lp_setup_tri.c revision 6ce68ad3ca242076bbb93fdd99bb448f87a31d15
1/**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/*
29 * Binning code for triangles
30 */
31
32#include "util/u_math.h"
33#include "util/u_memory.h"
34#include "lp_perf.h"
35#include "lp_setup_context.h"
36#include "lp_rast.h"
37#include "lp_state_fs.h"
38
39#define NUM_CHANNELS 4
40
41
42/**
43 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
44 */
45static void constant_coef( struct lp_setup_context *setup,
46                           struct lp_rast_triangle *tri,
47                           unsigned slot,
48			   const float value,
49                           unsigned i )
50{
51   tri->inputs.a0[slot][i] = value;
52   tri->inputs.dadx[slot][i] = 0.0f;
53   tri->inputs.dady[slot][i] = 0.0f;
54}
55
56
57/**
58 * Compute a0, dadx and dady for a linearly interpolated coefficient,
59 * for a triangle.
60 */
61static void linear_coef( struct lp_setup_context *setup,
62                         struct lp_rast_triangle *tri,
63                         float oneoverarea,
64                         unsigned slot,
65                         const float (*v1)[4],
66                         const float (*v2)[4],
67                         const float (*v3)[4],
68                         unsigned vert_attr,
69                         unsigned i)
70{
71   float a1 = v1[vert_attr][i];
72   float a2 = v2[vert_attr][i];
73   float a3 = v3[vert_attr][i];
74
75   float da12 = a1 - a2;
76   float da31 = a3 - a1;
77   float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
78   float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
79
80   tri->inputs.dadx[slot][i] = dadx;
81   tri->inputs.dady[slot][i] = dady;
82
83   /* calculate a0 as the value which would be sampled for the
84    * fragment at (0,0), taking into account that we want to sample at
85    * pixel centers, in other words (0.5, 0.5).
86    *
87    * this is neat but unfortunately not a good way to do things for
88    * triangles with very large values of dadx or dady as it will
89    * result in the subtraction and re-addition from a0 of a very
90    * large number, which means we'll end up loosing a lot of the
91    * fractional bits and precision from a0.  the way to fix this is
92    * to define a0 as the sample at a pixel center somewhere near vmin
93    * instead - i'll switch to this later.
94    */
95   tri->inputs.a0[slot][i] = (a1 -
96                              (dadx * (v1[0][0] - setup->pixel_offset) +
97                               dady * (v1[0][1] - setup->pixel_offset)));
98}
99
100
101/**
102 * Compute a0, dadx and dady for a perspective-corrected interpolant,
103 * for a triangle.
104 * We basically multiply the vertex value by 1/w before computing
105 * the plane coefficients (a0, dadx, dady).
106 * Later, when we compute the value at a particular fragment position we'll
107 * divide the interpolated value by the interpolated W at that fragment.
108 */
109static void perspective_coef( struct lp_setup_context *setup,
110                              struct lp_rast_triangle *tri,
111                              float oneoverarea,
112                              unsigned slot,
113			      const float (*v1)[4],
114			      const float (*v2)[4],
115			      const float (*v3)[4],
116			      unsigned vert_attr,
117                              unsigned i)
118{
119   /* premultiply by 1/w  (v[0][3] is always 1/w):
120    */
121   float a1 = v1[vert_attr][i] * v1[0][3];
122   float a2 = v2[vert_attr][i] * v2[0][3];
123   float a3 = v3[vert_attr][i] * v3[0][3];
124   float da12 = a1 - a2;
125   float da31 = a3 - a1;
126   float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
127   float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
128
129   tri->inputs.dadx[slot][i] = dadx;
130   tri->inputs.dady[slot][i] = dady;
131   tri->inputs.a0[slot][i] = (a1 -
132                              (dadx * (v1[0][0] - setup->pixel_offset) +
133                               dady * (v1[0][1] - setup->pixel_offset)));
134}
135
136
137/**
138 * Special coefficient setup for gl_FragCoord.
139 * X and Y are trivial
140 * Z and W are copied from position_coef which should have already been computed.
