trace.c revision ba1664b062414481d0f37d06bb01a19874c8d481
1/*
2 * This file is part of ltrace.
3 * Copyright (C) 2007,2011,2012 Petr Machata, Red Hat Inc.
4 * Copyright (C) 2010 Joe Damato
5 * Copyright (C) 1998,2002,2003,2004,2008,2009 Juan Cespedes
6 * Copyright (C) 2006 Ian Wienand
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
21 * 02110-1301 USA
22 */
23
24#include "config.h"
25
26#include <asm/unistd.h>
27#include <sys/types.h>
28#include <sys/wait.h>
29#include <assert.h>
30#include <errno.h>
31#include <stdio.h>
32#include <stdlib.h>
33#include <string.h>
34#include <unistd.h>
35
36#ifdef HAVE_LIBSELINUX
37# include <selinux/selinux.h>
38#endif
39
40#include "linux-gnu/trace.h"
41#include "backend.h"
42#include "breakpoint.h"
43#include "debug.h"
44#include "events.h"
45#include "options.h"
46#include "proc.h"
47#include "ptrace.h"
48#include "type.h"
49
50/* If the system headers did not provide the constants, hard-code the normal
51   values.  */
52#ifndef PTRACE_EVENT_FORK
53
54#define PTRACE_OLDSETOPTIONS    21
55#define PTRACE_SETOPTIONS       0x4200
56#define PTRACE_GETEVENTMSG      0x4201
57
58/* options set using PTRACE_SETOPTIONS */
59#define PTRACE_O_TRACESYSGOOD   0x00000001
60#define PTRACE_O_TRACEFORK      0x00000002
61#define PTRACE_O_TRACEVFORK     0x00000004
62#define PTRACE_O_TRACECLONE     0x00000008
63#define PTRACE_O_TRACEEXEC      0x00000010
64#define PTRACE_O_TRACEVFORKDONE 0x00000020
65#define PTRACE_O_TRACEEXIT      0x00000040
66
67/* Wait extended result codes for the above trace options.  */
68#define PTRACE_EVENT_FORK       1
69#define PTRACE_EVENT_VFORK      2
70#define PTRACE_EVENT_CLONE      3
71#define PTRACE_EVENT_EXEC       4
72#define PTRACE_EVENT_VFORK_DONE 5
73#define PTRACE_EVENT_EXIT       6
74
75#endif /* PTRACE_EVENT_FORK */
76
77void
78trace_fail_warning(pid_t pid)
79{
80	/* This was adapted from GDB.  */
81#ifdef HAVE_LIBSELINUX
82	static int checked = 0;
83	if (checked)
84		return;
85	checked = 1;
86
87	/* -1 is returned for errors, 0 if it has no effect, 1 if
88	 * PTRACE_ATTACH is forbidden.  */
89	if (security_get_boolean_active("deny_ptrace") == 1)
90		fprintf(stderr,
91"The SELinux boolean 'deny_ptrace' is enabled, which may prevent ltrace from\n"
92"tracing other processes.  You can disable this process attach protection by\n"
93"issuing 'setsebool deny_ptrace=0' in the superuser context.\n");
94#endif /* HAVE_LIBSELINUX */
95}
96
97void
98trace_me(void)
99{
100	debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
101	if (ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) {
102		perror("PTRACE_TRACEME");
103		trace_fail_warning(getpid());
104		exit(1);
105	}
106}
107
108/* There's a (hopefully) brief period of time after the child process
109 * forks when we can't trace it yet.  Here we wait for kernel to
110 * prepare the process.  */
111int
112wait_for_proc(pid_t pid)
113{
114	/* man ptrace: PTRACE_ATTACH attaches to the process specified
115	   in pid.  The child is sent a SIGSTOP, but will not
116	   necessarily have stopped by the completion of this call;
117	   use wait() to wait for the child to stop. */
118	if (waitpid(pid, NULL, __WALL) != pid) {
119		perror ("trace_pid: waitpid");
120		return -1;
121	}
122
123	return 0;
124}
125
126int
127trace_pid(pid_t pid)
128{
129	debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
130	/* This shouldn't emit error messages, as there are legitimate
131	 * reasons that the PID can't be attached: like it may have
132	 * already ended.  */
133	if (ptrace(PTRACE_ATTACH, pid, 0, 0) < 0)
134		return -1;
135
136	return wait_for_proc(pid);
137}
138
139void
140trace_set_options(struct Process *proc)
141{
142	if (proc->tracesysgood & 0x80)
143		return;
144
145	pid_t pid = proc->pid;
146	debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
147
148	long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
149		PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
150		PTRACE_O_TRACEEXEC;
151	if (ptrace(PTRACE_SETOPTIONS, pid, 0, (void *)options) < 0 &&
152	    ptrace(PTRACE_OLDSETOPTIONS, pid, 0, (void *)options) < 0) {
153		perror("PTRACE_SETOPTIONS");
154		return;
155	}
156	proc->tracesysgood |= 0x80;
157}
158
159void
160untrace_pid(pid_t pid) {
161	debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
162	ptrace(PTRACE_DETACH, pid, 0, 0);
163}
164
165void
166continue_after_signal(pid_t pid, int signum)
167{
168	debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d",
169	      pid, signum);
170	ptrace(PTRACE_SYSCALL, pid, 0, (void *)(uintptr_t)signum);
171}
172
173static enum ecb_status
174event_for_pid(Event * event, void * data)
175{
176	if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
