lp_setup_tri.c revision 4bef3575e605d890d9f228391b4724d27b025f49
1/**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/*
29 * Binning code for triangles
30 */
31
32#include "lp_setup_context.h"
33#include "lp_rast.h"
34#include "util/u_math.h"
35#include "util/u_memory.h"
36
37#define NUM_CHANNELS 4
38
39
40/**
41 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
42 */
43static void constant_coef( struct lp_rast_triangle *tri,
44                           unsigned slot,
45			   const float value,
46                           unsigned i )
47{
48   tri->inputs.a0[slot][i] = value;
49   tri->inputs.dadx[slot][i] = 0.0f;
50   tri->inputs.dady[slot][i] = 0.0f;
51}
52
53
54/**
55 * Compute a0, dadx and dady for a linearly interpolated coefficient,
56 * for a triangle.
57 */
58static void linear_coef( struct lp_rast_triangle *tri,
59                         float oneoverarea,
60                         unsigned slot,
61                         const float (*v1)[4],
62                         const float (*v2)[4],
63                         const float (*v3)[4],
64                         unsigned vert_attr,
65                         unsigned i)
66{
67   float a1 = v1[vert_attr][i];
68   float a2 = v2[vert_attr][i];
69   float a3 = v3[vert_attr][i];
70
71   float da12 = a1 - a2;
72   float da31 = a3 - a1;
73   float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
74   float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
75
76   tri->inputs.dadx[slot][i] = dadx;
77   tri->inputs.dady[slot][i] = dady;
78
79   /* calculate a0 as the value which would be sampled for the
80    * fragment at (0,0), taking into account that we want to sample at
81    * pixel centers, in other words (0.5, 0.5).
82    *
83    * this is neat but unfortunately not a good way to do things for
84    * triangles with very large values of dadx or dady as it will
85    * result in the subtraction and re-addition from a0 of a very
86    * large number, which means we'll end up loosing a lot of the
87    * fractional bits and precision from a0.  the way to fix this is
88    * to define a0 as the sample at a pixel center somewhere near vmin
89    * instead - i'll switch to this later.
90    */
91   tri->inputs.a0[slot][i] = (v1[vert_attr][i] -
92                              (dadx * (v1[0][0] - 0.5f) +
93                               dady * (v1[0][1] - 0.5f)));
94}
95
96
97/**
98 * Compute a0, dadx and dady for a perspective-corrected interpolant,
99 * for a triangle.
100 * We basically multiply the vertex value by 1/w before computing
101 * the plane coefficients (a0, dadx, dady).
102 * Later, when we compute the value at a particular fragment position we'll
103 * divide the interpolated value by the interpolated W at that fragment.
104 */
105static void perspective_coef( struct lp_rast_triangle *tri,
106                              float oneoverarea,
107                              unsigned slot,
108			      const float (*v1)[4],
109			      const float (*v2)[4],
110			      const float (*v3)[4],
111			      unsigned vert_attr,
112                              unsigned i)
113{
114   /* premultiply by 1/w  (v[0][3] is always 1/w):
115    */
116   float a1 = v1[vert_attr][i] * v1[0][3];
117   float a2 = v2[vert_attr][i] * v2[0][3];
118   float a3 = v3[vert_attr][i] * v3[0][3];
119   float da12 = a1 - a2;
120   float da31 = a3 - a1;
121   float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
122   float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
123
124   tri->inputs.dadx[slot][i] = dadx;
125   tri->inputs.dady[slot][i] = dady;
126   tri->inputs.a0[slot][i] = (a1 -
127                              (dadx * (v1[0][0] - 0.5f) +
128                               dady * (v1[0][1] - 0.5f)));
129}
130
131
132/**
133 * Special coefficient setup for gl_FragCoord.
134 * X and Y are trivial
135 * Z and W are copied from position_coef which should have already been computed.
