trace.c revision b4f9e0c0413c03ad897d7aad320a4a1cd49c467a
1#include <stdio.h> 2#include <stdlib.h> 3#include <string.h> 4#include <errno.h> 5#include <unistd.h> 6#include <sys/types.h> 7#include <sys/wait.h> 8#include "ptrace.h" 9#include <asm/unistd.h> 10#include <assert.h> 11 12#include "common.h" 13 14/* If the system headers did not provide the constants, hard-code the normal 15 values. */ 16#ifndef PTRACE_EVENT_FORK 17 18#define PTRACE_OLDSETOPTIONS 21 19#define PTRACE_SETOPTIONS 0x4200 20#define PTRACE_GETEVENTMSG 0x4201 21 22/* options set using PTRACE_SETOPTIONS */ 23#define PTRACE_O_TRACESYSGOOD 0x00000001 24#define PTRACE_O_TRACEFORK 0x00000002 25#define PTRACE_O_TRACEVFORK 0x00000004 26#define PTRACE_O_TRACECLONE 0x00000008 27#define PTRACE_O_TRACEEXEC 0x00000010 28#define PTRACE_O_TRACEVFORKDONE 0x00000020 29#define PTRACE_O_TRACEEXIT 0x00000040 30 31/* Wait extended result codes for the above trace options. */ 32#define PTRACE_EVENT_FORK 1 33#define PTRACE_EVENT_VFORK 2 34#define PTRACE_EVENT_CLONE 3 35#define PTRACE_EVENT_EXEC 4 36#define PTRACE_EVENT_VFORK_DONE 5 37#define PTRACE_EVENT_EXIT 6 38 39#endif /* PTRACE_EVENT_FORK */ 40 41#ifdef ARCH_HAVE_UMOVELONG 42extern int arch_umovelong (Process *, void *, long *, arg_type_info *); 43int 44umovelong (Process *proc, void *addr, long *result, arg_type_info *info) { 45 return arch_umovelong (proc, addr, result, info); 46} 47#else 48/* Read a single long from the process's memory address 'addr' */ 49int 50umovelong (Process *proc, void *addr, long *result, arg_type_info *info) { 51 long pointed_to; 52 53 errno = 0; 54 pointed_to = ptrace (PTRACE_PEEKTEXT, proc->pid, addr, 0); 55 if (pointed_to == -1 && errno) 56 return -errno; 57 58 *result = pointed_to; 59 if (info) { 60 switch(info->type) { 61 case ARGTYPE_INT: 62 *result &= 0x00000000ffffffffUL; 63 default: 64 break; 65 }; 66 } 67 return 0; 68} 69#endif 70 71void 72trace_me(void) { 73 debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid()); 74 if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0) { 75 perror("PTRACE_TRACEME"); 76 exit(1); 77 } 78} 79 80/* There's a (hopefully) brief period of time after the child process 81 * exec's when we can't trace it yet. Here we wait for kernel to 82 * prepare the process. */ 83void 84wait_for_proc(pid_t pid) 85{ 86 size_t i; 87 for (i = 0; i < 100; ++i) { 88 /* We read from memory address 0, but that shouldn't 89 * be a problem: the reading will just fail. We are 90 * looking for a particular reason of failure. */ 91 if (ptrace(PTRACE_PEEKTEXT, pid, 0, 0) != -1 92 || errno != ESRCH) 93 return; 94 95 usleep(1000); 96 } 97 98 fprintf(stderr, "\ 99I consistently fail to read a word from the freshly launched process.\n\ 100I'll now try to proceed with tracing, but this shouldn't be happening.\n"); 101} 102 103int 104trace_pid(pid_t pid) { 105 debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid); 106 if (ptrace(PTRACE_ATTACH, pid, 1, 0) < 0) { 107 return -1; 108 } 109 110 /* man ptrace: PTRACE_ATTACH attaches to the process specified 111 in pid. The child is sent a SIGSTOP, but will not 112 necessarily have stopped by the completion of this call; 113 use wait() to wait for the child to stop. */ 114 if (waitpid (pid, NULL, __WALL) != pid) { 115 perror ("trace_pid: waitpid"); 116 return -1; 117 } 118 119 return 0; 120} 121 122void 123trace_set_options(Process *proc, pid_t pid) { 124 if (proc->tracesysgood & 0x80) 125 return; 126 127 debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid); 128 129 long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK | 130 PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE | 131 PTRACE_O_TRACEEXEC; 132 if (ptrace(PTRACE_SETOPTIONS, pid, 0, options) < 0 && 133 ptrace(PTRACE_OLDSETOPTIONS, pid, 0, options) < 0) { 134 perror("PTRACE_SETOPTIONS"); 135 