177		return ecb_yield;
178	return ecb_cont;
179}
180
181static int
182have_events_for(pid_t pid)
183{
184	return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
185}
186
187void
188continue_process(pid_t pid)
189{
190	debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
191
192	/* Only really continue the process if there are no events in
193	   the queue for this process.  Otherwise just wait for the
194	   other events to arrive.  */
195	if (!have_events_for(pid))
196		/* We always trace syscalls to control fork(),
197		 * clone(), execve()... */
198		ptrace(PTRACE_SYSCALL, pid, 0, 0);
199	else
200		debug(DEBUG_PROCESS,
201		      "putting off the continue, events in que.");
202}
203
204static struct pid_task *
205get_task_info(struct pid_set * pids, pid_t pid)
206{
207	assert(pid != 0);
208	size_t i;
209	for (i = 0; i < pids->count; ++i)
210		if (pids->tasks[i].pid == pid)
211			return &pids->tasks[i];
212
213	return NULL;
214}
215
216static struct pid_task *
217add_task_info(struct pid_set * pids, pid_t pid)
218{
219	if (pids->count == pids->alloc) {
220		size_t ns = (2 * pids->alloc) ?: 4;
221		struct pid_task * n = realloc(pids->tasks,
222					      sizeof(*pids->tasks) * ns);
223		if (n == NULL)
224			return NULL;
225		pids->tasks = n;
226		pids->alloc = ns;
227	}
228	struct pid_task * task_info = &pids->tasks[pids->count++];
229	memset(task_info, 0, sizeof(*task_info));
230	task_info->pid = pid;
231	return task_info;
232}
233
234static enum callback_status
235task_stopped(struct Process *task, void *data)
236{
237	enum process_status st = process_status(task->pid);
238	if (data != NULL)
239		*(enum process_status *)data = st;
240
241	/* If the task is already stopped, don't worry about it.
242	 * Likewise if it managed to become a zombie or terminate in
243	 * the meantime.  This can happen when the whole thread group
244	 * is terminating.  */
245	switch (st) {
246	case ps_invalid:
247	case ps_tracing_stop:
248	case ps_zombie:
249		return CBS_CONT;
250	case ps_sleeping:
251	case ps_stop:
252	case ps_other:
253		return CBS_STOP;
254	}
255
256	abort ();
257}
258
259/* Task is blocked if it's stopped, or if it's a vfork parent.  */
260static enum callback_status
261task_blocked(struct Process *task, void *data)
262{
263	struct pid_set * pids = data;
264	struct pid_task * task_info = get_task_info(pids, task->pid);
265	if (task_info != NULL
266	    && task_info->vforked)
267		return CBS_CONT;
268
269	return task_stopped(task, NULL);
270}
271
272static Event *process_vfork_on_event(struct event_handler *super, Event *event);
273
274static enum callback_status
275task_vforked(struct Process *task, void *data)
276{
277	if (task->event_handler != NULL
278	    && task->event_handler->on_event == &process_vfork_on_event)
279		return CBS_STOP;
280	return CBS_CONT;
281}
282
283static int
284is_vfork_parent(struct Process *task)
285{
286	return each_task(task->leader, NULL, &task_vforked, NULL) != NULL;
287}
288
289static enum callback_status
290send_sigstop(struct Process *task, void *data)
291{
292	Process * leader = task->leader;
293	struct pid_set * pids = data;
294
295	/* Look for pre-existing task record, or add new.  */
296	struct pid_task * task_info = get_task_info(pids, task->pid);
297	if (task_info == NULL)
298		task_info = add_task_info(pids, task->pid);
299	if (task_info == NULL) {
300		perror("send_sigstop: add_task_info");
301		destroy_event_handler(leader);
302		/* Signal failure upwards.  */
303		return CBS_STOP;
304	}
305
306	/* This task still has not been attached to.  It should be
307	   stopped by the kernel.  */
308	if (task->state == STATE_BEING_CREATED)
309		return CBS_CONT;
310
311	/* Don't bother sending SIGSTOP if we are already stopped, or
312	 * if we sent the SIGSTOP already, which happens when we are
313	 * handling "onexit" and inherited the handler from breakpoint
314	 * re-enablement.  */
315	enum process_status st;
316	if (task_stopped(task, &st) == CBS_CONT)
317		return CBS_CONT;
318	if (task_info->sigstopped) {
319		if (!task_info->delivered)
320			return CBS_CONT;
321		task_info->delivered = 0;
322	}
323
324	/* Also don't attempt to stop the process if it's a parent of
325	 * vforked process.  We set up event handler specially to hint
326	 * us.  In that case parent is in D state, which we use to
327	 * weed out unnecessary looping.  */
328	if (st == ps_sleeping
329	    && is_vfork_parent (task)) {
330		task_info->vforked = 1;
331		return CBS_CONT;
332	}
333
334	if (task_kill(task->pid, SIGSTOP) >= 0) {
335		debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
336		task_info->sigstopped = 1;
337	} else
338		fprintf(stderr,
