lp_setup_tri.c revision 22e6dc387039e79f6d1435ae8b7422a6514d5d10
1/**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/*
29 * Binning code for triangles
30 */
31
32#include "util/u_math.h"
33#include "util/u_memory.h"
34#include "lp_perf.h"
35#include "lp_setup_context.h"
36#include "lp_rast.h"
37
38#define NUM_CHANNELS 4
39
40
41/**
42 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
43 */
44static void constant_coef( struct lp_setup_context *setup,
45                           struct lp_rast_triangle *tri,
46                           unsigned slot,
47			   const float value,
48                           unsigned i )
49{
50   tri->inputs.a0[slot][i] = value;
51   tri->inputs.dadx[slot][i] = 0.0f;
52   tri->inputs.dady[slot][i] = 0.0f;
53}
54
55
56/**
57 * Compute a0, dadx and dady for a linearly interpolated coefficient,
58 * for a triangle.
59 */
60static void linear_coef( struct lp_setup_context *setup,
61                         struct lp_rast_triangle *tri,
62                         float oneoverarea,
63                         unsigned slot,
64                         const float (*v1)[4],
65                         const float (*v2)[4],
66                         const float (*v3)[4],
67                         unsigned vert_attr,
68                         unsigned i)
69{
70   float a1 = v1[vert_attr][i];
71   float a2 = v2[vert_attr][i];
72   float a3 = v3[vert_attr][i];
73
74   float da12 = a1 - a2;
75   float da31 = a3 - a1;
76   float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
77   float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
78
79   tri->inputs.dadx[slot][i] = dadx;
80   tri->inputs.dady[slot][i] = dady;
81
82   /* calculate a0 as the value which would be sampled for the
83    * fragment at (0,0), taking into account that we want to sample at
84    * pixel centers, in other words (0.5, 0.5).
85    *
86    * this is neat but unfortunately not a good way to do things for
87    * triangles with very large values of dadx or dady as it will
88    * result in the subtraction and re-addition from a0 of a very
89    * large number, which means we'll end up loosing a lot of the
90    * fractional bits and precision from a0.  the way to fix this is
91    * to define a0 as the sample at a pixel center somewhere near vmin
92    * instead - i'll switch to this later.
93    */
94   tri->inputs.a0[slot][i] = (a1 -
95                              (dadx * (v1[0][0] - setup->pixel_offset) +
96                               dady * (v1[0][1] - setup->pixel_offset)));
97}
98
99
100/**
101 * Compute a0, dadx and dady for a perspective-corrected interpolant,
102 * for a triangle.
103 * We basically multiply the vertex value by 1/w before computing
104 * the plane coefficients (a0, dadx, dady).
105 * Later, when we compute the value at a particular fragment position we'll
106 * divide the interpolated value by the interpolated W at that fragment.
107 */
108static void perspective_coef( struct lp_setup_context *setup,
109                              struct lp_rast_triangle *tri,
110                              float oneoverarea,
111                              unsigned slot,
112			      const float (*v1)[4],
113			      const float (*v2)[4],
114			      const float (*v3)[4],
115			      unsigned vert_attr,
116                              unsigned i)
117{
118   /* premultiply by 1/w  (v[0][3] is always 1/w):
119    */
120   float a1 = v1[vert_attr][i] * v1[0][3];
121   float a2 = v2[vert_attr][i] * v2[0][3];
122   float a3 = v3[vert_attr][i] * v3[0][3];
123   float da12 = a1 - a2;
124   float da31 = a3 - a1;
125   float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
126   float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
127
128   tri->inputs.dadx[slot][i] = dadx;
129   tri->inputs.dady[slot][i] = dady;
130   tri->inputs.a0[slot][i] = (a1 -
131                              (dadx * (v1[0][0] - setup->pixel_offset) +
132                               dady * (v1[0][1] - setup->pixel_offset)));
133}
134
135
136/**
137 * Special coefficient setup for gl_FragCoord.
138 * X and Y are trivial
139 * Z and W are copied from position_coef which should have already been computed.