return; 136 } 137 proc->tracesysgood |= 0x80; 138} 139 140void 141untrace_pid(pid_t pid) { 142 debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid); 143 ptrace(PTRACE_DETACH, pid, 1, 0); 144} 145 146void 147continue_after_signal(pid_t pid, int signum) { 148 debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d", pid, signum); 149 ptrace(PTRACE_SYSCALL, pid, 0, signum); 150} 151 152static enum ecb_status 153event_for_pid(Event * event, void * data) 154{ 155 if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data) 156 return ecb_yield; 157 return ecb_cont; 158} 159 160static int 161have_events_for(pid_t pid) 162{ 163 return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL; 164} 165 166void 167continue_process(pid_t pid) 168{ 169 debug(DEBUG_PROCESS, "continue_process: pid=%d", pid); 170 171 /* Only really continue the process if there are no events in 172 the queue for this process. Otherwise just wait for the 173 other events to arrive. */ 174 if (!have_events_for(pid)) 175 /* We always trace syscalls to control fork(), 176 * clone(), execve()... */ 177 ptrace(PTRACE_SYSCALL, pid, 0, 0); 178 else 179 debug(DEBUG_PROCESS, 180 "putting off the continue, events in que."); 181} 182 183/** 184 * This is used for bookkeeping related to PIDs that the event 185 * handlers work with. 186 */ 187struct pid_task { 188 pid_t pid; /* This may be 0 for tasks that exited 189 * mid-handling. */ 190 int sigstopped : 1; 191 int got_event : 1; 192 int delivered : 1; 193 int vforked : 1; 194 int sysret : 1; 195} * pids; 196 197struct pid_set { 198 struct pid_task * tasks; 199 size_t count; 200 size_t alloc; 201}; 202 203/** 204 * Breakpoint re-enablement. When we hit a breakpoint, we must 205 * disable it, single-step, and re-enable it. That single-step can be 206 * done only by one task in a task group, while others are stopped, 207 * otherwise the processes would race for who sees the breakpoint 208 * disabled and who doesn't. The following is to keep track of it 209 * all. 210 */ 211struct process_stopping_handler 212{ 213 Event_Handler super; 214 215 /* The task that is doing the re-enablement. */ 216 Process * task_enabling_breakpoint; 217 218 /* The pointer being re-enabled. */ 219 Breakpoint * breakpoint_being_enabled; 220 221 enum { 222 /* We are waiting for everyone to land in t/T. */ 223 psh_stopping = 0, 224 225 /* We are doing the PTRACE_SINGLESTEP. */ 226 psh_singlestep, 227 228 /* We are waiting for all the SIGSTOPs to arrive so 229 * that we can sink them. */ 230 psh_sinking, 231 232 /* This is for tracking the ugly workaround. */ 233 psh_ugly_workaround, 234 } state; 235 236 int exiting; 237 238 struct pid_set pids; 239}; 240 241static struct pid_task * 242get_task_info(struct pid_set * pids, pid_t pid) 243{ 244 assert(pid != 0); 245 size_t i; 246 for (i = 0; i < pids->count; ++i) 247 if (pids->tasks[i].pid == pid) 248 return &pids->tasks[i]; 249 250 return NULL; 251} 252 253static struct pid_task * 254add_task_info(struct pid_set * pids, pid_t pid) 255{ 256 if (pids->count == pids->alloc) { 257 size_t ns = (2 * pids->alloc) ?: 4; 258 struct pid_task * n = realloc(pids->tasks, 259 sizeof(*pids->tasks) * ns); 260 if (n == NULL) 261 return NULL; 262 pids->tasks = n; 263 pids->alloc = ns; 264 } 265 struct pid_task * task_info = &pids->tasks[pids->count++]; 266 memset(task_info, 0, sizeof(*task_info)); 267 task_info->pid = pid; 268 return task_info; 269} 270 271static enum pcb_status 272task_stopped(Process * task, void * data) 273{ 274 enum process_status st = process_status(task->pid); 275 if (data != NULL) 276 *(enum process_status *)data = st; 277 278 /* If the task is already stopped, don't worry about it. 279 * Likewise if it managed to become a zombie or terminate in 280 * the meantime. This can happen when the whole thread group 281 * is terminating. */ 