141 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
142 */
143static void
144setup_fragcoord_coef(struct lp_setup_context *setup,
145                     struct lp_rast_triangle *tri,
146                     float oneoverarea,
147                     unsigned slot,
148                     const float (*v1)[4],
149                     const float (*v2)[4],
150                     const float (*v3)[4],
151                     unsigned usage_mask)
152{
153   /*X*/
154   if (usage_mask & TGSI_WRITEMASK_X) {
155      tri->inputs.a0[slot][0] = 0.0;
156      tri->inputs.dadx[slot][0] = 1.0;
157      tri->inputs.dady[slot][0] = 0.0;
158   }
159
160   /*Y*/
161   if (usage_mask & TGSI_WRITEMASK_Y) {
162      tri->inputs.a0[slot][1] = 0.0;
163      tri->inputs.dadx[slot][1] = 0.0;
164      tri->inputs.dady[slot][1] = 1.0;
165   }
166
167   /*Z*/
168   if (usage_mask & TGSI_WRITEMASK_Z) {
169      linear_coef(setup, tri, oneoverarea, slot, v1, v2, v3, 0, 2);
170   }
171
172   /*W*/
173   if (usage_mask & TGSI_WRITEMASK_W) {
174      linear_coef(setup, tri, oneoverarea, slot, v1, v2, v3, 0, 3);
175   }
176}
177
178
179/**
180 * Setup the fragment input attribute with the front-facing value.
181 * \param frontface  is the triangle front facing?
182 */
183static void setup_facing_coef( struct lp_setup_context *setup,
184                               struct lp_rast_triangle *tri,
185                               unsigned slot,
186                               boolean frontface,
187                               unsigned usage_mask)
188{
189   /* convert TRUE to 1.0 and FALSE to -1.0 */
190   if (usage_mask & TGSI_WRITEMASK_X)
191      constant_coef( setup, tri, slot, 2.0f * frontface - 1.0f, 0 );
192
193   if (usage_mask & TGSI_WRITEMASK_Y)
194      constant_coef( setup, tri, slot, 0.0f, 1 ); /* wasted */
195
196   if (usage_mask & TGSI_WRITEMASK_Z)
197      constant_coef( setup, tri, slot, 0.0f, 2 ); /* wasted */
198
199   if (usage_mask & TGSI_WRITEMASK_W)
200      constant_coef( setup, tri, slot, 0.0f, 3 ); /* wasted */
201}
202
203
204/**
205 * Compute the tri->coef[] array dadx, dady, a0 values.
206 */
207static void setup_tri_coefficients( struct lp_setup_context *setup,
208				    struct lp_rast_triangle *tri,
209                                    float oneoverarea,
210				    const float (*v1)[4],
211				    const float (*v2)[4],
212				    const float (*v3)[4],
213				    boolean frontface)
214{
215   unsigned fragcoord_usage_mask = TGSI_WRITEMASK_XYZ;
216   unsigned slot;
217
218   /* setup interpolation for all the remaining attributes:
219    */
220   for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
221      unsigned vert_attr = setup->fs.input[slot].src_index;
222      unsigned usage_mask = setup->fs.input[slot].usage_mask;
223      unsigned i;
224
225      switch (setup->fs.input[slot].interp) {
226      case LP_INTERP_CONSTANT:
227         if (setup->flatshade_first) {
228            for (i = 0; i < NUM_CHANNELS; i++)
229               if (usage_mask & (1 << i))
230                  constant_coef(setup, tri, slot+1, v1[vert_attr][i], i);
231         }
232         else {
233            for (i = 0; i < NUM_CHANNELS; i++)
234               if (usage_mask & (1 << i))
235                  constant_coef(setup, tri, slot+1, v3[vert_attr][i], i);
236         }
237         break;
238
239      case LP_INTERP_LINEAR:
240         for (i = 0; i < NUM_CHANNELS; i++)
241            if (usage_mask & (1 << i))
242               linear_coef(setup, tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
243         break;
244
245      case LP_INTERP_PERSPECTIVE:
246         for (i = 0; i < NUM_CHANNELS; i++)
247            if (usage_mask & (1 << i))
248               perspective_coef(setup, tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
249         fragcoord_usage_mask |= TGSI_WRITEMASK_W;
250         break;
251
252      case LP_INTERP_POSITION:
253         /*
254          * The generated pixel interpolators will pick up the coeffs from
255          * slot 0, so all need to ensure that the usage mask is covers all
256          * usages.
