadAdvanceDefs.begin(), 761 RAE = ProcModel.ReadAdvanceDefs.end(); RAI != RAE; ++RAI) { 762 if (!(*RAI)->isSubClassOf("ReadAdvance")) 763 continue; 764 if (AliasDef == (*RAI)->getValueAsDef("ReadType") 765 || SchedRead.TheDef == (*RAI)->getValueAsDef("ReadType")) { 766 if (ResDef) { 767 PrintFatalError((*RAI)->getLoc(), "Resources are defined for both " 768 "SchedRead and its alias on processor " + 769 ProcModel.ModelName); 770 } 771 ResDef = *RAI; 772 } 773 } 774 // TODO: If ProcModel has a base model (previous generation processor), 775 // then call FindReadAdvance recursively with that model here. 776 if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") { 777 PrintFatalError(ProcModel.ModelDef->getLoc(), 778 std::string("Processor does not define resources for ") 779 + SchedRead.TheDef->getName()); 780 } 781 return ResDef; 782} 783 784// Expand an explicit list of processor resources into a full list of implied 785// resource groups and super resources that cover them. 786void SubtargetEmitter::ExpandProcResources(RecVec &PRVec, 787 std::vector<int64_t> &Cycles, 788 const CodeGenProcModel &PM) { 789 // Default to 1 resource cycle. 790 Cycles.resize(PRVec.size(), 1); 791 for (unsigned i = 0, e = PRVec.size(); i != e; ++i) { 792 Record *PRDef = PRVec[i]; 793 RecVec SubResources; 794 if (PRDef->isSubClassOf("ProcResGroup")) 795 SubResources = PRDef->getValueAsListOfDefs("Resources"); 796 else { 797 SubResources.push_back(PRDef); 798 PRDef = SchedModels.findProcResUnits(PRVec[i], PM); 799 for (Record *SubDef = PRDef; 800 SubDef->getValueInit("Super")->isComplete();) { 801 if (SubDef->isSubClassOf("ProcResGroup")) { 802 // Disallow this for simplicitly. 803 PrintFatalError(SubDef->getLoc(), "Processor resource group " 804 " cannot be a super resources."); 805 } 806 Record *SuperDef = 807 SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM); 808 PRVec.push_back(SuperDef); 809 Cycles.push_back(Cycles[i]); 810 SubDef = SuperDef; 811 } 812 } 813 for (RecIter PRI = PM.ProcResourceDefs.begin(), 814 PRE = PM.ProcResourceDefs.end(); 815 PRI != PRE; ++PRI) { 816 if (*PRI == PRDef || !(*PRI)->isSubClassOf("ProcResGroup")) 817 continue; 818 RecVec SuperResources = (*PRI)->getValueAsListOfDefs("Resources"); 819 RecIter SubI = SubResources.begin(), SubE = SubResources.end(); 820 for( ; SubI != SubE; ++SubI) { 821 if (std::find(SuperResources.begin(), SuperResources.end(), *SubI) 822 == SuperResources.end()) { 823 break; 824 } 825 } 826 if (SubI == SubE) { 827 PRVec.push_back(*PRI); 828 Cycles.push_back(Cycles[i]); 829 } 830 } 831 } 832} 833 834// Generate the SchedClass table for this processor and update global 835// tables. Must be called for each processor in order. 836void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel, 837 SchedClassTables &SchedTables) { 838 SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1); 839 if (!ProcModel.hasInstrSchedModel()) 840 return; 841 842 std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back(); 843 for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(), 844 SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) { 845 DEBUG(SCI->dump(&SchedModels)); 846 847 SCTab.resize(SCTab.size() + 1); 848 MCSchedClassDesc &SCDesc = SCTab.back(); 849 // SCDesc.Name is guarded by NDEBUG 850 SCDesc.NumMicroOps = 0; 851 SCDesc.BeginGroup = false; 852 SCDesc.EndGroup = false; 853 SCDesc.WriteProcResIdx = 0; 854 SCDesc.WriteLatencyIdx = 0; 855 SCDesc.ReadAdvanceIdx = 0; 856 857 // A Variant SchedClass has no resources of its own. 858 bool HasVariants = false; 859 for (std::vector<CodeGenSchedTransition>::const_iterator 860 TI = SCI->Transitions.begin(), TE = SCI->Transitions.end(); 861 TI != TE; ++TI) { 862 if (TI->ProcIndices[0] == 0) { 863 HasVariants = true; 864 break; 865 } 866 IdxIter PIPos = std::find(TI->ProcIndices.begin(), 867 TI->ProcIndices.end(), ProcModel.Index); 868 if (PIPos != TI->ProcIndices.end()) { 869 HasVariants = true; 870 break; 871 } 872 } 873 if (HasVariants) { 874 SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps; 875 continue; 876 } 877 878 // Determine if the SchedClass is actually reachable on this processor. If 879 // not don't try to locate the processor resources, it will fail. 880 // If ProcIndices contains 0, this class applies to all processors. 