1/*
2 * jcarith.c
3 *
4 * Developed 1997-2012 by Guido Vollbeding.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains portable arithmetic entropy encoding routines for JPEG
9 * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
10 *
11 * Both sequential and progressive modes are supported in this single module.
12 *
13 * Suspension is not currently supported in this module.
14 */
15
16#define JPEG_INTERNALS
17#include "jinclude.h"
18#include "jpeglib.h"
19
20
21/* Expanded entropy encoder object for arithmetic encoding. */
22
23typedef struct {
24  struct jpeg_entropy_encoder pub; /* public fields */
25
26  INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
27  INT32 a;               /* A register, normalized size of coding interval */
28  INT32 sc;        /* counter for stacked 0xFF values which might overflow */
29  INT32 zc;          /* counter for pending 0x00 output values which might *
30                          * be discarded at the end ("Pacman" termination) */
31  int ct;  /* bit shift counter, determines when next byte will be written */
32  int buffer;                /* buffer for most recent output byte != 0xFF */
33
34  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
35  int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
36
37  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
38  int next_restart_num;		/* next restart number to write (0-7) */
39
40  /* Pointers to statistics areas (these workspaces have image lifespan) */
41  unsigned char * dc_stats[NUM_ARITH_TBLS];
42  unsigned char * ac_stats[NUM_ARITH_TBLS];
43
44  /* Statistics bin for coding with fixed probability 0.5 */
45  unsigned char fixed_bin[4];
46} arith_entropy_encoder;
47
48typedef arith_entropy_encoder * arith_entropy_ptr;
49
50/* The following two definitions specify the allocation chunk size
51 * for the statistics area.
52 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
53 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
54 *
55 * We use a compact representation with 1 byte per statistics bin,
56 * thus the numbers directly represent byte sizes.
57 * This 1 byte per statistics bin contains the meaning of the MPS
58 * (more probable symbol) in the highest bit (mask 0x80), and the
59 * index into the probability estimation state machine table
60 * in the lower bits (mask 0x7F).
61 */
62
63#define DC_STAT_BINS 64
64#define AC_STAT_BINS 256
65
66/* NOTE: Uncomment the following #define if you want to use the
67 * given formula for calculating the AC conditioning parameter Kx
68 * for spectral selection progressive coding in section G.1.3.2
69 * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
70 * Although the spec and P&M authors claim that this "has proven
71 * to give good results for 8 bit precision samples", I'm not
72 * convinced yet that this is really beneficial.
73 * Early tests gave only very marginal compression enhancements
74 * (a few - around 5 or so - bytes even for very large files),
75 * which would turn out rather negative if we'd suppress the
76 * DAC (Define Arithmetic Conditioning) marker segments for
77 * the default parameters in the future.
78 * Note that currently the marker writing module emits 12-byte
79 * DAC segments for a full-component scan in a color image.
80 * This is not worth worrying about IMHO. However, since the
81 * spec defines the default values to be used if the tables
82 * are omitted (unlike Huffman tables, which are required
83 * anyway), one might optimize this behaviour in the future,
84 * and then it would be disadvantageous to use custom tables if
85 * they don't provide sufficient gain to exceed the DAC size.
86 *
87 * On the other hand, I'd consider it as a reasonable result
88 * that the conditioning has no significant influence on the
89 * compression performance. This means that the basic
90 * statistical model is already rather stable.
91 *
92 * Thus, at the moment, we use the default conditioning values
93 * anyway, and do not use the custom formula.
94 *
95#define CALCULATE_SPECTRAL_CONDITIONING
96 */
97
98/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
99 * We assume that int right shift is unsigned if INT32 right shift is,
100 * which should be safe.
101 */
102
103#ifdef RIGHT_SHIFT_IS_UNSIGNED
104#define ISHIFT_TEMPS	int ishift_temp;
105#define IRIGHT_SHIFT(x,shft)  \
106        ((ishift_temp = (x)) < 0 ? \
107         (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
108         (ishift_temp >> (shft)))
109#else
110#define ISHIFT_TEMPS
111#define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
112#endif
113
114
115LOCAL(void)
116emit_byte (int val, j_compress_ptr cinfo)
117/* Write next output byte; we do not support suspension in this module. */
118{
119  struct jpeg_destination_mgr * dest = cinfo->dest;
120
121  *dest->next_output_byte++ = (JOCTET) val;
122  if (--dest->free_in_buffer == 0)
123    if (! (*dest->empty_output_buffer) (cinfo))
124      ERREXIT(cinfo, JERR_CANT_SUSPEND);
125}
126
127
128/*
129 * Finish up at the end of an arithmetic-compressed scan.