282 switch (st) { 283 case ps_invalid: 284 case ps_tracing_stop: 285 case ps_zombie: 286 case ps_sleeping: 287 return pcb_cont; 288 case ps_stop: 289 case ps_other: 290 return pcb_stop; 291 } 292 293 abort (); 294} 295 296/* Task is blocked if it's stopped, or if it's a vfork parent. */ 297static enum pcb_status 298task_blocked(Process * task, void * data) 299{ 300 struct pid_set * pids = data; 301 struct pid_task * task_info = get_task_info(pids, task->pid); 302 if (task_info != NULL 303 && task_info->vforked) 304 return pcb_cont; 305 306 return task_stopped(task, NULL); 307} 308 309static Event * process_vfork_on_event(Event_Handler * super, Event * event); 310 311static enum pcb_status 312task_vforked(Process * task, void * data) 313{ 314 if (task->event_handler != NULL 315 && task->event_handler->on_event == &process_vfork_on_event) 316 return pcb_stop; 317 return pcb_cont; 318} 319 320static int 321is_vfork_parent(Process * task) 322{ 323 return each_task(task->leader, &task_vforked, NULL) != NULL; 324} 325 326static enum pcb_status 327send_sigstop(Process * task, void * data) 328{ 329 Process * leader = task->leader; 330 struct pid_set * pids = data; 331 332 /* Look for pre-existing task record, or add new. */ 333 struct pid_task * task_info = get_task_info(pids, task->pid); 334 if (task_info == NULL) 335 task_info = add_task_info(pids, task->pid); 336 if (task_info == NULL) { 337 perror("send_sigstop: add_task_info"); 338 destroy_event_handler(leader); 339 /* Signal failure upwards. */ 340 return pcb_stop; 341 } 342 343 /* This task still has not been attached to. It should be 344 stopped by the kernel. */ 345 if (task->state == STATE_BEING_CREATED) 346 return pcb_cont; 347 348 /* Don't bother sending SIGSTOP if we are already stopped, or 349 * if we sent the SIGSTOP already, which happens when we are 350 * handling "onexit" and inherited the handler from breakpoint 351 * re-enablement. */ 352 enum process_status st; 353 if (task_stopped(task, &st) == pcb_cont) 354 return pcb_cont; 355 if (task_info->sigstopped) { 356 if (!task_info->delivered) 357 return pcb_cont; 358 task_info->delivered = 0; 359 } 360 361 /* Also don't attempt to stop the process if it's a parent of 362 * vforked process. We set up event handler specially to hint 363 * us. In that case parent is in D state, which we use to 364 * weed out unnecessary looping. */ 365 if (st == ps_sleeping 366 && is_vfork_parent (task)) { 367 task_info->vforked = 1; 368 return pcb_cont; 369 } 370 371 if (task_kill(task->pid, SIGSTOP) >= 0) { 372 debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid); 373 task_info->sigstopped = 1; 374 } else 375 fprintf(stderr, 376 "Warning: couldn't send SIGSTOP to %d\n", task->pid); 377 378 return pcb_cont; 379} 380 381/* On certain kernels, detaching right after a singlestep causes the 382 tracee to be killed with a SIGTRAP (that even though the singlestep 383 was properly caught by waitpid. The ugly workaround is to put a 384 breakpoint where IP points and let the process continue. After 385 this the breakpoint can be retracted and the process detached. */ 386static void 387ugly_workaround(Process * proc) 388{ 389 void * ip = get_instruction_pointer(proc); 390 Breakpoint * sbp = dict_find_entry(proc->leader->breakpoints, ip); 391 if (sbp != NULL) 392 enable_breakpoint(proc, sbp); 393 else 394 insert_breakpoint(proc, ip, NULL, 1); 395 ptrace(PTRACE_CONT, proc->pid, 0, 0); 396} 397 398static void 399process_stopping_done(struct process_stopping_handler * self, Process * leader) 400{ 401 debug(DEBUG_PROCESS, "process stopping done %d", 402 self->task_enabling_breakpoint->pid); 403 size_t i; 404 if (!self->exiting) { 405 for (i = 0; i < self->pids.count; ++i) 406 if (self->pids.tasks[i].pid != 0 407 && (self->pids.tasks[i].delivered 408 || self->pids.tasks[i].sysret)) 