lp_setup_tri.c revision cd9d9e2436a0815f6ed3a61d2cdf8fad53278506
1/**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/*
29 * Binning code for triangles
30 */
31
32#include "util/u_math.h"
33#include "util/u_memory.h"
34#include "lp_perf.h"
35#include "lp_setup_context.h"
36#include "lp_rast.h"
37
38#define NUM_CHANNELS 4
39
40
41/**
42 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
43 */
44static void constant_coef( struct lp_rast_triangle *tri,
45                           unsigned slot,
46			   const float value,
47                           unsigned i )
48{
49   tri->inputs.a0[slot][i] = value;
50   tri->inputs.dadx[slot][i] = 0.0f;
51   tri->inputs.dady[slot][i] = 0.0f;
52}
53
54
55/**
56 * Compute a0, dadx and dady for a linearly interpolated coefficient,
57 * for a triangle.
58 */
59static void linear_coef( struct lp_rast_triangle *tri,
60                         float oneoverarea,
61                         unsigned slot,
62                         const float (*v1)[4],
63                         const float (*v2)[4],
64                         const float (*v3)[4],
65                         unsigned vert_attr,
66                         unsigned i)
67{
68   float a1 = v1[vert_attr][i];
69   float a2 = v2[vert_attr][i];
70   float a3 = v3[vert_attr][i];
71
72   float da12 = a1 - a2;
73   float da31 = a3 - a1;
74   float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
75   float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
76
77   tri->inputs.dadx[slot][i] = dadx;
78   tri->inputs.dady[slot][i] = dady;
79
80   /* calculate a0 as the value which would be sampled for the
81    * fragment at (0,0), taking into account that we want to sample at
82    * pixel centers, in other words (0.5, 0.5).
83    *
84    * this is neat but unfortunately not a good way to do things for
85    * triangles with very large values of dadx or dady as it will
86    * result in the subtraction and re-addition from a0 of a very
87    * large number, which means we'll end up loosing a lot of the
88    * fractional bits and precision from a0.  the way to fix this is
89    * to define a0 as the sample at a pixel center somewhere near vmin
90    * instead - i'll switch to this later.
91    */
92   tri->inputs.a0[slot][i] = (v1[vert_attr][i] -
93                              (dadx * (v1[0][0] - 0.5f) +
94                               dady * (v1[0][1] - 0.5f)));
95}
96
97
98/**
99 * Compute a0, dadx and dady for a perspective-corrected interpolant,
100 * for a triangle.
101 * We basically multiply the vertex value by 1/w before computing
102 * the plane coefficients (a0, dadx, dady).
103 * Later, when we compute the value at a particular fragment position we'll
104 * divide the interpolated value by the interpolated W at that fragment.
105 */
106static void perspective_coef( struct lp_rast_triangle *tri,
107                              float oneoverarea,
108                              unsigned slot,
109			      const float (*v1)[4],
110			      const float (*v2)[4],
111			      const float (*v3)[4],
112			      unsigned vert_attr,
113                              unsigned i)
114{
115   /* premultiply by 1/w  (v[0][3] is always 1/w):
116    */
117   float a1 = v1[vert_attr][i] * v1[0][3];
118   float a2 = v2[vert_attr][i] * v2[0][3];
119   float a3 = v3[vert_attr][i] * v3[0][3];
120   float da12 = a1 - a2;
121   float da31 = a3 - a1;
122   float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
123   float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
124
125   tri->inputs.dadx[slot][i] = dadx;
126   tri->inputs.dady[slot][i] = dady;
127   tri->inputs.a0[slot][i] = (a1 -
128                              (dadx * (v1[0][0] - 0.5f) +
129                               dady * (v1[0][1] - 0.5f)));
130}
131
132
133/**
134 * Special coefficient setup for gl_FragCoord.
135 * X and Y are trivial
136 * Z and W are copied from position_coef which should have already been computed.