881 assert(!SCI->ProcIndices.empty() && "expect at least one procidx"); 882 if (SCI->ProcIndices[0] != 0) { 883 IdxIter PIPos = std::find(SCI->ProcIndices.begin(), 884 SCI->ProcIndices.end(), ProcModel.Index); 885 if (PIPos == SCI->ProcIndices.end()) 886 continue; 887 } 888 IdxVec Writes = SCI->Writes; 889 IdxVec Reads = SCI->Reads; 890 if (!SCI->InstRWs.empty()) { 891 // This class has a default ReadWrite list which can be overriden by 892 // InstRW definitions. 893 Record *RWDef = 0; 894 for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end(); 895 RWI != RWE; ++RWI) { 896 Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel"); 897 if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) { 898 RWDef = *RWI; 899 break; 900 } 901 } 902 if (RWDef) { 903 Writes.clear(); 904 Reads.clear(); 905 SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 906 Writes, Reads); 907 } 908 } 909 if (Writes.empty()) { 910 // Check this processor's itinerary class resources. 911 for (RecIter II = ProcModel.ItinRWDefs.begin(), 912 IE = ProcModel.ItinRWDefs.end(); II != IE; ++II) { 913 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 914 if (std::find(Matched.begin(), Matched.end(), SCI->ItinClassDef) 915 != Matched.end()) { 916 SchedModels.findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), 917 Writes, Reads); 918 break; 919 } 920 } 921 if (Writes.empty()) { 922 DEBUG(dbgs() << ProcModel.ModelName 923 << " does not have resources for class " << SCI->Name << '\n'); 924 } 925 } 926 // Sum resources across all operand writes. 927 std::vector<MCWriteProcResEntry> WriteProcResources; 928 std::vector<MCWriteLatencyEntry> WriteLatencies; 929 std::vector<std::string> WriterNames; 930 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 931 for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) { 932 IdxVec WriteSeq; 933 SchedModels.expandRWSeqForProc(*WI, WriteSeq, /*IsRead=*/false, 934 ProcModel); 935 936 // For each operand, create a latency entry. 937 MCWriteLatencyEntry WLEntry; 938 WLEntry.Cycles = 0; 939 unsigned WriteID = WriteSeq.back(); 940 WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name); 941 // If this Write is not referenced by a ReadAdvance, don't distinguish it 942 // from other WriteLatency entries. 943 if (!SchedModels.hasReadOfWrite( 944 SchedModels.getSchedWrite(WriteID).TheDef)) { 945 WriteID = 0; 946 } 947 WLEntry.WriteResourceID = WriteID; 948 949 for (IdxIter WSI = WriteSeq.begin(), WSE = WriteSeq.end(); 950 WSI != WSE; ++WSI) { 951 952 Record *WriteRes = 953 FindWriteResources(SchedModels.getSchedWrite(*WSI), ProcModel); 954 955 // Mark the parent class as invalid for unsupported write types. 956 if (WriteRes->getValueAsBit("Unsupported")) { 957 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 958 break; 959 } 960 WLEntry.Cycles += WriteRes->getValueAsInt("Latency"); 961 SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps"); 962 SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup"); 963 SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup"); 964 965 // Create an entry for each ProcResource listed in WriteRes. 