plt.c revision 73b85aadbf377541ac336914e5ff8ec521226a97
1/*
2 * This file is part of ltrace.
3 * Copyright (C) 2012,2013 Petr Machata, Red Hat Inc.
4 * Copyright (C) 2004,2008,2009 Juan Cespedes
5 * Copyright (C) 2006 Paul Gilliam
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of the
10 * License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
20 * 02110-1301 USA
21 */
22
23#include <gelf.h>
24#include <sys/ptrace.h>
25#include <errno.h>
26#include <inttypes.h>
27#include <assert.h>
28#include <stdbool.h>
29#include <string.h>
30
31#include "proc.h"
32#include "common.h"
33#include "insn.h"
34#include "library.h"
35#include "breakpoint.h"
36#include "linux-gnu/trace.h"
37#include "backend.h"
38
39/* There are two PLT types on 32-bit PPC: old-style, BSS PLT, and
40 * new-style "secure" PLT.  We can tell one from the other by the
41 * flags on the .plt section.  If it's +X (executable), it's BSS PLT,
42 * otherwise it's secure.
43 *
44 * BSS PLT works the same way as most architectures: the .plt section
45 * contains trampolines and we put breakpoints to those.  If not
46 * prelinked, .plt contains zeroes, and dynamic linker fills in the
47 * initial set of trampolines, which means that we need to delay
48 * enabling breakpoints until after binary entry point is hit.
49 * Additionally, after first call, dynamic linker updates .plt with
50 * branch to resolved address.  That means that on first hit, we must
51 * do something similar to the PPC64 gambit described below.
52 *
53 * With secure PLT, the .plt section doesn't contain instructions but
54 * addresses.  The real PLT table is stored in .text.  Addresses of
55 * those PLT entries can be computed, and apart from the fact that
56 * they are in .text, they are ordinary PLT entries.
57 *
58 * 64-bit PPC is more involved.  Program linker creates for each
59 * library call a _stub_ symbol named xxxxxxxx.plt_call.<callee>
60 * (where xxxxxxxx is a hexadecimal number).  That stub does the call
61 * dispatch: it loads an address of a function to call from the
62 * section .plt, and branches.  PLT entries themselves are essentially
63 * a curried call to the resolver.  When the symbol is resolved, the
64 * resolver updates the value stored in .plt, and the next time
65 * around, the stub calls the library function directly.  So we make
66 * at most one trip (none if the binary is prelinked) through each PLT
67 * entry, and correspondingly that is useless as a breakpoint site.
68 *
69 * Note the three confusing terms: stubs (that play the role of PLT
70 * entries), PLT entries, .plt section.
71 *
72 * We first check symbol tables and see if we happen to have stub
73 * symbols available.  If yes we just put breakpoints to those, and
74 * treat them as usual breakpoints.  The only tricky part is realizing
75 * that there can be more than one breakpoint per symbol.
76 *
77 * The case that we don't have the stub symbols available is harder.
78 * The following scheme uses two kinds of PLT breakpoints: unresolved
79 * and resolved (to some address).  When the process starts (or when
80 * we attach), we distribute unresolved PLT breakpoints to the PLT
81 * entries (not stubs).  Then we look in .plt, and for each entry
82 * whose value is different than the corresponding PLT entry address,
83 * we assume it was already resolved, and convert the breakpoint to
84 * resolved.  We also rewrite the resolved value in .plt back to the
85 * PLT address.
86 *
87 * When a PLT entry hits a resolved breakpoint (which happens because
88 * we rewrite .plt with the original unresolved addresses), we move
89 * the instruction pointer to the corresponding address and continue
90 * the process as if nothing happened.
91 *
92 * When unresolved PLT entry is called for the first time, we need to
93 * catch the new value that the resolver will write to a .plt slot.
94 * We also need to prevent another thread from racing through and
95 * taking the branch without ltrace noticing.  So when unresolved PLT
96 * entry hits, we have to stop all threads.  We then single-step
97 * through the resolver, until the .plt slot changes.  When it does,
98 * we treat it the same way as above: convert the PLT breakpoint to
99 * resolved, and rewrite the .plt value back to PLT address.  We then
100 * start all threads again.
101 *
102 * As an optimization, we remember the address where the address was
103 * resolved, and put a breakpoint there.  The next time around (when
104 * the next PLT entry is to be resolved), instead of single-stepping
105 * through half the dynamic linker, we just let the thread run and hit
106 * this breakpoint.  When it hits, we know the PLT entry was resolved.
107 *
108 * Another twist comes from tracing slots corresponding to
109 * R_PPC64_JMP_IREL relocations.  These have no dedicated PLT entry.
110 * The calls are done directly from stubs, and the .plt entry
111 * (actually .iplt entry, these live in a special section) is resolved
112 * in advance before the binary starts.  Because there's no PLT entry,
113 * we put the PLT breakpoints directly to the IFUNC resolver code, and
114 * then would like them to behave like ordinary PLT slots, including
115 * catching the point where these get resolved to unresolve them.  So
116 * for the first call (which is the actual resolver call), we pretend
117 * that this breakpoint is artificial and has no associated symbol,
118 * and turn it on fully only after the first hit.  Ideally we would
119 * trace that first call as well, but then the stepper, which tries to
120 * catch the point where the slot is resolved, would hit the return
121 * breakpoint and that's not currently handled well.