339			"Warning: couldn't send SIGSTOP to %d\n", task->pid);
340
341	return CBS_CONT;
342}
343
344/* On certain kernels, detaching right after a singlestep causes the
345   tracee to be killed with a SIGTRAP (that even though the singlestep
346   was properly caught by waitpid.  The ugly workaround is to put a
347   breakpoint where IP points and let the process continue.  After
348   this the breakpoint can be retracted and the process detached.  */
349static void
350ugly_workaround(Process * proc)
351{
352	void * ip = get_instruction_pointer(proc);
353	struct breakpoint *sbp = dict_find_entry(proc->leader->breakpoints, ip);
354	if (sbp != NULL)
355		enable_breakpoint(proc, sbp);
356	else
357		insert_breakpoint(proc, ip, NULL);
358	ptrace(PTRACE_CONT, proc->pid, 0, 0);
359}
360
361static void
362process_stopping_done(struct process_stopping_handler * self, Process * leader)
363{
364	debug(DEBUG_PROCESS, "process stopping done %d",
365	      self->task_enabling_breakpoint->pid);
366	size_t i;
367	if (!self->exiting) {
368		for (i = 0; i < self->pids.count; ++i)
369			if (self->pids.tasks[i].pid != 0
370			    && (self->pids.tasks[i].delivered
371				|| self->pids.tasks[i].sysret))
372				continue_process(self->pids.tasks[i].pid);
373		continue_process(self->task_enabling_breakpoint->pid);
374		destroy_event_handler(leader);
375	}
376
377	if (self->exiting) {
378	ugly_workaround:
379		self->state = psh_ugly_workaround;
380		ugly_workaround(self->task_enabling_breakpoint);
381	} else {
382		switch ((self->ugly_workaround_p)(self)) {
383		case CBS_FAIL:
384			/* xxx handle me */
385		case CBS_STOP:
386			break;
387		case CBS_CONT:
388			goto ugly_workaround;
389		}
390	}
391}
392
393/* Before we detach, we need to make sure that task's IP is on the
394 * edge of an instruction.  So for tasks that have a breakpoint event
395 * in the queue, we adjust the instruction pointer, just like
396 * continue_after_breakpoint does.  */
397static enum ecb_status
398undo_breakpoint(Event * event, void * data)
399{
400	if (event != NULL
401	    && event->proc->leader == data
402	    && event->type == EVENT_BREAKPOINT)
403		set_instruction_pointer(event->proc, event->e_un.brk_addr);
404	return ecb_cont;
405}
406
407static enum callback_status
408untrace_task(struct Process *task, void *data)
409{
410	if (task != data)
411		untrace_pid(task->pid);
412	return CBS_CONT;
413}
414
415static enum callback_status
416remove_task(struct Process *task, void *data)
417{
418	/* Don't untrace leader just yet.  */
419	if (task != data)
420		remove_process(task);
421	return CBS_CONT;
422}
423
424static enum callback_status
425retract_breakpoint_cb(struct Process *proc, struct breakpoint *bp, void *data)
426{
427	breakpoint_on_retract(bp, proc);
428	return CBS_CONT;
429}
430
431static void
432detach_process(Process * leader)
433{
434	each_qd_event(&undo_breakpoint, leader);
435	disable_all_breakpoints(leader);
436	proc_each_breakpoint(leader, NULL, retract_breakpoint_cb, NULL);
437
438	/* Now untrace the process, if it was attached to by -p.  */
439	struct opt_p_t * it;
440	for (it = opt_p; it != NULL; it = it->next) {
441		Process * proc = pid2proc(it->pid);
442		if (proc == NULL)
443			continue;
444		if (proc->leader == leader) {
445			each_task(leader, NULL, &untrace_task, NULL);
446			break;
447		}
448	}
449	each_task(leader, NULL, &remove_task, leader);
450	destroy_event_handler(leader);
451	remove_task(leader, NULL);
452}
453
454static void
455handle_stopping_event(struct pid_task * task_info, Event ** eventp)
456{
457	/* Mark all events, so that we know whom to SIGCONT later.  */
458	if (task_info != NULL)
459		task_info->got_event = 1;
460
461	Event * event = *eventp;
462
463	/* In every state, sink SIGSTOP events for tasks that it was
464	 * sent to.  */
465	if (task_info != NULL
466	    && event->type == EVENT_SIGNAL
467	    && event->e_un.signum == SIGSTOP) {
468		debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
469		if (task_info->sigstopped
470		    && !task_info->delivered) {
471			task_info->delivered = 1;
472			*eventp = NULL; // sink the event
473		} else
474			fprintf(stderr, "suspicious: %d got SIGSTOP, but "
475				"sigstopped=%d and delivered=%d\n",
476				task_info->pid, task_info->sigstopped,
477				task_info->delivered);
478	}
479}
480
481/* Some SIGSTOPs may have not been delivered to their respective tasks
482 * yet.  They are still in the queue.  If we have seen an event for
483 * that process, continue it, so that the SIGSTOP can be delivered and
484 * caught by ltrace.  We don't mind that the process is after
485 * breakpoint (and therefore potentially doesn't have aligned IP),
486 * because the signal will be delivered without the process actually