136 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
137 */
138static void
139setup_fragcoord_coef(struct lp_rast_triangle *tri,
140                     float oneoverarea,
141                     unsigned slot,
142                     const float (*v1)[4],
143                     const float (*v2)[4],
144                     const float (*v3)[4])
145{
146   /*X*/
147   tri->inputs.a0[slot][0] = 0.0;
148   tri->inputs.dadx[slot][0] = 1.0;
149   tri->inputs.dady[slot][0] = 0.0;
150   /*Y*/
151   tri->inputs.a0[slot][1] = 0.0;
152   tri->inputs.dadx[slot][1] = 0.0;
153   tri->inputs.dady[slot][1] = 1.0;
154   /*Z*/
155   linear_coef(tri, oneoverarea, slot, v1, v2, v3, 0, 2);
156   /*W*/
157   linear_coef(tri, oneoverarea, slot, v1, v2, v3, 0, 3);
158}
159
160
161static void setup_facing_coef( struct lp_rast_triangle *tri,
162                               unsigned slot,
163                               boolean frontface )
164{
165   constant_coef( tri, slot, 1.0f - frontface, 0 );
166   constant_coef( tri, slot, 0.0f, 1 ); /* wasted */
167   constant_coef( tri, slot, 0.0f, 2 ); /* wasted */
168   constant_coef( tri, slot, 0.0f, 3 ); /* wasted */
169}
170
171
172/**
173 * Compute the tri->coef[] array dadx, dady, a0 values.
174 */
175static void setup_tri_coefficients( struct setup_context *setup,
176				    struct lp_rast_triangle *tri,
177                                    float oneoverarea,
178				    const float (*v1)[4],
179				    const float (*v2)[4],
180				    const float (*v3)[4],
181				    boolean frontface)
182{
183   struct lp_scene *scene = lp_setup_get_current_scene(setup);
184   unsigned slot;
185
186   /* Allocate space for the a0, dadx and dady arrays
187    */
188   {
189      unsigned bytes = (setup->fs.nr_inputs + 1) * 4 * sizeof(float);
190      tri->inputs.a0   = lp_scene_alloc_aligned( scene, bytes, 16 );
191      tri->inputs.dadx = lp_scene_alloc_aligned( scene, bytes, 16 );
192      tri->inputs.dady = lp_scene_alloc_aligned( scene, bytes, 16 );
193   }
194
195   /* The internal position input is in slot zero:
196    */
197   setup_fragcoord_coef(tri, oneoverarea, 0, v1, v2, v3);
198
199   /* setup interpolation for all the remaining attributes:
200    */
201   for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
202      unsigned vert_attr = setup->fs.input[slot].src_index;
203      unsigned i;
204
205      switch (setup->fs.input[slot].interp) {
206      case LP_INTERP_CONSTANT:
207         for (i = 0; i < NUM_CHANNELS; i++)
208            constant_coef(tri, slot+1, v3[vert_attr][i], i);
209         break;
210
211      case LP_INTERP_LINEAR:
212         for (i = 0; i < NUM_CHANNELS; i++)
213            linear_coef(tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
214         break;
215
216      case LP_INTERP_PERSPECTIVE:
217         for (i = 0; i < NUM_CHANNELS; i++)
218            perspective_coef(tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
219         break;
220
221      case LP_INTERP_POSITION:
222         /* XXX: fix me - duplicates the values in slot zero.
223          */
224         setup_fragcoord_coef(tri, oneoverarea, slot+1, v1, v2, v3);
225         break;
226
227      case LP_INTERP_FACING:
228         setup_facing_coef(tri, slot+1, frontface);
229         break;
230
231      default:
232         assert(0);
233      }
234   }
235}
236
237
238
239static inline int subpixel_snap( float a )
240{
241   return util_iround(FIXED_ONE * a - (FIXED_ONE / 2));
242}
243
244
245/**
246 * Do basic setup for triangle rasterization and determine which
247 * framebuffer tiles are touched.  Put the triangle in the scene's
248 * bins for the tiles which we overlap.
