lp_setup_tri.c revision 82ec7f018d20e46e9c43ea467354dcfe4f03bae3
1/**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/*
29 * Binning code for triangles
30 */
31
32#include "lp_setup_context.h"
33#include "lp_rast.h"
34#include "util/u_math.h"
35#include "util/u_memory.h"
36
37#define NUM_CHANNELS 4
38
39/**
40 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
41 */
42static void constant_coef( struct lp_rast_triangle *tri,
43                           unsigned slot,
44			   const float value,
45                           unsigned i )
46{
47   tri->inputs.a0[slot][i] = value;
48   tri->inputs.dadx[slot][i] = 0;
49   tri->inputs.dady[slot][i] = 0;
50}
51
52/**
53 * Compute a0, dadx and dady for a linearly interpolated coefficient,
54 * for a triangle.
55 */
56static void linear_coef( struct lp_rast_triangle *tri,
57                         unsigned slot,
58                         const float (*v1)[4],
59                         const float (*v2)[4],
60                         const float (*v3)[4],
61                         unsigned vert_attr,
62                         unsigned i)
63{
64   float a1 = v1[vert_attr][i];
65   float a2 = v2[vert_attr][i];
66   float a3 = v3[vert_attr][i];
67
68   float da12 = a1 - a2;
69   float da31 = a3 - a1;
70   float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * tri->oneoverarea;
71   float dady = (da31 * tri->dx12 - tri->dx31 * da12) * tri->oneoverarea;
72
73   tri->inputs.dadx[slot][i] = dadx;
74   tri->inputs.dady[slot][i] = dady;
75
76   /* calculate a0 as the value which would be sampled for the
77    * fragment at (0,0), taking into account that we want to sample at
78    * pixel centers, in other words (0.5, 0.5).
79    *
80    * this is neat but unfortunately not a good way to do things for
81    * triangles with very large values of dadx or dady as it will
82    * result in the subtraction and re-addition from a0 of a very
83    * large number, which means we'll end up loosing a lot of the
84    * fractional bits and precision from a0.  the way to fix this is
85    * to define a0 as the sample at a pixel center somewhere near vmin
86    * instead - i'll switch to this later.
87    */
88   tri->inputs.a0[slot][i] = (v1[vert_attr][i] -
89                              (dadx * (v1[0][0] - 0.5f) +
90                               dady * (v1[0][1] - 0.5f)));
91}
92
93
94/**
95 * Compute a0, dadx and dady for a perspective-corrected interpolant,
96 * for a triangle.
97 * We basically multiply the vertex value by 1/w before computing
98 * the plane coefficients (a0, dadx, dady).
99 * Later, when we compute the value at a particular fragment position we'll
100 * divide the interpolated value by the interpolated W at that fragment.
101 */
102static void perspective_coef( struct lp_rast_triangle *tri,
103                              unsigned slot,
104			      const float (*v1)[4],
105			      const float (*v2)[4],
106			      const float (*v3)[4],
107			      unsigned vert_attr,
108                              unsigned i)
109{
110   /* premultiply by 1/w  (v[0][3] is always 1/w):
111    */
112   float a1 = v1[vert_attr][i] * v1[0][3];
113   float a2 = v2[vert_attr][i] * v2[0][3];
114   float a3 = v3[vert_attr][i] * v3[0][3];
115   float da12 = a1 - a2;
116   float da31 = a3 - a1;
117   float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * tri->oneoverarea;
118   float dady = (da31 * tri->dx12 - tri->dx31 * da12) * tri->oneoverarea;
119
120
121   tri->inputs.dadx[slot][i] = dadx;
122   tri->inputs.dady[slot][i] = dady;
123   tri->inputs.a0[slot][i] = (a1 -
124                              (dadx * (v1[0][0] - 0.5f) +
125                               dady * (v1[0][1] - 0.5f)));
126}
127
128
129/**
130 * Special coefficient setup for gl_FragCoord.
131 * X and Y are trivial, though Y has to be inverted for OpenGL.
132 * Z and W are copied from position_coef which should have already been computed.