487 * starting.  */
488static void
489continue_for_sigstop_delivery(struct pid_set * pids)
490{
491	size_t i;
492	for (i = 0; i < pids->count; ++i) {
493		if (pids->tasks[i].pid != 0
494		    && pids->tasks[i].sigstopped
495		    && !pids->tasks[i].delivered
496		    && pids->tasks[i].got_event) {
497			debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
498			      pids->tasks[i].pid);
499			ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
500		}
501	}
502}
503
504static int
505event_exit_p(Event * event)
506{
507	return event != NULL && (event->type == EVENT_EXIT
508				 || event->type == EVENT_EXIT_SIGNAL);
509}
510
511static int
512event_exit_or_none_p(Event * event)
513{
514	return event == NULL || event_exit_p(event)
515		|| event->type == EVENT_NONE;
516}
517
518static int
519await_sigstop_delivery(struct pid_set * pids, struct pid_task * task_info,
520		       Event * event)
521{
522	/* If we still didn't get our SIGSTOP, continue the process
523	 * and carry on.  */
524	if (event != NULL && !event_exit_or_none_p(event)
525	    && task_info != NULL && task_info->sigstopped) {
526		debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
527		      task_info->pid);
528		/* We should get the signal the first thing
529		 * after this, so it should be OK to continue
530		 * even if we are over a breakpoint.  */
531		ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
532
533	} else {
534		/* If all SIGSTOPs were delivered, uninstall the
535		 * handler and continue everyone.  */
536		/* XXX I suspect that we should check tasks that are
537		 * still around.  Is things are now, there should be a
538		 * race between waiting for everyone to stop and one
539		 * of the tasks exiting.  */
540		int all_clear = 1;
541		size_t i;
542		for (i = 0; i < pids->count; ++i)
543			if (pids->tasks[i].pid != 0
544			    && pids->tasks[i].sigstopped
545			    && !pids->tasks[i].delivered) {
546				all_clear = 0;
547				break;
548			}
549		return all_clear;
550	}
551
552	return 0;
553}
554
555static int
556all_stops_accountable(struct pid_set * pids)
557{
558	size_t i;
559	for (i = 0; i < pids->count; ++i)
560		if (pids->tasks[i].pid != 0
561		    && !pids->tasks[i].got_event
562		    && !have_events_for(pids->tasks[i].pid))
563			return 0;
564	return 1;
565}
566
567/* The protocol is: 0 for success, negative for failure, positive if
568 * default singlestep is to be used.  */
569int arch_atomic_singlestep(struct Process *proc, struct breakpoint *sbp,
570			   int (*add_cb)(void *addr, void *data),
571			   void *add_cb_data);
572
573#ifndef ARCH_HAVE_ATOMIC_SINGLESTEP
574int
575arch_atomic_singlestep(struct Process *proc, struct breakpoint *sbp,
576		       int (*add_cb)(void *addr, void *data),
577		       void *add_cb_data)
578{
579	return 1;
580}
581#endif
582
583static Event *process_stopping_on_event(struct event_handler *super,
584					Event *event);
585
586static void
587remove_atomic_breakpoints(struct Process *proc)
588{
589	struct process_stopping_handler *self
590		= (void *)proc->leader->event_handler;
591	assert(self != NULL);
592	assert(self->super.on_event == process_stopping_on_event);
593
594	int ct = sizeof(self->atomic_skip_bp_addrs)
595		/ sizeof(*self->atomic_skip_bp_addrs);
596	int i;
597	for (i = 0; i < ct; ++i)
598		if (self->atomic_skip_bp_addrs[i] != 0) {
599			delete_breakpoint(proc, self->atomic_skip_bp_addrs[i]);
600			self->atomic_skip_bp_addrs[i] = 0;
601		}
602}
603
604static void
605atomic_singlestep_bp_on_hit(struct breakpoint *bp, struct Process *proc)
606{
607	remove_atomic_breakpoints(proc);
608}
609
610static int
611atomic_singlestep_add_bp(void *addr, void *data)
612{
613	struct process_stopping_handler *self = data;
614	struct Process *proc = self->task_enabling_breakpoint;
615
616	int ct = sizeof(self->atomic_skip_bp_addrs)
617		/ sizeof(*self->atomic_skip_bp_addrs);
618	int i;
619	for (i = 0; i < ct; ++i)
620		if (self->atomic_skip_bp_addrs[i] == 0) {
621			self->atomic_skip_bp_addrs[i] = addr;
622			static struct bp_callbacks cbs = {
623				.on_hit = atomic_singlestep_bp_on_hit,
624			};
625			struct breakpoint *bp
626				= insert_breakpoint(proc, addr, NULL);
627			breakpoint_set_callbacks(bp, &cbs);
628			return 0;
629		}
630
631	assert(!"Too many atomic singlestep breakpoints!");
632	abort();
633}
634
635static int
636singlestep(struct process_stopping_handler *self)
637{
638	struct Process *proc = self->task_enabling_breakpoint;
639
640	int status = arch_atomic_singlestep(self->task_enabling_breakpoint,
641					    self->breakpoint_being_enabled,
642					    &atomic_singlestep_add_bp, self);
643
644	/* Propagate failure and success.  */