137 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
138 */
139static void
140setup_fragcoord_coef(struct lp_rast_triangle *tri,
141                     float oneoverarea,
142                     unsigned slot,
143                     const float (*v1)[4],
144                     const float (*v2)[4],
145                     const float (*v3)[4])
146{
147   /*X*/
148   tri->inputs.a0[slot][0] = 0.0;
149   tri->inputs.dadx[slot][0] = 1.0;
150   tri->inputs.dady[slot][0] = 0.0;
151   /*Y*/
152   tri->inputs.a0[slot][1] = 0.0;
153   tri->inputs.dadx[slot][1] = 0.0;
154   tri->inputs.dady[slot][1] = 1.0;
155   /*Z*/
156   linear_coef(tri, oneoverarea, slot, v1, v2, v3, 0, 2);
157   /*W*/
158   linear_coef(tri, oneoverarea, slot, v1, v2, v3, 0, 3);
159}
160
161
162static void setup_facing_coef( struct lp_rast_triangle *tri,
163                               unsigned slot,
164                               boolean frontface )
165{
166   constant_coef( tri, slot, 1.0f - frontface, 0 );
167   constant_coef( tri, slot, 0.0f, 1 ); /* wasted */
168   constant_coef( tri, slot, 0.0f, 2 ); /* wasted */
169   constant_coef( tri, slot, 0.0f, 3 ); /* wasted */
170}
171
172
173/**
174 * Compute the tri->coef[] array dadx, dady, a0 values.
175 */
176static void setup_tri_coefficients( struct setup_context *setup,
177				    struct lp_rast_triangle *tri,
178                                    float oneoverarea,
179				    const float (*v1)[4],
180				    const float (*v2)[4],
181				    const float (*v3)[4],
182				    boolean frontface)
183{
184   struct lp_scene *scene = lp_setup_get_current_scene(setup);
185   unsigned slot;
186
187   /* Allocate space for the a0, dadx and dady arrays
188    */
189   {
190      unsigned bytes = (setup->fs.nr_inputs + 1) * 4 * sizeof(float);
191      tri->inputs.a0   = lp_scene_alloc_aligned( scene, bytes, 16 );
192      tri->inputs.dadx = lp_scene_alloc_aligned( scene, bytes, 16 );
193      tri->inputs.dady = lp_scene_alloc_aligned( scene, bytes, 16 );
194   }
195
196   /* The internal position input is in slot zero:
197    */
198   setup_fragcoord_coef(tri, oneoverarea, 0, v1, v2, v3);
199
200   /* setup interpolation for all the remaining attributes:
201    */
202   for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
203      unsigned vert_attr = setup->fs.input[slot].src_index;
204      unsigned i;
205
206      switch (setup->fs.input[slot].interp) {
207      case LP_INTERP_CONSTANT:
208         for (i = 0; i < NUM_CHANNELS; i++)
209            constant_coef(tri, slot+1, v3[vert_attr][i], i);
210         break;
211
212      case LP_INTERP_LINEAR:
213         for (i = 0; i < NUM_CHANNELS; i++)
214            linear_coef(tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
215         break;
216
217      case LP_INTERP_PERSPECTIVE:
218         for (i = 0; i < NUM_CHANNELS; i++)
219            perspective_coef(tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
220         break;
221
222      case LP_INTERP_POSITION:
223         /* XXX: fix me - duplicates the values in slot zero.
224          */
225         setup_fragcoord_coef(tri, oneoverarea, slot+1, v1, v2, v3);
226         break;
227
228      case LP_INTERP_FACING:
229         setup_facing_coef(tri, slot+1, frontface);
230         break;
231
232      default:
233         assert(0);
234      }
235   }
236}
237
238
239
240static inline int subpixel_snap( float a )
241{
242   return util_iround(FIXED_ONE * a - (FIXED_ONE / 2));
243}
244
245
246/**
247 * Do basic setup for triangle rasterization and determine which
248 * framebuffer tiles are touched.  Put the triangle in the scene's
249 * bins for the tiles which we overlap.