122 *
123 * XXX TODO If we have hardware watch point, we might put a read watch
124 * on .plt slot, and discover the offenders this way.  I don't know
125 * the details, but I assume at most a handful (like, one or two, if
126 * available at all) addresses may be watched at a time, and thus this
127 * would be used as an amendment of the above rather than full-on
128 * solution to PLT tracing on PPC.
129 */
130
131#define PPC_PLT_STUB_SIZE 16
132#define PPC64_PLT_STUB_SIZE 8 //xxx
133
134static inline int
135host_powerpc64()
136{
137#ifdef __powerpc64__
138	return 1;
139#else
140	return 0;
141#endif
142}
143
144static void
145mark_as_resolved(struct library_symbol *libsym, GElf_Addr value)
146{
147	libsym->arch.type = PPC_PLT_RESOLVED;
148	libsym->arch.resolved_value = value;
149}
150
151static void
152ppc32_delayed_symbol(struct library_symbol *libsym)
153{
154	/* arch_dynlink_done is called on attach as well.  In that
155	 * case some slots will have been resolved already.
156	 * Unresolved PLT looks like this:
157	 *
158	 *    <sleep@plt>:	li      r11,0
159	 *    <sleep@plt+4>:	b       "resolve"
160	 *
161	 * "resolve" is another address in PLTGOT (the same block that
162	 * all the PLT slots are it).  When resolved, it looks either
163	 * this way:
164	 *
165	 *    <sleep@plt>:	b       0xfea88d0 <sleep>
166	 *
167	 * Which is easy to detect.  It can also look this way:
168	 *
169	 *    <sleep@plt>:	li      r11,0
170	 *    <sleep@plt+4>:	b       "dispatch"
171	 *
172	 * The "dispatch" address lies in PLTGOT as well.  In current
173	 * GNU toolchain, "dispatch" address is the same as PLTGOT
174	 * address.  We rely on this to figure out whether the address
175	 * is resolved or not.  */
176
177	uint32_t insn1 = libsym->arch.resolved_value >> 32;
178	uint32_t insn2 = (uint32_t) libsym->arch.resolved_value;
179	if ((insn1 & BRANCH_MASK) == B_INSN
180	    || ((insn2 & BRANCH_MASK) == B_INSN
181		/* XXX double cast  */
182		&& (ppc_branch_dest(libsym->enter_addr + 4, insn2)
183		    == (arch_addr_t) (long) libsym->lib->arch.pltgot_addr)))
184	{
185		mark_as_resolved(libsym, libsym->arch.resolved_value);
186	}
187}
188
189void
190arch_dynlink_done(struct process *proc)
191{
192	/* We may need to activate delayed symbols.  */
193	struct library_symbol *libsym = NULL;
194	while ((libsym = proc_each_symbol(proc, libsym,
195					  library_symbol_delayed_cb, NULL))) {
196		if (proc_read_64(proc, libsym->enter_addr,
197				 &libsym->arch.resolved_value) < 0) {
198			fprintf(stderr,
199				"couldn't read PLT value for %s(%p): %s\n",
200				libsym->name, libsym->enter_addr,
201				strerror(errno));
202			return;
203		}
204
205		if (proc->e_machine == EM_PPC)
206			ppc32_delayed_symbol(libsym);
207
208		fprintf(stderr, "activating %s\n", libsym->name);
209		if (proc_activate_delayed_symbol(proc, libsym) < 0)
210			return;
211
212		if (proc->e_machine == EM_PPC)
213			/* XXX double cast  */
214			libsym->arch.plt_slot_addr
215				= (GElf_Addr) (uintptr_t) libsym->enter_addr;
216	}
217}
218
219static bool
220reloc_is_irelative(int machine, GElf_Rela *rela)
221{
222	bool irelative = false;
223	if (machine == EM_PPC64) {
224#ifdef R_PPC64_JMP_IREL
225		irelative = GELF_R_TYPE(rela->r_info) == R_PPC64_JMP_IREL;
226#endif
227	} else {
228		assert(machine == EM_PPC);
229#ifdef R_PPC_IRELATIVE
230		irelative = GELF_R_TYPE(rela->r_info) == R_PPC_IRELATIVE;
231#endif
232	}
233	return irelative;
234}
235
236GElf_Addr
237arch_plt_sym_val(struct ltelf *lte, size_t ndx, GElf_Rela *rela)
238{
239	if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) {
240		assert(lte->arch.plt_stub_vma != 0);
241		return lte->arch.plt_stub_vma + PPC_PLT_STUB_SIZE * ndx;
242
243	} else if (lte->ehdr.e_machine == EM_PPC) {
244		return rela->r_offset;
245
246	/* Beyond this point, we are on PPC64, but don't have stub
247	 * symbols.  */
248
249	} else if (reloc_is_irelative(lte->ehdr.e_machine, rela)) {
250
251		/* Put JMP_IREL breakpoint to resolver, since there's
252		 * no dedicated PLT entry.  */
253
254		assert(rela->r_addend != 0);
255		/* XXX double cast */
256		arch_addr_t res_addr = (arch_addr_t) (uintptr_t) rela->r_addend;