133 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
134 */
135static void
136setup_fragcoord_coef(struct lp_rast_triangle *tri,
137                     unsigned slot,
138                     const float (*v1)[4],
139                     const float (*v2)[4],
140                     const float (*v3)[4])
141{
142   /*X*/
143   tri->inputs.a0[slot][0] = 0.0;
144   tri->inputs.dadx[slot][0] = 1.0;
145   tri->inputs.dady[slot][0] = 0.0;
146   /*Y*/
147   tri->inputs.a0[slot][1] = 0.0;
148   tri->inputs.dadx[slot][1] = 0.0;
149   tri->inputs.dady[slot][1] = 1.0;
150   /*Z*/
151   linear_coef(tri, slot, v1, v2, v3, 0, 2);
152   /*W*/
153   linear_coef(tri, slot, v1, v2, v3, 0, 3);
154}
155
156
157static void setup_facing_coef( struct lp_rast_triangle *tri,
158                               unsigned slot,
159                               boolean frontface )
160{
161   constant_coef( tri, slot, 1.0f - frontface, 0 );
162   constant_coef( tri, slot, 0.0f, 1 ); /* wasted */
163   constant_coef( tri, slot, 0.0f, 2 ); /* wasted */
164   constant_coef( tri, slot, 0.0f, 3 ); /* wasted */
165}
166
167
168/**
169 * Compute the tri->coef[] array dadx, dady, a0 values.
170 */
171static void setup_tri_coefficients( struct setup_context *setup,
172				    struct lp_rast_triangle *tri,
173				    const float (*v1)[4],
174				    const float (*v2)[4],
175				    const float (*v3)[4],
176				    boolean frontface )
177{
178   unsigned slot;
179
180   /* The internal position input is in slot zero:
181    */
182   setup_fragcoord_coef(tri, 0, v1, v2, v3);
183
184   /* setup interpolation for all the remaining attrbutes:
185    */
186   for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
187      unsigned vert_attr = setup->fs.input[slot].src_index;
188      unsigned i;
189
190      switch (setup->fs.input[slot].interp) {
191      case LP_INTERP_CONSTANT:
192         for (i = 0; i < NUM_CHANNELS; i++)
193            constant_coef(tri, slot+1, v3[vert_attr][i], i);
194         break;
195
196      case LP_INTERP_LINEAR:
197         for (i = 0; i < NUM_CHANNELS; i++)
198            linear_coef(tri, slot+1, v1, v2, v3, vert_attr, i);
199         break;
200
201      case LP_INTERP_PERSPECTIVE:
202         for (i = 0; i < NUM_CHANNELS; i++)
203            perspective_coef(tri, slot+1, v1, v2, v3, vert_attr, i);
204         break;
205
206      case LP_INTERP_POSITION:
207         /* XXX: fix me - duplicates the values in slot zero.
208          */
209         setup_fragcoord_coef(tri, slot+1, v1, v2, v3);
210         break;
211
212      case LP_INTERP_FACING:
213         setup_facing_coef(tri, slot+1, frontface);
214         break;
215
216      default:
217         assert(0);
218      }
219   }
220}
221
222
223
224/* XXX: do this by add/subtracting a large floating point number:
225 */
226static inline float subpixel_snap( float a )
227{
228   int i = a * 16;
229   return (float)i * (1.0/16);
230}
231
232
233static INLINE void bin_triangle( struct cmd_block_list *list,
234                                 const struct lp_rast_triangle arg )
235{
236}
237
238
239/* to avoid having to allocate power-of-four, square render targets,
240 * end up having a specialized version of the above that runs only at
241 * the topmost level.
242 *
243 * at the topmost level there may be an arbitary number of steps on
244 * either dimension, so this loop needs to be either separately
245 * code-generated and unrolled for each render target size, or kept as
246 * generic looping code:
247 */
248
249#define MIN3(a,b,c) MIN2(MIN2(a,b),c)
250#define MAX3(a,b,c) MAX2(MAX2(a,b),c)
251
252static void
253do_triangle_ccw(struct setup_context *setup,
254		const float (*v1)[4],
255		const float (*v2)[4],
256		const float (*v3)[4],
257		boolean frontfacing )
258{
259   const int rt_width = setup->fb.width;
260   const int rt_height = setup->fb.height;
261
262   const float y1 = subpixel_snap(v1[0][1]);
263   const float y2 = subpixel_snap(v2[0][1]);
264   const float y3 = subpixel_snap(v3[0][1]);
265
266   const float x1 = subpixel_snap(v1[0][0]);
267   const float x2 = subpixel_snap(v2[0][0]);
268   const float x3 = subpixel_snap(v3[0][0]);
269
270   struct lp_rast_triangle *tri = get_data( &setup->data, sizeof *tri );
271   float area;
272   float c1, c2, c3;
273   int minx, maxx, miny, maxy;
274
275   tri->inputs.state = setup->fs.stored;
276
277   tri->dx12 = x1 - x2;
278   tri->dx23 = x2 - x3;
279   tri->dx31 = x3 - x1;
280
281   tri->dy12 = y1 - y2;
282   tri->dy23 = y2 - y3;
283   tri->dy31 = y3 - y1;
284
285   area = (tri->dx12 * tri->dy31 -
286	   tri->dx31 * tri->dy12);
287
288   /* Cull non-ccw and zero-sized triangles.
