lp_setup_tri.c revision 9f6e8e1d6b8696a3ee96cba01b2466ba7a1a8ef6
1/**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/*
29 * Binning code for triangles
30 */
31
32#include "util/u_math.h"
33#include "util/u_memory.h"
34#include "util/u_rect.h"
35#include "lp_perf.h"
36#include "lp_setup_context.h"
37#include "lp_setup_coef.h"
38#include "lp_rast.h"
39#include "lp_state_fs.h"
40
41#define NUM_CHANNELS 4
42
43
44
45static INLINE int
46subpixel_snap(float a)
47{
48   return util_iround(FIXED_ONE * a);
49}
50
51static INLINE float
52fixed_to_float(int a)
53{
54   return a * (1.0 / FIXED_ONE);
55}
56
57
58
59
60
61
62
63/**
64 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
65 * immediately after it.
66 * The memory is allocated from the per-scene pool, not per-tile.
67 * \param tri_size  returns number of bytes allocated
68 * \param nr_inputs  number of fragment shader inputs
69 * \return pointer to triangle space
70 */
71struct lp_rast_triangle *
72lp_setup_alloc_triangle(struct lp_scene *scene,
73                        unsigned nr_inputs,
74                        unsigned nr_planes,
75                        unsigned *tri_size)
76{
77   unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
78   struct lp_rast_triangle *tri;
79   unsigned tri_bytes, bytes;
80   char *inputs;
81
82   tri_bytes = align(Offset(struct lp_rast_triangle, plane[nr_planes]), 16);
83   bytes = tri_bytes + (3 * input_array_sz);
84
85   tri = lp_scene_alloc_aligned( scene, bytes, 16 );
86
87   if (tri) {
88      inputs = ((char *)tri) + tri_bytes;
89      tri->inputs.a0   = (float (*)[4]) inputs;
90      tri->inputs.dadx = (float (*)[4]) (inputs + input_array_sz);
91      tri->inputs.dady = (float (*)[4]) (inputs + 2 * input_array_sz);
92
93      *tri_size = bytes;
94   }
95
96   return tri;
97}
98
99void
100lp_setup_print_vertex(struct lp_setup_context *setup,
101                      const char *name,
102                      const float (*v)[4])
103{
104   int i, j;
105
106   debug_printf("   wpos (%s[0]) xyzw %f %f %f %f\n",
107                name,
108                v[0][0], v[0][1], v[0][2], v[0][3]);
109
110   for (i = 0; i < setup->fs.nr_inputs; i++) {
111      const float *in = v[setup->fs.input[i].src_index];
112
113      debug_printf("  in[%d] (%s[%d]) %s%s%s%s ",
114                   i,
115                   name, setup->fs.input[i].src_index,
116                   (setup->fs.input[i].usage_mask & 0x1) ? "x" : " ",
117                   (setup->fs.input[i].usage_mask & 0x2) ? "y" : " ",
118                   (setup->fs.input[i].usage_mask & 0x4) ? "z" : " ",
119                   (setup->fs.input[i].usage_mask & 0x8) ? "w" : " ");
120
121      for (j = 0; j < 4; j++)
122         if (setup->fs.input[i].usage_mask & (1<<j))
123            debug_printf("%.5f ", in[j]);
124
125      debug_printf("\n");
126   }
127}
128
129
130/**
131 * Print triangle vertex attribs (for debug).
132 */
133void
134lp_setup_print_triangle(struct lp_setup_context *setup,
135                        const float (*v0)[4],
136                        const float (*v1)[4],
137                        const float (*v2)[4])
138{
139   debug_printf("triangle\n");
140
141   {
142      const float ex = v0[0][0] - v2[0][0];
143      const float ey = v0[0][1] - v2[0][1];
144      const float fx = v1[0][0] - v2[0][0];
145      const float fy = v1[0][1] - v2[0][1];
146
147      /* det = cross(e,f).z */
148      const float det = ex * fy - ey * fx;
149      if (det < 0.0f)
150         debug_printf("   - ccw\n");
151      else if (det > 0.0f)
152         debug_printf("   - cw\n");
153      else
154         debug_printf("   - zero area\n");
155   }
156
157   lp_setup_print_vertex(setup, "v0", v0);
158   lp_setup_print_vertex(setup, "v1", v1);
159   lp_setup_print_vertex(setup, "v2", v2);
160}
161
162
163static unsigned
164lp_rast_tri_tab[9] = {
165   0,               /* should be impossible */
166   LP_RAST_OP_TRIANGLE_1,
167   LP_RAST_OP_TRIANGLE_2,
168   LP_RAST_OP_TRIANGLE_3,
169   LP_RAST_OP_TRIANGLE_4,
170   LP_RAST_OP_TRIANGLE_5,
171   LP_RAST_OP_TRIANGLE_6,
172   LP_RAST_OP_TRIANGLE_7,
173   LP_RAST_OP_TRIANGLE_8
174};
175
176
177
178/**
179 * The primitive covers the whole tile- shade whole tile.