966 RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources"); 967 std::vector<int64_t> Cycles = 968 WriteRes->getValueAsListOfInts("ResourceCycles"); 969 970 ExpandProcResources(PRVec, Cycles, ProcModel); 971 972 for (unsigned PRIdx = 0, PREnd = PRVec.size(); 973 PRIdx != PREnd; ++PRIdx) { 974 MCWriteProcResEntry WPREntry; 975 WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]); 976 assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx"); 977 WPREntry.Cycles = Cycles[PRIdx]; 978 // If this resource is already used in this sequence, add the current 979 // entry's cycles so that the same resource appears to be used 980 // serially, rather than multiple parallel uses. This is important for 981 // in-order machine where the resource consumption is a hazard. 982 unsigned WPRIdx = 0, WPREnd = WriteProcResources.size(); 983 for( ; WPRIdx != WPREnd; ++WPRIdx) { 984 if (WriteProcResources[WPRIdx].ProcResourceIdx 985 == WPREntry.ProcResourceIdx) { 986 WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles; 987 break; 988 } 989 } 990 if (WPRIdx == WPREnd) 991 WriteProcResources.push_back(WPREntry); 992 } 993 } 994 WriteLatencies.push_back(WLEntry); 995 } 996 // Create an entry for each operand Read in this SchedClass. 997 // Entries must be sorted first by UseIdx then by WriteResourceID. 998 for (unsigned UseIdx = 0, EndIdx = Reads.size(); 999 UseIdx != EndIdx; ++UseIdx) { 1000 Record *ReadAdvance = 1001 FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel); 1002 if (!ReadAdvance) 1003 continue; 1004 1005 // Mark the parent class as invalid for unsupported write types. 1006 if (ReadAdvance->getValueAsBit("Unsupported")) { 1007 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 1008 break; 1009 } 1010 RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites"); 1011 IdxVec WriteIDs; 1012 if (ValidWrites.empty()) 1013 WriteIDs.push_back(0); 1014 else { 1015 for (RecIter VWI = ValidWrites.begin(), VWE = ValidWrites.end(); 1016 VWI != VWE; ++VWI) { 1017 WriteIDs.push_back(SchedModels.getSchedRWIdx(*VWI, /*IsRead=*/false)); 1018 } 1019 } 1020 std::sort(WriteIDs.begin(), WriteIDs.end()); 1021 for(IdxIter WI = WriteIDs.begin(), WE = WriteIDs.end(); WI != WE; ++WI) { 1022 MCReadAdvanceEntry RAEntry; 1023 RAEntry.UseIdx = UseIdx; 1024 RAEntry.WriteResourceID = *WI; 1025 RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles"); 1026 ReadAdvanceEntries.push_back(RAEntry); 1027 } 1028 } 1029 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) { 1030 WriteProcResources.clear(); 1031 WriteLatencies.clear(); 1032 ReadAdvanceEntries.clear(); 1033 } 1034 // Add the information for this SchedClass to the global tables using basic 1035 // compression. 1036 // 1037 // WritePrecRes entries are sorted by ProcResIdx. 1038 std::sort(WriteProcResources.begin(), WriteProcResources.end(), 1039 LessWriteProcResources()); 1040 1041 SCDesc.NumWriteProcResEntries = WriteProcResources.size(); 1042 std::vector<MCWriteProcResEntry>::iterator WPRPos = 1043 std::search(SchedTables.WriteProcResources.begin(), 1044 SchedTables.WriteProcResources.end(), 1045 WriteProcResources.begin(), WriteProcResources.end()); 1046 if (WPRPos != SchedTables.WriteProcResources.end()) 1047 SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin(); 1048 else { 1049 SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size(); 1050 SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(), 1051 WriteProcResources.end()); 1052 } 1053 // Latency entries must remain in operand order. 