289    */
290   if (area <= 0 || util_is_inf_or_nan(area))
291      return;
292
293   // Bounding rectangle
294   minx = util_iround(MIN3(x1, x2, x3) - .5);
295   maxx = util_iround(MAX3(x1, x2, x3) + .5);
296   miny = util_iround(MIN3(y1, y2, y3) - .5);
297   maxy = util_iround(MAX3(y1, y2, y3) + .5);
298
299   /* Clamp to framebuffer (or tile) dimensions:
300    */
301   miny = MAX2(0, miny);
302   minx = MAX2(0, minx);
303   maxy = MIN2(rt_height, maxy);
304   maxx = MIN2(rt_width, maxx);
305
306   if (miny == maxy || minx == maxx)
307      return;
308
309   /* The only divide in this code.  Is it really needed?
310    */
311   tri->oneoverarea = 1.0f / area;
312
313   /* Setup parameter interpolants:
314    */
315   setup_tri_coefficients( setup, tri, v1, v2, v3, frontfacing );
316
317   /* half-edge constants, will be interated over the whole
318    * rendertarget.
319    */
320   tri->c1 = tri->dy12 * x1 - tri->dx12 * y1;
321   tri->c2 = tri->dy23 * x2 - tri->dx23 * y2;
322   tri->c3 = tri->dy31 * x3 - tri->dx31 * y3;
323
324   /* correct for top-left fill convention:
325    */
326   if (tri->dy12 < 0 || (tri->dy12 == 0 && tri->dx12 > 0)) c1++;
327   if (tri->dy23 < 0 || (tri->dy23 == 0 && tri->dx23 > 0)) c2++;
328   if (tri->dy31 < 0 || (tri->dy31 == 0 && tri->dx31 > 0)) c3++;
329
330   /* find trivial reject offsets for each edge for a single-pixel
331    * sized block.  These will be scaled up at each recursive level to
332    * match the active blocksize.  Scaling in this way works best if
333    * the blocks are square.
334    */
335   tri->eo1 = 0;
336   if (tri->dy12 < 0) tri->eo1 -= tri->dy12;
337   if (tri->dx12 > 0) tri->eo1 += tri->dx12;
338
339   tri->eo2 = 0;
340   if (tri->dy23 < 0) tri->eo2 -= tri->dy23;
341   if (tri->dx23 > 0) tri->eo2 += tri->dx23;
342
343   tri->eo3 = 0;
344   if (tri->dy31 < 0) tri->eo3 -= tri->dy31;
345   if (tri->dx31 > 0) tri->eo3 += tri->dx31;
346
347   /* Calculate trivial accept offsets from the above.
348    */
349   tri->ei1 = tri->dx12 - tri->dy12 - tri->eo1;
350   tri->ei2 = tri->dx23 - tri->dy23 - tri->eo2;
351   tri->ei3 = tri->dx31 - tri->dy31 - tri->eo3;
352
353   minx &= ~(TILESIZE-1);		/* aligned blocks */
354   miny &= ~(TILESIZE-1);		/* aligned blocks */
355
356   c1 = tri->c1 + tri->dx12 * miny - tri->dy12 * minx;
357   c2 = tri->c2 + tri->dx23 * miny - tri->dy23 * minx;
358   c3 = tri->c3 + tri->dx31 * miny - tri->dy31 * minx;
359
360   minx /= TILESIZE;
361   miny /= TILESIZE;
362   maxx /= TILESIZE;
363   maxy /= TILESIZE;
364
365   /* Convert to tile coordinates:
366    */
367   if (miny == maxy && minx == maxx)
368   {
369      /* Triangle is contained in a single tile:
370       */
371      bin_command( &setup->tile[minx][miny], lp_rast_triangle,
372                   lp_rast_arg_triangle(tri) );
373   }
374   else
375   {
376      const int step = TILESIZE;
377
378      float ei1 = tri->ei1 * step;
379      float ei2 = tri->ei2 * step;
380      float ei3 = tri->ei3 * step;
381
382      float eo1 = tri->eo1 * step;
383      float eo2 = tri->eo2 * step;
384      float eo3 = tri->eo3 * step;
385
386      float xstep1 = -step * tri->dy12;
387      float xstep2 = -step * tri->dy23;
388      float xstep3 = -step * tri->dy31;
389
390      float ystep1 = step * tri->dx12;
391      float ystep2 = step * tri->dx23;
392      float ystep3 = step * tri->dx31;
393      int x, y;
394
395
396      /* Subdivide space into NxM blocks, where each block is square and
397       * power-of-four in dimension.