250 */
251static void
252do_triangle_ccw(struct setup_context *setup,
253		const float (*v1)[4],
254		const float (*v2)[4],
255		const float (*v3)[4],
256		boolean frontfacing )
257{
258   /* x/y positions in fixed point */
259   const int x1 = subpixel_snap(v1[0][0]);
260   const int x2 = subpixel_snap(v2[0][0]);
261   const int x3 = subpixel_snap(v3[0][0]);
262   const int y1 = subpixel_snap(v1[0][1]);
263   const int y2 = subpixel_snap(v2[0][1]);
264   const int y3 = subpixel_snap(v3[0][1]);
265
266   struct lp_scene *scene = lp_setup_get_current_scene(setup);
267   struct lp_rast_triangle *tri = lp_scene_alloc_aligned( scene, sizeof *tri, 16 );
268   float area, oneoverarea;
269   int minx, maxx, miny, maxy;
270
271   tri->dx12 = x1 - x2;
272   tri->dx23 = x2 - x3;
273   tri->dx31 = x3 - x1;
274
275   tri->dy12 = y1 - y2;
276   tri->dy23 = y2 - y3;
277   tri->dy31 = y3 - y1;
278
279   area = (tri->dx12 * tri->dy31 -
280	   tri->dx31 * tri->dy12);
281
282   LP_COUNT(nr_tris);
283
284   /* Cull non-ccw and zero-sized triangles.
285    *
286    * XXX: subject to overflow??
287    */
288   if (area <= 0.0f) {
289      lp_scene_putback_data( scene, sizeof *tri );
290      LP_COUNT(nr_culled_tris);
291      return;
292   }
293
294   /* Bounding rectangle (in pixels) */
295   minx = (MIN3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
296   maxx = (MAX3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
297   miny = (MIN3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
298   maxy = (MAX3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
299
300   if (setup->scissor_test) {
301      minx = MAX2(minx, setup->scissor.current.minx);
302      maxx = MIN2(maxx, setup->scissor.current.maxx);
303      miny = MAX2(miny, setup->scissor.current.miny);
304      maxy = MIN2(maxy, setup->scissor.current.maxy);
305   }
306
307   if (miny == maxy ||
308       minx == maxx) {
309      lp_scene_putback_data( scene, sizeof *tri );
310      LP_COUNT(nr_culled_tris);
311      return;
312   }
313
314   /*
315    */
316   oneoverarea = ((float)FIXED_ONE) / (float)area;
317
318   /* Setup parameter interpolants:
319    */
320   setup_tri_coefficients( setup, tri, oneoverarea, v1, v2, v3, frontfacing );
321
322   /* half-edge constants, will be interated over the whole render target.
323    */
324   tri->c1 = tri->dy12 * x1 - tri->dx12 * y1;
325   tri->c2 = tri->dy23 * x2 - tri->dx23 * y2;
326   tri->c3 = tri->dy31 * x3 - tri->dx31 * y3;
327
328   /* correct for top-left fill convention:
329    */
330   if (tri->dy12 < 0 || (tri->dy12 == 0 && tri->dx12 > 0)) tri->c1++;
331   if (tri->dy23 < 0 || (tri->dy23 == 0 && tri->dx23 > 0)) tri->c2++;
332   if (tri->dy31 < 0 || (tri->dy31 == 0 && tri->dx31 > 0)) tri->c3++;
333
334   tri->dy12 *= FIXED_ONE;
335   tri->dy23 *= FIXED_ONE;
336   tri->dy31 *= FIXED_ONE;
337
338   tri->dx12 *= FIXED_ONE;
339   tri->dx23 *= FIXED_ONE;
340   tri->dx31 *= FIXED_ONE;
341
342   /* find trivial reject offsets for each edge for a single-pixel
343    * sized block.  These will be scaled up at each recursive level to
344    * match the active blocksize.  Scaling in this way works best if
345    * the blocks are square.