257		if (arch_translate_address(lte, res_addr, &res_addr) < 0) {
258			fprintf(stderr, "Couldn't OPD-translate IRELATIVE "
259				"resolver address.\n");
260			return 0;
261		}
262		/* XXX double cast */
263		return (GElf_Addr) (uintptr_t) res_addr;
264
265	} else {
266		/* We put brakpoints to PLT entries the same as the
267		 * PPC32 secure PLT case does. */
268		assert(lte->arch.plt_stub_vma != 0);
269		return lte->arch.plt_stub_vma + PPC64_PLT_STUB_SIZE * ndx;
270	}
271}
272
273/* This entry point is called when ltelf is not available
274 * anymore--during runtime.  At that point we don't have to concern
275 * ourselves with bias, as the values in OPD have been resolved
276 * already.  */
277int
278arch_translate_address_dyn(struct process *proc,
279			   arch_addr_t addr, arch_addr_t *ret)
280{
281	if (proc->e_machine == EM_PPC64) {
282		uint64_t value;
283		if (proc_read_64(proc, addr, &value) < 0) {
284			fprintf(stderr,
285				"dynamic .opd translation of %p: %s\n",
286				addr, strerror(errno));
287			return -1;
288		}
289		/* XXX The double cast should be removed when
290		 * arch_addr_t becomes integral type.  */
291		*ret = (arch_addr_t)(uintptr_t)value;
292		return 0;
293	}
294
295	*ret = addr;
296	return 0;
297}
298
299int
300arch_translate_address(struct ltelf *lte,
301		       arch_addr_t addr, arch_addr_t *ret)
302{
303	if (lte->ehdr.e_machine == EM_PPC64) {
304		/* XXX The double cast should be removed when
305		 * arch_addr_t becomes integral type.  */
306		GElf_Xword offset
307			= (GElf_Addr)(uintptr_t)addr - lte->arch.opd_base;
308		uint64_t value;
309		if (elf_read_u64(lte->arch.opd_data, offset, &value) < 0) {
310			fprintf(stderr, "static .opd translation of %p: %s\n",
311				addr, elf_errmsg(-1));
312			return -1;
313		}
314		*ret = (arch_addr_t)(uintptr_t)(value + lte->bias);
315		return 0;
316	}
317
318	*ret = addr;
319	return 0;
320}
321
322static int
323load_opd_data(struct ltelf *lte, struct library *lib)
324{
325	Elf_Scn *sec;
326	GElf_Shdr shdr;
327	if (elf_get_section_named(lte, ".opd", &sec, &shdr) < 0
328	    || sec == NULL) {
329	fail:
330		fprintf(stderr, "couldn't find .opd data\n");
331		return -1;
332	}
333
334	lte->arch.opd_data = elf_rawdata(sec, NULL);
335	if (lte->arch.opd_data == NULL)
336		goto fail;
337
338	lte->arch.opd_base = shdr.sh_addr + lte->bias;
339	lte->arch.opd_size = shdr.sh_size;
340
341	return 0;
342}
343
344void *
345sym2addr(struct process *proc, struct library_symbol *sym)
346{
347	return sym->enter_addr;
348}
349
350static GElf_Addr
351get_glink_vma(struct ltelf *lte, GElf_Addr ppcgot, Elf_Data *plt_data)
352{
353	Elf_Scn *ppcgot_sec = NULL;
354	GElf_Shdr ppcgot_shdr;
355	if (ppcgot != 0
356	    && (elf_get_section_covering(lte, ppcgot,
357					 &ppcgot_sec, &ppcgot_shdr) < 0
358		|| ppcgot_sec == NULL))
359		fprintf(stderr,
360			"DT_PPC_GOT=%#"PRIx64", but no such section found\n",
361			ppcgot);
362
363	if (ppcgot_sec != NULL) {
364		Elf_Data *data = elf_loaddata(ppcgot_sec, &ppcgot_shdr);
365		if (data == NULL || data->d_size < 8 ) {
366			fprintf(stderr, "couldn't read GOT data\n");
367		} else {
368			// where PPCGOT begins in .got
369			size_t offset = ppcgot - ppcgot_shdr.sh_addr;
370			assert(offset % 4 == 0);
371			uint32_t glink_vma;
372			if (elf_read_u32(data, offset + 4, &glink_vma) < 0) {
373				fprintf(stderr, "couldn't read glink VMA"
374					" address at %zd@GOT\n", offset);
375				return 0;
376			}
377			if (glink_vma != 0) {
378				debug(1, "PPC GOT glink_vma address: %#" PRIx32,
379				      glink_vma);
380				return (GElf_Addr)glink_vma;
381			}
382		}
383	}
384
385	if (plt_data != NULL) {
386		uint32_t glink_vma;
387		if (elf_read_u32(plt_data, 0, &glink_vma) < 0) {
388			fprintf(stderr, "couldn't read glink VMA address\n");
389			return 0;
390		}
391		debug(1, ".plt glink_vma address: %#" PRIx32, glink_vma);
392		return (GElf_Addr)glink_vma;
393	}
394
395	return 0;
396}
397
398static int
399load_dynamic_entry(struct ltelf *lte, int tag, GElf_Addr *valuep)
400{
401	Elf_Scn *scn;
402	GElf_Shdr shdr;
403	if (elf_get_section_type(lte, SHT_DYNAMIC, &scn, &shdr) < 0