180 *
181 * \param tx, ty  the tile position in tiles, not pixels
182 */
183static boolean
184lp_setup_whole_tile(struct lp_setup_context *setup,
185                    const struct lp_rast_shader_inputs *inputs,
186                    int tx, int ty)
187{
188   struct lp_scene *scene = setup->scene;
189
190   LP_COUNT(nr_fully_covered_64);
191
192   /* if variant is opaque and scissor doesn't effect the tile */
193   if (inputs->opaque) {
194      if (!scene->fb.zsbuf) {
195         /*
196          * All previous rendering will be overwritten so reset the bin.
197          */
198         lp_scene_bin_reset( scene, tx, ty );
199      }
200
201      LP_COUNT(nr_shade_opaque_64);
202      return lp_scene_bin_command( scene, tx, ty,
203                                   LP_RAST_OP_SHADE_TILE_OPAQUE,
204                                   lp_rast_arg_inputs(inputs) );
205   } else {
206      LP_COUNT(nr_shade_64);
207      return lp_scene_bin_command( scene, tx, ty,
208                                   LP_RAST_OP_SHADE_TILE,
209                                   lp_rast_arg_inputs(inputs) );
210   }
211}
212
213
214/**
215 * Do basic setup for triangle rasterization and determine which
216 * framebuffer tiles are touched.  Put the triangle in the scene's
217 * bins for the tiles which we overlap.
218 */
219static boolean
220do_triangle_ccw(struct lp_setup_context *setup,
221		const float (*v0)[4],
222		const float (*v1)[4],
223		const float (*v2)[4],
224		boolean frontfacing )
225{
226   struct lp_scene *scene = setup->scene;
227   struct lp_rast_triangle *tri;
228   int x[3];
229   int y[3];
230   float dy01, dy20;
231   float dx01, dx20;
232   float oneoverarea;
233   struct lp_tri_info info;
234   int area;
235   struct u_rect bbox;
236   unsigned tri_bytes;
237   int i;
238   int nr_planes = 3;
239
240   if (0)
241      lp_setup_print_triangle(setup, v0, v1, v2);
242
243   if (setup->scissor_test) {
244      nr_planes = 7;
245   }
246   else {
247      nr_planes = 3;
248   }
249
250   /* x/y positions in fixed point */
251   x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset);
252   x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset);
253   x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
254   y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset);
255   y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset);
256   y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
257
258
259   /* Bounding rectangle (in pixels) */
260   {
261      /* Yes this is necessary to accurately calculate bounding boxes
262       * with the two fill-conventions we support.  GL (normally) ends
263       * up needing a bottom-left fill convention, which requires
264       * slightly different rounding.
265       */
266      int adj = (setup->pixel_offset != 0) ? 1 : 0;
267
268      bbox.x0 = (MIN3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
269      bbox.x1 = (MAX3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
270      bbox.y0 = (MIN3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
271      bbox.y1 = (MAX3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
272
273      /* Inclusive coordinates:
274       */
275      bbox.x1--;
276      bbox.y1--;
277   }
278
279   if (bbox.x1 < bbox.x0 ||
280       bbox.y1 < bbox.y0) {
281      if (0) debug_printf("empty bounding box\n");
282      LP_COUNT(nr_culled_tris);
283      return TRUE;
284   }
285
286   if (!u_rect_test_intersection(&setup->draw_region, &bbox)) {
287      if (0) debug_printf("offscreen\n");
288      LP_COUNT(nr_culled_tris);
289      return TRUE;
290   }
291
292   u_rect_find_intersection(&setup->draw_region, &bbox);
293
294   tri = lp_setup_alloc_triangle(scene,
295                                 setup->fs.nr_inputs,
296                                 nr_planes,
297                                 &tri_bytes);
298   if (!tri)
299      return FALSE;
300
301#ifdef DEBUG
302   tri->v[0][0] = v0[0][0];
303   tri->v[1][0] = v1[0][0];
304   tri->v[2][0] = v2[0][0];
305   tri->v[0][1] = v0[0][1];
306   tri->v[1][1] = v1[0][1];
307   tri->v[2][1] = v2[0][1];
308#endif
309
310   tri->plane[0].dcdy = x[0] - x[1];
311   tri->plane[1].dcdy = x[1] - x[2];
312   tri->plane[2].dcdy = x[2] - x[0];
313
314   tri->plane[0].dcdx = y[0] - y[1];
315   tri->plane[1].dcdx = y[1] - y[2];
316   tri->plane[2].dcdx = y[2] - y[0];
317
318   area = (tri->plane[0].dcdy * tri->plane[2].dcdx -
319           tri->plane[2].dcdy * tri->plane[0].dcdx);
320
321   LP_COUNT(nr_tris);
322
323   /* Cull non-ccw and zero-sized triangles.