398       *
399       * Trivially accept or reject blocks, else jump to per-pixel
400       * examination above.
401       */
402      for (y = miny; y <= maxy; y++)
403      {
404	 float cx1 = c1;
405	 float cx2 = c2;
406	 float cx3 = c3;
407
408	 for (x = minx; x <= maxx; x++)
409	 {
410	    if (cx1 + eo1 < 0 ||
411		cx2 + eo2 < 0 ||
412		cx3 + eo3 < 0)
413	    {
414	       /* do nothing */
415	    }
416	    else if (cx1 + ei1 > 0 &&
417		     cx2 + ei2 > 0 &&
418		     cx3 + ei3 > 0)
419	    {
420               /* shade whole tile */
421               bin_command( &setup->tile[x][y], lp_rast_shade_tile,
422                            lp_rast_arg_inputs(&tri->inputs) );
423	    }
424	    else
425	    {
426#if 1
427               bin_command( &setup->tile[x][y], lp_rast_shade_tile,
428                            lp_rast_arg_inputs(&tri->inputs) );
429#else
430               /* shade partial tile */
431	       bin_command( &setup->tile[x][y],
432                            lp_rast_triangle,
433                            lp_rast_arg_triangle(tri) );
434#endif
435	    }
436
437	    /* Iterate cx values across the region:
438	     */
439	    cx1 += xstep1;
440	    cx2 += xstep2;
441	    cx3 += xstep3;
442	 }
443
444	 /* Iterate c values down the region:
445	  */
446	 c1 += ystep1;
447	 c2 += ystep2;
448	 c3 += ystep3;
449      }
450   }
451}
452
453static void triangle_cw( struct setup_context *setup,
454			 const float (*v0)[4],
455			 const float (*v1)[4],
456			 const float (*v2)[4] )
457{
458   do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface );
459}
460
461static void triangle_ccw( struct setup_context *setup,
462			 const float (*v0)[4],
463			 const float (*v1)[4],
464			 const float (*v2)[4] )
465{
466   do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
467}
468
469static void triangle_both( struct setup_context *setup,
470			   const float (*v0)[4],
471			   const float (*v1)[4],
472			   const float (*v2)[4] )
473{
474   /* edge vectors e = v0 - v2, f = v1 - v2 */
475   const float ex = v0[0][0] - v2[0][0];
476   const float ey = v0[0][1] - v2[0][1];
477   const float fx = v1[0][0] - v2[0][0];
478   const float fy = v1[0][1] - v2[0][1];
479
480   /* det = cross(e,f).z */
481   if (ex * fy - ey * fx < 0)
482      triangle_ccw( setup, v0, v1, v2 );
483   else
484      triangle_cw( setup, v0, v1, v2 );
485}
486
487static void triangle_nop( struct setup_context *setup,
488			  const float (*v0)[4],
489			  const float (*v1)[4],
490			  const float (*v2)[4] )
491{
492}
493
494
495void
496lp_setup_choose_triangle( struct setup_context *setup )
497{
498   switch (setup->cullmode) {
499   case PIPE_WINDING_NONE:
500      setup->triangle = triangle_both;
501      break;
502   case PIPE_WINDING_CCW:
503      setup->triangle = triangle_cw;
504      break;
505   case PIPE_WINDING_CW:
506      setup->triangle = triangle_ccw;
507      break;
508   default:
509      setup->triangle = triangle_nop;
510      break;
511   }
512}
513
514
515