trace.c revision ba1664b062414481d0f37d06bb01a19874c8d481
1/* 2 * This file is part of ltrace. 3 * Copyright (C) 2007,2011,2012 Petr Machata, Red Hat Inc. 4 * Copyright (C) 2010 Joe Damato 5 * Copyright (C) 1998,2002,2003,2004,2008,2009 Juan Cespedes 6 * Copyright (C) 2006 Ian Wienand 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2 of the 11 * License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 21 * 02110-1301 USA 22 */ 23 24#include "config.h" 25 26#include <asm/unistd.h> 27#include <sys/types.h> 28#include <sys/wait.h> 29#include <assert.h> 30#include <errno.h> 31#include <stdio.h> 32#include <stdlib.h> 33#include <string.h> 34#include <unistd.h> 35 36#ifdef HAVE_LIBSELINUX 37# include <selinux/selinux.h> 38#endif 39 40#include "linux-gnu/trace.h" 41#include "backend.h" 42#include "breakpoint.h" 43#include "debug.h" 44#include "events.h" 45#include "options.h" 46#include "proc.h" 47#include "ptrace.h" 48#include "type.h" 49 50/* If the system headers did not provide the constants, hard-code the normal 51 values. */ 52#ifndef PTRACE_EVENT_FORK 53 54#define PTRACE_OLDSETOPTIONS 21 55#define PTRACE_SETOPTIONS 0x4200 56#define PTRACE_GETEVENTMSG 0x4201 57 58/* options set using PTRACE_SETOPTIONS */ 59#define PTRACE_O_TRACESYSGOOD 0x00000001 60#define PTRACE_O_TRACEFORK 0x00000002 61#define PTRACE_O_TRACEVFORK 0x00000004 62#define PTRACE_O_TRACECLONE 0x00000008 63#define PTRACE_O_TRACEEXEC 0x00000010 64#define PTRACE_O_TRACEVFORKDONE 0x00000020 65#define PTRACE_O_TRACEEXIT 0x00000040 66 67/* Wait extended result codes for the above trace options. */ 68#define PTRACE_EVENT_FORK 1 69#define PTRACE_EVENT_VFORK 2 70#define PTRACE_EVENT_CLONE 3 71#define PTRACE_EVENT_EXEC 4 72#define PTRACE_EVENT_VFORK_DONE 5 73#define PTRACE_EVENT_EXIT 6 74 75#endif /* PTRACE_EVENT_FORK */ 76 77void 78trace_fail_warning(pid_t pid) 79{ 80 /* This was adapted from GDB. */ 81#ifdef HAVE_LIBSELINUX 82 static int checked = 0; 83 if (checked) 84 return; 85 checked = 1; 86 87 /* -1 is returned for errors, 0 if it has no effect, 1 if 88 * PTRACE_ATTACH is forbidden. */ 89 if (security_get_boolean_active("deny_ptrace") == 1) 90 fprintf(stderr, 91"The SELinux boolean 'deny_ptrace' is enabled, which may prevent ltrace from\n" 92"tracing other processes. You can disable this process attach protection by\n" 93"issuing 'setsebool deny_ptrace=0' in the superuser context.\n"); 94#endif /* HAVE_LIBSELINUX */ 95} 96 97void 98trace_me(void) 99{ 100 debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid()); 101 if (ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) { 102 perror("PTRACE_TRACEME"); 103 trace_fail_warning(getpid()); 104 exit(1); 105 } 106} 107 108/* There's a (hopefully) brief period of time after the child process 109 * forks when we can't trace it yet. Here we wait for kernel to 110 * prepare the process. */ 111int 112wait_for_proc(pid_t pid) 113{ 114 /* man ptrace: PTRACE_ATTACH attaches to the process specified 115 in pid. The child is sent a SIGSTOP, but will not 116 necessarily have stopped by the completion of this call; 117 use wait() to wait for the child to stop. */ 118 if (waitpid(pid, NULL, __WALL) != pid) { 119 perror ("trace_pid: waitpid"); 120 return -1; 121 } 122 123 return 0; 124} 125 126int 127trace_pid(pid_t pid) 128{ 129 debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid); 130 /* This shouldn't emit error messages, as there are legitimate 131 * reasons that the PID can't be attached: like it may have 132 * already ended. */ 133 if (ptrace(PTRACE_ATTACH, pid, 0, 0) < 0) 134 return -1; 135 136 return wait_for_proc(pid); 137} 138 139void 140trace_set_options(struct Process *proc) 141{ 142 if (proc->tracesysgood & 0x80) 143 return; 144 145 pid_t pid = proc->pid; 146 debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid); 147 148 long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK | 149 PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE | 150 PTRACE_O_TRACEEXEC; 151 if (ptrace(PTRACE_SETOPTIONS, pid, 0, (void *)options) < 0 && 152 ptrace(PTRACE_OLDSETOPTIONS, pid, 0, (void *)options) < 0) { 153 perror("PTRACE_SETOPTIONS"); 154 return; 155 } 156 proc->tracesysgood |= 0x80; 157} 158 159void 160untrace_pid(pid_t pid) { 161 debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid); 162 ptrace(PTRACE_DETACH, pid, 0, 0); 163} 164 165void 166continue_after_signal(pid_t pid, int signum) 167{ 168 debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d", 169 pid, signum); 