lp_setup_tri.c revision c40858fa0dac28dc5096973ac267630ba5725003
1/**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/*
29 * Binning code for triangles
30 */
31
32#include "util/u_math.h"
33#include "util/u_memory.h"
34#include "util/u_rect.h"
35#include "lp_perf.h"
36#include "lp_setup_context.h"
37#include "lp_setup_coef.h"
38#include "lp_rast.h"
39#include "lp_state_fs.h"
40
41#define NUM_CHANNELS 4
42
43
44
45static INLINE int
46subpixel_snap(float a)
47{
48   return util_iround(FIXED_ONE * a);
49}
50
51static INLINE float
52fixed_to_float(int a)
53{
54   return a * (1.0 / FIXED_ONE);
55}
56
57
58
59
60
61
62
63/**
64 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
65 * immediately after it.
66 * The memory is allocated from the per-scene pool, not per-tile.
67 * \param tri_size  returns number of bytes allocated
68 * \param nr_inputs  number of fragment shader inputs
69 * \return pointer to triangle space
70 */
71struct lp_rast_triangle *
72lp_setup_alloc_triangle(struct lp_scene *scene,
73                        unsigned nr_inputs,
74                        unsigned nr_planes,
75                        unsigned *tri_size)
76{
77   unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
78   struct lp_rast_triangle *tri;
79   unsigned tri_bytes, bytes;
80   char *inputs;
81
82   tri_bytes = align(Offset(struct lp_rast_triangle, plane[nr_planes]), 16);
83   bytes = tri_bytes + (3 * input_array_sz);
84
85   tri = lp_scene_alloc_aligned( scene, bytes, 16 );
86
87   if (tri) {
88      inputs = ((char *)tri) + tri_bytes;
89      tri->inputs.a0   = (float (*)[4]) inputs;
90      tri->inputs.dadx = (float (*)[4]) (inputs + input_array_sz);
91      tri->inputs.dady = (float (*)[4]) (inputs + 2 * input_array_sz);
92
93      *tri_size = bytes;
94   }
95
96   return tri;
97}
98
99void
100lp_setup_print_vertex(struct lp_setup_context *setup,
101                      const char *name,
102                      const float (*v)[4])
103{
104   int i, j;
105
106   debug_printf("   wpos (%s[0]) xyzw %f %f %f %f\n",
107                name,
108                v[0][0], v[0][1], v[0][2], v[0][3]);
109
110   for (i = 0; i < setup->fs.nr_inputs; i++) {
111      const float *in = v[setup->fs.input[i].src_index];
112
113      debug_printf("  in[%d] (%s[%d]) %s%s%s%s ",
114                   i,
115                   name, setup->fs.input[i].src_index,
116                   (setup->fs.input[i].usage_mask & 0x1) ? "x" : " ",
117                   (setup->fs.input[i].usage_mask & 0x2) ? "y" : " ",
118                   (setup->fs.input[i].usage_mask & 0x4) ? "z" : " ",
119                   (setup->fs.input[i].usage_mask & 0x8) ? "w" : " ");
120
121      for (j = 0; j < 4; j++)
122         if (setup->fs.input[i].usage_mask & (1<<j))
123            debug_printf("%.5f ", in[j]);
124
125      debug_printf("\n");
126   }
127}
128
129
130/**
131 * Print triangle vertex attribs (for debug).
132 */
133void
134lp_setup_print_triangle(struct lp_setup_context *setup,
135                        const float (*v0)[4],
136                        const float (*v1)[4],
137                        const float (*v2)[4])
138{
139   debug_printf("triangle\n");
140
141   {
142      const float ex = v0[0][0] - v2[0][0];
143      const float ey = v0[0][1] - v2[0][1];
144      const float fx = v1[0][0] - v2[0][0];
145      const float fy = v1[0][1] - v2[0][1];
146
147      /* det = cross(e,f).z */
148      const float det = ex * fy - ey * fx;
149      if (det < 0.0f)
150         debug_printf("   - ccw\n");
151      else if (det > 0.0f)
152         debug_printf("   - cw\n");
153      else
154         debug_printf("   - zero area\n");
155   }
156
157   lp_setup_print_vertex(setup, "v0", v0);
158   lp_setup_print_vertex(setup, "v1", v1);
159   lp_setup_print_vertex(setup, "v2", v2);
160}
161
162
163static unsigned
164lp_rast_tri_tab[9] = {
165   0,               /* should be impossible */
166   LP_RAST_OP_TRIANGLE_1,
167   LP_RAST_OP_TRIANGLE_2,
168   LP_RAST_OP_TRIANGLE_3,
169   LP_RAST_OP_TRIANGLE_4,
170   LP_RAST_OP_TRIANGLE_5,
171   LP_RAST_OP_TRIANGLE_6,
172   LP_RAST_OP_TRIANGLE_7,
173   LP_RAST_OP_TRIANGLE_8
174};
175
176
177
178/**
179 * The primitive covers the whole tile- shade whole tile.