404	    || scn == NULL) {
405	fail:
406		fprintf(stderr, "Couldn't get SHT_DYNAMIC: %s\n",
407			elf_errmsg(-1));
408		return -1;
409	}
410
411	Elf_Data *data = elf_loaddata(scn, &shdr);
412	if (data == NULL)
413		goto fail;
414
415	size_t j;
416	for (j = 0; j < shdr.sh_size / shdr.sh_entsize; ++j) {
417		GElf_Dyn dyn;
418		if (gelf_getdyn(data, j, &dyn) == NULL)
419			goto fail;
420
421		if(dyn.d_tag == tag) {
422			*valuep = dyn.d_un.d_ptr;
423			return 0;
424		}
425	}
426
427	return -1;
428}
429
430static int
431nonzero_data(Elf_Data *data)
432{
433	/* We are not supposed to get here if there's no PLT.  */
434	assert(data != NULL);
435
436	unsigned char *buf = data->d_buf;
437	if (buf == NULL)
438		return 0;
439
440	size_t i;
441	for (i = 0; i < data->d_size; ++i)
442		if (buf[i] != 0)
443			return 1;
444	return 0;
445}
446
447static enum callback_status
448reloc_copy_if_irelative(GElf_Rela *rela, void *data)
449{
450	struct ltelf *lte = data;
451
452	return CBS_STOP_IF(reloc_is_irelative(lte->ehdr.e_machine, rela)
453			   && VECT_PUSHBACK(&lte->plt_relocs, rela) < 0);
454}
455
456int
457arch_elf_init(struct ltelf *lte, struct library *lib)
458{
459	if (lte->ehdr.e_machine == EM_PPC64
460	    && load_opd_data(lte, lib) < 0)
461		return -1;
462
463	lte->arch.secure_plt = !(lte->plt_flags & SHF_EXECINSTR);
464
465	/* For PPC32 BSS, it is important whether the binary was
466	 * prelinked.  If .plt section is NODATA, or if it contains
467	 * zeroes, then this library is not prelinked, and we need to
468	 * delay breakpoints.  */
469	if (lte->ehdr.e_machine == EM_PPC && !lte->arch.secure_plt)
470		lib->arch.bss_plt_prelinked = nonzero_data(lte->plt_data);
471	else
472		/* For cases where it's irrelevant, initialize the
473		 * value to something conspicuous.  */
474		lib->arch.bss_plt_prelinked = -1;
475
476	if (lte->ehdr.e_machine == EM_PPC && lte->arch.secure_plt) {
477		GElf_Addr ppcgot;
478		if (load_dynamic_entry(lte, DT_PPC_GOT, &ppcgot) < 0) {
479			fprintf(stderr, "couldn't find DT_PPC_GOT\n");
480			return -1;
481		}
482		GElf_Addr glink_vma = get_glink_vma(lte, ppcgot, lte->plt_data);
483
484		size_t count = vect_size(&lte->plt_relocs);
485		lte->arch.plt_stub_vma = glink_vma
486			- (GElf_Addr)count * PPC_PLT_STUB_SIZE;
487		debug(1, "stub_vma is %#" PRIx64, lte->arch.plt_stub_vma);
488
489	} else if (lte->ehdr.e_machine == EM_PPC64) {
490		GElf_Addr glink_vma;
491		if (load_dynamic_entry(lte, DT_PPC64_GLINK, &glink_vma) < 0) {
492			fprintf(stderr, "couldn't find DT_PPC64_GLINK\n");
493			return -1;
494		}
495
496		/* The first glink stub starts at offset 32.  */
497		lte->arch.plt_stub_vma = glink_vma + 32;
498
499	} else {
500		/* By exhaustion--PPC32 BSS.  */
501		if (load_dynamic_entry(lte, DT_PLTGOT,
502				       &lib->arch.pltgot_addr) < 0) {
503			fprintf(stderr, "couldn't find DT_PLTGOT\n");
504			return -1;
505		}
506	}
507
508	/* On PPC64, look for stub symbols in symbol table.  These are
509	 * called: xxxxxxxx.plt_call.callee_name@version+addend.  */
510	if (lte->ehdr.e_machine == EM_PPC64
511	    && lte->symtab != NULL && lte->strtab != NULL) {
512
513		/* N.B. We can't simply skip the symbols that we fail
514		 * to read or malloc.  There may be more than one stub
515		 * per symbol name, and if we failed in one but
516		 * succeeded in another, the PLT enabling code would
517		 * have no way to tell that something is missing.  We
518		 * could work around that, of course, but it doesn't
519		 * seem worth the trouble.  So if anything fails, we
520		 * just pretend that we don't have stub symbols at
521		 * all, as if the binary is stripped.  */
522
523		size_t i;
524		for (i = 0; i < lte->symtab_count; ++i) {
525			GElf_Sym sym;
526			if (gelf_getsym(lte->symtab, i, &sym) == NULL) {
527				struct library_symbol *sym, *next;
528			fail:
529				for (sym = lte->arch.stubs; sym != NULL; ) {
530					next = sym->next;
531					library_symbol_destroy(sym);
532					free(sym);
533					sym = next;
534				}
535				lte->arch.stubs = NULL;
536				break;
537			}
538
539			const char *name = lte->strtab + sym.st_name;
540
541#define STUBN ".plt_call."