170 ptrace(PTRACE_SYSCALL, pid, 0, (void *)(uintptr_t)signum); 171} 172 173static enum ecb_status 174event_for_pid(Event * event, void * data) 175{ 176 if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data) 177 return ecb_yield; 178 return ecb_cont; 179} 180 181static int 182have_events_for(pid_t pid) 183{ 184 return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL; 185} 186 187void 188continue_process(pid_t pid) 189{ 190 debug(DEBUG_PROCESS, "continue_process: pid=%d", pid); 191 192 /* Only really continue the process if there are no events in 193 the queue for this process. Otherwise just wait for the 194 other events to arrive. */ 195 if (!have_events_for(pid)) 196 /* We always trace syscalls to control fork(), 197 * clone(), execve()... */ 198 ptrace(PTRACE_SYSCALL, pid, 0, 0); 199 else 200 debug(DEBUG_PROCESS, 201 "putting off the continue, events in que."); 202} 203 204static struct pid_task * 205get_task_info(struct pid_set * pids, pid_t pid) 206{ 207 assert(pid != 0); 208 size_t i; 209 for (i = 0; i < pids->count; ++i) 210 if (pids->tasks[i].pid == pid) 211 return &pids->tasks[i]; 212 213 return NULL; 214} 215 216static struct pid_task * 217add_task_info(struct pid_set * pids, pid_t pid) 218{ 219 if (pids->count == pids->alloc) { 220 size_t ns = (2 * pids->alloc) ?: 4; 221 struct pid_task * n = realloc(pids->tasks, 222 sizeof(*pids->tasks) * ns); 223 if (n == NULL) 224 return NULL; 225 pids->tasks = n; 226 pids->alloc = ns; 227 } 228 struct pid_task * task_info = &pids->tasks[pids->count++]; 229 memset(task_info, 0, sizeof(*task_info)); 230 task_info->pid = pid; 231 return task_info; 232} 233 234static enum callback_status 235task_stopped(struct Process *task, void *data) 236{ 237 enum process_status st = process_status(task->pid); 238 if (data != NULL) 239 *(enum process_status *)data = st; 240 241 /* If the task is already stopped, don't worry about it. 242 * Likewise if it managed to become a zombie or terminate in 243 * the meantime. This can happen when the whole thread group 244 * is terminating. */ 245 switch (st) { 246 case ps_invalid: 247 case ps_tracing_stop: 248 case ps_zombie: 249 return CBS_CONT; 250 case ps_sleeping: 251 case ps_stop: 252 case ps_other: 253 return CBS_STOP; 254 } 255 256 abort (); 257} 258 259/* Task is blocked if it's stopped, or if it's a vfork parent. */ 260static enum callback_status 261task_blocked(struct Process *task, void *data) 262{ 263 struct pid_set * pids = data; 264 struct pid_task * task_info = get_task_info(pids, task->pid); 265 if (task_info != NULL 266 && task_info->vforked) 267 return CBS_CONT; 268 269 return task_stopped(task, NULL); 270} 271 272static Event *process_vfork_on_event(struct event_handler *super, Event *event); 273 274static enum callback_status 275task_vforked(struct Process *task, void *data) 276{ 277 if (task->event_handler != NULL 278 && task->event_handler->on_event == &process_vfork_on_event) 279 return CBS_STOP; 280 return CBS_CONT; 281} 282 283static int 284is_vfork_parent(struct Process *task) 285{ 286 return each_task(task->leader, NULL, &task_vforked, NULL) != NULL; 287} 288 289static enum callback_status 290send_sigstop(struct Process *task, void *data) 291{ 292 Process * leader = task->leader; 293 struct pid_set * pids = data; 294 295 /* Look for pre-existing task record, or add new. */ 296 struct pid_task * task_info = get_task_info(pids, task->pid); 297 if (task_info == NULL) 298 task_info = add_task_info(pids, task->pid); 299 if (task_info == NULL) { 300 perror("send_sigstop: add_task_info"); 301 destroy_event_handler(leader); 302 /* Signal failure upwards. */ 303 return CBS_STOP; 304 } 305 306 /* This task still has not been attached to. It should be 307 stopped by the kernel. */ 308 if (task->state == STATE_BEING_CREATED) 309 return CBS_CONT; 310 311 /* Don't bother sending SIGSTOP if we are already stopped, or 312 * if we sent the SIGSTOP already, which happens when we are 313 * handling "onexit" and inherited the handler from breakpoint 314 * re-enablement. */ 315 enum process_status st; 316 if (task_stopped(task, &st) == CBS_CONT) 317 return CBS_CONT; 318 if (task_info->sigstopped) { 319 if (!task_info->delivered) 320 return CBS_CONT; 321 task_info->delivered = 0; 322 } 323 324 /* Also don't attempt to stop the process if it's a parent of 325 * vforked process. We set up event handler specially to hint 326 * us. In that case parent is in D state, which we use to 327 * weed out unnecessary