324    *
325    * XXX: subject to overflow??
326    */
327   if (area <= 0) {
328      lp_scene_putback_data( scene, tri_bytes );
329      LP_COUNT(nr_culled_tris);
330      return TRUE;
331   }
332
333
334   /*
335    */
336   dx01 = v0[0][0] - v1[0][0];
337   dy01 = v0[0][1] - v1[0][1];
338   dx20 = v2[0][0] - v0[0][0];
339   dy20 = v2[0][1] - v0[0][1];
340   oneoverarea = 1.0f / (dx01 * dy20 - dx20 * dy01);
341
342   info.v0 = v0;
343   info.v1 = v1;
344   info.v2 = v2;
345   info.frontfacing = frontfacing;
346   info.x0_center = v0[0][0] - setup->pixel_offset;
347   info.y0_center = v0[0][1] - setup->pixel_offset;
348   info.dx01_ooa  = dx01 * oneoverarea;
349   info.dx20_ooa  = dx20 * oneoverarea;
350   info.dy01_ooa  = dy01 * oneoverarea;
351   info.dy20_ooa  = dy20 * oneoverarea;
352
353   /* Setup parameter interpolants:
354    */
355   lp_setup_tri_coef( setup, &tri->inputs, &info );
356
357   tri->inputs.facing = frontfacing ? 1.0F : -1.0F;
358   tri->inputs.disable = FALSE;
359   tri->inputs.opaque = setup->fs.current.variant->opaque;
360   tri->inputs.state = setup->fs.stored;
361
362
363   for (i = 0; i < 3; i++) {
364      struct lp_rast_plane *plane = &tri->plane[i];
365
366      /* half-edge constants, will be interated over the whole render
367       * target.
368       */
369      plane->c = plane->dcdx * x[i] - plane->dcdy * y[i];
370
371      /* correct for top-left vs. bottom-left fill convention.
372       *
373       * note that we're overloading gl_rasterization_rules to mean
374       * both (0.5,0.5) pixel centers *and* bottom-left filling
375       * convention.
376       *
377       * GL actually has a top-left filling convention, but GL's
378       * notion of "top" differs from gallium's...
379       *
380       * Also, sometimes (in FBO cases) GL will render upside down
381       * to its usual method, in which case it will probably want
382       * to use the opposite, top-left convention.
383       */
384      if (plane->dcdx < 0) {
385         /* both fill conventions want this - adjust for left edges */
386         plane->c++;
387      }
388      else if (plane->dcdx == 0) {
389         if (setup->pixel_offset == 0) {
390            /* correct for top-left fill convention:
391             */
392            if (plane->dcdy > 0) plane->c++;
393         }
394         else {
395            /* correct for bottom-left fill convention:
396             */
397            if (plane->dcdy < 0) plane->c++;
398         }
399      }
400
401      plane->dcdx *= FIXED_ONE;
402      plane->dcdy *= FIXED_ONE;
403
404      /* find trivial reject offsets for each edge for a single-pixel
405       * sized block.  These will be scaled up at each recursive level to
406       * match the active blocksize.  Scaling in this way works best if
407       * the blocks are square.
408       */
409      plane->eo = 0;
410      if (plane->dcdx < 0) plane->eo -= plane->dcdx;
411      if (plane->dcdy > 0) plane->eo += plane->dcdy;
412
413      /* Calculate trivial accept offsets from the above.
414       */
415      plane->ei = plane->dcdy - plane->dcdx - plane->eo;
416   }
417
418
419   /*
420    * When rasterizing scissored tris, use the intersection of the
421    * triangle bounding box and the scissor rect to generate the
422    * scissor planes.
423    *
424    * This permits us to cut off the triangle "tails" that are present
425    * in the intermediate recursive levels caused when two of the
426    * triangles edges don't diverge quickly enough to trivially reject
427    * exterior blocks from the triangle.