180 *
181 * \param tx, ty  the tile position in tiles, not pixels
182 */
183static boolean
184lp_setup_whole_tile(struct lp_setup_context *setup,
185                    const struct lp_rast_shader_inputs *inputs,
186                    int tx, int ty)
187{
188   struct lp_scene *scene = setup->scene;
189
190   LP_COUNT(nr_fully_covered_64);
191
192   /* if variant is opaque and scissor doesn't effect the tile */
193   if (inputs->opaque) {
194      if (!scene->fb.zsbuf) {
195         /*
196          * All previous rendering will be overwritten so reset the bin.
197          */
198         lp_scene_bin_reset( scene, tx, ty );
199      }
200
201      LP_COUNT(nr_shade_opaque_64);
202      return lp_scene_bin_command( scene, tx, ty,
203                                   LP_RAST_OP_SHADE_TILE_OPAQUE,
204                                   lp_rast_arg_inputs(inputs) );
205   } else {
206      LP_COUNT(nr_shade_64);
207      return lp_scene_bin_command( scene, tx, ty,
208                                   LP_RAST_OP_SHADE_TILE,
209                                   lp_rast_arg_inputs(inputs) );
210   }
211}
212
213
214/**
215 * Do basic setup for triangle rasterization and determine which
216 * framebuffer tiles are touched.  Put the triangle in the scene's
217 * bins for the tiles which we overlap.
218 */
219static boolean
220do_triangle_ccw(struct lp_setup_context *setup,
221		const float (*v0)[4],
222		const float (*v1)[4],
223		const float (*v2)[4],
224		boolean frontfacing )
225{
226   struct lp_scene *scene = setup->scene;
227   struct lp_rast_triangle *tri;
228   int x[3];
229   int y[3];
230   int area;
231   struct u_rect bbox;
232   unsigned tri_bytes;
233   int i;
234   int nr_planes = 3;
235
236   if (0)
237      lp_setup_print_triangle(setup, v0, v1, v2);
238
239   if (setup->scissor_test) {
240      nr_planes = 7;
241   }
242   else {
243      nr_planes = 3;
244   }
245
246   /* x/y positions in fixed point */
247   x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset);
248   x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset);
249   x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
250   y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset);
251   y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset);
252   y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
253
254
255   /* Bounding rectangle (in pixels) */
256   {
257      /* Yes this is necessary to accurately calculate bounding boxes
258       * with the two fill-conventions we support.  GL (normally) ends
259       * up needing a bottom-left fill convention, which requires
260       * slightly different rounding.
261       */
262      int adj = (setup->pixel_offset != 0) ? 1 : 0;
263
264      bbox.x0 = (MIN3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
265      bbox.x1 = (MAX3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
266      bbox.y0 = (MIN3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
267      bbox.y1 = (MAX3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
268
269      /* Inclusive coordinates:
270       */
271      bbox.x1--;
272      bbox.y1--;
273   }
274
275   if (bbox.x1 < bbox.x0 ||
276       bbox.y1 < bbox.y0) {
277      if (0) debug_printf("empty bounding box\n");
278      LP_COUNT(nr_culled_tris);
279      return TRUE;
280   }
281
282   if (!u_rect_test_intersection(&setup->draw_region, &bbox)) {
283      if (0) debug_printf("offscreen\n");
284      LP_COUNT(nr_culled_tris);
285      return TRUE;
286   }
287
288   u_rect_find_intersection(&setup->draw_region, &bbox);
289
290   tri = lp_setup_alloc_triangle(scene,
291                                 setup->fs.nr_inputs,
292                                 nr_planes,
293                                 &tri_bytes);
294   if (!tri)
295      return FALSE;
296
297#ifdef DEBUG
298   tri->v[0][0] = v0[0][0];
299   tri->v[1][0] = v1[0][0];
300   tri->v[2][0] = v2[0][0];
301   tri->v[0][1] = v0[0][1];
302   tri->v[1][1] = v1[0][1];
303   tri->v[2][1] = v2[0][1];
304#endif
305
306   tri->plane[0].dcdy = x[0] - x[1];
307   tri->plane[1].dcdy = x[1] - x[2];
308   tri->plane[2].dcdy = x[2] - x[0];
309
310   tri->plane[0].dcdx = y[0] - y[1];
311   tri->plane[1].dcdx = y[1] - y[2];
312   tri->plane[2].dcdx = y[2] - y[0];
313
314   area = (tri->plane[0].dcdy * tri->plane[2].dcdx -
315           tri->plane[2].dcdy * tri->plane[0].dcdx);
316
317   LP_COUNT(nr_tris);
318
319   /* Cull non-ccw and zero-sized triangles.