looping. */ 328 if (st == ps_sleeping 329 && is_vfork_parent (task)) { 330 task_info->vforked = 1; 331 return CBS_CONT; 332 } 333 334 if (task_kill(task->pid, SIGSTOP) >= 0) { 335 debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid); 336 task_info->sigstopped = 1; 337 } else 338 fprintf(stderr, 339 "Warning: couldn't send SIGSTOP to %d\n", task->pid); 340 341 return CBS_CONT; 342} 343 344/* On certain kernels, detaching right after a singlestep causes the 345 tracee to be killed with a SIGTRAP (that even though the singlestep 346 was properly caught by waitpid. The ugly workaround is to put a 347 breakpoint where IP points and let the process continue. After 348 this the breakpoint can be retracted and the process detached. */ 349static void 350ugly_workaround(Process * proc) 351{ 352 void * ip = get_instruction_pointer(proc); 353 struct breakpoint *sbp = dict_find_entry(proc->leader->breakpoints, ip); 354 if (sbp != NULL) 355 enable_breakpoint(proc, sbp); 356 else 357 insert_breakpoint(proc, ip, NULL); 358 ptrace(PTRACE_CONT, proc->pid, 0, 0); 359} 360 361static void 362process_stopping_done(struct process_stopping_handler * self, Process * leader) 363{ 364 debug(DEBUG_PROCESS, "process stopping done %d", 365 self->task_enabling_breakpoint->pid); 366 size_t i; 367 if (!self->exiting) { 368 for (i = 0; i < self->pids.count; ++i) 369 if (self->pids.tasks[i].pid != 0 370 && (self->pids.tasks[i].delivered 371 || self->pids.tasks[i].sysret)) 372 continue_process(self->pids.tasks[i].pid); 373 continue_process(self->task_enabling_breakpoint->pid); 374 destroy_event_handler(leader); 375 } 376 377 if (self->exiting) { 378 ugly_workaround: 379 self->state = psh_ugly_workaround; 380 ugly_workaround(self->task_enabling_breakpoint); 381 } else { 382 switch ((self->ugly_workaround_p)(self)) { 383 case CBS_FAIL: 384 /* xxx handle me */ 385 case CBS_STOP: 386 break; 387 case CBS_CONT: 388 goto ugly_workaround; 389 } 390 } 391} 392 393/* Before we detach, we need to make sure that task's IP is on the 394 * edge of an instruction. So for tasks that have a breakpoint event 395 * in the queue, we adjust the instruction pointer, just like 396 * continue_after_breakpoint does. */ 397static enum ecb_status 398undo_breakpoint(Event * event, void * data) 399{ 400 if (event != NULL 401 && event->proc->leader == data 402 && event->type == EVENT_BREAKPOINT) 403 set_instruction_pointer(event->proc, event->e_un.brk_addr); 404 return ecb_cont; 405} 406 407static enum callback_status 408untrace_task(struct Process *task, void *data) 409{ 410 if (task != data) 411 untrace_pid(task->pid); 412 return CBS_CONT; 413} 414 415static enum callback_status 416remove_task(struct Process *task, void *data) 417{ 418 /* Don't untrace leader just yet. */ 419 if (task != data) 420 remove_process(task); 421 return CBS_CONT; 422} 423 424static enum callback_status 425retract_breakpoint_cb(struct Process *proc, struct breakpoint *bp, void *data) 426{ 427 breakpoint_on_retract(bp, proc); 428 return CBS_CONT; 429} 430 431static void 432detach_process(Process * leader) 433{ 434 each_qd_event(&undo_breakpoint, leader); 435 disable_all_breakpoints(leader); 436 proc_each_breakpoint(leader, NULL, retract_breakpoint_cb, NULL); 437 438 /* Now untrace the process, if it was attached to by -p. */ 439 struct opt_p_t * it; 440 for (it = opt_p; it != NULL; it = it->next) { 441 Process * proc = pid2proc(it->pid); 442 if (proc == NULL) 443 continue; 444 if (proc->leader == leader) { 445 each_task(leader, NULL, &untrace_task, NULL); 446 break; 447 } 448 } 449 each_task(leader, NULL, &remove_task, leader); 450 destroy_event_handler(leader); 451 remove_task(leader, NULL); 452} 453 454static void 455handle_stopping_event(struct pid_task * task_info, Event ** eventp) 456{ 457 /* Mark all events, so that we know whom to SIGCONT later. */ 458 if (task_info != NULL) 459 task_info->got_event = 1; 460 461 Event * event = *eventp; 462 463 /* In every state, sink SIGSTOP events for tasks that it was 464 * sent to. */ 465 if (task_info != NULL 466 && event->type == EVENT_SIGNAL 467 && event->e_un.signum == SIGSTOP) { 468 debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid); 469 if (task_info->sigstopped 470 && !task_info->delivered) { 471 task_info->delivered = 1; 472 *eventp = NULL; // sink the event 473 } else 474 fprintf(stderr, "suspicious: %d got SIGSTOP, but " 475 "sigstopped=%d and delivered=%d\n", 476 task_info->pid, task_info->sigstopped, 477 