346    */
347   tri->eo1 = 0;
348   if (tri->dy12 < 0) tri->eo1 -= tri->dy12;
349   if (tri->dx12 > 0) tri->eo1 += tri->dx12;
350
351   tri->eo2 = 0;
352   if (tri->dy23 < 0) tri->eo2 -= tri->dy23;
353   if (tri->dx23 > 0) tri->eo2 += tri->dx23;
354
355   tri->eo3 = 0;
356   if (tri->dy31 < 0) tri->eo3 -= tri->dy31;
357   if (tri->dx31 > 0) tri->eo3 += tri->dx31;
358
359   /* Calculate trivial accept offsets from the above.
360    */
361   tri->ei1 = tri->dx12 - tri->dy12 - tri->eo1;
362   tri->ei2 = tri->dx23 - tri->dy23 - tri->eo2;
363   tri->ei3 = tri->dx31 - tri->dy31 - tri->eo3;
364
365   {
366      const int xstep1 = -tri->dy12;
367      const int xstep2 = -tri->dy23;
368      const int xstep3 = -tri->dy31;
369
370      const int ystep1 = tri->dx12;
371      const int ystep2 = tri->dx23;
372      const int ystep3 = tri->dx31;
373
374      int qx, qy, ix, iy;
375      int i = 0;
376
377      for (qy = 0; qy < 2; qy++) {
378         for (qx = 0; qx < 2; qx++) {
379            for (iy = 0; iy < 2; iy++) {
380               for (ix = 0; ix < 2; ix++, i++) {
381                  int x = qx * 2 + ix;
382                  int y = qy * 2 + iy;
383                  tri->inputs.step[0][i] = x * xstep1 + y * ystep1;
384                  tri->inputs.step[1][i] = x * xstep2 + y * ystep2;
385                  tri->inputs.step[2][i] = x * xstep3 + y * ystep3;
386               }
387            }
388         }
389      }
390   }
391
392   /*
393    * All fields of 'tri' are now set.  The remaining code here is
394    * concerned with binning.
395    */
396
397   /* Convert to tile coordinates:
398    */
399   minx = minx / TILE_SIZE;
400   miny = miny / TILE_SIZE;
401   maxx = maxx / TILE_SIZE;
402   maxy = maxy / TILE_SIZE;
403
404   /* Clamp maxx, maxy to framebuffer size
405    */
406   maxx = MIN2(maxx, scene->tiles_x - 1);
407   maxy = MIN2(maxy, scene->tiles_y - 1);
408
409   /* Determine which tile(s) intersect the triangle's bounding box
410    */
411   if (miny == maxy && minx == maxx)
412   {
413      /* Triangle is contained in a single tile:
414       */
415      lp_scene_bin_command( scene, minx, miny, lp_rast_triangle,
416			    lp_rast_arg_triangle(tri) );
417   }
418   else
419   {
420      int c1 = (tri->c1 +
421                tri->dx12 * miny * TILE_SIZE -
422                tri->dy12 * minx * TILE_SIZE);
423      int c2 = (tri->c2 +
424                tri->dx23 * miny * TILE_SIZE -
425                tri->dy23 * minx * TILE_SIZE);
426      int c3 = (tri->c3 +
427                tri->dx31 * miny * TILE_SIZE -
428                tri->dy31 * minx * TILE_SIZE);
429
430      int ei1 = tri->ei1 << TILE_ORDER;
431      int ei2 = tri->ei2 << TILE_ORDER;
432      int ei3 = tri->ei3 << TILE_ORDER;
433
434      int eo1 = tri->eo1 << TILE_ORDER;
435      int eo2 = tri->eo2 << TILE_ORDER;
436      int eo3 = tri->eo3 << TILE_ORDER;
437
438      int xstep1 = -(tri->dy12 << TILE_ORDER);
439      int xstep2 = -(tri->dy23 << TILE_ORDER);
440      int xstep3 = -(tri->dy31 << TILE_ORDER);
441
442      int ystep1 = tri->dx12 << TILE_ORDER;
443      int ystep2 = tri->dx23 << TILE_ORDER;
444      int ystep3 = tri->dx31 << TILE_ORDER;
445      int x, y;
446
447
448      /* Test tile-sized blocks against the triangle.