409 continue_process(self->pids.tasks[i].pid); 410 continue_process(self->task_enabling_breakpoint->pid); 411 destroy_event_handler(leader); 412 } else { 413 self->state = psh_ugly_workaround; 414 ugly_workaround(self->task_enabling_breakpoint); 415 } 416} 417 418/* Before we detach, we need to make sure that task's IP is on the 419 * edge of an instruction. So for tasks that have a breakpoint event 420 * in the queue, we adjust the instruction pointer, just like 421 * continue_after_breakpoint does. */ 422static enum ecb_status 423undo_breakpoint(Event * event, void * data) 424{ 425 if (event != NULL 426 && event->proc->leader == data 427 && event->type == EVENT_BREAKPOINT) 428 set_instruction_pointer(event->proc, event->e_un.brk_addr); 429 return ecb_cont; 430} 431 432static enum pcb_status 433untrace_task(Process * task, void * data) 434{ 435 if (task != data) 436 untrace_pid(task->pid); 437 return pcb_cont; 438} 439 440static enum pcb_status 441remove_task(Process * task, void * data) 442{ 443 /* Don't untrace leader just yet. */ 444 if (task != data) 445 remove_process(task); 446 return pcb_cont; 447} 448 449static void 450detach_process(Process * leader) 451{ 452 each_qd_event(&undo_breakpoint, leader); 453 disable_all_breakpoints(leader); 454 455 /* Now untrace the process, if it was attached to by -p. */ 456 struct opt_p_t * it; 457 for (it = opt_p; it != NULL; it = it->next) { 458 Process * proc = pid2proc(it->pid); 459 if (proc == NULL) 460 continue; 461 if (proc->leader == leader) { 462 each_task(leader, &untrace_task, NULL); 463 break; 464 } 465 } 466 each_task(leader, &remove_task, leader); 467 destroy_event_handler(leader); 468 remove_task(leader, NULL); 469} 470 471static void 472handle_stopping_event(struct pid_task * task_info, Event ** eventp) 473{ 474 /* Mark all events, so that we know whom to SIGCONT later. */ 475 if (task_info != NULL) 476 task_info->got_event = 1; 477 478 Event * event = *eventp; 479 480 /* In every state, sink SIGSTOP events for tasks that it was 481 * sent to. */ 482 if (task_info != NULL 483 && event->type == EVENT_SIGNAL 484 && event->e_un.signum == SIGSTOP) { 485 debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid); 486 if (task_info->sigstopped 487 && !task_info->delivered) { 488 task_info->delivered = 1; 489 *eventp = NULL; // sink the event 490 } else 491 fprintf(stderr, "suspicious: %d got SIGSTOP, but " 492 "sigstopped=%d and delivered=%d\n", 493 task_info->pid, task_info->sigstopped, 494 task_info->delivered); 495 } 496} 497 498/* Some SIGSTOPs may have not been delivered to their respective tasks 499 * yet. They are still in the queue. If we have seen an event for 500 * that process, continue it, so that the SIGSTOP can be delivered and 501 * caught by ltrace. We don't mind that the process is after 502 * breakpoint (and therefore potentially doesn't have aligned IP), 503 * because the signal will be delivered without the process actually 504 * starting. */ 505static void 506continue_for_sigstop_delivery(struct pid_set * pids) 507{ 508 size_t i; 509 for (i = 0; i < pids->count; ++i) { 510 if (pids->tasks[i].pid != 0 511 && pids->tasks[i].sigstopped 512 && !pids->tasks[i].delivered 513 && pids->tasks[i].got_event) { 514 debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery", 515 pids->tasks[i].pid); 516 ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0); 517 } 518 } 519} 520 521static int 522event_exit_p(Event * event) 523{ 524 return event != NULL && (event->type == EVENT_EXIT 525 || event->type == EVENT_EXIT_SIGNAL); 526} 527 528static int 529event_exit_or_none_p(Event * event) 530{ 531 return event == NULL || event_exit_p(event) 532 || event->type == EVENT_NONE; 533} 534 535static int 536await_sigstop_delivery(struct pid_set * pids, struct pid_task * task_info, 537 Event * event) 