task_info->delivered); 478 } 479} 480 481/* Some SIGSTOPs may have not been delivered to their respective tasks 482 * yet. They are still in the queue. If we have seen an event for 483 * that process, continue it, so that the SIGSTOP can be delivered and 484 * caught by ltrace. We don't mind that the process is after 485 * breakpoint (and therefore potentially doesn't have aligned IP), 486 * because the signal will be delivered without the process actually 487 * starting. */ 488static void 489continue_for_sigstop_delivery(struct pid_set * pids) 490{ 491 size_t i; 492 for (i = 0; i < pids->count; ++i) { 493 if (pids->tasks[i].pid != 0 494 && pids->tasks[i].sigstopped 495 && !pids->tasks[i].delivered 496 && pids->tasks[i].got_event) { 497 debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery", 498 pids->tasks[i].pid); 499 ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0); 500 } 501 } 502} 503 504static int 505event_exit_p(Event * event) 506{ 507 return event != NULL && (event->type == EVENT_EXIT 508 || event->type == EVENT_EXIT_SIGNAL); 509} 510 511static int 512event_exit_or_none_p(Event * event) 513{ 514 return event == NULL || event_exit_p(event) 515 || event->type == EVENT_NONE; 516} 517 518static int 519await_sigstop_delivery(struct pid_set * pids, struct pid_task * task_info, 520 Event * event) 521{ 522 /* If we still didn't get our SIGSTOP, continue the process 523 * and carry on. */ 524 if (event != NULL && !event_exit_or_none_p(event) 525 && task_info != NULL && task_info->sigstopped) { 526 debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery", 527 task_info->pid); 528 /* We should get the signal the first thing 529 * after this, so it should be OK to continue 530 * even if we are over a breakpoint. */ 531 ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0); 532 533 } else { 534 /* If all SIGSTOPs were delivered, uninstall the 535 * handler and continue everyone. */ 536 /* XXX I suspect that we should check tasks that are 537 * still around. Is things are now, there should be a 538 * race between waiting for everyone to stop and one 539 * of the tasks exiting. */ 540 int all_clear = 1; 541 size_t i; 542 for (i = 0; i < pids->count; ++i) 543 if (pids->tasks[i].pid != 0 544 && pids->tasks[i].sigstopped 545 && !pids->tasks[i].delivered) { 546 all_clear = 0; 547 break; 548 } 549 return all_clear; 550 } 551 552 return 0; 553} 554 555static int 556all_stops_accountable(struct pid_set * pids) 557{ 558 size_t i; 559 for (i = 0; i < pids->count; ++i) 560 if (pids->tasks[i].pid != 0 561 && !pids->tasks[i].got_event 562 && !have_events_for(pids->tasks[i].pid)) 563 return 0; 564 return 1; 565} 566 567/* The protocol is: 0 for success, negative for failure, positive if 568 * default singlestep is to be used. */ 569int arch_atomic_singlestep(struct Process *proc, struct breakpoint *sbp, 570 int (*add_cb)(void *addr, void *data), 571 void *add_cb_data); 572 573#ifndef ARCH_HAVE_ATOMIC_SINGLESTEP 574int 575arch_atomic_singlestep(struct Process *proc, struct breakpoint *sbp, 576 int (*add_cb)(void *addr, void *data), 577 void *add_cb_data) 578{ 579 return 1; 580} 581#endif 582 583static Event *process_stopping_on_event(struct event_handler *super, 584 Event *event); 585 586static void 587remove_atomic_breakpoints(struct Process *proc) 588{ 589 struct process_stopping_handler *self 590 = (void *)proc->leader->event_handler; 591 assert(self != NULL); 592 assert(self->super.on_event == process_stopping_on_event); 593 594 int ct = sizeof(self->atomic_skip_bp_addrs) 595 / sizeof(*self->atomic_skip_bp_addrs); 596 int i; 597 for (i = 0; i < ct; ++i) 598 if (self->atomic_skip_bp_addrs[i] != 0) { 599 delete_breakpoint(proc, self->atomic_skip_bp_addrs[i]); 600 self->atomic_skip_bp_addrs[i] = 0; 601 } 602} 603 604static void 605atomic_singlestep_bp_on_hit(struct breakpoint *bp, struct Process *proc) 606{ 607 remove_atomic_breakpoints(proc); 608} 609 610static int 611atomic_singlestep_add_bp(void *addr, void *data) 612{ 613 struct process_stopping_handler *self = data; 614 struct Process *proc = self->task_enabling_breakpoint; 615 616 int ct = sizeof(self->atomic_skip_bp_addrs) 617 / sizeof(*self->atomic_skip_bp_addrs); 618 int i; 619 for (i = 0; i < ct; ++i) 620 if (self->atomic_skip_bp_addrs[i] == 0) { 621 self->atomic_skip_bp_addrs[i] = addr; 622 static struct bp_callbacks cbs = { 623 .on_hit = atomic_singlestep_bp_on_hit, 624 }; 625 struct breakpoint *bp 626 = insert_breakpoint(proc, addr, NULL); 