449       * Discard blocks fully outside the tri.  If the block is fully
450       * contained inside the tri, bin an lp_rast_shade_tile command.
451       * Else, bin a lp_rast_triangle command.
452       */
453      for (y = miny; y <= maxy; y++)
454      {
455	 int cx1 = c1;
456	 int cx2 = c2;
457	 int cx3 = c3;
458	 boolean in = FALSE;  /* are we inside the triangle? */
459
460	 for (x = minx; x <= maxx; x++)
461	 {
462	    if (cx1 + eo1 < 0 ||
463		cx2 + eo2 < 0 ||
464		cx3 + eo3 < 0)
465	    {
466	       /* do nothing */
467               LP_COUNT(nr_empty_64);
468	       if (in)
469		  break;  /* exiting triangle, all done with this row */
470	    }
471	    else if (cx1 + ei1 > 0 &&
472		     cx2 + ei2 > 0 &&
473		     cx3 + ei3 > 0)
474	    {
475               /* triangle covers the whole tile- shade whole tile */
476               LP_COUNT(nr_fully_covered_64);
477	       in = TRUE;
478	       if(setup->fs.current.opaque) {
479	          lp_scene_bin_reset( scene, x, y );
480	          lp_scene_bin_command( scene, x, y,
481	                                lp_rast_set_state,
482	                                lp_rast_arg_state(setup->fs.stored) );
483	       }
484               lp_scene_bin_command( scene, x, y,
485				     lp_rast_shade_tile,
486				     lp_rast_arg_inputs(&tri->inputs) );
487	    }
488	    else
489	    {
490               /* rasterizer/shade partial tile */
491               LP_COUNT(nr_partially_covered_64);
492	       in = TRUE;
493               lp_scene_bin_command( scene, x, y,
494				     lp_rast_triangle,
495				     lp_rast_arg_triangle(tri) );
496	    }
497
498	    /* Iterate cx values across the region:
499	     */
500	    cx1 += xstep1;
501	    cx2 += xstep2;
502	    cx3 += xstep3;
503	 }
504
505	 /* Iterate c values down the region:
506	  */
507	 c1 += ystep1;
508	 c2 += ystep2;
509	 c3 += ystep3;
510      }
511   }
512}
513
514
515static void triangle_cw( struct setup_context *setup,
516			 const float (*v0)[4],
517			 const float (*v1)[4],
518			 const float (*v2)[4] )
519{
520   do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface );
521}
522
523
524static void triangle_ccw( struct setup_context *setup,
525			 const float (*v0)[4],
526			 const float (*v1)[4],
527			 const float (*v2)[4] )
528{
529   do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
530}
531
532
533static void triangle_both( struct setup_context *setup,
534			   const float (*v0)[4],
535			   const float (*v1)[4],
536			   const float (*v2)[4] )
537{
538   /* edge vectors e = v0 - v2, f = v1 - v2 */
539   const float ex = v0[0][0] - v2[0][0];
540   const float ey = v0[0][1] - v2[0][1];
541   const float fx = v1[0][0] - v2[0][0];
542   const float fy = v1[0][1] - v2[0][1];
543
544   /* det = cross(e,f).z */
545   if (ex * fy - ey * fx < 0.0f)
546      triangle_ccw( setup, v0, v1, v2 );
547   else
548      triangle_cw( setup, v0, v1, v2 );
549}
550
551
552static void triangle_nop( struct setup_context *setup,
553			  const float (*v0)[4],
554			  const float (*v1)[4],
555			  const float (*v2)[4] )
556{
557}
558
559
560void
561lp_setup_choose_triangle( struct setup_context *setup )
562{
563   switch (setup->cullmode) {
564   case PIPE_WINDING_NONE:
565      setup->triangle = triangle_both;
566      break;
567   case PIPE_WINDING_CCW:
568      setup->triangle = triangle_cw;
569      break;
570   case PIPE_WINDING_CW:
571      setup->triangle = triangle_ccw;
572      break;
573   default:
574      setup->triangle = triangle_nop;
575      break;
576   }
577}
578