645	if (status <= 0)
646		return status;
647
648	/* Otherwise do the default action: singlestep.  */
649	debug(1, "PTRACE_SINGLESTEP");
650	if (ptrace(PTRACE_SINGLESTEP, proc->pid, 0, 0)) {
651		perror("PTRACE_SINGLESTEP");
652		return -1;
653	}
654	return 0;
655}
656
657static void
658post_singlestep(struct process_stopping_handler *self,
659		struct Event **eventp)
660{
661	continue_for_sigstop_delivery(&self->pids);
662
663	if (*eventp != NULL && (*eventp)->type == EVENT_BREAKPOINT)
664		*eventp = NULL; // handled
665
666	struct Process *proc = self->task_enabling_breakpoint;
667
668	remove_atomic_breakpoints(proc);
669	self->breakpoint_being_enabled = NULL;
670}
671
672static void
673singlestep_error(struct process_stopping_handler *self)
674{
675	struct Process *teb = self->task_enabling_breakpoint;
676	struct breakpoint *sbp = self->breakpoint_being_enabled;
677	fprintf(stderr, "%d couldn't continue when handling %s (%p) at %p\n",
678		teb->pid, breakpoint_name(sbp),	sbp->addr,
679		get_instruction_pointer(teb));
680	delete_breakpoint(teb->leader, sbp->addr);
681}
682
683static void
684pt_continue(struct process_stopping_handler *self)
685{
686	struct Process *teb = self->task_enabling_breakpoint;
687	debug(1, "PTRACE_CONT");
688	ptrace(PTRACE_CONT, teb->pid, 0, 0);
689}
690
691static void
692pt_singlestep(struct process_stopping_handler *self)
693{
694	if (singlestep(self) < 0)
695		singlestep_error(self);
696}
697
698static void
699disable_and(struct process_stopping_handler *self,
700	    void (*do_this)(struct process_stopping_handler *self))
701{
702	struct Process *teb = self->task_enabling_breakpoint;
703	debug(DEBUG_PROCESS, "all stopped, now singlestep/cont %d", teb->pid);
704	if (self->breakpoint_being_enabled->enabled)
705		disable_breakpoint(teb, self->breakpoint_being_enabled);
706	(do_this)(self);
707	self->state = psh_singlestep;
708}
709
710void
711linux_ptrace_disable_and_singlestep(struct process_stopping_handler *self)
712{
713	disable_and(self, &pt_singlestep);
714}
715
716void
717linux_ptrace_disable_and_continue(struct process_stopping_handler *self)
718{
719	disable_and(self, &pt_continue);
720}
721
722/* This event handler is installed when we are in the process of
723 * stopping the whole thread group to do the pointer re-enablement for
724 * one of the threads.  We pump all events to the queue for later
725 * processing while we wait for all the threads to stop.  When this
726 * happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
727 * re-enable, and continue everyone.  */
728static Event *
729process_stopping_on_event(struct event_handler *super, Event *event)
730{
731	struct process_stopping_handler * self = (void *)super;
732	Process * task = event->proc;
733	Process * leader = task->leader;
734	Process * teb = self->task_enabling_breakpoint;
735
736	debug(DEBUG_PROCESS,
737	      "process_stopping_on_event: pid %d; event type %d; state %d",
738	      task->pid, event->type, self->state);
739
740	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
741	if (task_info == NULL)
742		fprintf(stderr, "new task??? %d\n", task->pid);
743	handle_stopping_event(task_info, &event);
744
745	int state = self->state;
746	int event_to_queue = !event_exit_or_none_p(event);
747
748	/* Deactivate the entry if the task exits.  */
749	if (event_exit_p(event) && task_info != NULL)
750		task_info->pid = 0;
751
752	/* Always handle sysrets.  Whether sysret occurred and what
753	 * sys it rets from may need to be determined based on process
754	 * stack, so we need to keep that in sync with reality.  Note
755	 * that we don't continue the process after the sysret is
756	 * handled.  See continue_after_syscall.  */
757	if (event != NULL && event->type == EVENT_SYSRET) {
758		debug(1, "%d LT_EV_SYSRET", event->proc->pid);
759		event_to_queue = 0;
760		task_info->sysret = 1;
761	}
762
763	switch (state) {
764	case psh_stopping:
765		/* If everyone is stopped, singlestep.  */
766		if (each_task(leader, NULL, &task_blocked,
767			      &self->pids) == NULL) {
768			(self->on_all_stopped)(self);
769			state = self->state;
770		}
771		break;
772
773	case psh_singlestep:
774		/* In singlestep state, breakpoint signifies that we
775		 * have now stepped, and can re-enable the breakpoint.  */
776		if (event != NULL && task == teb) {
777
778			/* If this was caused by a real breakpoint, as
779			 * opposed to a singlestep, assume that it's
780			 * an artificial breakpoint installed for some
781			 * reason for the re-enablement.  In that case
782			 * handle it.  */
783			if (event->type == EVENT_BREAKPOINT) {
784				target_address_t ip
785					= get_instruction_pointer(task);
786				struct breakpoint *other