627 breakpoint_set_callbacks(bp, &cbs); 628 return 0; 629 } 630 631 assert(!"Too many atomic singlestep breakpoints!"); 632 abort(); 633} 634 635static int 636singlestep(struct process_stopping_handler *self) 637{ 638 struct Process *proc = self->task_enabling_breakpoint; 639 640 int status = arch_atomic_singlestep(self->task_enabling_breakpoint, 641 self->breakpoint_being_enabled, 642 &atomic_singlestep_add_bp, self); 643 644 /* Propagate failure and success. */ 645 if (status <= 0) 646 return status; 647 648 /* Otherwise do the default action: singlestep. */ 649 debug(1, "PTRACE_SINGLESTEP"); 650 if (ptrace(PTRACE_SINGLESTEP, proc->pid, 0, 0)) { 651 perror("PTRACE_SINGLESTEP"); 652 return -1; 653 } 654 return 0; 655} 656 657static void 658post_singlestep(struct process_stopping_handler *self, 659 struct Event **eventp) 660{ 661 continue_for_sigstop_delivery(&self->pids); 662 663 if (*eventp != NULL && (*eventp)->type == EVENT_BREAKPOINT) 664 *eventp = NULL; // handled 665 666 struct Process *proc = self->task_enabling_breakpoint; 667 668 remove_atomic_breakpoints(proc); 669 self->breakpoint_being_enabled = NULL; 670} 671 672static void 673singlestep_error(struct process_stopping_handler *self) 674{ 675 struct Process *teb = self->task_enabling_breakpoint; 676 struct breakpoint *sbp = self->breakpoint_being_enabled; 677 fprintf(stderr, "%d couldn't continue when handling %s (%p) at %p\n", 678 teb->pid, breakpoint_name(sbp), sbp->addr, 679 get_instruction_pointer(teb)); 680 delete_breakpoint(teb->leader, sbp->addr); 681} 682 683static void 684pt_continue(struct process_stopping_handler *self) 685{ 686 struct Process *teb = self->task_enabling_breakpoint; 687 debug(1, "PTRACE_CONT"); 688 ptrace(PTRACE_CONT, teb->pid, 0, 0); 689} 690 691static void 692pt_singlestep(struct process_stopping_handler *self) 693{ 694 if (singlestep(self) < 0) 695 singlestep_error(self); 696} 697 698static void 699disable_and(struct process_stopping_handler *self, 700 void (*do_this)(struct process_stopping_handler *self)) 701{ 702 struct Process *teb = self->task_enabling_breakpoint; 703 debug(DEBUG_PROCESS, "all stopped, now singlestep/cont %d", teb->pid); 704 if (self->breakpoint_being_enabled->enabled) 705 disable_breakpoint(teb, self->breakpoint_being_enabled); 706 (do_this)(self); 707 self->state = psh_singlestep; 708} 709 710void 711linux_ptrace_disable_and_singlestep(struct process_stopping_handler *self) 712{ 713 disable_and(self, &pt_singlestep); 714} 715 716void 717linux_ptrace_disable_and_continue(struct process_stopping_handler *self) 718{ 719 disable_and(self, &pt_continue); 720} 721 722/* This event handler is installed when we are in the process of 723 * stopping the whole thread group to do the pointer re-enablement for 724 * one of the threads. We pump all events to the queue for later 725 * processing while we wait for all the threads to stop. When this 726 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP, 727 * re-enable, and continue everyone. */ 728static Event * 729process_stopping_on_event(struct event_handler *super, Event *event) 730{ 731 struct process_stopping_handler * self = (void *)super; 732 Process * task = event->proc; 733 Process * leader = task->leader; 734 Process * teb = self->task_enabling_breakpoint; 735 736 debug(DEBUG_PROCESS, 737 "process_stopping_on_event: pid %d; event type %d; state %d", 738 task->pid, event->type, self->state); 739 740 struct pid_task * task_info = get_task_info(&self->pids, task->pid); 741 if (task_info == NULL) 742 fprintf(stderr, "new task??? %d\n", task->pid); 743 handle_stopping_event(task_info, &event); 744 745 int state = self->state; 746 int event_to_queue = !event_exit_or_none_p(event); 747 748 /* Deactivate the entry if the task exits. */ 749 if (event_exit_p(event) && task_info != NULL) 750 task_info->pid = 0; 751 752 /* Always handle sysrets. Whether sysret occurred and what 753 * sys it rets from may need to be determined based on process 754 * stack, so we need to keep that in sync with reality. Note 755 * that we don't continue the process after the sysret is 756 * handled. See continue_after_syscall. */ 757 if (event != NULL && event->type == EVENT_SYSRET) { 758 debug(1, "%d LT_EV_SYSRET", event->proc->pid); 759 event_to_queue = 0; 760 task_info->sysret = 1; 761 } 762 763 switch (state) { 764 case psh_stopping: 765 /* If everyone is stopped, singlestep. */ 766 if (each_task(leader, NULL, &task_blocked, 767 &self->pids) == NULL) { 