542			if ((name = strstr(name, STUBN)) == NULL)
543				continue;
544			name += sizeof(STUBN) - 1;
545#undef STUBN
546
547			size_t len;
548			const char *ver = strchr(name, '@');
549			if (ver != NULL) {
550				len = ver - name;
551
552			} else {
553				/* If there is "+" at all, check that
554				 * the symbol name ends in "+0".  */
555				const char *add = strrchr(name, '+');
556				if (add != NULL) {
557					assert(strcmp(add, "+0") == 0);
558					len = add - name;
559				} else {
560					len = strlen(name);
561				}
562			}
563
564			char *sym_name = strndup(name, len);
565			struct library_symbol *libsym = malloc(sizeof(*libsym));
566			if (sym_name == NULL || libsym == NULL) {
567			fail2:
568				free(sym_name);
569				free(libsym);
570				goto fail;
571			}
572
573			/* XXX The double cast should be removed when
574			 * arch_addr_t becomes integral type.  */
575			arch_addr_t addr = (arch_addr_t)
576				(uintptr_t)sym.st_value + lte->bias;
577			if (library_symbol_init(libsym, addr, sym_name, 1,
578						LS_TOPLT_EXEC) < 0)
579				goto fail2;
580			libsym->arch.type = PPC64_PLT_STUB;
581			libsym->next = lte->arch.stubs;
582			lte->arch.stubs = libsym;
583		}
584	}
585
586	/* On PPC64, IRELATIVE relocations actually relocate .iplt
587	 * section, and as such are stored in .rela.dyn (where all
588	 * non-PLT relocations are stored) instead of .rela.plt.  Add
589	 * these to lte->plt_relocs.  */
590	extern int read_relplt(struct ltelf *lte, Elf_Scn *scn, GElf_Shdr *shdr,
591			       struct vect *ret);
592
593	GElf_Addr rela, relasz;
594	Elf_Scn *rela_sec;
595	GElf_Shdr rela_shdr;
596	if (lte->ehdr.e_machine == EM_PPC64
597	    && load_dynamic_entry(lte, DT_RELA, &rela) == 0
598	    && load_dynamic_entry(lte, DT_RELASZ, &relasz) == 0
599	    && elf_get_section_covering(lte, rela, &rela_sec, &rela_shdr) == 0
600	    && rela_sec != NULL) {
601
602		struct vect v;
603		VECT_INIT(&v, GElf_Rela);
604		int ret = read_relplt(lte, rela_sec, &rela_shdr, &v);
605		if (ret >= 0
606		    && VECT_EACH(&v, GElf_Rela, NULL,
607				 reloc_copy_if_irelative, lte) != NULL)
608			ret = -1;
609
610		VECT_DESTROY(&v, GElf_Rela, NULL, NULL);
611
612		if (ret < 0)
613			return ret;
614	}
615	return 0;
616}
617
618static int
619read_plt_slot_value(struct process *proc, GElf_Addr addr, GElf_Addr *valp)
620{
621	/* On PPC64, we read from .plt, which contains 8 byte
622	 * addresses.  On PPC32 we read from .plt, which contains 4
623	 * byte instructions, but the PLT is two instructions, and
624	 * either can change.  */
625	uint64_t l;
626	/* XXX double cast.  */
627	if (proc_read_64(proc, (arch_addr_t)(uintptr_t)addr, &l) < 0) {
628		fprintf(stderr, "ptrace .plt slot value @%#" PRIx64": %s\n",
629			addr, strerror(errno));
630		return -1;
631	}
632
633	*valp = (GElf_Addr)l;
634	return 0;
635}
636
637static int
638unresolve_plt_slot(struct process *proc, GElf_Addr addr, GElf_Addr value)
639{
640	/* We only modify plt_entry[0], which holds the resolved
641	 * address of the routine.  We keep the TOC and environment
642	 * pointers intact.  Hence the only adjustment that we need to
643	 * do is to IP.  */
644	if (ptrace(PTRACE_POKETEXT, proc->pid, addr, value) < 0) {
645		fprintf(stderr, "failed to unresolve .plt slot: %s\n",
646			strerror(errno));
647		return -1;
648	}
649	return 0;
650}
651
652enum plt_status
653arch_elf_add_plt_entry(struct process *proc, struct ltelf *lte,
654		       const char *a_name, GElf_Rela *rela, size_t ndx,
655		       struct library_symbol **ret)
656{
657	if (lte->ehdr.e_machine == EM_PPC) {
658		if (lte->arch.secure_plt)
659			return PLT_DEFAULT;
660
661		struct library_symbol *libsym = NULL;
662		if (default_elf_add_plt_entry(proc, lte, a_name, rela, ndx,
663					      &libsym) < 0)
664			return PLT_FAIL;
665
666		/* On PPC32 with BSS PLT, delay the symbol until
667		 * dynamic linker is done.  */
668		assert(!libsym->delayed);
669		libsym->delayed = 1;
670
671		*ret = libsym;
672		return PLT_OK;
673
674	}
675
676	bool is_irelative = reloc_is_irelative(lte->ehdr.e_machine, rela);
677	char *name;
678	if (is_irelative)
679		name = linux_elf_find_irelative_name(lte, rela);
680	else
681		name = strdup(a_name);
682
683	if (name == NULL)
684		return PLT_FAIL;
685
686	/* PPC64.  If we have stubs, we return a chain of breakpoint
687	 * sites, one for each stub that corresponds to this PLT
688	 * entry.  */
689	struct library_symbol *chain = NULL;
690	struct library_symbol **symp;
691	for (symp = &lte->arch.stubs; *symp != NULL; ) {
692		struct library_symbol *sym = *symp;
693		if (strcmp(sym->name, name) != 0) {
694			symp = &(*symp)->next;
695			continue;
696		}
697
698		/* Re-chain the symbol from stubs to CHAIN.  */
699		*symp = sym->next;
700		sym->next = chain;
701		chain = sym;
702	}
703
704	if (chain != NULL) {
705		*ret = chain;
706		free(name);
707		return PLT_OK;
708	}
709
710	/* We don't have stub symbols.  Find corresponding .plt slot,
711	 * and check whether it contains the corresponding PLT address
712	 * (or 0 if the dynamic linker hasn't run yet).  N.B. we don't