538{ 539 /* If we still didn't get our SIGSTOP, continue the process 540 * and carry on. */ 541 if (event != NULL && !event_exit_or_none_p(event) 542 && task_info != NULL && task_info->sigstopped) { 543 debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery", 544 task_info->pid); 545 /* We should get the signal the first thing 546 * after this, so it should be OK to continue 547 * even if we are over a breakpoint. */ 548 ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0); 549 550 } else { 551 /* If all SIGSTOPs were delivered, uninstall the 552 * handler and continue everyone. */ 553 /* XXX I suspect that we should check tasks that are 554 * still around. Is things are now, there should be a 555 * race between waiting for everyone to stop and one 556 * of the tasks exiting. */ 557 int all_clear = 1; 558 size_t i; 559 for (i = 0; i < pids->count; ++i) 560 if (pids->tasks[i].pid != 0 561 && pids->tasks[i].sigstopped 562 && !pids->tasks[i].delivered) { 563 all_clear = 0; 564 break; 565 } 566 return all_clear; 567 } 568 569 return 0; 570} 571 572static int 573all_stops_accountable(struct pid_set * pids) 574{ 575 size_t i; 576 for (i = 0; i < pids->count; ++i) 577 if (pids->tasks[i].pid != 0 578 && !pids->tasks[i].got_event 579 && !have_events_for(pids->tasks[i].pid)) 580 return 0; 581 return 1; 582} 583 584static void 585singlestep(Process * proc) 586{ 587 debug(1, "PTRACE_SINGLESTEP"); 588 if (ptrace(PTRACE_SINGLESTEP, proc->pid, 0, 0)) 589 perror("PTRACE_SINGLESTEP"); 590} 591 592/* This event handler is installed when we are in the process of 593 * stopping the whole thread group to do the pointer re-enablement for 594 * one of the threads. We pump all events to the queue for later 595 * processing while we wait for all the threads to stop. When this 596 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP, 597 * re-enable, and continue everyone. */ 598static Event * 599process_stopping_on_event(Event_Handler * super, Event * event) 600{ 601 struct process_stopping_handler * self = (void *)super; 602 Process * task = event->proc; 603 Process * leader = task->leader; 604 Breakpoint * sbp = self->breakpoint_being_enabled; 605 Process * teb = self->task_enabling_breakpoint; 606 607 debug(DEBUG_PROCESS, 608 "pid %d; event type %d; state %d", 609 task->pid, event->type, self->state); 610 611 struct pid_task * task_info = get_task_info(&self->pids, task->pid); 612 if (task_info == NULL) 613 fprintf(stderr, "new task??? %d\n", task->pid); 614 handle_stopping_event(task_info, &event); 615 616 int state = self->state; 617 int event_to_queue = !event_exit_or_none_p(event); 618 619 /* Deactivate the entry if the task exits. */ 620 if (event_exit_p(event) && task_info != NULL) 621 task_info->pid = 0; 622 623 /* Always handle sysrets. Whether sysret occurred and what 624 * sys it rets from may need to be determined based on process 625 * stack, so we need to keep that in sync with reality. Note 626 * that we don't continue the process after the sysret is 627 * handled. See continue_after_syscall. */ 628 if (event != NULL && event->type == EVENT_SYSRET) { 629 debug(1, "%d LT_EV_SYSRET", event->proc->pid); 630 event_to_queue = 0; 631 task_info->sysret = 1; 632 } 633 634 switch (state) { 635 case psh_stopping: 636 /* If everyone is stopped, singlestep. */ 637 if (each_task(leader, &task_blocked, &self->pids) == NULL) { 638 debug(DEBUG_PROCESS, "all stopped, now SINGLESTEP %d", 639 teb->pid); 640 if (sbp->enabled) 641 disable_breakpoint(teb, sbp); 642 singlestep(teb); 643 self->state = state = psh_singlestep; 644 } 645 break; 646 647 case psh_singlestep: 648 /* In singlestep state, breakpoint signifies that we 649 * have now stepped, and can re-enable the breakpoint. */ 650 if (event != NULL && task == teb) { 651 652 /* This is not the singlestep that we are waiting