768 (self->on_all_stopped)(self); 769 state = self->state; 770 } 771 break; 772 773 case psh_singlestep: 774 /* In singlestep state, breakpoint signifies that we 775 * have now stepped, and can re-enable the breakpoint. */ 776 if (event != NULL && task == teb) { 777 778 /* If this was caused by a real breakpoint, as 779 * opposed to a singlestep, assume that it's 780 * an artificial breakpoint installed for some 781 * reason for the re-enablement. In that case 782 * handle it. */ 783 if (event->type == EVENT_BREAKPOINT) { 784 target_address_t ip 785 = get_instruction_pointer(task); 786 struct breakpoint *other 787 = address2bpstruct(leader, ip); 788 if (other != NULL) 789 breakpoint_on_hit(other, task); 790 } 791 792 /* If we got SIGNAL instead of BREAKPOINT, 793 * then this is not singlestep at all. */ 794 if (event->type == EVENT_SIGNAL) { 795 do_singlestep: 796 if (singlestep(self) < 0) { 797 singlestep_error(self); 798 post_singlestep(self, &event); 799 goto psh_sinking; 800 } 801 break; 802 } else { 803 switch ((self->keep_stepping_p)(self)) { 804 case CBS_FAIL: 805 /* XXX handle me */ 806 case CBS_STOP: 807 break; 808 case CBS_CONT: 809 /* Sink singlestep event. */ 810 if (event->type == EVENT_BREAKPOINT) 811 event = NULL; 812 goto do_singlestep; 813 } 814 } 815 816 /* Re-enable the breakpoint that we are 817 * stepping over. */ 818 struct breakpoint *sbp = self->breakpoint_being_enabled; 819 if (sbp->enabled) 820 enable_breakpoint(teb, sbp); 821 822 post_singlestep(self, &event); 823 goto psh_sinking; 824 } 825 break; 826 827 psh_sinking: 828 state = self->state = psh_sinking; 829 case psh_sinking: 830 if (await_sigstop_delivery(&self->pids, task_info, event)) 831 process_stopping_done(self, leader); 832 break; 833 834 case psh_ugly_workaround: 835 if (event == NULL) 836 break; 837 if (event->type == EVENT_BREAKPOINT) { 838 undo_breakpoint(event, leader); 839 if (task == teb) 840 self->task_enabling_breakpoint = NULL; 841 } 842 if (self->task_enabling_breakpoint == NULL 843 && all_stops_accountable(&self->pids)) { 844 undo_breakpoint(event, leader); 845 detach_process(leader); 846 event = NULL; // handled 847 } 848 } 849 850 if (event != NULL && event_to_queue) { 851 enque_event(event); 852 event = NULL; // sink the event 853 } 854 855 return event; 856} 857 858static void 859process_stopping_destroy(struct event_handler *super) 860{ 861 struct process_stopping_handler * self = (void *)super; 862 free(self->pids.tasks); 863} 864 865static enum callback_status 866no(struct process_stopping_handler *self) 867{ 868 return CBS_STOP; 869} 870 871int 872process_install_stopping_handler(struct Process *proc, struct breakpoint *sbp, 873 void (*as)(struct process_stopping_handler *), 874 enum callback_status (*ks) 875 (struct process_stopping_handler *), 876 enum callback_status (*uw) 877 (struct process_stopping_handler *)) 878{ 879 debug(DEBUG_FUNCTION, 880 "process_install_stopping_handler: pid=%d", proc->pid); 881 882 struct process_stopping_handler *handler = calloc(sizeof(*handler), 1); 883 if (handler == NULL) 884 return -1; 885 886 if (as == NULL) 887 as = &linux_ptrace_disable_and_singlestep; 888 if (ks == NULL) 889 ks = &no; 890 if (uw == NULL) 891 uw = &no; 892 893 handler->super.on_event = process_stopping_on_event; 894 handler->super.destroy = process_stopping_destroy; 895 handler->task_enabling_breakpoint = proc; 896 handler->breakpoint_being_enabled = sbp; 897 handler->on_all_stopped = as; 898 handler->keep_stepping_p = ks; 899 handler->ugly_workaround_p = uw; 900 901 install_event_handler(proc->leader, &handler->super); 902 903 if (each_task(proc->leader, NULL, &send_sigstop, 904 &handler->pids) != NULL) { 905 destroy_event_handler(proc); 906 return -1; 907 } 908 909 /* And deliver the first fake event, in case all the 910 * conditions are already fulfilled. */ 911 Event ev = { 912 .type = EVENT_NONE, 913 .proc = proc, 914 }; 915 process_stopping_on_event(&handler->super, &ev); 916 917 return 0; 918} 919 920void 921continue_after_breakpoint(Process *proc, struct breakpoint *sbp) 922{ 923 debug(DEBUG_PROCESS, 924 "continue_after_breakpoint: pid=%d, addr=%p", 925 proc->pid, sbp->addr); 926 927 set_instruction_pointer(proc, sbp->addr); 928 929 if (sbp->enabled == 0) { 930 continue_process(proc->pid); 931 } else { 932#if defined __sparc__ || defined __ia64___ || defined __mips__ 933 /* we don't want to singlestep here */ 934 continue_process(proc->pid); 935#else 936 if (process_install_stopping_handler 937 (proc, sbp, NULL, NULL, NULL) < 0) { 938 perror("process_stopping_handler_create"); 939 /* Carry on not bothering to re-enable. */ 940 continue_process(proc->pid); 941 } 942#endif 943 } 944} 945 946/** 947 * Ltrace exit. When we are about to exit, we have to go through all 948 * the processes, stop them all, remove all the breakpoints, and then 949 * detach the processes that we attached to using -p. If we left the 950 * other tasks running, they might hit stray return breakpoints and 951 * produce artifacts, so we better stop everyone, even if it's a bit 952 * of extra work. 953 */ 954struct ltrace_exiting_handler 955{ 956 struct event_handler super; 957 struct pid_set pids; 958}; 959 960static Event * 961ltrace_exiting_on_event(struct event_handler *super, Event *event) 962{ 963 struct ltrace_exiting_handler * self = (void *)super; 964 Process * task = event->proc; 965 Process * leader = task->leader; 966 967 debug(DEBUG_PROCESS, 968 "ltrace_exiting_on_event: pid %d; event type %d", 969 task->pid, event->type); 970 971 struct pid_task * task_info = get_task_info(&self->pids, task->pid); 972 handle_stopping_event(task_info, &event); 973 974 if (event != NULL && event->type == EVENT_BREAKPOINT) 975 undo_breakpoint(event, leader); 976 977 if (await_sigstop_delivery(&self->pids, task_info, event) 978 && all_stops_accountable(&self->pids)) 979 detach_process(leader); 980 981 /* Sink all non-exit events. We are about to exit, so we 982 * don't bother with queuing them. */ 983 if (event_exit_or_none_p(event)) 984 return event; 985 986 return NULL; 987} 988 989static void 990ltrace_exiting_destroy(struct event_handler *super) 991{ 992 struct ltrace_exiting_handler * self = (void *)super; 993 free(self->pids.tasks); 994} 995 996static int 997ltrace_exiting_install_handler(Process * proc) 998{ 999 /* Only install to leader. */ 1000 if (proc->leader != proc) 1001 return 0; 1002 1003 /* Perhaps we are already installed, if the user passed 1004 * several -p options that are tasks of one process. */ 1005 if (proc->event_handler != NULL 1006 && proc->event_handler->on_event == <race_exiting_on_event) 1007 return 0; 1008 1009 /* If stopping handler is already present, let it do the 1010 * work. */ 1011 if (proc->event_handler != NULL) { 1012 assert(proc->event_handler->on_event 1013 == &process_stopping_on_event); 1014 struct process_stopping_handler * other 1015 = (void *)proc->event_handler; 1016 other->exiting = 1; 1017 return 0; 1018 } 1019 1020 struct ltrace_exiting_handler * handler 1021 = calloc(sizeof(*handler), 1); 1022 if (handler == NULL) { 1023 perror("malloc exiting handler"); 1024 fatal: 1025 /* XXXXXXXXXXXXXXXXXXX fixme */ 1026 return -1; 1027 } 1028 1029 handler->super.on_event = ltrace_exiting_on_event; 1030 handler->super.destroy = ltrace_exiting_destroy; 1031 install_event_handler(proc->leader, &handler->super); 1032 1033 if (each_task(proc->leader, NULL, &send_sigstop, 1034 &handler->pids) != NULL) 1035 goto fatal; 1036 1037 return 0; 1038} 1039 1040/* 1041 * When the traced process vforks, it's suspended until the child 1042 * process calls _exit or exec*. In the meantime, the two share the 1043 * address space. 1044 * 1045 * The child process should only ever call _exit or exec*, but we 1046 * can't count on that (it's not the role of ltrace to policy, but to 1047 * observe). In any case, we will _at least_ have to deal with 1048 * removal of vfork return breakpoint (which we have to smuggle back 1049 * in, so that the parent can see it, too), and introduction of exec* 1050 * return breakpoint. Since we already have both breakpoint actions 1051 * to deal with, we might as well support it all. 1052 * 1053 * The gist is that we pretend that the child is in a thread group 1054 * with its parent, and handle it as a multi-threaded case, with the 1055 * exception that we know that the parent is blocked, and don't 1056 * attempt to stop it. When the child execs, we undo the setup. 