257          */
258         fragcoord_usage_mask |= usage_mask;
259         break;
260
261      case LP_INTERP_FACING:
262         setup_facing_coef(setup, tri, slot+1, frontface, usage_mask);
263         break;
264
265      default:
266         assert(0);
267      }
268   }
269
270   /* The internal position input is in slot zero:
271    */
272   setup_fragcoord_coef(setup, tri, oneoverarea, 0, v1, v2, v3,
273                        fragcoord_usage_mask);
274}
275
276
277
278static INLINE int subpixel_snap( float a )
279{
280   return util_iround(FIXED_ONE * a - (FIXED_ONE / 2));
281}
282
283
284
285/**
286 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
287 * immediately after it.
288 * The memory is allocated from the per-scene pool, not per-tile.
289 * \param tri_size  returns number of bytes allocated
290 * \param nr_inputs  number of fragment shader inputs
291 * \return pointer to triangle space
292 */
293static INLINE struct lp_rast_triangle *
294alloc_triangle(struct lp_scene *scene, unsigned nr_inputs, unsigned *tri_size)
295{
296   unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
297   struct lp_rast_triangle *tri;
298   unsigned bytes;
299   char *inputs;
300
301   assert(sizeof(*tri) % 16 == 0);
302
303   bytes = sizeof(*tri) + (3 * input_array_sz);
304
305   tri = lp_scene_alloc_aligned( scene, bytes, 16 );
306
307   if (tri) {
308      inputs = (char *) (tri + 1);
309      tri->inputs.a0   = (float (*)[4]) inputs;
310      tri->inputs.dadx = (float (*)[4]) (inputs + input_array_sz);
311      tri->inputs.dady = (float (*)[4]) (inputs + 2 * input_array_sz);
312
313      *tri_size = bytes;
314   }
315
316   return tri;
317}
318
319
320/**
321 * Print triangle vertex attribs (for debug).
322 */
323static void
324print_triangle(struct lp_setup_context *setup,
325               const float (*v1)[4],
326               const float (*v2)[4],
327               const float (*v3)[4])
328{
329   uint i;
330
331   debug_printf("llvmpipe triangle\n");
332   for (i = 0; i < setup->fs.nr_inputs; i++) {
333      debug_printf("  v1[%d]:  %f %f %f %f\n", i,
334                   v1[i][0], v1[i][1], v1[i][2], v1[i][3]);
335   }
336   for (i = 0; i < setup->fs.nr_inputs; i++) {
337      debug_printf("  v2[%d]:  %f %f %f %f\n", i,
338                   v2[i][0], v2[i][1], v2[i][2], v2[i][3]);
339   }
340   for (i = 0; i < setup->fs.nr_inputs; i++) {
341      debug_printf("  v3[%d]:  %f %f %f %f\n", i,
342                   v3[i][0], v3[i][1], v3[i][2], v3[i][3]);
343   }
344}
345
346
347/**
348 * Do basic setup for triangle rasterization and determine which
349 * framebuffer tiles are touched.  Put the triangle in the scene's
350 * bins for the tiles which we overlap.
351 */
352static void
353do_triangle_ccw(struct lp_setup_context *setup,
354		const float (*v1)[4],
355		const float (*v2)[4],
356		const float (*v3)[4],
357		boolean frontfacing )
358{
359   /* x/y positions in fixed point */
360   const int x1 = subpixel_snap(v1[0][0] + 0.5 - setup->pixel_offset);
361   const int x2 = subpixel_snap(v2[0][0] + 0.5 - setup->pixel_offset);
362   const int x3 = subpixel_snap(v3[0][0] + 0.5 - setup->pixel_offset);
363   const int y1 = subpixel_snap(v1[0][1] + 0.5 - setup->pixel_offset);
364   const int y2 = subpixel_snap(v2[0][1] + 0.5 - setup->pixel_offset);
365   const int y3 = subpixel_snap(v3[0][1] + 0.5 - setup->pixel_offset);
366
367   struct lp_scene *scene = lp_setup_get_current_scene(setup);
368   struct lp_rast_triangle *tri;
369   int area;
370   float oneoverarea;
371   int minx, maxx, miny, maxy;
372   unsigned tri_bytes;
373
374   if (0)
375      print_triangle(setup, v1, v2, v3);
376
377   tri = alloc_triangle(scene, setup->fs.nr_inputs, &tri_bytes);
378   if (!tri)
379      return;
380
381#ifdef DEBUG
382   tri->v[0][0] = v1[0][0];
383   tri->v[1][0] = v2[0][0];
384   tri->v[2][0] = v3[0][0];
385   tri->v[0][1] = v1[0][1];
386   tri->v[1][1] = v2[0][1];
387   tri->v[2][1] = v3[0][1];
388#endif
389
390   tri->dx12 = x1 - x2;
391   tri->dx23 = x2 - x3;
392   tri->dx31 = x3 - x1;
393
394   tri->dy12 = y1 - y2;
395   tri->dy23 = y2 - y3;
396   tri->dy31 = y3 - y1;
397
398   area = (tri->dx12 * tri->dy31 - tri->dx31 * tri->dy12);
399
400   LP_COUNT(nr_tris);
401
402   /* Cull non-ccw and zero-sized triangles.