140 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
141 */
142static void
143setup_fragcoord_coef(struct lp_setup_context *setup,
144                     struct lp_rast_triangle *tri,
145                     float oneoverarea,
146                     unsigned slot,
147                     const float (*v1)[4],
148                     const float (*v2)[4],
149                     const float (*v3)[4])
150{
151   /*X*/
152   tri->inputs.a0[slot][0] = 0.0;
153   tri->inputs.dadx[slot][0] = 1.0;
154   tri->inputs.dady[slot][0] = 0.0;
155   /*Y*/
156   tri->inputs.a0[slot][1] = 0.0;
157   tri->inputs.dadx[slot][1] = 0.0;
158   tri->inputs.dady[slot][1] = 1.0;
159   /*Z*/
160   linear_coef(setup, tri, oneoverarea, slot, v1, v2, v3, 0, 2);
161   /*W*/
162   linear_coef(setup, tri, oneoverarea, slot, v1, v2, v3, 0, 3);
163}
164
165
166static void setup_facing_coef( struct lp_setup_context *setup,
167                               struct lp_rast_triangle *tri,
168                               unsigned slot,
169                               boolean frontface )
170{
171   constant_coef( setup, tri, slot, 1.0f - frontface, 0 );
172   constant_coef( setup, tri, slot, 0.0f, 1 ); /* wasted */
173   constant_coef( setup, tri, slot, 0.0f, 2 ); /* wasted */
174   constant_coef( setup, tri, slot, 0.0f, 3 ); /* wasted */
175}
176
177
178/**
179 * Compute the tri->coef[] array dadx, dady, a0 values.
180 */
181static void setup_tri_coefficients( struct lp_setup_context *setup,
182				    struct lp_rast_triangle *tri,
183                                    float oneoverarea,
184				    const float (*v1)[4],
185				    const float (*v2)[4],
186				    const float (*v3)[4],
187				    boolean frontface)
188{
189   unsigned slot;
190
191   /* The internal position input is in slot zero:
192    */
193   setup_fragcoord_coef(setup, tri, oneoverarea, 0, v1, v2, v3);
194
195   /* setup interpolation for all the remaining attributes:
196    */
197   for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
198      unsigned vert_attr = setup->fs.input[slot].src_index;
199      unsigned i;
200
201      switch (setup->fs.input[slot].interp) {
202      case LP_INTERP_CONSTANT:
203         for (i = 0; i < NUM_CHANNELS; i++)
204            constant_coef(setup, tri, slot+1, v3[vert_attr][i], i);
205         break;
206
207      case LP_INTERP_LINEAR:
208         for (i = 0; i < NUM_CHANNELS; i++)
209            linear_coef(setup, tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
210         break;
211
212      case LP_INTERP_PERSPECTIVE:
213         for (i = 0; i < NUM_CHANNELS; i++)
214            perspective_coef(setup, tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
215         break;
216
217      case LP_INTERP_POSITION:
218         /* XXX: fix me - duplicates the values in slot zero.
219          */
220         setup_fragcoord_coef(setup, tri, oneoverarea, slot+1, v1, v2, v3);
221         break;
222
223      case LP_INTERP_FACING:
224         setup_facing_coef(setup, tri, slot+1, frontface);
225         break;
226
227      default:
228         assert(0);
229      }
230   }
231}
232
233
234
235static INLINE int subpixel_snap( float a )
236{
237   return util_iround(FIXED_ONE * a - (FIXED_ONE / 2));
238}
239
240
241
242/**
243 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
244 * immediately after it.
245 * The memory is allocated from the per-scene pool, not per-tile.
246 * \param tri_size  returns number of bytes allocated
247 * \param nr_inputs  number of fragment shader inputs
248 * \return pointer to triangle space
249 */
250static INLINE struct lp_rast_triangle *
251alloc_triangle(struct lp_scene *scene, unsigned nr_inputs, unsigned *tri_size)
252{
253   unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
254   struct lp_rast_triangle *tri;
255   unsigned bytes;
256   char *inputs;
257
258   assert(sizeof(*tri) % 16 == 0);
259
260   bytes = sizeof(*tri) + (3 * input_array_sz);
261
262   tri = lp_scene_alloc_aligned( scene, bytes, 16 );
263
264   inputs = (char *) (tri + 1);
265   tri->inputs.a0   = (float (*)[4]) inputs;
266   tri->inputs.dadx = (float (*)[4]) (inputs + input_array_sz);
267   tri->inputs.dady = (float (*)[4]) (inputs + 2 * input_array_sz);
268
269   *tri_size = bytes;
270
271   return tri;
272}
273
274
275
276/**
277 * Do basic setup for triangle rasterization and determine which
278 * framebuffer tiles are touched.  Put the triangle in the scene's
279 * bins for the tiles which we overlap.