1054 SCDesc.NumWriteLatencyEntries = WriteLatencies.size(); 1055 std::vector<MCWriteLatencyEntry>::iterator WLPos = 1056 std::search(SchedTables.WriteLatencies.begin(), 1057 SchedTables.WriteLatencies.end(), 1058 WriteLatencies.begin(), WriteLatencies.end()); 1059 if (WLPos != SchedTables.WriteLatencies.end()) { 1060 unsigned idx = WLPos - SchedTables.WriteLatencies.begin(); 1061 SCDesc.WriteLatencyIdx = idx; 1062 for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i) 1063 if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) == 1064 std::string::npos) { 1065 SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i]; 1066 } 1067 } 1068 else { 1069 SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size(); 1070 SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(), 1071 WriteLatencies.begin(), 1072 WriteLatencies.end()); 1073 SchedTables.WriterNames.insert(SchedTables.WriterNames.end(), 1074 WriterNames.begin(), WriterNames.end()); 1075 } 1076 // ReadAdvanceEntries must remain in operand order. 1077 SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size(); 1078 std::vector<MCReadAdvanceEntry>::iterator RAPos = 1079 std::search(SchedTables.ReadAdvanceEntries.begin(), 1080 SchedTables.ReadAdvanceEntries.end(), 1081 ReadAdvanceEntries.begin(), ReadAdvanceEntries.end()); 1082 if (RAPos != SchedTables.ReadAdvanceEntries.end()) 1083 SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin(); 1084 else { 1085 SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size(); 1086 SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(), 1087 ReadAdvanceEntries.end()); 1088 } 1089 } 1090} 1091 1092// Emit SchedClass tables for all processors and associated global tables. 1093void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables, 1094 raw_ostream &OS) { 1095 // Emit global WriteProcResTable. 1096 OS << "\n// {ProcResourceIdx, Cycles}\n" 1097 << "extern const llvm::MCWriteProcResEntry " 1098 << Target << "WriteProcResTable[] = {\n" 1099 << " { 0, 0}, // Invalid\n"; 1100 for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size(); 1101 WPRIdx != WPREnd; ++WPRIdx) { 1102 MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx]; 1103 OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", " 1104 << format("%2d", WPREntry.Cycles) << "}"; 1105 if (WPRIdx + 1 < WPREnd) 1106 OS << ','; 1107 OS << " // #" << WPRIdx << '\n'; 1108 } 1109 OS << "}; // " << Target << "WriteProcResTable\n"; 1110 1111 // Emit global WriteLatencyTable. 1112 OS << "\n// {Cycles, WriteResourceID}\n" 1113 << "extern const llvm::MCWriteLatencyEntry " 1114 << Target << "WriteLatencyTable[] = {\n" 1115 << " { 0, 0}, // Invalid\n"; 1116 for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size(); 1117 WLIdx != WLEnd; ++WLIdx) { 1118 MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx]; 1119 OS << " {" << format("%2d", WLEntry.Cycles) << ", " 1120 << format("%2d", WLEntry.WriteResourceID) << "}"; 1121 if (WLIdx + 1 < WLEnd) 1122 OS << ','; 1123 OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n'; 1124 } 1125 OS << "}; // " << Target << "WriteLatencyTable\n"; 1126 1127 // Emit global ReadAdvanceTable. 1128 OS << "\n// {UseIdx, WriteResourceID, Cycles}\n" 1129 << "extern const llvm::MCReadAdvanceEntry " 1130 << Target << "ReadAdvanceTable[] = {\n" 1131 << " {0, 0, 0}, // Invalid\n"; 1132 for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size(); 1133 RAIdx != RAEnd; ++RAIdx) { 1134 MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx]; 1135 OS << " {" << RAEntry.UseIdx << ", " 1136 << format("%2d", RAEntry.WriteResourceID) << ", " 1137 << format("%2d", RAEntry.Cycles) << "}"; 1138 if (RAIdx + 1 < RAEnd) 1139 OS << ','; 1140 OS << " // #" << RAIdx << '\n'; 1141 } 1142 OS << "}; // " << Target << "ReadAdvanceTable\n"; 1143 1144 // Emit a SchedClass table for each processor. 1145 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1146 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1147 if (!PI->hasInstrSchedModel()) 1148 continue; 1149 1150 std::vector<MCSchedClassDesc> &SCTab = 1151 SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())]; 1152 1153 OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup," 1154 << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n"; 1155 OS << "static const llvm::MCSchedClassDesc " 1156 << PI->ModelName << "SchedClasses[] = {\n"; 1157 1158 // The first class is always invalid. We no way to distinguish it except by 1159 // name and position. 