249 */
250static void
251do_triangle_ccw(struct setup_context *setup,
252		const float (*v1)[4],
253		const float (*v2)[4],
254		const float (*v3)[4],
255		boolean frontfacing )
256{
257   /* x/y positions in fixed point */
258   const int x1 = subpixel_snap(v1[0][0]);
259   const int x2 = subpixel_snap(v2[0][0]);
260   const int x3 = subpixel_snap(v3[0][0]);
261   const int y1 = subpixel_snap(v1[0][1]);
262   const int y2 = subpixel_snap(v2[0][1]);
263   const int y3 = subpixel_snap(v3[0][1]);
264
265   struct lp_scene *scene = lp_setup_get_current_scene(setup);
266   struct lp_rast_triangle *tri = lp_scene_alloc_aligned( scene, sizeof *tri, 16 );
267   float area, oneoverarea;
268   int minx, maxx, miny, maxy;
269
270   tri->dx12 = x1 - x2;
271   tri->dx23 = x2 - x3;
272   tri->dx31 = x3 - x1;
273
274   tri->dy12 = y1 - y2;
275   tri->dy23 = y2 - y3;
276   tri->dy31 = y3 - y1;
277
278   area = (tri->dx12 * tri->dy31 -
279	   tri->dx31 * tri->dy12);
280
281   /* Cull non-ccw and zero-sized triangles.
282    *
283    * XXX: subject to overflow??
284    */
285   if (area <= 0.0f) {
286      lp_scene_putback_data( scene, sizeof *tri );
287      return;
288   }
289
290   /* Bounding rectangle (in pixels) */
291   tri->minx = (MIN3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
292   tri->maxx = (MAX3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
293   tri->miny = (MIN3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
294   tri->maxy = (MAX3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
295
296   if (tri->miny == tri->maxy ||
297       tri->minx == tri->maxx) {
298      lp_scene_putback_data( scene, sizeof *tri );
299      return;
300   }
301
302   /*
303    */
304   oneoverarea = ((float)FIXED_ONE) / (float)area;
305
306   /* Setup parameter interpolants:
307    */
308   setup_tri_coefficients( setup, tri, oneoverarea, v1, v2, v3, frontfacing );
309
310   /* half-edge constants, will be interated over the whole render target.
311    */
312   tri->c1 = tri->dy12 * x1 - tri->dx12 * y1;
313   tri->c2 = tri->dy23 * x2 - tri->dx23 * y2;
314   tri->c3 = tri->dy31 * x3 - tri->dx31 * y3;
315
316   /* correct for top-left fill convention:
317    */
318   if (tri->dy12 < 0 || (tri->dy12 == 0 && tri->dx12 > 0)) tri->c1++;
319   if (tri->dy23 < 0 || (tri->dy23 == 0 && tri->dx23 > 0)) tri->c2++;
320   if (tri->dy31 < 0 || (tri->dy31 == 0 && tri->dx31 > 0)) tri->c3++;
321
322   tri->dy12 *= FIXED_ONE;
323   tri->dy23 *= FIXED_ONE;
324   tri->dy31 *= FIXED_ONE;
325
326   tri->dx12 *= FIXED_ONE;
327   tri->dx23 *= FIXED_ONE;
328   tri->dx31 *= FIXED_ONE;
329
330   /* find trivial reject offsets for each edge for a single-pixel
331    * sized block.  These will be scaled up at each recursive level to
332    * match the active blocksize.  Scaling in this way works best if
333    * the blocks are square.