320    *
321    * XXX: subject to overflow??
322    */
323   if (area <= 0) {
324      lp_scene_putback_data( scene, tri_bytes );
325      LP_COUNT(nr_culled_tris);
326      return TRUE;
327   }
328
329   /* Setup parameter interpolants:
330    */
331   lp_setup_tri_coef( setup, &tri->inputs, v0, v1, v2, frontfacing );
332
333   tri->inputs.facing = frontfacing ? 1.0F : -1.0F;
334   tri->inputs.disable = FALSE;
335   tri->inputs.opaque = setup->fs.current.variant->opaque;
336   tri->inputs.state = setup->fs.stored;
337
338
339   for (i = 0; i < 3; i++) {
340      struct lp_rast_plane *plane = &tri->plane[i];
341
342      /* half-edge constants, will be interated over the whole render
343       * target.
344       */
345      plane->c = plane->dcdx * x[i] - plane->dcdy * y[i];
346
347      /* correct for top-left vs. bottom-left fill convention.
348       *
349       * note that we're overloading gl_rasterization_rules to mean
350       * both (0.5,0.5) pixel centers *and* bottom-left filling
351       * convention.
352       *
353       * GL actually has a top-left filling convention, but GL's
354       * notion of "top" differs from gallium's...
355       *
356       * Also, sometimes (in FBO cases) GL will render upside down
357       * to its usual method, in which case it will probably want
358       * to use the opposite, top-left convention.
359       */
360      if (plane->dcdx < 0) {
361         /* both fill conventions want this - adjust for left edges */
362         plane->c++;
363      }
364      else if (plane->dcdx == 0) {
365         if (setup->pixel_offset == 0) {
366            /* correct for top-left fill convention:
367             */
368            if (plane->dcdy > 0) plane->c++;
369         }
370         else {
371            /* correct for bottom-left fill convention:
372             */
373            if (plane->dcdy < 0) plane->c++;
374         }
375      }
376
377      plane->dcdx *= FIXED_ONE;
378      plane->dcdy *= FIXED_ONE;
379
380      /* find trivial reject offsets for each edge for a single-pixel
381       * sized block.  These will be scaled up at each recursive level to
382       * match the active blocksize.  Scaling in this way works best if
383       * the blocks are square.
384       */
385      plane->eo = 0;
386      if (plane->dcdx < 0) plane->eo -= plane->dcdx;
387      if (plane->dcdy > 0) plane->eo += plane->dcdy;
388
389      /* Calculate trivial accept offsets from the above.
390       */
391      plane->ei = plane->dcdy - plane->dcdx - plane->eo;
392   }
393
394
395   /*
396    * When rasterizing scissored tris, use the intersection of the
397    * triangle bounding box and the scissor rect to generate the
398    * scissor planes.
399    *
400    * This permits us to cut off the triangle "tails" that are present
401    * in the intermediate recursive levels caused when two of the
402    * triangles edges don't diverge quickly enough to trivially reject
403    * exterior blocks from the triangle.
404    *
405    * It's not really clear if it's worth worrying about these tails,
406    * but since we generate the planes for each scissored tri, it's
407    * free to trim them in this case.
408    *
409    * Note that otherwise, the scissor planes only vary in 'C' value,
410    * and even then only on state-changes.  Could alternatively store
411    * these planes elsewhere.
412    */
413   if (nr_planes == 7) {
414      tri->plane[3].dcdx = -1;
415      tri->plane[3].dcdy = 0;
416      tri->plane[3].c = 1-bbox.x0;
417      tri->plane[3].ei = 0;
418      tri->plane[3].eo = 1;
419
420      tri->plane[4].dcdx = 1;
421      tri->plane[4].dcdy = 0;
422      tri->plane[4].c = bbox.x1+1;
423      tri->plane[4].ei = -1;
424      tri->plane[4].eo = 0;
425
426      tri->plane[5].dcdx = 0;
427      tri->plane[5].dcdy = 1;
428      tri->plane[5].c = 1-bbox.y0;
429      tri->plane[5].ei = 0;
430      tri->plane[5].eo = 1;
431
432      tri->plane[6].dcdx = 0;
433      tri->plane[6].dcdy = -1;
434      tri->plane[6].c = bbox.y1+1;
435      tri->plane[6].ei = -1;
436      tri->plane[6].eo = 0;
437   }
438
439   return lp_setup_bin_triangle( setup, tri, &bbox, nr_planes );
440}
441
442/*
443 * Round to nearest less or equal power of two of the input.