403    *
404    * XXX: subject to overflow??
405    */
406   if (area <= 0) {
407      lp_scene_putback_data( scene, tri_bytes );
408      LP_COUNT(nr_culled_tris);
409      return;
410   }
411
412   /* Bounding rectangle (in pixels) */
413   minx = (MIN3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
414   maxx = (MAX3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
415   miny = (MIN3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
416   maxy = (MAX3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
417
418   if (setup->scissor_test) {
419      minx = MAX2(minx, setup->scissor.current.minx);
420      maxx = MIN2(maxx, setup->scissor.current.maxx);
421      miny = MAX2(miny, setup->scissor.current.miny);
422      maxy = MIN2(maxy, setup->scissor.current.maxy);
423   }
424
425   if (miny == maxy ||
426       minx == maxx) {
427      lp_scene_putback_data( scene, tri_bytes );
428      LP_COUNT(nr_culled_tris);
429      return;
430   }
431
432   /*
433    */
434   oneoverarea = ((float)FIXED_ONE) / (float)area;
435
436   /* Setup parameter interpolants:
437    */
438   setup_tri_coefficients( setup, tri, oneoverarea, v1, v2, v3, frontfacing );
439
440   tri->inputs.facing = frontfacing ? 1.0F : -1.0F;
441
442   /* half-edge constants, will be interated over the whole render target.
443    */
444   tri->c1 = tri->dy12 * x1 - tri->dx12 * y1;
445   tri->c2 = tri->dy23 * x2 - tri->dx23 * y2;
446   tri->c3 = tri->dy31 * x3 - tri->dx31 * y3;
447
448   /* correct for top-left fill convention:
449    */
450   if (tri->dy12 < 0 || (tri->dy12 == 0 && tri->dx12 > 0)) tri->c1++;
451   if (tri->dy23 < 0 || (tri->dy23 == 0 && tri->dx23 > 0)) tri->c2++;
452   if (tri->dy31 < 0 || (tri->dy31 == 0 && tri->dx31 > 0)) tri->c3++;
453
454   tri->dy12 *= FIXED_ONE;
455   tri->dy23 *= FIXED_ONE;
456   tri->dy31 *= FIXED_ONE;
457
458   tri->dx12 *= FIXED_ONE;
459   tri->dx23 *= FIXED_ONE;
460   tri->dx31 *= FIXED_ONE;
461
462   /* find trivial reject offsets for each edge for a single-pixel
463    * sized block.  These will be scaled up at each recursive level to
464    * match the active blocksize.  Scaling in this way works best if
465    * the blocks are square.
466    */
467   tri->eo1 = 0;
468   if (tri->dy12 < 0) tri->eo1 -= tri->dy12;
469   if (tri->dx12 > 0) tri->eo1 += tri->dx12;
470
471   tri->eo2 = 0;
472   if (tri->dy23 < 0) tri->eo2 -= tri->dy23;
473   if (tri->dx23 > 0) tri->eo2 += tri->dx23;
474
475   tri->eo3 = 0;
476   if (tri->dy31 < 0) tri->eo3 -= tri->dy31;
477   if (tri->dx31 > 0) tri->eo3 += tri->dx31;
478
479   /* Calculate trivial accept offsets from the above.