130 */
131
132METHODDEF(void)
133finish_pass (j_compress_ptr cinfo)
134{
135  arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
136  INT32 temp;
137
138  /* Section D.1.8: Termination of encoding */
139
140  /* Find the e->c in the coding interval with the largest
141   * number of trailing zero bits */
142  if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
143    e->c = temp + 0x8000L;
144  else
145    e->c = temp;
146  /* Send remaining bytes to output */
147  e->c <<= e->ct;
148  if (e->c & 0xF8000000L) {
149    /* One final overflow has to be handled */
150    if (e->buffer >= 0) {
151      if (e->zc)
152        do emit_byte(0x00, cinfo);
153        while (--e->zc);
154      emit_byte(e->buffer + 1, cinfo);
155      if (e->buffer + 1 == 0xFF)
156        emit_byte(0x00, cinfo);
157    }
158    e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
159    e->sc = 0;
160  } else {
161    if (e->buffer == 0)
162      ++e->zc;
163    else if (e->buffer >= 0) {
164      if (e->zc)
165        do emit_byte(0x00, cinfo);
166        while (--e->zc);
167      emit_byte(e->buffer, cinfo);
168    }
169    if (e->sc) {
170      if (e->zc)
171        do emit_byte(0x00, cinfo);
172        while (--e->zc);
173      do {
174        emit_byte(0xFF, cinfo);
175        emit_byte(0x00, cinfo);
176      } while (--e->sc);
177    }
178  }
179  /* Output final bytes only if they are not 0x00 */
180  if (e->c & 0x7FFF800L) {
181    if (e->zc)  /* output final pending zero bytes */
182      do emit_byte(0x00, cinfo);
183      while (--e->zc);
184    emit_byte((e->c >> 19) & 0xFF, cinfo);
185    if (((e->c >> 19) & 0xFF) == 0xFF)
186      emit_byte(0x00, cinfo);
187    if (e->c & 0x7F800L) {
188      emit_byte((e->c >> 11) & 0xFF, cinfo);
189      if (((e->c >> 11) & 0xFF) == 0xFF)
190        emit_byte(0x00, cinfo);
191    }
192  }
193}
194
195
196/*
197 * The core arithmetic encoding routine (common in JPEG and JBIG).
198 * This needs to go as fast as possible.
199 * Machine-dependent optimization facilities
200 * are not utilized in this portable implementation.
201 * However, this code should be fairly efficient and
202 * may be a good base for further optimizations anyway.
203 *
204 * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
205 *
206 * Note: I've added full "Pacman" termination support to the
207 * byte output routines, which is equivalent to the optional
208 * Discard_final_zeros procedure (Figure D.15) in the spec.
209 * Thus, we always produce the shortest possible output
210 * stream compliant to the spec (no trailing zero bytes,
211 * except for FF stuffing).
212 *
213 * I've also introduced a new scheme for accessing
214 * the probability estimation state machine table,
215 * derived from Markus Kuhn's JBIG implementation.