for. */ 653 if (event->type == EVENT_SIGNAL) { 654 singlestep(task); 655 break; 656 } 657 658 /* Essentially we don't care what event caused 659 * the thread to stop. We can do the 660 * re-enablement now. */ 661 if (sbp->enabled) 662 enable_breakpoint(teb, sbp); 663 664 continue_for_sigstop_delivery(&self->pids); 665 666 self->breakpoint_being_enabled = NULL; 667 self->state = state = psh_sinking; 668 669 if (event->type == EVENT_BREAKPOINT) 670 event = NULL; // handled 671 } else 672 break; 673 674 /* fall-through */ 675 676 case psh_sinking: 677 if (await_sigstop_delivery(&self->pids, task_info, event)) 678 process_stopping_done(self, leader); 679 break; 680 681 case psh_ugly_workaround: 682 if (event == NULL) 683 break; 684 if (event->type == EVENT_BREAKPOINT) { 685 undo_breakpoint(event, leader); 686 if (task == teb) 687 self->task_enabling_breakpoint = NULL; 688 } 689 if (self->task_enabling_breakpoint == NULL 690 && all_stops_accountable(&self->pids)) { 691 undo_breakpoint(event, leader); 692 detach_process(leader); 693 event = NULL; // handled 694 } 695 } 696 697 if (event != NULL && event_to_queue) { 698 enque_event(event); 699 event = NULL; // sink the event 700 } 701 702 return event; 703} 704 705static void 706process_stopping_destroy(Event_Handler * super) 707{ 708 struct process_stopping_handler * self = (void *)super; 709 free(self->pids.tasks); 710} 711 712void 713continue_after_breakpoint(Process *proc, Breakpoint *sbp) 714{ 715 set_instruction_pointer(proc, sbp->addr); 716 if (sbp->enabled == 0) { 717 continue_process(proc->pid); 718 } else { 719 debug(DEBUG_PROCESS, 720 "continue_after_breakpoint: pid=%d, addr=%p", 721 proc->pid, sbp->addr); 722#if defined __sparc__ || defined __ia64___ || defined __mips__ 723 /* we don't want to singlestep here */ 724 continue_process(proc->pid); 725#else 726 struct process_stopping_handler * handler 727 = calloc(sizeof(*handler), 1); 728 if (handler == NULL) { 729 perror("malloc breakpoint disable handler"); 730 fatal: 731 /* Carry on not bothering to re-enable. */ 732 continue_process(proc->pid); 733 return; 734 } 735 736 handler->super.on_event = process_stopping_on_event; 737 handler->super.destroy = process_stopping_destroy; 738 handler->task_enabling_breakpoint = proc; 739 handler->breakpoint_being_enabled = sbp; 740 install_event_handler(proc->leader, &handler->super); 741 742 if (each_task(proc->leader, &send_sigstop, 743 &handler->pids) != NULL) 744 goto fatal; 745 746 /* And deliver the first fake event, in case all the 747 * conditions are already fulfilled. */ 748 Event ev; 749 ev.type = EVENT_NONE; 750 ev.proc = proc; 751 process_stopping_on_event(&handler->super, &ev); 752#endif 753 } 754} 755 756/** 757 * Ltrace exit. When we are about to exit, we have to go through all 758 * the processes, stop them all, remove all the breakpoints, and then 759 * detach the processes that we attached to using -p. If we left the 760 * other tasks running, they might hit stray return breakpoints and 761 * produce artifacts, so we better stop everyone, even if it's a bit 762 * of extra work. 763 */ 764struct ltrace_exiting_handler 765{ 766 Event_Handler super; 767 struct pid_set pids; 768}; 769 770static Event * 771ltrace_exiting_on_event(Event_Handler * super, Event * event) 772{ 773 struct ltrace_exiting_handler * self = (void *)super; 774 Process * task = event->proc; 775 Process * leader = task->leader; 776 777 debug(DEBUG_PROCESS, "pid %d; event type %d", task->pid, event->type); 778 779 struct pid_task * task_info = get_task_info(&self->pids, task->pid); 780 handle_stopping_event(task_info, &event); 781 782 if (event != NULL && event->type == EVENT_BREAKPOINT) 783 undo_breakpoint(event, leader); 784 785 if (await_sigstop_delivery(&self->pids, task_info, event) 786 && all_stops_accountable(&self->pids)) 787 