480    */
481   tri->ei1 = tri->dx12 - tri->dy12 - tri->eo1;
482   tri->ei2 = tri->dx23 - tri->dy23 - tri->eo2;
483   tri->ei3 = tri->dx31 - tri->dy31 - tri->eo3;
484
485   /* Fill in the inputs.step[][] arrays.
486    * We've manually unrolled some loops here.
487    */
488   {
489      const int xstep1 = -tri->dy12;
490      const int xstep2 = -tri->dy23;
491      const int xstep3 = -tri->dy31;
492      const int ystep1 = tri->dx12;
493      const int ystep2 = tri->dx23;
494      const int ystep3 = tri->dx31;
495
496#define SETUP_STEP(i, x, y)                                \
497      do {                                                 \
498         tri->inputs.step[0][i] = x * xstep1 + y * ystep1; \
499         tri->inputs.step[1][i] = x * xstep2 + y * ystep2; \
500         tri->inputs.step[2][i] = x * xstep3 + y * ystep3; \
501      } while (0)
502
503      SETUP_STEP(0, 0, 0);
504      SETUP_STEP(1, 1, 0);
505      SETUP_STEP(2, 0, 1);
506      SETUP_STEP(3, 1, 1);
507
508      SETUP_STEP(4, 2, 0);
509      SETUP_STEP(5, 3, 0);
510      SETUP_STEP(6, 2, 1);
511      SETUP_STEP(7, 3, 1);
512
513      SETUP_STEP(8, 0, 2);
514      SETUP_STEP(9, 1, 2);
515      SETUP_STEP(10, 0, 3);
516      SETUP_STEP(11, 1, 3);
517
518      SETUP_STEP(12, 2, 2);
519      SETUP_STEP(13, 3, 2);
520      SETUP_STEP(14, 2, 3);
521      SETUP_STEP(15, 3, 3);
522#undef STEP
523   }
524
525   /*
526    * All fields of 'tri' are now set.  The remaining code here is
527    * concerned with binning.
528    */
529
530   /* Convert to tile coordinates:
531    */
532   minx = minx / TILE_SIZE;
533   miny = miny / TILE_SIZE;
534   maxx = maxx / TILE_SIZE;
535   maxy = maxy / TILE_SIZE;
536
537   /*
538    * Clamp to framebuffer size
539    */
540   minx = MAX2(minx, 0);
541   miny = MAX2(miny, 0);
542   maxx = MIN2(maxx, scene->tiles_x - 1);
543   maxy = MIN2(maxy, scene->tiles_y - 1);
544
545   /* Determine which tile(s) intersect the triangle's bounding box
546    */
547   if (miny == maxy && minx == maxx)
548   {
549      /* Triangle is contained in a single tile:
550       */
551      lp_scene_bin_command( scene, minx, miny, lp_rast_triangle,
552			    lp_rast_arg_triangle(tri) );
553   }
554   else
555   {
556      int c1 = (tri->c1 +
557                tri->dx12 * miny * TILE_SIZE -
558                tri->dy12 * minx * TILE_SIZE);
559      int c2 = (tri->c2 +
560                tri->dx23 * miny * TILE_SIZE -
561                tri->dy23 * minx * TILE_SIZE);
562      int c3 = (tri->c3 +
563                tri->dx31 * miny * TILE_SIZE -
564                tri->dy31 * minx * TILE_SIZE);
565
566      int ei1 = tri->ei1 << TILE_ORDER;
567      int ei2 = tri->ei2 << TILE_ORDER;
568      int ei3 = tri->ei3 << TILE_ORDER;
569
570      int eo1 = tri->eo1 << TILE_ORDER;
571      int eo2 = tri->eo2 << TILE_ORDER;
572      int eo3 = tri->eo3 << TILE_ORDER;
573
574      int xstep1 = -(tri->dy12 << TILE_ORDER);
575      int xstep2 = -(tri->dy23 << TILE_ORDER);
576      int xstep3 = -(tri->dy31 << TILE_ORDER);
577
578      int ystep1 = tri->dx12 << TILE_ORDER;
579      int ystep2 = tri->dx23 << TILE_ORDER;
580      int ystep3 = tri->dx31 << TILE_ORDER;
581      int x, y;
582
583
584      /* Test tile-sized blocks against the triangle.