280 */
281static void
282do_triangle_ccw(struct lp_setup_context *setup,
283		const float (*v1)[4],
284		const float (*v2)[4],
285		const float (*v3)[4],
286		boolean frontfacing )
287{
288   /* x/y positions in fixed point */
289   const int x1 = subpixel_snap(v1[0][0] + 0.5 - setup->pixel_offset);
290   const int x2 = subpixel_snap(v2[0][0] + 0.5 - setup->pixel_offset);
291   const int x3 = subpixel_snap(v3[0][0] + 0.5 - setup->pixel_offset);
292   const int y1 = subpixel_snap(v1[0][1] + 0.5 - setup->pixel_offset);
293   const int y2 = subpixel_snap(v2[0][1] + 0.5 - setup->pixel_offset);
294   const int y3 = subpixel_snap(v3[0][1] + 0.5 - setup->pixel_offset);
295
296   struct lp_scene *scene = lp_setup_get_current_scene(setup);
297   struct lp_rast_triangle *tri;
298   int area;
299   float oneoverarea;
300   int minx, maxx, miny, maxy;
301   unsigned tri_bytes;
302
303   tri = alloc_triangle(scene, setup->fs.nr_inputs, &tri_bytes);
304
305#ifdef DEBUG
306   tri->v[0][0] = v1[0][0];
307   tri->v[1][0] = v2[0][0];
308   tri->v[2][0] = v3[0][0];
309   tri->v[0][1] = v1[0][1];
310   tri->v[1][1] = v2[0][1];
311   tri->v[2][1] = v3[0][1];
312#endif
313
314   tri->dx12 = x1 - x2;
315   tri->dx23 = x2 - x3;
316   tri->dx31 = x3 - x1;
317
318   tri->dy12 = y1 - y2;
319   tri->dy23 = y2 - y3;
320   tri->dy31 = y3 - y1;
321
322   area = (tri->dx12 * tri->dy31 - tri->dx31 * tri->dy12);
323
324   LP_COUNT(nr_tris);
325
326   /* Cull non-ccw and zero-sized triangles.
327    *
328    * XXX: subject to overflow??
329    */
330   if (area <= 0) {
331      lp_scene_putback_data( scene, tri_bytes );
332      LP_COUNT(nr_culled_tris);
333      return;
334   }
335
336   /* Bounding rectangle (in pixels) */
337   minx = (MIN3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
338   maxx = (MAX3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
339   miny = (MIN3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
340   maxy = (MAX3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
341
342   if (setup->scissor_test) {
343      minx = MAX2(minx, setup->scissor.current.minx);
344      maxx = MIN2(maxx, setup->scissor.current.maxx);
345      miny = MAX2(miny, setup->scissor.current.miny);
346      maxy = MIN2(maxy, setup->scissor.current.maxy);
347   }
348
349   if (miny == maxy ||
350       minx == maxx) {
351      lp_scene_putback_data( scene, tri_bytes );
352      LP_COUNT(nr_culled_tris);
353      return;
354   }
355
356   /*
357    */
358   oneoverarea = ((float)FIXED_ONE) / (float)area;
359
360   /* Setup parameter interpolants:
361    */
362   setup_tri_coefficients( setup, tri, oneoverarea, v1, v2, v3, frontfacing );
363
364   tri->inputs.facing = frontfacing ? 1.0F : -1.0F;
365
366   /* half-edge constants, will be interated over the whole render target.
367    */
368   tri->c1 = tri->dy12 * x1 - tri->dx12 * y1;
369   tri->c2 = tri->dy23 * x2 - tri->dx23 * y2;
370   tri->c3 = tri->dy31 * x3 - tri->dx31 * y3;
371
372   /* correct for top-left fill convention:
373    */
374   if (tri->dy12 < 0 || (tri->dy12 == 0 && tri->dx12 > 0)) tri->c1++;
375   if (tri->dy23 < 0 || (tri->dy23 == 0 && tri->dx23 > 0)) tri->c2++;
376   if (tri->dy31 < 0 || (tri->dy31 == 0 && tri->dx31 > 0)) tri->c3++;
377
378   tri->dy12 *= FIXED_ONE;
379   tri->dy23 *= FIXED_ONE;
380   tri->dy31 *= FIXED_ONE;
381
382   tri->dx12 *= FIXED_ONE;
383   tri->dx23 *= FIXED_ONE;
384   tri->dx31 *= FIXED_ONE;
385
386   /* find trivial reject offsets for each edge for a single-pixel
387    * sized block.  These will be scaled up at each recursive level to
388    * match the active blocksize.  Scaling in this way works best if
389    * the blocks are square.