713	 * want read this from ELF file, but from process image.  That
714	 * makes a difference if we are attaching to a running
715	 * process.  */
716
717	GElf_Addr plt_entry_addr = arch_plt_sym_val(lte, ndx, rela);
718	GElf_Addr plt_slot_addr = rela->r_offset;
719
720	assert(plt_slot_addr >= lte->plt_addr
721	       || plt_slot_addr < lte->plt_addr + lte->plt_size);
722
723	GElf_Addr plt_slot_value;
724	if (read_plt_slot_value(proc, plt_slot_addr, &plt_slot_value) < 0) {
725		free(name);
726		return PLT_FAIL;
727	}
728
729	struct library_symbol *libsym = malloc(sizeof(*libsym));
730	if (libsym == NULL) {
731		fprintf(stderr, "allocation for .plt slot: %s\n",
732			strerror(errno));
733	fail:
734		free(name);
735		free(libsym);
736		return PLT_FAIL;
737	}
738
739	/* XXX The double cast should be removed when
740	 * arch_addr_t becomes integral type.  */
741	if (library_symbol_init(libsym,
742				(arch_addr_t) (uintptr_t) plt_entry_addr,
743				name, 1, LS_TOPLT_EXEC) < 0)
744		goto fail;
745	libsym->arch.plt_slot_addr = plt_slot_addr;
746
747	if (! is_irelative
748	    && (plt_slot_value == plt_entry_addr || plt_slot_value == 0)) {
749		libsym->arch.type = PPC_PLT_UNRESOLVED;
750		libsym->arch.resolved_value = plt_entry_addr;
751
752	} else {
753		/* Unresolve the .plt slot.  If the binary was
754		 * prelinked, this makes the code invalid, because in
755		 * case of prelinked binary, the dynamic linker
756		 * doesn't update .plt[0] and .plt[1] with addresses
757		 * of the resover.  But we don't care, we will never
758		 * need to enter the resolver.  That just means that
759		 * we have to un-un-resolve this back before we
760		 * detach.  */
761
762		if (unresolve_plt_slot(proc, plt_slot_addr, plt_entry_addr) < 0) {
763			library_symbol_destroy(libsym);
764			goto fail;
765		}
766
767		if (! is_irelative) {
768			mark_as_resolved(libsym, plt_slot_value);
769		} else {
770			libsym->arch.type = PPC_PLT_IRELATIVE;
771			libsym->arch.resolved_value = plt_entry_addr;
772		}
773	}
774
775	*ret = libsym;
776	return PLT_OK;
777}
778
779void
780arch_elf_destroy(struct ltelf *lte)
781{
782	struct library_symbol *sym;
783	for (sym = lte->arch.stubs; sym != NULL; ) {
784		struct library_symbol *next = sym->next;
785		library_symbol_destroy(sym);
786		free(sym);
787		sym = next;
788	}
789}
790
791static void
792dl_plt_update_bp_on_hit(struct breakpoint *bp, struct process *proc)
793{
794	debug(DEBUG_PROCESS, "pid=%d dl_plt_update_bp_on_hit %s(%p)",
795	      proc->pid, breakpoint_name(bp), bp->addr);
796	struct process_stopping_handler *self = proc->arch.handler;
797	assert(self != NULL);
798
799	struct library_symbol *libsym = self->breakpoint_being_enabled->libsym;
800	GElf_Addr value;
801	if (read_plt_slot_value(proc, libsym->arch.plt_slot_addr, &value) < 0)
802		return;
803
804	/* On PPC64, we rewrite the slot value.  */
805	if (proc->e_machine == EM_PPC64)
806		unresolve_plt_slot(proc, libsym->arch.plt_slot_addr,
807				   libsym->arch.resolved_value);
808	/* We mark the breakpoint as resolved on both arches.  */
809	mark_as_resolved(libsym, value);
810
811	/* cb_on_all_stopped looks if HANDLER is set to NULL as a way
812	 * to check that this was run.  It's an error if it
813	 * wasn't.  */
814	proc->arch.handler = NULL;
815
816	breakpoint_turn_off(bp, proc);
817}
818
819static void
820cb_on_all_stopped(struct process_stopping_handler *self)
821{
822	/* Put that in for dl_plt_update_bp_on_hit to see.  */
823	assert(self->task_enabling_breakpoint->arch.handler == NULL);
824	self->task_enabling_breakpoint->arch.handler = self;
825
826	linux_ptrace_disable_and_continue(self);
827}
828
829static enum callback_status
830cb_keep_stepping_p(struct process_stopping_handler *self)
831{
832	struct process *proc = self->task_enabling_breakpoint;
833	struct library_symbol *libsym = self->breakpoint_being_enabled->libsym;
834
835	GElf_Addr value;
836	if (read_plt_slot_value(proc, libsym->arch.plt_slot_addr, &value) < 0)
837		return CBS_FAIL;
838
839	/* In UNRESOLVED state, the RESOLVED_VALUE in fact contains
840	 * the PLT entry value.  */
841	if (value == libsym->arch.resolved_value)
842		return CBS_CONT;
843
844	debug(DEBUG_PROCESS, "pid=%d PLT got resolved to value %#"PRIx64,
845	      proc->pid, value);
846
847	/* The .plt slot got resolved!  We can migrate the breakpoint
848	 * to RESOLVED and stop single-stepping.  */
849	if (proc->e_machine == EM_PPC64
850	    && unresolve_plt_slot(proc, libsym->arch.plt_slot_addr,
851				  libsym->arch.resolved_value) < 0)
852		return CBS_FAIL;
853
854	/* Resolving on PPC64 consists of overwriting a doubleword in
855	 * .plt.  That doubleword is than read back by a stub, and
856	 * jumped on.  Hopefully we can assume that double word update
857	 * is done on a single place only, as it contains a final
858	 * address.  We still need to look around for any sync
859	 * instruction, but essentially it is safe to optimize away
860	 * the single stepping next time and install a post-update
861	 * breakpoint.