1160 assert(SchedModels.getSchedClass(0).Name == "NoInstrModel" 1161 && "invalid class not first"); 1162 OS << " {DBGFIELD(\"InvalidSchedClass\") " 1163 << MCSchedClassDesc::InvalidNumMicroOps 1164 << ", 0, 0, 0, 0, 0, 0, 0, 0},\n"; 1165 1166 for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) { 1167 MCSchedClassDesc &MCDesc = SCTab[SCIdx]; 1168 const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx); 1169 OS << " {DBGFIELD(\"" << SchedClass.Name << "\") "; 1170 if (SchedClass.Name.size() < 18) 1171 OS.indent(18 - SchedClass.Name.size()); 1172 OS << MCDesc.NumMicroOps 1173 << ", " << MCDesc.BeginGroup << ", " << MCDesc.EndGroup 1174 << ", " << format("%2d", MCDesc.WriteProcResIdx) 1175 << ", " << MCDesc.NumWriteProcResEntries 1176 << ", " << format("%2d", MCDesc.WriteLatencyIdx) 1177 << ", " << MCDesc.NumWriteLatencyEntries 1178 << ", " << format("%2d", MCDesc.ReadAdvanceIdx) 1179 << ", " << MCDesc.NumReadAdvanceEntries << "}"; 1180 if (SCIdx + 1 < SCEnd) 1181 OS << ','; 1182 OS << " // #" << SCIdx << '\n'; 1183 } 1184 OS << "}; // " << PI->ModelName << "SchedClasses\n"; 1185 } 1186} 1187 1188void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) { 1189 // For each processor model. 1190 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1191 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1192 // Emit processor resource table. 1193 if (PI->hasInstrSchedModel()) 1194 EmitProcessorResources(*PI, OS); 1195 else if(!PI->ProcResourceDefs.empty()) 1196 PrintFatalError(PI->ModelDef->getLoc(), "SchedMachineModel defines " 1197 "ProcResources without defining WriteRes SchedWriteRes"); 1198 1199 // Begin processor itinerary properties 1200 OS << "\n"; 1201 OS << "static const llvm::MCSchedModel " << PI->ModelName << "(\n"; 1202 EmitProcessorProp(OS, PI->ModelDef, "IssueWidth", ','); 1203 EmitProcessorProp(OS, PI->ModelDef, "MinLatency", ','); 1204 EmitProcessorProp(OS, PI->ModelDef, "LoadLatency", ','); 1205 EmitProcessorProp(OS, PI->ModelDef, "HighLatency", ','); 1206 EmitProcessorProp(OS, PI->ModelDef, "ILPWindow", ','); 1207 EmitProcessorProp(OS, PI->ModelDef, "MispredictPenalty", ','); 1208 OS << " " << PI->Index << ", // Processor ID\n"; 1209 if (PI->hasInstrSchedModel()) 1210 OS << " " << PI->ModelName << "ProcResources" << ",\n" 1211 << " " << PI->ModelName << "SchedClasses" << ",\n" 1212 << " " << PI->ProcResourceDefs.size()+1 << ",\n" 1213 << " " << (SchedModels.schedClassEnd() 1214 - SchedModels.schedClassBegin()) << ",\n"; 1215 else 1216 OS << " 0, 0, 0, 0, // No instruction-level machine model.\n"; 1217 if (SchedModels.hasItineraries()) 1218 OS << " " << PI->ItinsDef->getName() << ");\n"; 1219 else 1220 OS << " 0); // No Itinerary\n"; 1221 } 1222} 1223 1224// 1225// EmitProcessorLookup - generate cpu name to itinerary lookup table. 1226// 1227void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) { 1228 // Gather and sort processor information 1229 std::vector<Record*> ProcessorList = 1230 Records.getAllDerivedDefinitions("Processor"); 1231 std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); 1232 1233 // Begin processor table 1234 OS << "\n"; 1235 OS << "// Sorted (by key) array of itineraries for CPU subtype.