444 *
445 * Undefined if no bit set exists, so code should check against 0 first.
446 */
447static INLINE uint32_t
448floor_pot(uint32_t n)
449{
450   assert(n);
451#if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
452   __asm__("bsr %1,%0"
453          : "=r" (n)
454          : "rm" (n));
455   return 1 << n;
456#else
457   n |= (n >>  1);
458   n |= (n >>  2);
459   n |= (n >>  4);
460   n |= (n >>  8);
461   n |= (n >> 16);
462   return n - (n >> 1);
463#endif
464}
465
466
467boolean
468lp_setup_bin_triangle( struct lp_setup_context *setup,
469                       struct lp_rast_triangle *tri,
470                       const struct u_rect *bbox,
471                       int nr_planes )
472{
473   struct lp_scene *scene = setup->scene;
474   int i;
475
476   /* What is the largest power-of-two boundary this triangle crosses:
477    */
478   int dx = floor_pot((bbox->x0 ^ bbox->x1) |
479		      (bbox->y0 ^ bbox->y1));
480
481   /* The largest dimension of the rasterized area of the triangle
482    * (aligned to a 4x4 grid), rounded down to the nearest power of two:
483    */
484   int sz = floor_pot((bbox->x1 - (bbox->x0 & ~3)) |
485		      (bbox->y1 - (bbox->y0 & ~3)));
486
487   if (nr_planes == 3) {
488      if (sz < 4 && dx < 64)
489      {
490	 /* Triangle is contained in a single 4x4 stamp:
491	  */
492	 int mask = (bbox->x0 & 63 & ~3) | ((bbox->y0 & 63 & ~3) << 8);
493
494	 return lp_scene_bin_command( scene,
495				      bbox->x0/64, bbox->y0/64,
496				      LP_RAST_OP_TRIANGLE_3_4,
497				      lp_rast_arg_triangle(tri, mask) );
498      }
499
500      if (sz < 16 && dx < 64)
501      {
502	 int mask = (bbox->x0 & 63 & ~3) | ((bbox->y0 & 63 & ~3) << 8);
503
504	 /* Triangle is contained in a single 16x16 block:
505	  */
506	 return lp_scene_bin_command( scene,
507				      bbox->x0/64, bbox->y0/64,
508                                      LP_RAST_OP_TRIANGLE_3_16,
509                                      lp_rast_arg_triangle(tri, mask) );
510      }
511   }
512
513
514   /* Determine which tile(s) intersect the triangle's bounding box
515    */
516   if (dx < TILE_SIZE)
517   {
518      int ix0 = bbox->x0 / TILE_SIZE;
519      int iy0 = bbox->y0 / TILE_SIZE;
520
521      assert(iy0 == bbox->y1 / TILE_SIZE &&
522	     ix0 == bbox->x1 / TILE_SIZE);
523
524      /* Triangle is contained in a single tile:
525       */
526      return lp_scene_bin_command( scene, ix0, iy0,
527                                   lp_rast_tri_tab[nr_planes],
528                                   lp_rast_arg_triangle(tri, (1<<nr_planes)-1) );
529   }
530   else
531   {
532      int c[7];
533      int ei[7];
534      int eo[7];
535      int xstep[7];
536      int ystep[7];
537      int x, y;
538
539      int ix0 = bbox->x0 / TILE_SIZE;
540      int iy0 = bbox->y0 / TILE_SIZE;
541      int ix1 = bbox->x1 / TILE_SIZE;
542      int iy1 = bbox->y1 / TILE_SIZE;
543
544      for (i = 0; i < nr_planes; i++) {
545         c[i] = (tri->plane[i].c +
546                 tri->plane[i].dcdy * iy0 * TILE_SIZE -
547                 tri->plane[i].dcdx * ix0 * TILE_SIZE);
548
549         ei[i] = tri->plane[i].ei << TILE_ORDER;
550         eo[i] = tri->plane[i].eo << TILE_ORDER;
551         xstep[i] = -(tri->plane[i].dcdx << TILE_ORDER);
552         ystep[i] = tri->plane[i].dcdy << TILE_ORDER;
553      }
554
555
556
557      /* Test tile-sized blocks against the triangle.
558       * Discard blocks fully outside the tri.  If the block is fully
559       * contained inside the tri, bin an lp_rast_shade_tile command.