862	 *
863	 * The situation on PPC32 BSS is more complicated.  The
864	 * dynamic linker here updates potentially several
865	 * instructions (XXX currently we assume two) and the rules
866	 * are more complicated.  Sometimes it's enough to adjust just
867	 * one of the addresses--the logic for generating optimal
868	 * dispatch depends on relative addresses of the .plt entry
869	 * and the jump destination.  We can't assume that the some
870	 * instruction block does the update every time.  So on PPC32,
871	 * we turn the optimization off and just step through it each
872	 * time.  */
873	if (proc->e_machine == EM_PPC)
874		goto done;
875
876	/* Install breakpoint to the address where the change takes
877	 * place.  If we fail, then that just means that we'll have to
878	 * singlestep the next time around as well.  */
879	struct process *leader = proc->leader;
880	if (leader == NULL || leader->arch.dl_plt_update_bp != NULL)
881		goto done;
882
883	/* We need to install to the next instruction.  ADDR points to
884	 * a store instruction, so moving the breakpoint one
885	 * instruction forward is safe.  */
886	arch_addr_t addr = get_instruction_pointer(proc) + 4;
887	leader->arch.dl_plt_update_bp = insert_breakpoint_at(proc, addr, NULL);
888	if (leader->arch.dl_plt_update_bp == NULL)
889		goto done;
890
891	static struct bp_callbacks dl_plt_update_cbs = {
892		.on_hit = dl_plt_update_bp_on_hit,
893	};
894	leader->arch.dl_plt_update_bp->cbs = &dl_plt_update_cbs;
895
896	/* Turn it off for now.  We will turn it on again when we hit
897	 * the PLT entry that needs this.  */
898	breakpoint_turn_off(leader->arch.dl_plt_update_bp, proc);
899
900done:
901	mark_as_resolved(libsym, value);
902
903	return CBS_STOP;
904}
905
906static void
907jump_to_entry_point(struct process *proc, struct breakpoint *bp)
908{
909	/* XXX The double cast should be removed when
910	 * arch_addr_t becomes integral type.  */
911	arch_addr_t rv = (arch_addr_t)
912		(uintptr_t)bp->libsym->arch.resolved_value;
913	set_instruction_pointer(proc, rv);
914}
915
916static void
917ppc_plt_bp_continue(struct breakpoint *bp, struct process *proc)
918{
919	/* If this is a first call through IREL breakpoint, enable the
920	 * symbol so that it doesn't look like an artificial
921	 * breakpoint anymore.  */
922	if (bp->libsym == NULL) {
923		assert(bp->arch.irel_libsym != NULL);
924		bp->libsym = bp->arch.irel_libsym;
925		bp->arch.irel_libsym = NULL;
926	}
927
928	switch (bp->libsym->arch.type) {
929		struct process *leader;
930		void (*on_all_stopped)(struct process_stopping_handler *);
931		enum callback_status (*keep_stepping_p)
932			(struct process_stopping_handler *);
933
934	case PPC_DEFAULT:
935		assert(proc->e_machine == EM_PPC);
936		assert(bp->libsym != NULL);
937		assert(bp->libsym->lib->arch.bss_plt_prelinked == 0);
938		/* Fall through.  */
939
940	case PPC_PLT_IRELATIVE:
941	case PPC_PLT_UNRESOLVED:
942		on_all_stopped = NULL;
943		keep_stepping_p = NULL;
944		leader = proc->leader;
945
946		if (leader != NULL && leader->arch.dl_plt_update_bp != NULL
947		    && breakpoint_turn_on(leader->arch.dl_plt_update_bp,
948					  proc) >= 0)
949			on_all_stopped = cb_on_all_stopped;
950		else
951			keep_stepping_p = cb_keep_stepping_p;
952
953		if (process_install_stopping_handler
954		    (proc, bp, on_all_stopped, keep_stepping_p, NULL) < 0) {
955			fprintf(stderr,	"ppc_plt_bp_continue: "
956				"couldn't install event handler\n");
957			continue_after_breakpoint(proc, bp);
958		}
959		return;
960
961	case PPC_PLT_RESOLVED:
962		if (proc->e_machine == EM_PPC) {
963			continue_after_breakpoint(proc, bp);
964			return;
965		}
966
967		jump_to_entry_point(proc, bp);
968		continue_process(proc->pid);
969		return;
970
971	case PPC64_PLT_STUB:
972		/* These should never hit here.  */
973		break;
974	}
975
976	assert(bp->libsym->arch.type != bp->libsym->arch.type);
977	abort();
978}
979
980/* When a process is in a PLT stub, it may have already read the data
981 * in .plt that we changed.  If we detach now, it will jump to PLT
982 * entry and continue to the dynamic linker, where it will SIGSEGV,
983 * because zeroth .plt slot is not filled in prelinked binaries, and