1057 */ 1058 1059struct process_vfork_handler 1060{ 1061 struct event_handler super; 1062 void * bp_addr; 1063}; 1064 1065static Event * 1066process_vfork_on_event(struct event_handler *super, Event *event) 1067{ 1068 debug(DEBUG_PROCESS, 1069 "process_vfork_on_event: pid %d; event type %d", 1070 event->proc->pid, event->type); 1071 1072 struct process_vfork_handler * self = (void *)super; 1073 struct breakpoint *sbp; 1074 assert(self != NULL); 1075 1076 switch (event->type) { 1077 case EVENT_BREAKPOINT: 1078 /* Remember the vfork return breakpoint. */ 1079 if (self->bp_addr == 0) 1080 self->bp_addr = event->e_un.brk_addr; 1081 break; 1082 1083 case EVENT_EXIT: 1084 case EVENT_EXIT_SIGNAL: 1085 case EVENT_EXEC: 1086 /* Smuggle back in the vfork return breakpoint, so 1087 * that our parent can trip over it once again. */ 1088 if (self->bp_addr != 0) { 1089 sbp = dict_find_entry(event->proc->leader->breakpoints, 1090 self->bp_addr); 1091 if (sbp != NULL) 1092 assert(sbp->libsym == NULL); 1093 /* We don't mind failing that, it's not a big 1094 * deal to not display one extra vfork return. */ 1095 insert_breakpoint(event->proc->parent, 1096 self->bp_addr, NULL); 1097 } 1098 1099 continue_process(event->proc->parent->pid); 1100 1101 /* Remove the leader that we artificially set up 1102 * earlier. */ 1103 change_process_leader(event->proc, event->proc); 1104 destroy_event_handler(event->proc); 1105 1106 default: 1107 ; 1108 } 1109 1110 return event; 1111} 1112 1113void 1114continue_after_vfork(Process * proc) 1115{ 1116 debug(DEBUG_PROCESS, "continue_after_vfork: pid=%d", proc->pid); 1117 struct process_vfork_handler * handler = calloc(sizeof(*handler), 1); 1118 if (handler == NULL) { 1119 perror("malloc vfork handler"); 1120 /* Carry on not bothering to treat the process as 1121 * necessary. */ 1122 continue_process(proc->parent->pid); 1123 return; 1124 } 1125 1126 /* We must set up custom event handler, so that we see 1127 * exec/exit events for the task itself. */ 1128 handler->super.on_event = process_vfork_on_event; 1129 install_event_handler(proc, &handler->super); 1130 1131 /* Make sure that the child is sole thread. */ 1132 assert(proc->leader == proc); 1133 assert(proc->next == NULL || proc->next->leader != proc); 1134 1135 /* Make sure that the child's parent is properly set up. */ 1136 assert(proc->parent != NULL); 1137 assert(proc->parent->leader != NULL); 1138 1139 change_process_leader(proc, proc->parent->leader); 1140} 1141 1142static int 1143is_mid_stopping(Process *proc) 1144{ 1145 return proc != NULL 1146 && proc->event_handler != NULL 1147 && proc->event_handler->on_event == &process_stopping_on_event; 1148} 1149 1150void 1151continue_after_syscall(Process * proc, int sysnum, int ret_p) 1152{ 1153 /* Don't continue if we are mid-stopping. */ 1154 if (ret_p && (is_mid_stopping(proc) || is_mid_stopping(proc->leader))) { 1155 debug(DEBUG_PROCESS, 1156 "continue_after_syscall: don't continue %d", 1157 proc->pid); 1158 return; 1159 } 1160 continue_process(proc->pid); 1161} 1162 1163/* If ltrace gets SIGINT, the processes directly or indirectly run by 1164 * ltrace get it too. We just have to wait long enough for the signal 1165 * to be delivered and the process terminated, which we notice and 1166 * exit ltrace, too. So there's not much we need to do there. We 1167 * want to keep tracing those processes as usual, in case they just 1168 * SIG_IGN the SIGINT to do their shutdown etc. 1169 * 1170 * For processes ran on the background, we want to install an exit 1171 * handler that stops all the threads, removes all breakpoints, and 1172 * detaches. 1173 */ 1174void 1175os_ltrace_exiting(void) 1176{ 1177 struct opt_p_t * it; 1178 for (it = opt_p; it != NULL; it = it->next) { 1179 Process * proc = pid2proc(it->pid); 1180 if (proc == NULL || proc->leader == NULL) 1181 continue; 1182 if (ltrace_exiting_install_handler(proc->leader) < 0) 1183 fprintf(stderr, 1184 "Couldn't install exiting handler for %d.\n", 1185 proc->pid); 1186 } 1187} 1188 1189int 1190os_ltrace_exiting_sighandler(void) 1191{ 1192 extern int linux_in_waitpid; 1193 if (linux_in_waitpid) { 1194 os_ltrace_exiting(); 1195 return 1; 1196 } 1197 return 0; 1198} 1199 1200size_t 1201umovebytes(Process *proc, void *addr, void *laddr, size_t len) { 1202 1203 union { 1204 long a; 1205 char c[sizeof(long)]; 1206 } a; 1207 int started = 0; 1208 size_t offset = 0, bytes_read = 0; 1209 1210 while (offset < len) { 1211 a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0); 1212 if (a.a == -1 && errno) { 1213 if (started && errno == EIO) 1214 return bytes_read; 1215 else 1216 return -1; 1217 } 1218 started = 1; 1219 1220 if (len - offset >= sizeof(long)) { 1221 memcpy(laddr + offset, &a.c[0], sizeof(long)); 1222 bytes_read += sizeof(long); 1223 } 1224 else { 1225 memcpy(laddr + offset, &a.c[0], len - offset); 1226 bytes_read += (len - offset); 1227 } 1228 offset += sizeof(long); 1229 } 1230 1231 return bytes_read; 1232} 1233