560       * Else, bin a lp_rast_triangle command.
561       */
562      for (y = iy0; y <= iy1; y++)
563      {
564	 boolean in = FALSE;  /* are we inside the triangle? */
565	 int cx[7];
566
567         for (i = 0; i < nr_planes; i++)
568            cx[i] = c[i];
569
570	 for (x = ix0; x <= ix1; x++)
571	 {
572            int out = 0;
573            int partial = 0;
574
575            for (i = 0; i < nr_planes; i++) {
576               int planeout = cx[i] + eo[i];
577               int planepartial = cx[i] + ei[i] - 1;
578               out |= (planeout >> 31);
579               partial |= (planepartial >> 31) & (1<<i);
580            }
581
582            if (out) {
583               /* do nothing */
584               if (in)
585                  break;  /* exiting triangle, all done with this row */
586               LP_COUNT(nr_empty_64);
587            }
588            else if (partial) {
589               /* Not trivially accepted by at least one plane -
590                * rasterize/shade partial tile
591                */
592               int count = util_bitcount(partial);
593               in = TRUE;
594               if (!lp_scene_bin_command( scene, x, y,
595                                          lp_rast_tri_tab[count],
596                                          lp_rast_arg_triangle(tri, partial) ))
597                  goto fail;
598
599               LP_COUNT(nr_partially_covered_64);
600            }
601            else {
602               /* triangle covers the whole tile- shade whole tile */
603               LP_COUNT(nr_fully_covered_64);
604               in = TRUE;
605               if (!lp_setup_whole_tile(setup, &tri->inputs, x, y))
606                  goto fail;
607            }
608
609	    /* Iterate cx values across the region:
610	     */
611            for (i = 0; i < nr_planes; i++)
612               cx[i] += xstep[i];
613	 }
614
615	 /* Iterate c values down the region:
616	  */
617         for (i = 0; i < nr_planes; i++)
618            c[i] += ystep[i];
619      }
620   }
621
622   return TRUE;
623
624fail:
625   /* Need to disable any partially binned triangle.  This is easier
626    * than trying to locate all the triangle, shade-tile, etc,
627    * commands which may have been binned.
628    */
629   tri->inputs.disable = TRUE;
630   return FALSE;
631}
632
633
634/**
635 * Draw triangle if it's CW, cull otherwise.
636 */
637static void triangle_cw( struct lp_setup_context *setup,
638			 const float (*v0)[4],
639			 const float (*v1)[4],
640			 const float (*v2)[4] )
641{
642   if (!do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface ))
643   {
644      lp_setup_flush_and_restart(setup);
645
646      if (!do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface ))
647         assert(0);
648   }
649}
650
651
652/**
653 * Draw triangle if it's CCW, cull otherwise.
654 */
655static void triangle_ccw( struct lp_setup_context *setup,
656			 const float (*v0)[4],
657			 const float (*v1)[4],
658			 const float (*v2)[4] )
659{
660   if (!do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface ))
661   {
662      lp_setup_flush_and_restart(setup);
663      if (!do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface ))
664         assert(0);
665   }
666}
667
668
669
670/**
671 * Draw triangle whether it's CW or CCW.
672 */
673static void triangle_both( struct lp_setup_context *setup,
674			   const float (*v0)[4],
675			   const float (*v1)[4],
676			   const float (*v2)[4] )
677{
678   /* edge vectors e = v0 - v2, f = v1 - v2 */
679   const float ex = v0[0][0] - v2[0][0];
680   const float ey = v0[0][1] - v2[0][1];
681   const float fx = v1[0][0] - v2[0][0];
682   const float fy = v1[0][1] - v2[0][1];
683
684   /* det = cross(e,f).z */
685   const float det = ex * fy - ey * fx;
686   if (det < 0.0f)
687      triangle_ccw( setup, v0, v1, v2 );
688   else if (det > 0.0f)
689      triangle_cw( setup, v0, v1, v2 );
690}
691
692
693static void triangle_nop( struct lp_setup_context *setup,
694			  const float (*v0)[4],
695			  const float (*v1)[4],
696			  const float (*v2)[4] )
697{
698}
699
700
701void
702lp_setup_choose_triangle( struct lp_setup_context *setup )
703{
704   switch (setup->cullmode) {
705   case PIPE_FACE_NONE:
706      setup->triangle = triangle_both;
707      break;
708   case PIPE_FACE_BACK:
709      setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
710      break;
711   case PIPE_FACE_FRONT:
712      setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
713      break;
714   default:
715      setup->triangle = triangle_nop;
716      break;
717   }
718}
719