984 * the dynamic linker needs that data.  Moreover, the process may
985 * actually have hit the breakpoint already.  This functions tries to
986 * detect both cases and do any fix-ups necessary to mend this
987 * situation.  */
988static enum callback_status
989detach_task_cb(struct process *task, void *data)
990{
991	struct breakpoint *bp = data;
992
993	if (get_instruction_pointer(task) == bp->addr) {
994		debug(DEBUG_PROCESS, "%d at %p, which is PLT slot",
995		      task->pid, bp->addr);
996		jump_to_entry_point(task, bp);
997		return CBS_CONT;
998	}
999
1000	/* XXX There's still a window of several instructions where we
1001	 * might catch the task inside a stub such that it has already
1002	 * read destination address from .plt, but hasn't jumped yet,
1003	 * thus avoiding the breakpoint.  */
1004
1005	return CBS_CONT;
1006}
1007
1008static void
1009ppc_plt_bp_retract(struct breakpoint *bp, struct process *proc)
1010{
1011	/* On PPC64, we rewrite .plt with PLT entry addresses.  This
1012	 * needs to be undone.  Unfortunately, the program may have
1013	 * made decisions based on that value */
1014	if (proc->e_machine == EM_PPC64
1015	    && bp->libsym != NULL
1016	    && bp->libsym->arch.type == PPC_PLT_RESOLVED) {
1017		each_task(proc->leader, NULL, detach_task_cb, bp);
1018		unresolve_plt_slot(proc, bp->libsym->arch.plt_slot_addr,
1019				   bp->libsym->arch.resolved_value);
1020	}
1021}
1022
1023int
1024arch_library_init(struct library *lib)
1025{
1026	return 0;
1027}
1028
1029void
1030arch_library_destroy(struct library *lib)
1031{
1032}
1033
1034int
1035arch_library_clone(struct library *retp, struct library *lib)
1036{
1037	return 0;
1038}
1039
1040int
1041arch_library_symbol_init(struct library_symbol *libsym)
1042{
1043	/* We set type explicitly in the code above, where we have the
1044	 * necessary context.  This is for calls from ltrace-elf.c and
1045	 * such.  */
1046	libsym->arch.type = PPC_DEFAULT;
1047	return 0;
1048}
1049
1050void
1051arch_library_symbol_destroy(struct library_symbol *libsym)
1052{
1053}
1054
1055int
1056arch_library_symbol_clone(struct library_symbol *retp,
1057			  struct library_symbol *libsym)
1058{
1059	retp->arch = libsym->arch;
1060	return 0;
1061}
1062
1063/* For some symbol types, we need to set up custom callbacks.  XXX we
1064 * don't need PROC here, we can store the data in BP if it is of
1065 * interest to us.  */
1066int
1067arch_breakpoint_init(struct process *proc, struct breakpoint *bp)
1068{
1069	bp->arch.irel_libsym = NULL;
1070
1071	/* Artificial and entry-point breakpoints are plain.  */
1072	if (bp->libsym == NULL || bp->libsym->plt_type != LS_TOPLT_EXEC)
1073		return 0;
1074
1075	/* On PPC, secure PLT and prelinked BSS PLT are plain.  */
1076	if (proc->e_machine == EM_PPC
1077	    && bp->libsym->lib->arch.bss_plt_prelinked != 0)
1078		return 0;
1079
1080	/* On PPC64, stub PLT breakpoints are plain.  */
1081	if (proc->e_machine == EM_PPC64
1082	    && bp->libsym->arch.type == PPC64_PLT_STUB)
1083		return 0;
1084
1085	static struct bp_callbacks cbs = {
1086		.on_continue = ppc_plt_bp_continue,
1087		.on_retract = ppc_plt_bp_retract,
1088	};
1089	breakpoint_set_callbacks(bp, &cbs);
1090
1091	/* For JMP_IREL breakpoints, make the breakpoint look
1092	 * artificial by hiding the symbol.  */
1093	if (bp->libsym->arch.type == PPC_PLT_IRELATIVE) {
1094		bp->arch.irel_libsym = bp->libsym;
1095		bp->libsym = NULL;
1096	}
1097
1098	return 0;
1099}
1100
1101void
1102arch_breakpoint_destroy(struct breakpoint *bp)
1103{
1104}
1105
1106int
1107arch_breakpoint_clone(struct breakpoint *retp, struct breakpoint *sbp)
1108{
1109	retp->arch = sbp->arch;
1110	return 0;
1111}
1112
1113int
1114arch_process_init(struct process *proc)
1115{
1116	proc->arch.dl_plt_update_bp = NULL;
1117	proc->arch.handler = NULL;
1118	return 0;
1119}
1120
1121void
1122arch_process_destroy(struct process *proc)
1123{
1124}
1125
1126int
1127arch_process_clone(struct process *retp, struct process *proc)
1128{
1129	retp->arch = proc->arch;
1130	return 0;
1131}
1132
1133int
1134arch_process_exec(struct process *proc)
1135{
1136	return arch_process_init(proc);
1137}
1138