detach_process(leader); 788 789 /* Sink all non-exit events. We are about to exit, so we 790 * don't bother with queuing them. */ 791 if (event_exit_or_none_p(event)) 792 return event; 793 794 return NULL; 795} 796 797static void 798ltrace_exiting_destroy(Event_Handler * super) 799{ 800 struct ltrace_exiting_handler * self = (void *)super; 801 free(self->pids.tasks); 802} 803 804static int 805ltrace_exiting_install_handler(Process * proc) 806{ 807 /* Only install to leader. */ 808 if (proc->leader != proc) 809 return 0; 810 811 /* Perhaps we are already installed, if the user passed 812 * several -p options that are tasks of one process. */ 813 if (proc->event_handler != NULL 814 && proc->event_handler->on_event == <race_exiting_on_event) 815 return 0; 816 817 /* If stopping handler is already present, let it do the 818 * work. */ 819 if (proc->event_handler != NULL) { 820 assert(proc->event_handler->on_event 821 == &process_stopping_on_event); 822 struct process_stopping_handler * other 823 = (void *)proc->event_handler; 824 other->exiting = 1; 825 return 0; 826 } 827 828 struct ltrace_exiting_handler * handler 829 = calloc(sizeof(*handler), 1); 830 if (handler == NULL) { 831 perror("malloc exiting handler"); 832 fatal: 833 /* XXXXXXXXXXXXXXXXXXX fixme */ 834 return -1; 835 } 836 837 handler->super.on_event = ltrace_exiting_on_event; 838 handler->super.destroy = ltrace_exiting_destroy; 839 install_event_handler(proc->leader, &handler->super); 840 841 if (each_task(proc->leader, &send_sigstop, 842 &handler->pids) != NULL) 843 goto fatal; 844 845 return 0; 846} 847 848/* 849 * When the traced process vforks, it's suspended until the child 850 * process calls _exit or exec*. In the meantime, the two share the 851 * address space. 852 * 853 * The child process should only ever call _exit or exec*, but we 854 * can't count on that (it's not the role of ltrace to policy, but to 855 * observe). In any case, we will _at least_ have to deal with 856 * removal of vfork return breakpoint (which we have to smuggle back 857 * in, so that the parent can see it, too), and introduction of exec* 858 * return breakpoint. Since we already have both breakpoint actions 859 * to deal with, we might as well support it all. 860 * 861 * The gist is that we pretend that the child is in a thread group 862 * with its parent, and handle it as a multi-threaded case, with the 863 * exception that we know that the parent is blocked, and don't 864 * attempt to stop it. When the child execs, we undo the setup. 865 */ 866 867struct process_vfork_handler 868{ 869 Event_Handler super; 870 void * bp_addr; 871}; 872 873static Event * 874process_vfork_on_event(Event_Handler * super, Event * event) 875{ 876 struct process_vfork_handler * self = (void *)super; 877 Breakpoint * sbp; 878 assert(self != NULL); 879 880 switch (event->type) { 881 case EVENT_BREAKPOINT: 882 /* Remember the vfork return breakpoint. */ 883 if (self->bp_addr == NULL) 884 self->bp_addr = event->e_un.brk_addr; 885 break; 886 887 case EVENT_EXIT: 888 case EVENT_EXIT_SIGNAL: 889 case EVENT_EXEC: 890 /* Smuggle back in the vfork return breakpoint, so 891 * that our parent can trip over it once again. */ 892 if (self->bp_addr != NULL) { 893 sbp = dict_find_entry(event->proc->leader->breakpoints, 894 self->bp_addr); 895 if (sbp != NULL) 896 insert_breakpoint(event->proc->parent, 897 self->bp_addr, 898 sbp->libsym, 1); 899 } 900 901 continue_process(event->proc->parent->pid); 902 903 /* Remove the leader that we artificially set up 904 * earlier. */ 905 change_process_leader(event->proc, event->proc); 906 destroy_event_handler(event->proc); 907 908 default: 909 ; 910 } 911 912 return event; 913} 914 915void 916continue_after_vfork(Process * proc) 917{ 918 debug(DEBUG_PROCESS, "continue_after_vfork: pid=%d", proc->pid); 919 struct