334    */
335   tri->eo1 = 0;
336   if (tri->dy12 < 0) tri->eo1 -= tri->dy12;
337   if (tri->dx12 > 0) tri->eo1 += tri->dx12;
338
339   tri->eo2 = 0;
340   if (tri->dy23 < 0) tri->eo2 -= tri->dy23;
341   if (tri->dx23 > 0) tri->eo2 += tri->dx23;
342
343   tri->eo3 = 0;
344   if (tri->dy31 < 0) tri->eo3 -= tri->dy31;
345   if (tri->dx31 > 0) tri->eo3 += tri->dx31;
346
347   /* Calculate trivial accept offsets from the above.
348    */
349   tri->ei1 = tri->dx12 - tri->dy12 - tri->eo1;
350   tri->ei2 = tri->dx23 - tri->dy23 - tri->eo2;
351   tri->ei3 = tri->dx31 - tri->dy31 - tri->eo3;
352
353   {
354      const int xstep1 = -tri->dy12;
355      const int xstep2 = -tri->dy23;
356      const int xstep3 = -tri->dy31;
357
358      const int ystep1 = tri->dx12;
359      const int ystep2 = tri->dx23;
360      const int ystep3 = tri->dx31;
361
362      int qx, qy, ix, iy;
363      int i = 0;
364
365      for (qy = 0; qy < 2; qy++) {
366         for (qx = 0; qx < 2; qx++) {
367            for (iy = 0; iy < 2; iy++) {
368               for (ix = 0; ix < 2; ix++, i++) {
369                  int x = qx * 2 + ix;
370                  int y = qy * 2 + iy;
371                  tri->inputs.step[0][i] = x * xstep1 + y * ystep1;
372                  tri->inputs.step[1][i] = x * xstep2 + y * ystep2;
373                  tri->inputs.step[2][i] = x * xstep3 + y * ystep3;
374               }
375            }
376         }
377      }
378   }
379
380   /*
381    * All fields of 'tri' are now set.  The remaining code here is
382    * concerned with binning.
383    */
384
385   /* Convert to tile coordinates:
386    */
387   minx = tri->minx / TILE_SIZE;
388   miny = tri->miny / TILE_SIZE;
389   maxx = tri->maxx / TILE_SIZE;
390   maxy = tri->maxy / TILE_SIZE;
391
392   /* Clamp maxx, maxy to framebuffer size
393    */
394   maxx = MIN2(maxx, scene->tiles_x - 1);
395   maxy = MIN2(maxy, scene->tiles_y - 1);
396
397   /* Determine which tile(s) intersect the triangle's bounding box
398    */
399   if (miny == maxy && minx == maxx)
400   {
401      /* Triangle is contained in a single tile:
402       */
403      lp_scene_bin_command( scene, minx, miny, lp_rast_triangle,
404			    lp_rast_arg_triangle(tri) );
405   }
406   else
407   {
408      int c1 = (tri->c1 +
409                tri->dx12 * miny * TILE_SIZE -
410                tri->dy12 * minx * TILE_SIZE);
411      int c2 = (tri->c2 +
412                tri->dx23 * miny * TILE_SIZE -
413                tri->dy23 * minx * TILE_SIZE);
414      int c3 = (tri->c3 +
415                tri->dx31 * miny * TILE_SIZE -
416                tri->dy31 * minx * TILE_SIZE);
417
418      int ei1 = tri->ei1 << TILE_ORDER;
419      int ei2 = tri->ei2 << TILE_ORDER;
420      int ei3 = tri->ei3 << TILE_ORDER;
421
422      int eo1 = tri->eo1 << TILE_ORDER;
423      int eo2 = tri->eo2 << TILE_ORDER;
424      int eo3 = tri->eo3 << TILE_ORDER;
425
426      int xstep1 = -(tri->dy12 << TILE_ORDER);
427      int xstep2 = -(tri->dy23 << TILE_ORDER);
428      int xstep3 = -(tri->dy31 << TILE_ORDER);
429
430      int ystep1 = tri->dx12 << TILE_ORDER;
431      int ystep2 = tri->dx23 << TILE_ORDER;
432      int ystep3 = tri->dx31 << TILE_ORDER;
433      int x, y;
434
435
436      /* Trivially accept or reject blocks, else jump to per-pixel
437       * examination above.