216 */
217
218LOCAL(void)
219arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
220{
221  register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
222  register unsigned char nl, nm;
223  register INT32 qe, temp;
224  register int sv;
225
226  /* Fetch values from our compact representation of Table D.3(D.2):
227   * Qe values and probability estimation state machine
228   */
229  sv = *st;
230  qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */
231  nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
232  nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
233
234  /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
235  e->a -= qe;
236  if (val != (sv >> 7)) {
237    /* Encode the less probable symbol */
238    if (e->a >= qe) {
239      /* If the interval size (qe) for the less probable symbol (LPS)
240       * is larger than the interval size for the MPS, then exchange
241       * the two symbols for coding efficiency, otherwise code the LPS
242       * as usual: */
243      e->c += e->a;
244      e->a = qe;
245    }
246    *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
247  } else {
248    /* Encode the more probable symbol */
249    if (e->a >= 0x8000L)
250      return;  /* A >= 0x8000 -> ready, no renormalization required */
251    if (e->a < qe) {
252      /* If the interval size (qe) for the less probable symbol (LPS)
253       * is larger than the interval size for the MPS, then exchange
254       * the two symbols for coding efficiency: */
255      e->c += e->a;
256      e->a = qe;
257    }
258    *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
259  }
260
261  /* Renormalization & data output per section D.1.6 */
262  do {
263    e->a <<= 1;
264    e->c <<= 1;
265    if (--e->ct == 0) {
266      /* Another byte is ready for output */
267      temp = e->c >> 19;
268      if (temp > 0xFF) {
269        /* Handle overflow over all stacked 0xFF bytes */
270        if (e->buffer >= 0) {
271          if (e->zc)
272            do emit_byte(0x00, cinfo);
273            while (--e->zc);
274          emit_byte(e->buffer + 1, cinfo);
275          if (e->buffer + 1 == 0xFF)
276            emit_byte(0x00, cinfo);
277        }
278        e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
279        e->sc = 0;
280        /* Note: The 3 spacer bits in the C register guarantee
281         * that the new buffer byte can't be 0xFF here
282         * (see page 160 in the P&M JPEG book). */
283        e->buffer = temp & 0xFF;  /* new output byte, might overflow later */
284      } else if (temp == 0xFF) {
285        ++e->sc;  /* stack 0xFF byte (which might overflow later) */
286      } else {
287        /* Output all stacked 0xFF bytes, they will not overflow any more */
288        if (e->buffer == 0)
289          ++e->zc;
290        else if (e->buffer >= 0) {
291          if (e->zc)
292            do emit_byte(0x00, cinfo);
293            while (--e->zc);
294          emit_byte(e->buffer, cinfo);
295        }
296        if (e->sc) {
297          if (e->zc)
298            do emit_byte(0x00, cinfo);
299            while (--e->zc);
300          do {
301            emit_byte(0xFF, cinfo);
302            emit_byte(0x00, cinfo);
303          } while (--e->sc);
304        }
305        e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */
306      }
307      e->c &= 0x7FFFFL;
308      e->ct += 8;
309    }
310  } while (e->a < 0x8000L);
311}
312
313
314/*
315 * Emit a restart marker & resynchronize predictions.
316 */
317
318LOCAL(void)
319emit_restart (j_compress_ptr cinfo, int restart_num)
320{
321  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
322  int ci;
323  jpeg_component_info * compptr;
324
325  finish_pass(cinfo);
326
327  emit_byte(0xFF, cinfo);
328  emit_byte(JPEG_RST0 + restart_num, cinfo);
329
330  /* Re-initialize statistics areas */
331  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
332    compptr = cinfo->cur_comp_info[ci];
333    /* DC needs no table for refinement scan */
334    if (cinfo->Ss == 0 && cinfo->Ah == 0) {
335      MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
336      /* Reset DC predictions to 0 */
337      entropy->last_dc_val[ci] = 0;
338      entropy->dc_context[ci] = 0;
339    }
340    /* AC needs no table when not present */
341    if (cinfo->Se) {
342      MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
343    }
344  }
345
346  /* Reset arithmetic encoding variables */
347  entropy->c = 0;
348  entropy->a = 0x10000L;
349  entropy->sc = 0;
350  entropy->zc = 0;
351  entropy->ct = 11;
352  entropy->buffer = -1;  /* empty */
353}
354
355
356/*
357 * MCU encoding for DC initial scan (either spectral selection,
358 * or first pass of successive approximation).
359 */
360
361METHODDEF(boolean)
362encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
363{
364  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
365  JBLOCKROW block;
366  unsigned char *st;
367  int blkn, ci, tbl;
368  int v, v2, m;
369  ISHIFT_TEMPS
370
371  /* Emit restart marker if needed */
372  if (cinfo->restart_interval) {
373    if (entropy->restarts_to_go == 0) {
374      emit_restart(cinfo, entropy->next_restart_num);
375      entropy->restarts_to_go = cinfo->restart_interval;
376      entropy->next_restart_num++;
377      entropy->next_restart_num &= 7;
378    }
379    entropy->restarts_to_go--;
380  }
381
382  /* Encode the MCU data blocks */
383  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
384    block = MCU_data[blkn];
385    ci = cinfo->MCU_membership[blkn];
386    tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
387
388    /* Compute the DC value after the required point transform by Al.