process_vfork_handler * handler = calloc(sizeof(*handler), 1); 920 if (handler == NULL) { 921 perror("malloc vfork handler"); 922 /* Carry on not bothering to treat the process as 923 * necessary. */ 924 continue_process(proc->parent->pid); 925 return; 926 } 927 928 /* We must set up custom event handler, so that we see 929 * exec/exit events for the task itself. */ 930 handler->super.on_event = process_vfork_on_event; 931 install_event_handler(proc, &handler->super); 932 933 /* Make sure that the child is sole thread. */ 934 assert(proc->leader == proc); 935 assert(proc->next == NULL || proc->next->leader != proc); 936 937 /* Make sure that the child's parent is properly set up. */ 938 assert(proc->parent != NULL); 939 assert(proc->parent->leader != NULL); 940 941 change_process_leader(proc, proc->parent->leader); 942} 943 944static int 945is_mid_stopping(Process *proc) 946{ 947 return proc != NULL 948 && proc->event_handler != NULL 949 && proc->event_handler->on_event == &process_stopping_on_event; 950} 951 952void 953continue_after_syscall(Process * proc, int sysnum, int ret_p) 954{ 955 /* Don't continue if we are mid-stopping. */ 956 if (ret_p && (is_mid_stopping(proc) || is_mid_stopping(proc->leader))) { 957 debug(DEBUG_PROCESS, 958 "continue_after_syscall: don't continue %d", 959 proc->pid); 960 return; 961 } 962 continue_process(proc->pid); 963} 964 965/* If ltrace gets SIGINT, the processes directly or indirectly run by 966 * ltrace get it too. We just have to wait long enough for the signal 967 * to be delivered and the process terminated, which we notice and 968 * exit ltrace, too. So there's not much we need to do there. We 969 * want to keep tracing those processes as usual, in case they just 970 * SIG_IGN the SIGINT to do their shutdown etc. 971 * 972 * For processes ran on the background, we want to install an exit 973 * handler that stops all the threads, removes all breakpoints, and 974 * detaches. 975 */ 976void 977ltrace_exiting(void) 978{ 979 struct opt_p_t * it; 980 for (it = opt_p; it != NULL; it = it->next) { 981 Process * proc = pid2proc(it->pid); 982 if (proc == NULL || proc->leader == NULL) 983 continue; 984 if (ltrace_exiting_install_handler(proc->leader) < 0) 985 fprintf(stderr, 986 "Couldn't install exiting handler for %d.\n", 987 proc->pid); 988 } 989} 990 991size_t 992umovebytes(Process *proc, void *addr, void *laddr, size_t len) { 993 994 union { 995 long a; 996 char c[sizeof(long)]; 997 } a; 998 int started = 0; 999 size_t offset = 0, bytes_read = 0; 1000 1001 while (offset < len) { 1002 a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0); 1003 if (a.a == -1 && errno) { 1004 if (started && errno == EIO) 1005 return bytes_read; 1006 else 1007 return -1; 1008 } 1009 started = 1; 1010 1011 if (len - offset >= sizeof(long)) { 1012 memcpy(laddr + offset, &a.c[0], sizeof(long)); 1013 bytes_read += sizeof(long); 1014 } 1015 else { 1016 memcpy(laddr + offset, &a.c[0], len - offset); 1017 bytes_read += (len - offset); 1018 } 1019 offset += sizeof(long); 1020 } 1021 1022 return bytes_read; 1023} 1024 1025/* Read a series of bytes starting at the process's memory address 1026 'addr' and continuing until a NUL ('\0') is seen or 'len' bytes 1027 have been read. 1028*/ 1029int 1030umovestr(Process *proc, void *addr, int len, void *laddr) { 1031 union { 1032 long a; 1033 char c[sizeof(long)]; 1034 } a; 1035 unsigned i; 1036 int offset = 0; 1037 1038 while (offset < len) { 1039 a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0); 1040 for (i = 0; i < sizeof(long); i++) { 1041 if (a.c[i] && offset + (signed)i < len) { 1042 *(char *)(laddr + offset + i) = a.c[i]; 1043 } else { 1044 *(char *)(laddr + offset + i) = '\0'; 1045 return 0; 1046 } 1047 } 1048 offset += sizeof(long); 1049 } 1050 *(char *)(laddr + offset) = '\0'; 1051 return 0; 1052} 1053