438       */
439      for (y = miny; y <= maxy; y++)
440      {
441	 int cx1 = c1;
442	 int cx2 = c2;
443	 int cx3 = c3;
444	 boolean in = FALSE;  /* are we inside the triangle? */
445
446	 for (x = minx; x <= maxx; x++)
447	 {
448	    if (cx1 + eo1 < 0 ||
449		cx2 + eo2 < 0 ||
450		cx3 + eo3 < 0)
451	    {
452	       /* do nothing */
453	       if (in)
454		  break;  /* exiting triangle, all done with this row */
455	    }
456	    else if (cx1 + ei1 > 0 &&
457		     cx2 + ei2 > 0 &&
458		     cx3 + ei3 > 0)
459	    {
460	       in = TRUE;
461               /* triangle covers the whole tile- shade whole tile */
462	       if(setup->fs.current.opaque) {
463	          lp_scene_bin_reset( scene, x, y );
464	          lp_scene_bin_command( scene, x, y,
465	                                lp_rast_set_state,
466	                                lp_rast_arg_state(setup->fs.stored) );
467	       }
468               lp_scene_bin_command( scene, x, y,
469				     lp_rast_shade_tile,
470				     lp_rast_arg_inputs(&tri->inputs) );
471	    }
472	    else
473	    {
474	       in = TRUE;
475               /* shade partial tile */
476               lp_scene_bin_command( scene, x, y,
477				     lp_rast_triangle,
478				     lp_rast_arg_triangle(tri) );
479	    }
480
481	    /* Iterate cx values across the region:
482	     */
483	    cx1 += xstep1;
484	    cx2 += xstep2;
485	    cx3 += xstep3;
486	 }
487
488	 /* Iterate c values down the region:
489	  */
490	 c1 += ystep1;
491	 c2 += ystep2;
492	 c3 += ystep3;
493      }
494   }
495}
496
497
498static void triangle_cw( struct setup_context *setup,
499			 const float (*v0)[4],
500			 const float (*v1)[4],
501			 const float (*v2)[4] )
502{
503   do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface );
504}
505
506
507static void triangle_ccw( struct setup_context *setup,
508			 const float (*v0)[4],
509			 const float (*v1)[4],
510			 const float (*v2)[4] )
511{
512   do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
513}
514
515
516static void triangle_both( struct setup_context *setup,
517			   const float (*v0)[4],
518			   const float (*v1)[4],
519			   const float (*v2)[4] )
520{
521   /* edge vectors e = v0 - v2, f = v1 - v2 */
522   const float ex = v0[0][0] - v2[0][0];
523   const float ey = v0[0][1] - v2[0][1];
524   const float fx = v1[0][0] - v2[0][0];
525   const float fy = v1[0][1] - v2[0][1];
526
527   /* det = cross(e,f).z */
528   if (ex * fy - ey * fx < 0.0f)
529      triangle_ccw( setup, v0, v1, v2 );
530   else
531      triangle_cw( setup, v0, v1, v2 );
532}
533
534
535static void triangle_nop( struct setup_context *setup,
536			  const float (*v0)[4],
537			  const float (*v1)[4],
538			  const float (*v2)[4] )
539{
540}
541
542
543void
544lp_setup_choose_triangle( struct setup_context *setup )
545{
546   switch (setup->cullmode) {
547   case PIPE_WINDING_NONE:
548      setup->triangle = triangle_both;
549      break;
550   case PIPE_WINDING_CCW:
551      setup->triangle = triangle_cw;
552      break;
553   case PIPE_WINDING_CW:
554      setup->triangle = triangle_ccw;
555      break;
556   default:
557      setup->triangle = triangle_nop;
558      break;
559   }
560}
561