389     * This is simply an arithmetic right shift.
390     */
391    m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
392
393    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
394
395    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
396    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
397
398    /* Figure F.4: Encode_DC_DIFF */
399    if ((v = m - entropy->last_dc_val[ci]) == 0) {
400      arith_encode(cinfo, st, 0);
401      entropy->dc_context[ci] = 0;	/* zero diff category */
402    } else {
403      entropy->last_dc_val[ci] = m;
404      arith_encode(cinfo, st, 1);
405      /* Figure F.6: Encoding nonzero value v */
406      /* Figure F.7: Encoding the sign of v */
407      if (v > 0) {
408        arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */
409        st += 2;			/* Table F.4: SP = S0 + 2 */
410        entropy->dc_context[ci] = 4;	/* small positive diff category */
411      } else {
412        v = -v;
413        arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */
414        st += 3;			/* Table F.4: SN = S0 + 3 */
415        entropy->dc_context[ci] = 8;	/* small negative diff category */
416      }
417      /* Figure F.8: Encoding the magnitude category of v */
418      m = 0;
419      if (v -= 1) {
420        arith_encode(cinfo, st, 1);
421        m = 1;
422        v2 = v;
423        st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
424        while (v2 >>= 1) {
425          arith_encode(cinfo, st, 1);
426          m <<= 1;
427          st += 1;
428        }
429      }
430      arith_encode(cinfo, st, 0);
431      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
432      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
433        entropy->dc_context[ci] = 0;	/* zero diff category */
434      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
435        entropy->dc_context[ci] += 8;	/* large diff category */
436      /* Figure F.9: Encoding the magnitude bit pattern of v */
437      st += 14;
438      while (m >>= 1)
439        arith_encode(cinfo, st, (m & v) ? 1 : 0);
440    }
441  }
442
443  return TRUE;
444}
445
446
447/*
448 * MCU encoding for AC initial scan (either spectral selection,
449 * or first pass of successive approximation).
450 */
451
452METHODDEF(boolean)
453encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
454{
455  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
456  JBLOCKROW block;
457  unsigned char *st;
458  int tbl, k, ke;
459  int v, v2, m;
460  const int * natural_order;
461
462  /* Emit restart marker if needed */
463  if (cinfo->restart_interval) {
464    if (entropy->restarts_to_go == 0) {
465      emit_restart(cinfo, entropy->next_restart_num);
466      entropy->restarts_to_go = cinfo->restart_interval;
467      entropy->next_restart_num++;
468      entropy->next_restart_num &= 7;
469    }
470    entropy->restarts_to_go--;
471  }
472
473  natural_order = cinfo->natural_order;
474
475  /* Encode the MCU data block */
476  block = MCU_data[0];
477  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
478
479  /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
480
481  /* Establish EOB (end-of-block) index */
482  ke = cinfo->Se;
483  do {
484    /* We must apply the point transform by Al.  For AC coefficients this
485     * is an integer division with rounding towards 0.  To do this portably
486     * in C, we shift after obtaining the absolute value.
487     */
488    if ((v = (*block)[natural_order[ke]]) >= 0) {
489      if (v >>= cinfo->Al) break;
490    } else {
491      v = -v;
492      if (v >>= cinfo->Al) break;
493    }
494  } while (--ke);
495
496  /* Figure F.5: Encode_AC_Coefficients */
497  for (k = cinfo->Ss - 1; k < ke;) {
498    st = entropy->ac_stats[tbl] + 3 * k;
499    arith_encode(cinfo, st, 0);		/* EOB decision */
500    for (;;) {
501      if ((v = (*block)[natural_order[++k]]) >= 0) {
502        if (v >>= cinfo->Al) {
503          arith_encode(cinfo, st + 1, 1);
504          arith_encode(cinfo, entropy->fixed_bin, 0);
505          break;
506        }
507      } else {
508        v = -v;
509        if (v >>= cinfo->Al) {
510          arith_encode(cinfo, st + 1, 1);
511          arith_encode(cinfo, entropy->fixed_bin, 1);
512          break;
513        }
514      }
515      arith_encode(cinfo, st + 1, 0);
516      st += 3;
517    }
518    st += 2;
519    /* Figure F.8: Encoding the magnitude category of v */
520    m = 0;
521    if (v -= 1) {
522      arith_encode(cinfo, st, 1);
523      m = 1;
524      v2 = v;
525      if (v2 >>= 1) {
526        arith_encode(cinfo, st, 1);
527        m <<= 1;
528        st = entropy->ac_stats[tbl] +
529             (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
530        while (v2 >>= 1) {
531          arith_encode(cinfo, st, 1);
532          m <<= 1;
533          st += 1;
534        }
535      }
536    }
537    arith_encode(cinfo, st, 0);
538    /* Figure F.9: Encoding the magnitude bit pattern of v */
539    st += 14;
540    while (m >>= 1)
541      arith_encode(cinfo, st, (m & v) ? 1 : 0);
542  }
543  /* Encode EOB decision only if k < cinfo->Se */
544  if (k < cinfo->Se) {
545    st = entropy->ac_stats[tbl] + 3 * k;
546    arith_encode(cinfo, st, 1);
547  }
548
549  return TRUE;
550}
551
552
553/*
554 * MCU encoding for DC successive approximation refinement scan.