390    */
391   tri->eo1 = 0;
392   if (tri->dy12 < 0) tri->eo1 -= tri->dy12;
393   if (tri->dx12 > 0) tri->eo1 += tri->dx12;
394
395   tri->eo2 = 0;
396   if (tri->dy23 < 0) tri->eo2 -= tri->dy23;
397   if (tri->dx23 > 0) tri->eo2 += tri->dx23;
398
399   tri->eo3 = 0;
400   if (tri->dy31 < 0) tri->eo3 -= tri->dy31;
401   if (tri->dx31 > 0) tri->eo3 += tri->dx31;
402
403   /* Calculate trivial accept offsets from the above.
404    */
405   tri->ei1 = tri->dx12 - tri->dy12 - tri->eo1;
406   tri->ei2 = tri->dx23 - tri->dy23 - tri->eo2;
407   tri->ei3 = tri->dx31 - tri->dy31 - tri->eo3;
408
409   /* Fill in the inputs.step[][] arrays.
410    * We've manually unrolled some loops here.
411    */
412   {
413      const int xstep1 = -tri->dy12;
414      const int xstep2 = -tri->dy23;
415      const int xstep3 = -tri->dy31;
416      const int ystep1 = tri->dx12;
417      const int ystep2 = tri->dx23;
418      const int ystep3 = tri->dx31;
419
420#define SETUP_STEP(i, x, y)                                \
421      do {                                                 \
422         tri->inputs.step[0][i] = x * xstep1 + y * ystep1; \
423         tri->inputs.step[1][i] = x * xstep2 + y * ystep2; \
424         tri->inputs.step[2][i] = x * xstep3 + y * ystep3; \
425      } while (0)
426
427      SETUP_STEP(0, 0, 0);
428      SETUP_STEP(1, 1, 0);
429      SETUP_STEP(2, 0, 1);
430      SETUP_STEP(3, 1, 1);
431
432      SETUP_STEP(4, 2, 0);
433      SETUP_STEP(5, 3, 0);
434      SETUP_STEP(6, 2, 1);
435      SETUP_STEP(7, 3, 1);
436
437      SETUP_STEP(8, 0, 2);
438      SETUP_STEP(9, 1, 2);
439      SETUP_STEP(10, 0, 3);
440      SETUP_STEP(11, 1, 3);
441
442      SETUP_STEP(12, 2, 2);
443      SETUP_STEP(13, 3, 2);
444      SETUP_STEP(14, 2, 3);
445      SETUP_STEP(15, 3, 3);
446#undef STEP
447   }
448
449   /*
450    * All fields of 'tri' are now set.  The remaining code here is
451    * concerned with binning.
452    */
453
454   /* Convert to tile coordinates:
455    */
456   minx = minx / TILE_SIZE;
457   miny = miny / TILE_SIZE;
458   maxx = maxx / TILE_SIZE;
459   maxy = maxy / TILE_SIZE;
460
461   /*
462    * Clamp to framebuffer size
463    */
464   minx = MAX2(minx, 0);
465   miny = MAX2(miny, 0);
466   maxx = MIN2(maxx, scene->tiles_x - 1);
467   maxy = MIN2(maxy, scene->tiles_y - 1);
468
469   /* Determine which tile(s) intersect the triangle's bounding box
470    */
471   if (miny == maxy && minx == maxx)
472   {
473      /* Triangle is contained in a single tile:
474       */
475      lp_scene_bin_command( scene, minx, miny, lp_rast_triangle,
476			    lp_rast_arg_triangle(tri) );
477   }
478   else
479   {
480      int c1 = (tri->c1 +
481                tri->dx12 * miny * TILE_SIZE -
482                tri->dy12 * minx * TILE_SIZE);
483      int c2 = (tri->c2 +
484                tri->dx23 * miny * TILE_SIZE -
485                tri->dy23 * minx * TILE_SIZE);
486      int c3 = (tri->c3 +
487                tri->dx31 * miny * TILE_SIZE -
488                tri->dy31 * minx * TILE_SIZE);
489
490      int ei1 = tri->ei1 << TILE_ORDER;
491      int ei2 = tri->ei2 << TILE_ORDER;
492      int ei3 = tri->ei3 << TILE_ORDER;
493
494      int eo1 = tri->eo1 << TILE_ORDER;
495      int eo2 = tri->eo2 << TILE_ORDER;
496      int eo3 = tri->eo3 << TILE_ORDER;
497
498      int xstep1 = -(tri->dy12 << TILE_ORDER);
499      int xstep2 = -(tri->dy23 << TILE_ORDER);
500      int xstep3 = -(tri->dy31 << TILE_ORDER);
501
502      int ystep1 = tri->dx12 << TILE_ORDER;
503      int ystep2 = tri->dx23 << TILE_ORDER;
504      int ystep3 = tri->dx31 << TILE_ORDER;
505      int x, y;
506
507
508      /* Test tile-sized blocks against the triangle.