585       * Discard blocks fully outside the tri.  If the block is fully
586       * contained inside the tri, bin an lp_rast_shade_tile command.
587       * Else, bin a lp_rast_triangle command.
588       */
589      for (y = miny; y <= maxy; y++)
590      {
591	 int cx1 = c1;
592	 int cx2 = c2;
593	 int cx3 = c3;
594	 boolean in = FALSE;  /* are we inside the triangle? */
595
596	 for (x = minx; x <= maxx; x++)
597	 {
598	    if (cx1 + eo1 < 0 ||
599		cx2 + eo2 < 0 ||
600		cx3 + eo3 < 0)
601	    {
602	       /* do nothing */
603               LP_COUNT(nr_empty_64);
604	       if (in)
605		  break;  /* exiting triangle, all done with this row */
606	    }
607	    else if (cx1 + ei1 > 0 &&
608		     cx2 + ei2 > 0 &&
609		     cx3 + ei3 > 0)
610	    {
611               /* triangle covers the whole tile- shade whole tile */
612               LP_COUNT(nr_fully_covered_64);
613	       in = TRUE;
614	       if (setup->fs.current.variant->opaque) {
615	          lp_scene_bin_reset( scene, x, y );
616	          lp_scene_bin_command( scene, x, y,
617	                                lp_rast_set_state,
618	                                lp_rast_arg_state(setup->fs.stored) );
619	       }
620               lp_scene_bin_command( scene, x, y,
621				     lp_rast_shade_tile,
622				     lp_rast_arg_inputs(&tri->inputs) );
623	    }
624	    else
625	    {
626               /* rasterizer/shade partial tile */
627               LP_COUNT(nr_partially_covered_64);
628	       in = TRUE;
629               lp_scene_bin_command( scene, x, y,
630				     lp_rast_triangle,
631				     lp_rast_arg_triangle(tri) );
632	    }
633
634	    /* Iterate cx values across the region:
635	     */
636	    cx1 += xstep1;
637	    cx2 += xstep2;
638	    cx3 += xstep3;
639	 }
640
641	 /* Iterate c values down the region:
642	  */
643	 c1 += ystep1;
644	 c2 += ystep2;
645	 c3 += ystep3;
646      }
647   }
648}
649
650
651/**
652 * Draw triangle if it's CW, cull otherwise.
653 */
654static void triangle_cw( struct lp_setup_context *setup,
655			 const float (*v0)[4],
656			 const float (*v1)[4],
657			 const float (*v2)[4] )
658{
659   do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface );
660}
661
662
663/**
664 * Draw triangle if it's CCW, cull otherwise.
665 */
666static void triangle_ccw( struct lp_setup_context *setup,
667			 const float (*v0)[4],
668			 const float (*v1)[4],
669			 const float (*v2)[4] )
670{
671   do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
672}
673
674
675
676/**
677 * Draw triangle whether it's CW or CCW.
678 */
679static void triangle_both( struct lp_setup_context *setup,
680			   const float (*v0)[4],
681			   const float (*v1)[4],
682			   const float (*v2)[4] )
683{
684   /* edge vectors e = v0 - v2, f = v1 - v2 */
685   const float ex = v0[0][0] - v2[0][0];
686   const float ey = v0[0][1] - v2[0][1];
687   const float fx = v1[0][0] - v2[0][0];
688   const float fy = v1[0][1] - v2[0][1];
689
690   /* det = cross(e,f).z */
691   if (ex * fy - ey * fx < 0.0f)
692      triangle_ccw( setup, v0, v1, v2 );
693   else
694      triangle_cw( setup, v0, v1, v2 );
695}
696
697
698static void triangle_nop( struct lp_setup_context *setup,
699			  const float (*v0)[4],
700			  const float (*v1)[4],
701			  const float (*v2)[4] )
702{
703}
704
705
706void
707lp_setup_choose_triangle( struct lp_setup_context *setup )
708{
709   switch (setup->cullmode) {
710   case PIPE_FACE_NONE:
711      setup->triangle = triangle_both;
712      break;
713   case PIPE_FACE_BACK:
714      setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
715      break;
716   case PIPE_FACE_FRONT:
717      setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
718      break;
719   default:
720      setup->triangle = triangle_nop;
721      break;
722   }
723}
724