428    *
429    * It's not really clear if it's worth worrying about these tails,
430    * but since we generate the planes for each scissored tri, it's
431    * free to trim them in this case.
432    *
433    * Note that otherwise, the scissor planes only vary in 'C' value,
434    * and even then only on state-changes.  Could alternatively store
435    * these planes elsewhere.
436    */
437   if (nr_planes == 7) {
438      tri->plane[3].dcdx = -1;
439      tri->plane[3].dcdy = 0;
440      tri->plane[3].c = 1-bbox.x0;
441      tri->plane[3].ei = 0;
442      tri->plane[3].eo = 1;
443
444      tri->plane[4].dcdx = 1;
445      tri->plane[4].dcdy = 0;
446      tri->plane[4].c = bbox.x1+1;
447      tri->plane[4].ei = -1;
448      tri->plane[4].eo = 0;
449
450      tri->plane[5].dcdx = 0;
451      tri->plane[5].dcdy = 1;
452      tri->plane[5].c = 1-bbox.y0;
453      tri->plane[5].ei = 0;
454      tri->plane[5].eo = 1;
455
456      tri->plane[6].dcdx = 0;
457      tri->plane[6].dcdy = -1;
458      tri->plane[6].c = bbox.y1+1;
459      tri->plane[6].ei = -1;
460      tri->plane[6].eo = 0;
461   }
462
463   return lp_setup_bin_triangle( setup, tri, &bbox, nr_planes );
464}
465
466
467boolean
468lp_setup_bin_triangle( struct lp_setup_context *setup,
469                       struct lp_rast_triangle *tri,
470                       const struct u_rect *bbox,
471                       int nr_planes )
472{
473   struct lp_scene *scene = setup->scene;
474   int ix0, ix1, iy0, iy1;
475   int i;
476
477   /*
478    * All fields of 'tri' are now set.  The remaining code here is
479    * concerned with binning.
480    */
481
482   /* Convert to tile coordinates, and inclusive ranges:
483    */
484   if (nr_planes == 3) {
485      int ix0 = bbox->x0 / 16;
486      int iy0 = bbox->y0 / 16;
487      int ix1 = bbox->x1 / 16;
488      int iy1 = bbox->y1 / 16;
489
490      if (iy0 == iy1 && ix0 == ix1)
491      {
492
493	 /* Triangle is contained in a single 16x16 block:
494	  */
495	 int mask = (ix0 & 3) | ((iy0 & 3) << 4);
496
497	 return lp_scene_bin_command( scene, ix0/4, iy0/4,
498                                      LP_RAST_OP_TRIANGLE_3_16,
499                                      lp_rast_arg_triangle(tri, mask) );
500      }
501   }
502
503   ix0 = bbox->x0 / TILE_SIZE;
504   iy0 = bbox->y0 / TILE_SIZE;
505   ix1 = bbox->x1 / TILE_SIZE;
506   iy1 = bbox->y1 / TILE_SIZE;
507
508   /*
509    * Clamp to framebuffer size
510    */
511   assert(ix0 == MAX2(ix0, 0));
512   assert(iy0 == MAX2(iy0, 0));
513   assert(ix1 == MIN2(ix1, scene->tiles_x - 1));
514   assert(iy1 == MIN2(iy1, scene->tiles_y - 1));
515
516   /* Determine which tile(s) intersect the triangle's bounding box
517    */
518   if (iy0 == iy1 && ix0 == ix1)
519   {
520      /* Triangle is contained in a single tile:
521       */
522      return lp_scene_bin_command( scene, ix0, iy0,
523                                   lp_rast_tri_tab[nr_planes],
524                                   lp_rast_arg_triangle(tri, (1<<nr_planes)-1) );
525   }
526   else
527   {
528      int c[7];
529      int ei[7];
530      int eo[7];
531      int xstep[7];
532      int ystep[7];
533      int x, y;
534
535      for (i = 0; i < nr_planes; i++) {
536         c[i] = (tri->plane[i].c +
537                 tri->plane[i].dcdy * iy0 * TILE_SIZE -
538                 tri->plane[i].dcdx * ix0 * TILE_SIZE);
539
540         ei[i] = tri->plane[i].ei << TILE_ORDER;
541         eo[i] = tri->plane[i].eo << TILE_ORDER;
542         xstep[i] = -(tri->plane[i].dcdx << TILE_ORDER);
543         ystep[i] = tri->plane[i].dcdy << TILE_ORDER;
544      }
545
546
547
548      /* Test tile-sized blocks against the triangle.
549       * Discard blocks fully outside the tri.  If the block is fully
550       * contained inside the tri, bin an lp_rast_shade_tile command.