787					= address2bpstruct(leader, ip);
788				if (other != NULL)
789					breakpoint_on_hit(other, task);
790			}
791
792			/* If we got SIGNAL instead of BREAKPOINT,
793			 * then this is not singlestep at all.  */
794			if (event->type == EVENT_SIGNAL) {
795			do_singlestep:
796				if (singlestep(self) < 0) {
797					singlestep_error(self);
798					post_singlestep(self, &event);
799					goto psh_sinking;
800				}
801				break;
802			} else {
803				switch ((self->keep_stepping_p)(self)) {
804				case CBS_FAIL:
805					/* XXX handle me */
806				case CBS_STOP:
807					break;
808				case CBS_CONT:
809					/* Sink singlestep event.  */
810					if (event->type == EVENT_BREAKPOINT)
811						event = NULL;
812					goto do_singlestep;
813				}
814			}
815
816			/* Re-enable the breakpoint that we are
817			 * stepping over.  */
818			struct breakpoint *sbp = self->breakpoint_being_enabled;
819			if (sbp->enabled)
820				enable_breakpoint(teb, sbp);
821
822			post_singlestep(self, &event);
823			goto psh_sinking;
824		}
825		break;
826
827	psh_sinking:
828		state = self->state = psh_sinking;
829	case psh_sinking:
830		if (await_sigstop_delivery(&self->pids, task_info, event))
831			process_stopping_done(self, leader);
832		break;
833
834	case psh_ugly_workaround:
835		if (event == NULL)
836			break;
837		if (event->type == EVENT_BREAKPOINT) {
838			undo_breakpoint(event, leader);
839			if (task == teb)
840				self->task_enabling_breakpoint = NULL;
841		}
842		if (self->task_enabling_breakpoint == NULL
843		    && all_stops_accountable(&self->pids)) {
844			undo_breakpoint(event, leader);
845			detach_process(leader);
846			event = NULL; // handled
847		}
848	}
849
850	if (event != NULL && event_to_queue) {
851		enque_event(event);
852		event = NULL; // sink the event
853	}
854
855	return event;
856}
857
858static void
859process_stopping_destroy(struct event_handler *super)
860{
861	struct process_stopping_handler * self = (void *)super;
862	free(self->pids.tasks);
863}
864
865static enum callback_status
866no(struct process_stopping_handler *self)
867{
868	return CBS_STOP;
869}
870
871int
872process_install_stopping_handler(struct Process *proc, struct breakpoint *sbp,
873				 void (*as)(struct process_stopping_handler *),
874				 enum callback_status (*ks)
875					 (struct process_stopping_handler *),
876				 enum callback_status (*uw)
877					(struct process_stopping_handler *))
878{
879	debug(DEBUG_FUNCTION,
880	      "process_install_stopping_handler: pid=%d", proc->pid);
881
882	struct process_stopping_handler *handler = calloc(sizeof(*handler), 1);
883	if (handler == NULL)
884		return -1;
885
886	if (as == NULL)
887		as = &linux_ptrace_disable_and_singlestep;
888	if (ks == NULL)
889		ks = &no;
890	if (uw == NULL)
891		uw = &no;
892
893	handler->super.on_event = process_stopping_on_event;
894	handler->super.destroy = process_stopping_destroy;
895	handler->task_enabling_breakpoint = proc;
896	handler->breakpoint_being_enabled = sbp;
897	handler->on_all_stopped = as;
898	handler->keep_stepping_p = ks;
899	handler->ugly_workaround_p = uw;
900
901	install_event_handler(proc->leader, &handler->super);
902
903	if (each_task(proc->leader, NULL, &send_sigstop,
904		      &handler->pids) != NULL) {
905		destroy_event_handler(proc);
906		return -1;
907	}
908
909	/* And deliver the first fake event, in case all the
910	 * conditions are already fulfilled.  */
911	Event ev = {
912		.type = EVENT_NONE,
913		.proc = proc,
914	};
915	process_stopping_on_event(&handler->super, &ev);
916
917	return 0;
918}
919
920void
921continue_after_breakpoint(Process *proc, struct breakpoint *sbp)
922{
923	debug(DEBUG_PROCESS,
924	      "continue_after_breakpoint: pid=%d, addr=%p",
925	      proc->pid, sbp->addr);
926
927	set_instruction_pointer(proc, sbp->addr);
928
929	if (sbp->enabled == 0) {
930		continue_process(proc->pid);
931	} else {
932#if defined __sparc__  || defined __ia64___ || defined __mips__
933		/* we don't want to singlestep here */
934		continue_process(proc->pid);
935#else
936		if (process_install_stopping_handler
937		    (proc, sbp, NULL, NULL, NULL) < 0) {
938			perror("process_stopping_handler_create");
939			/* Carry on not bothering to re-enable.  */
940			continue_process(proc->pid);
941		}
942#endif
943	}
944}
945
946/**
947 * Ltrace exit.  When we are about to exit, we have to go through all
948 * the processes, stop them all, remove all the breakpoints, and then
949 * detach the processes that we attached to using -p.  If we left the
950 * other tasks running, they might hit stray return breakpoints and
951 * produce artifacts, so we better stop everyone, even if it's a bit
952 * of extra work.