\n" 1236 << "extern const llvm::SubtargetInfoKV " 1237 << Target << "ProcSchedKV[] = {\n"; 1238 1239 // For each processor 1240 for (unsigned i = 0, N = ProcessorList.size(); i < N;) { 1241 // Next processor 1242 Record *Processor = ProcessorList[i]; 1243 1244 const std::string &Name = Processor->getValueAsString("Name"); 1245 const std::string &ProcModelName = 1246 SchedModels.getModelForProc(Processor).ModelName; 1247 1248 // Emit as { "cpu", procinit }, 1249 OS << " { \"" << Name << "\", (const void *)&" << ProcModelName << " }"; 1250 1251 // Depending on ''if more in the list'' emit comma 1252 if (++i < N) OS << ","; 1253 1254 OS << "\n"; 1255 } 1256 1257 // End processor table 1258 OS << "};\n"; 1259} 1260 1261// 1262// EmitSchedModel - Emits all scheduling model tables, folding common patterns. 1263// 1264void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) { 1265 OS << "#ifdef DBGFIELD\n" 1266 << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n" 1267 << "#endif\n" 1268 << "#ifndef NDEBUG\n" 1269 << "#define DBGFIELD(x) x,\n" 1270 << "#else\n" 1271 << "#define DBGFIELD(x)\n" 1272 << "#endif\n"; 1273 1274 if (SchedModels.hasItineraries()) { 1275 std::vector<std::vector<InstrItinerary> > ProcItinLists; 1276 // Emit the stage data 1277 EmitStageAndOperandCycleData(OS, ProcItinLists); 1278 EmitItineraries(OS, ProcItinLists); 1279 } 1280 OS << "\n// ===============================================================\n" 1281 << "// Data tables for the new per-operand machine model.\n"; 1282 1283 SchedClassTables SchedTables; 1284 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1285 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1286 GenSchedClassTables(*PI, SchedTables); 1287 } 1288 EmitSchedClassTables(SchedTables, OS); 1289 1290 // Emit the processor machine model 1291 EmitProcessorModels(OS); 1292 // Emit the processor lookup data 1293 EmitProcessorLookup(OS); 1294 1295 OS << "#undef DBGFIELD"; 1296} 1297 1298void SubtargetEmitter::EmitSchedModelHelpers(std::string ClassName, 1299 raw_ostream &OS) { 1300 OS << "unsigned " << ClassName 1301 << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI," 1302 << " const TargetSchedModel *SchedModel) const {\n"; 1303 1304 std::vector<Record*> Prologs = Records.getAllDerivedDefinitions("PredicateProlog"); 1305 std::sort(Prologs.begin(), Prologs.end(), LessRecord()); 1306 for (std::vector<Record*>::const_iterator 1307 PI = Prologs.begin(), PE = Prologs.end(); PI != PE; ++PI) { 1308 OS << (*PI)->getValueAsString("Code") << '\n'; 1309 } 1310 IdxVec VariantClasses; 1311 for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(), 1312 SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) { 1313 if (SCI->Transitions.empty()) 1314 continue; 1315 VariantClasses.push_back(SCI->Index); 1316 } 1317 if (!VariantClasses.empty()) { 1318 OS << " switch (SchedClass) {\n"; 1319 for (IdxIter VCI = VariantClasses.begin(), VCE = VariantClasses.end(); 1320 VCI != VCE; ++VCI) { 1321 const CodeGenSchedClass &SC = SchedModels.getSchedClass(*VCI); 1322 OS << " case " << *VCI << ": // " << SC.Name << '\n'; 1323 IdxVec ProcIndices; 1324 for (std::vector<CodeGenSchedTransition>::const_iterator 1325 TI = SC.Transitions.begin(), TE = SC.Transitions.end(); 1326 TI != TE; ++TI) { 1327 IdxVec PI; 1328 std::set_union(TI->ProcIndices.begin(), TI->ProcIndices.end(), 1329 ProcIndices.begin(), ProcIndices.end(), 1330 std::back_inserter(PI)); 1331 ProcIndices.swap(PI); 1332 } 1333 for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end(); 1334 PI != PE; ++PI) { 1335 OS << " "; 1336 if (*PI != 0) 1337 OS << "if (SchedModel->getProcessorID() == " << *PI << ") "; 1338 OS << "{ // " << (SchedModels.procModelBegin() + *PI)->ModelName 1339 << '\n'; 1340 for (std::vector<CodeGenSchedTransition>::const_iterator 1341 TI = SC.Transitions.begin(), TE = SC.Transitions.end(); 1342 TI != TE; ++TI) { 1343 OS << " if ("; 1344 if (*PI != 0 && !std::count(TI->ProcIndices.begin(), 1345 TI->ProcIndices.end(), *PI)) { 1346 continue; 1347 } 1348 for (RecIter RI = TI->PredTerm.begin(), RE = TI->PredTerm.end(); 1349 RI != RE; ++RI) { 1350 if (RI != TI->PredTerm.begin()) 1351 OS << "\n && "; 1352 OS << "(" << (*RI)->getValueAsString("Predicate") << ")"; 1353 } 1354 OS << ")\n" 1355 << " return " << TI->ToClassIdx << "; // " 1356 << SchedModels.getSchedClass(TI->ToClassIdx).Name << '\n'; 1357 } 1358 OS << " }\n"; 1359 if (*PI == 0) 1360 break; 1361 } 1362 if (SC.isInferred()) 1363 OS << " return " << SC.Index << ";\n"; 1364 OS << " break;\n"; 1365 } 1366 OS << " };\n"; 1367 } 1368 OS << " report_fatal_error(\"Expected a variant SchedClass\");\n" 1369 << "} // " << ClassName << "::resolveSchedClass\n"; 1370} 1371 1372// 1373// ParseFeaturesFunction - Produces a subtarget specific function for parsing 1374// the subtarget features string. 1375// 1376void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS, 1377 unsigned NumFeatures, 1378 unsigned NumProcs) { 1379 std::vector<Record*> Features = 1380 Records.getAllDerivedDefinitions("SubtargetFeature"); 1381 std::sort(Features.begin(), Features.end(), LessRecord()); 1382 1383 OS << "// ParseSubtargetFeatures - Parses features string setting specified\n" 1384 << "// subtarget options.\n" 1385 << "void llvm::"; 1386 OS << Target; 1387 OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n" 1388 << " DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n" 1389 << " DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n"; 1390 1391 if (Features.empty()) { 1392 OS << "}\n"; 1393 return; 1394 } 1395 1396 OS << " InitMCProcessorInfo(CPU, FS);\n" 1397 << " uint64_t Bits = getFeatureBits();\n"; 1398 1399 for (unsigned i = 0; i < Features.size(); i++) { 1400 // Next record 1401 Record *R = Features[i]; 1402 const std::string &Instance = R->getName(); 1403 const std::string &Value = R->getValueAsString("Value"); 1404 const std::string &Attribute = R->getValueAsString("Attribute"); 1405 1406 if (Value=="true" || Value=="false") 1407 OS << " if ((Bits & " << Target << "::" 1408 << Instance << ") != 0) " 1409 << Attribute << " = " << Value << ";\n"; 1410 else 1411 OS << " if ((Bits & " << Target << "::" 1412 << Instance << ") != 0 && " 1413 << Attribute << " < " << Value << ") " 1414 << Attribute << " = " << Value << ";\n"; 1415 } 1416 1417 OS << "}\n"; 1418} 1419 1420// 1421// SubtargetEmitter::run - Main subtarget enumeration emitter. 1422// 1423void SubtargetEmitter::run(raw_ostream &OS) { 1424 emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS); 1425 1426 OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n"; 1427 OS << "#undef GET_SUBTARGETINFO_ENUM\n"; 1428 1429 OS << "namespace llvm {\n"; 1430 Enumeration(OS, "SubtargetFeature", true); 1431 OS << "} // End llvm namespace \n"; 1432 OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n"; 1433 1434 OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n"; 1435 OS << "#undef GET_SUBTARGETINFO_MC_DESC\n"; 1436 1437 OS << "namespace llvm {\n"; 1438#if 0 1439 OS << "namespace {\n"; 1440#endif 1441 unsigned NumFeatures = FeatureKeyValues(OS); 1442 OS << "\n"; 1443 unsigned NumProcs = CPUKeyValues(OS); 1444 OS << "\n"; 1445 EmitSchedModel(OS); 1446 OS << "\n"; 1447#if 0 1448 OS << "}\n"; 1449#endif 1450 1451 // MCInstrInfo initialization routine. 1452 OS << "static inline void Init" << Target 1453 << "MCSubtargetInfo(MCSubtargetInfo *II, " 1454 << "StringRef TT, StringRef CPU, StringRef FS) {\n"; 1455 OS << " II->InitMCSubtargetInfo(TT, CPU, FS, "; 1456 if (NumFeatures) 1457 OS << Target << "FeatureKV, "; 1458 else 1459 OS << "0, "; 1460 if (NumProcs) 1461 OS << Target << "SubTypeKV, "; 1462 else 1463 OS << "0, "; 1464 OS << '\n'; OS.indent(22); 1465 OS << Target << "ProcSchedKV, " 1466 << Target << "WriteProcResTable, " 1467 << Target << "WriteLatencyTable, " 1468 << Target << "ReadAdvanceTable, "; 1469 if (SchedModels.hasItineraries()) { 1470 OS << '\n'; OS.indent(22); 1471 OS << Target << "Stages, " 1472 << Target << "OperandCycles, " 1473 << Target << "ForwardingPaths, "; 1474 } else 1475 OS << "0, 0, 0, "; 1476 OS << NumFeatures << ", " << NumProcs << ");\n}\n\n"; 1477 1478 OS << "} // End llvm namespace \n"; 1479 1480 OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n"; 1481 1482 OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n"; 1483 OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n"; 1484 1485 OS << "#include \"llvm/Support/Debug.h\"\n"; 1486 OS << "#include \"llvm/Support/raw_ostream.h\"\n"; 1487 ParseFeaturesFunction(OS, NumFeatures, NumProcs); 1488 1489 OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1490 1491 // Create a TargetSubtargetInfo subclass to hide the MC layer initialization. 1492 OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n"; 1493 OS << "#undef GET_SUBTARGETINFO_HEADER\n"; 1494 1495 std::string ClassName = Target + "GenSubtargetInfo"; 1496 OS << "namespace llvm {\n"; 1497 OS << "class DFAPacketizer;\n"; 1498 OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n" 1499 << " explicit " << ClassName << "(StringRef TT, StringRef CPU, " 1500 << "StringRef FS);\n" 1501 << "public:\n" 1502 << " unsigned resolveSchedClass(unsigned SchedClass, const MachineInstr *DefMI," 1503 << " const TargetSchedModel *SchedModel) const;\n" 1504 << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)" 1505 << " const;\n" 1506 << "};\n"; 1507 OS << "} // End llvm namespace \n"; 1508 1509 OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n"; 1510 1511 OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n"; 1512 OS << "#undef GET_SUBTARGETINFO_CTOR\n"; 1513 1514 OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n"; 1515 OS << "namespace llvm {\n"; 1516 OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n"; 1517 OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n"; 1518 OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n"; 1519 OS << "extern const llvm::MCWriteProcResEntry " 1520 << Target << "WriteProcResTable[];\n"; 1521 OS << "extern const llvm::MCWriteLatencyEntry " 1522 << Target << "WriteLatencyTable[];\n"; 1523 OS << "extern const llvm::MCReadAdvanceEntry " 1524 << Target << "ReadAdvanceTable[];\n"; 1525 1526 if (SchedModels.hasItineraries()) { 1527 OS << "extern const llvm::InstrStage " << Target << "Stages[];\n"; 1528 OS << "extern const unsigned " << Target << "OperandCycles[];\n"; 1529 OS << "extern const unsigned " << Target << "ForwardingPaths[];\n"; 1530 } 1531 1532 OS << ClassName << "::" << ClassName << "(StringRef TT, StringRef CPU, " 1533 << "StringRef FS)\n" 1534 << " : TargetSubtargetInfo() {\n" 1535 << " InitMCSubtargetInfo(TT, CPU, FS, "; 1536 if (NumFeatures) 1537 OS << Target << "FeatureKV, "; 1538 else 1539 OS << "0, "; 1540 if (NumProcs) 1541 OS << Target << "SubTypeKV, "; 1542 else 1543 OS << "0, "; 1544 OS << '\n'; OS.indent(22); 1545 OS << Target << "ProcSchedKV, " 1546 << Target << "WriteProcResTable, " 1547 << Target << "WriteLatencyTable, " 1548 << Target << "ReadAdvanceTable, "; 1549 OS << '\n'; OS.indent(22); 1550 if (SchedModels.hasItineraries()) { 1551 OS << Target << "Stages, " 1552 << Target << "OperandCycles, " 1553 << Target << "ForwardingPaths, "; 1554 } else 1555 OS << "0, 0, 0, "; 1556 OS << NumFeatures << ", " << NumProcs << ");\n}\n\n"; 1557 1558 EmitSchedModelHelpers(ClassName, OS); 1559 1560 OS << "} // End llvm namespace \n"; 1561 1562 OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n"; 1563} 1564 1565namespace llvm { 1566 1567void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) { 1568 CodeGenTarget CGTarget(RK); 1569 SubtargetEmitter(RK, CGTarget).run(OS); 1570} 1571 1572} // End llvm namespace 1573