551       * Else, bin a lp_rast_triangle command.
552       */
553      for (y = iy0; y <= iy1; y++)
554      {
555	 boolean in = FALSE;  /* are we inside the triangle? */
556	 int cx[7];
557
558         for (i = 0; i < nr_planes; i++)
559            cx[i] = c[i];
560
561	 for (x = ix0; x <= ix1; x++)
562	 {
563            int out = 0;
564            int partial = 0;
565
566            for (i = 0; i < nr_planes; i++) {
567               int planeout = cx[i] + eo[i];
568               int planepartial = cx[i] + ei[i] - 1;
569               out |= (planeout >> 31);
570               partial |= (planepartial >> 31) & (1<<i);
571            }
572
573            if (out) {
574               /* do nothing */
575               if (in)
576                  break;  /* exiting triangle, all done with this row */
577               LP_COUNT(nr_empty_64);
578            }
579            else if (partial) {
580               /* Not trivially accepted by at least one plane -
581                * rasterize/shade partial tile
582                */
583               int count = util_bitcount(partial);
584               in = TRUE;
585               if (!lp_scene_bin_command( scene, x, y,
586                                          lp_rast_tri_tab[count],
587                                          lp_rast_arg_triangle(tri, partial) ))
588                  goto fail;
589
590               LP_COUNT(nr_partially_covered_64);
591            }
592            else {
593               /* triangle covers the whole tile- shade whole tile */
594               LP_COUNT(nr_fully_covered_64);
595               in = TRUE;
596               if (!lp_setup_whole_tile(setup, &tri->inputs, x, y))
597                  goto fail;
598            }
599
600	    /* Iterate cx values across the region:
601	     */
602            for (i = 0; i < nr_planes; i++)
603               cx[i] += xstep[i];
604	 }
605
606	 /* Iterate c values down the region:
607	  */
608         for (i = 0; i < nr_planes; i++)
609            c[i] += ystep[i];
610      }
611   }
612
613   return TRUE;
614
615fail:
616   /* Need to disable any partially binned triangle.  This is easier
617    * than trying to locate all the triangle, shade-tile, etc,
618    * commands which may have been binned.
619    */
620   tri->inputs.disable = TRUE;
621   return FALSE;
622}
623
624
625/**
626 * Draw triangle if it's CW, cull otherwise.
627 */
628static void triangle_cw( struct lp_setup_context *setup,
629			 const float (*v0)[4],
630			 const float (*v1)[4],
631			 const float (*v2)[4] )
632{
633   if (!do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface ))
634   {
635      lp_setup_flush_and_restart(setup);
636
637      if (!do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface ))
638         assert(0);
639   }
640}
641
642
643/**
644 * Draw triangle if it's CCW, cull otherwise.
645 */
646static void triangle_ccw( struct lp_setup_context *setup,
647			 const float (*v0)[4],
648			 const float (*v1)[4],
649			 const float (*v2)[4] )
650{
651   if (!do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface ))
652   {
653      lp_setup_flush_and_restart(setup);
654      if (!do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface ))
655         assert(0);
656   }
657}
658
659
660
661/**
662 * Draw triangle whether it's CW or CCW.
663 */
664static void triangle_both( struct lp_setup_context *setup,
665			   const float (*v0)[4],
666			   const float (*v1)[4],
667			   const float (*v2)[4] )
668{
669   /* edge vectors e = v0 - v2, f = v1 - v2 */
670   const float ex = v0[0][0] - v2[0][0];
671   const float ey = v0[0][1] - v2[0][1];
672   const float fx = v1[0][0] - v2[0][0];
673   const float fy = v1[0][1] - v2[0][1];
674
675   /* det = cross(e,f).z */
676   const float det = ex * fy - ey * fx;
677   if (det < 0.0f)
678      triangle_ccw( setup, v0, v1, v2 );
679   else if (det > 0.0f)
680      triangle_cw( setup, v0, v1, v2 );
681}
682
683
684static void triangle_nop( struct lp_setup_context *setup,
685			  const float (*v0)[4],
686			  const float (*v1)[4],
687			  const float (*v2)[4] )
688{
689}
690
691
692void
693lp_setup_choose_triangle( struct lp_setup_context *setup )
694{
695   switch (setup->cullmode) {
696   case PIPE_FACE_NONE:
697      setup->triangle = triangle_both;
698      break;
699   case PIPE_FACE_BACK:
700      setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
701      break;
702   case PIPE_FACE_FRONT:
703      setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
704      break;
705   default:
706      setup->triangle = triangle_nop;
707      break;
708   }
709}
710