953 */
954struct ltrace_exiting_handler
955{
956	struct event_handler super;
957	struct pid_set pids;
958};
959
960static Event *
961ltrace_exiting_on_event(struct event_handler *super, Event *event)
962{
963	struct ltrace_exiting_handler * self = (void *)super;
964	Process * task = event->proc;
965	Process * leader = task->leader;
966
967	debug(DEBUG_PROCESS,
968	      "ltrace_exiting_on_event: pid %d; event type %d",
969	      task->pid, event->type);
970
971	struct pid_task * task_info = get_task_info(&self->pids, task->pid);
972	handle_stopping_event(task_info, &event);
973
974	if (event != NULL && event->type == EVENT_BREAKPOINT)
975		undo_breakpoint(event, leader);
976
977	if (await_sigstop_delivery(&self->pids, task_info, event)
978	    && all_stops_accountable(&self->pids))
979		detach_process(leader);
980
981	/* Sink all non-exit events.  We are about to exit, so we
982	 * don't bother with queuing them. */
983	if (event_exit_or_none_p(event))
984		return event;
985
986	return NULL;
987}
988
989static void
990ltrace_exiting_destroy(struct event_handler *super)
991{
992	struct ltrace_exiting_handler * self = (void *)super;
993	free(self->pids.tasks);
994}
995
996static int
997ltrace_exiting_install_handler(Process * proc)
998{
999	/* Only install to leader.  */
1000	if (proc->leader != proc)
1001		return 0;
1002
1003	/* Perhaps we are already installed, if the user passed
1004	 * several -p options that are tasks of one process.  */
1005	if (proc->event_handler != NULL
1006	    && proc->event_handler->on_event == &ltrace_exiting_on_event)
1007		return 0;
1008
1009	/* If stopping handler is already present, let it do the
1010	 * work.  */
1011	if (proc->event_handler != NULL) {
1012		assert(proc->event_handler->on_event
1013		       == &process_stopping_on_event);
1014		struct process_stopping_handler * other
1015			= (void *)proc->event_handler;
1016		other->exiting = 1;
1017		return 0;
1018	}
1019
1020	struct ltrace_exiting_handler * handler
1021		= calloc(sizeof(*handler), 1);
1022	if (handler == NULL) {
1023		perror("malloc exiting handler");
1024	fatal:
1025		/* XXXXXXXXXXXXXXXXXXX fixme */
1026		return -1;
1027	}
1028
1029	handler->super.on_event = ltrace_exiting_on_event;
1030	handler->super.destroy = ltrace_exiting_destroy;
1031	install_event_handler(proc->leader, &handler->super);
1032
1033	if (each_task(proc->leader, NULL, &send_sigstop,
1034		      &handler->pids) != NULL)
1035		goto fatal;
1036
1037	return 0;
1038}
1039
1040/*
1041 * When the traced process vforks, it's suspended until the child
1042 * process calls _exit or exec*.  In the meantime, the two share the
1043 * address space.
1044 *
1045 * The child process should only ever call _exit or exec*, but we
1046 * can't count on that (it's not the role of ltrace to policy, but to
1047 * observe).  In any case, we will _at least_ have to deal with
1048 * removal of vfork return breakpoint (which we have to smuggle back
1049 * in, so that the parent can see it, too), and introduction of exec*
1050 * return breakpoint.  Since we already have both breakpoint actions
1051 * to deal with, we might as well support it all.
1052 *
1053 * The gist is that we pretend that the child is in a thread group
1054 * with its parent, and handle it as a multi-threaded case, with the
1055 * exception that we know that the parent is blocked, and don't
1056 * attempt to stop it.  When the child execs, we undo the setup.