509       * Discard blocks fully outside the tri.  If the block is fully
510       * contained inside the tri, bin an lp_rast_shade_tile command.
511       * Else, bin a lp_rast_triangle command.
512       */
513      for (y = miny; y <= maxy; y++)
514      {
515	 int cx1 = c1;
516	 int cx2 = c2;
517	 int cx3 = c3;
518	 boolean in = FALSE;  /* are we inside the triangle? */
519
520	 for (x = minx; x <= maxx; x++)
521	 {
522	    if (cx1 + eo1 < 0 ||
523		cx2 + eo2 < 0 ||
524		cx3 + eo3 < 0)
525	    {
526	       /* do nothing */
527               LP_COUNT(nr_empty_64);
528	       if (in)
529		  break;  /* exiting triangle, all done with this row */
530	    }
531	    else if (cx1 + ei1 > 0 &&
532		     cx2 + ei2 > 0 &&
533		     cx3 + ei3 > 0)
534	    {
535               /* triangle covers the whole tile- shade whole tile */
536               LP_COUNT(nr_fully_covered_64);
537	       in = TRUE;
538	       if(setup->fs.current.opaque) {
539	          lp_scene_bin_reset( scene, x, y );
540	          lp_scene_bin_command( scene, x, y,
541	                                lp_rast_set_state,
542	                                lp_rast_arg_state(setup->fs.stored) );
543	       }
544               lp_scene_bin_command( scene, x, y,
545				     lp_rast_shade_tile,
546				     lp_rast_arg_inputs(&tri->inputs) );
547	    }
548	    else
549	    {
550               /* rasterizer/shade partial tile */
551               LP_COUNT(nr_partially_covered_64);
552	       in = TRUE;
553               lp_scene_bin_command( scene, x, y,
554				     lp_rast_triangle,
555				     lp_rast_arg_triangle(tri) );
556	    }
557
558	    /* Iterate cx values across the region:
559	     */
560	    cx1 += xstep1;
561	    cx2 += xstep2;
562	    cx3 += xstep3;
563	 }
564
565	 /* Iterate c values down the region:
566	  */
567	 c1 += ystep1;
568	 c2 += ystep2;
569	 c3 += ystep3;
570      }
571   }
572}
573
574
575static void triangle_cw( struct lp_setup_context *setup,
576			 const float (*v0)[4],
577			 const float (*v1)[4],
578			 const float (*v2)[4] )
579{
580   do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface );
581}
582
583
584static void triangle_ccw( struct lp_setup_context *setup,
585			 const float (*v0)[4],
586			 const float (*v1)[4],
587			 const float (*v2)[4] )
588{
589   do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
590}
591
592
593static void triangle_both( struct lp_setup_context *setup,
594			   const float (*v0)[4],
595			   const float (*v1)[4],
596			   const float (*v2)[4] )
597{
598   /* edge vectors e = v0 - v2, f = v1 - v2 */
599   const float ex = v0[0][0] - v2[0][0];
600   const float ey = v0[0][1] - v2[0][1];
601   const float fx = v1[0][0] - v2[0][0];
602   const float fy = v1[0][1] - v2[0][1];
603
604   /* det = cross(e,f).z */
605   if (ex * fy - ey * fx < 0.0f)
606      triangle_ccw( setup, v0, v1, v2 );
607   else
608      triangle_cw( setup, v0, v1, v2 );
609}
610
611
612static void triangle_nop( struct lp_setup_context *setup,
613			  const float (*v0)[4],
614			  const float (*v1)[4],
615			  const float (*v2)[4] )
616{
617}
618
619
620void
621lp_setup_choose_triangle( struct lp_setup_context *setup )
622{
623   switch (setup->cullmode) {
624   case PIPE_WINDING_NONE:
625      setup->triangle = triangle_both;
626      break;
627   case PIPE_WINDING_CCW:
628      setup->triangle = triangle_cw;
629      break;
630   case PIPE_WINDING_CW:
631      setup->triangle = triangle_ccw;
632      break;
633   default:
634      setup->triangle = triangle_nop;
635      break;
636   }
637}
638