1057 */
1058
1059struct process_vfork_handler
1060{
1061	struct event_handler super;
1062	void * bp_addr;
1063};
1064
1065static Event *
1066process_vfork_on_event(struct event_handler *super, Event *event)
1067{
1068	debug(DEBUG_PROCESS,
1069	      "process_vfork_on_event: pid %d; event type %d",
1070	      event->proc->pid, event->type);
1071
1072	struct process_vfork_handler * self = (void *)super;
1073	struct breakpoint *sbp;
1074	assert(self != NULL);
1075
1076	switch (event->type) {
1077	case EVENT_BREAKPOINT:
1078		/* Remember the vfork return breakpoint.  */
1079		if (self->bp_addr == 0)
1080			self->bp_addr = event->e_un.brk_addr;
1081		break;
1082
1083	case EVENT_EXIT:
1084	case EVENT_EXIT_SIGNAL:
1085	case EVENT_EXEC:
1086		/* Smuggle back in the vfork return breakpoint, so
1087		 * that our parent can trip over it once again.  */
1088		if (self->bp_addr != 0) {
1089			sbp = dict_find_entry(event->proc->leader->breakpoints,
1090					      self->bp_addr);
1091			if (sbp != NULL)
1092				assert(sbp->libsym == NULL);
1093			/* We don't mind failing that, it's not a big
1094			 * deal to not display one extra vfork return.  */
1095			insert_breakpoint(event->proc->parent,
1096					  self->bp_addr, NULL);
1097		}
1098
1099		continue_process(event->proc->parent->pid);
1100
1101		/* Remove the leader that we artificially set up
1102		 * earlier.  */
1103		change_process_leader(event->proc, event->proc);
1104		destroy_event_handler(event->proc);
1105
1106	default:
1107		;
1108	}
1109
1110	return event;
1111}
1112
1113void
1114continue_after_vfork(Process * proc)
1115{
1116	debug(DEBUG_PROCESS, "continue_after_vfork: pid=%d", proc->pid);
1117	struct process_vfork_handler * handler = calloc(sizeof(*handler), 1);
1118	if (handler == NULL) {
1119		perror("malloc vfork handler");
1120		/* Carry on not bothering to treat the process as
1121		 * necessary.  */
1122		continue_process(proc->parent->pid);
1123		return;
1124	}
1125
1126	/* We must set up custom event handler, so that we see
1127	 * exec/exit events for the task itself.  */
1128	handler->super.on_event = process_vfork_on_event;
1129	install_event_handler(proc, &handler->super);
1130
1131	/* Make sure that the child is sole thread.  */
1132	assert(proc->leader == proc);
1133	assert(proc->next == NULL || proc->next->leader != proc);
1134
1135	/* Make sure that the child's parent is properly set up.  */
1136	assert(proc->parent != NULL);
1137	assert(proc->parent->leader != NULL);
1138
1139	change_process_leader(proc, proc->parent->leader);
1140}
1141
1142static int
1143is_mid_stopping(Process *proc)
1144{
1145	return proc != NULL
1146		&& proc->event_handler != NULL
1147		&& proc->event_handler->on_event == &process_stopping_on_event;
1148}
1149
1150void
1151continue_after_syscall(Process * proc, int sysnum, int ret_p)
1152{
1153	/* Don't continue if we are mid-stopping.  */
1154	if (ret_p && (is_mid_stopping(proc) || is_mid_stopping(proc->leader))) {
1155		debug(DEBUG_PROCESS,
1156		      "continue_after_syscall: don't continue %d",
1157		      proc->pid);
1158		return;
1159	}
1160	continue_process(proc->pid);
1161}
1162
1163/* If ltrace gets SIGINT, the processes directly or indirectly run by
1164 * ltrace get it too.  We just have to wait long enough for the signal
1165 * to be delivered and the process terminated, which we notice and
1166 * exit ltrace, too.  So there's not much we need to do there.  We
1167 * want to keep tracing those processes as usual, in case they just
1168 * SIG_IGN the SIGINT to do their shutdown etc.
1169 *
1170 * For processes ran on the background, we want to install an exit
1171 * handler that stops all the threads, removes all breakpoints, and
1172 * detaches.
1173 */
1174void
1175os_ltrace_exiting(void)
1176{
1177	struct opt_p_t * it;
1178	for (it = opt_p; it != NULL; it = it->next) {
1179		Process * proc = pid2proc(it->pid);
1180		if (proc == NULL || proc->leader == NULL)
1181			continue;
1182		if (ltrace_exiting_install_handler(proc->leader) < 0)
1183			fprintf(stderr,
1184				"Couldn't install exiting handler for %d.\n",
1185				proc->pid);
1186	}
1187}
1188
1189int
1190os_ltrace_exiting_sighandler(void)
1191{
1192	extern int linux_in_waitpid;
1193	if (linux_in_waitpid) {
1194		os_ltrace_exiting();
1195		return 1;
1196	}
1197	return 0;
1198}
1199
1200size_t
1201umovebytes(Process *proc, void *addr, void *laddr, size_t len) {
1202
1203	union {
1204		long a;
1205		char c[sizeof(long)];
1206	} a;
1207	int started = 0;
1208	size_t offset = 0, bytes_read = 0;
1209
1210	while (offset < len) {
1211		a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
1212		if (a.a == -1 && errno) {
1213			if (started && errno == EIO)
1214				return bytes_read;
1215			else
1216				return -1;
1217		}
1218		started = 1;
1219
1220		if (len - offset >= sizeof(long)) {
1221			memcpy(laddr + offset, &a.c[0], sizeof(long));
1222			bytes_read += sizeof(long);
1223		}
1224		else {
1225			memcpy(laddr + offset, &a.c[0], len - offset);
1226			bytes_read += (len - offset);
1227		}
1228		offset += sizeof(long);
1229	}
1230
1231	return bytes_read;
1232}
1233