555 */
556
557METHODDEF(boolean)
558encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
559{
560  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
561  unsigned char *st;
562  int Al, blkn;
563
564  /* Emit restart marker if needed */
565  if (cinfo->restart_interval) {
566    if (entropy->restarts_to_go == 0) {
567      emit_restart(cinfo, entropy->next_restart_num);
568      entropy->restarts_to_go = cinfo->restart_interval;
569      entropy->next_restart_num++;
570      entropy->next_restart_num &= 7;
571    }
572    entropy->restarts_to_go--;
573  }
574
575  st = entropy->fixed_bin;	/* use fixed probability estimation */
576  Al = cinfo->Al;
577
578  /* Encode the MCU data blocks */
579  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
580    /* We simply emit the Al'th bit of the DC coefficient value. */
581    arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
582  }
583
584  return TRUE;
585}
586
587
588/*
589 * MCU encoding for AC successive approximation refinement scan.
590 */
591
592METHODDEF(boolean)
593encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
594{
595  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
596  JBLOCKROW block;
597  unsigned char *st;
598  int tbl, k, ke, kex;
599  int v;
600  const int * natural_order;
601
602  /* Emit restart marker if needed */
603  if (cinfo->restart_interval) {
604    if (entropy->restarts_to_go == 0) {
605      emit_restart(cinfo, entropy->next_restart_num);
606      entropy->restarts_to_go = cinfo->restart_interval;
607      entropy->next_restart_num++;
608      entropy->next_restart_num &= 7;
609    }
610    entropy->restarts_to_go--;
611  }
612
613  natural_order = cinfo->natural_order;
614
615  /* Encode the MCU data block */
616  block = MCU_data[0];
617  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
618
619  /* Section G.1.3.3: Encoding of AC coefficients */
620
621  /* Establish EOB (end-of-block) index */
622  ke = cinfo->Se;
623  do {
624    /* We must apply the point transform by Al.  For AC coefficients this
625     * is an integer division with rounding towards 0.  To do this portably
626     * in C, we shift after obtaining the absolute value.
627     */
628    if ((v = (*block)[natural_order[ke]]) >= 0) {
629      if (v >>= cinfo->Al) break;
630    } else {
631      v = -v;
632      if (v >>= cinfo->Al) break;
633    }
634  } while (--ke);
635
636  /* Establish EOBx (previous stage end-of-block) index */
637  for (kex = ke; kex > 0; kex--)
638    if ((v = (*block)[natural_order[kex]]) >= 0) {
639      if (v >>= cinfo->Ah) break;
640    } else {
641      v = -v;
642      if (v >>= cinfo->Ah) break;
643    }
644
645  /* Figure G.10: Encode_AC_Coefficients_SA */
646  for (k = cinfo->Ss - 1; k < ke;) {
647    st = entropy->ac_stats[tbl] + 3 * k;
648    if (k >= kex)
649      arith_encode(cinfo, st, 0);	/* EOB decision */
650    for (;;) {
651      if ((v = (*block)[natural_order[++k]]) >= 0) {
652        if (v >>= cinfo->Al) {
653          if (v >> 1)			/* previously nonzero coef */
654            arith_encode(cinfo, st + 2, (v & 1));
655          else {			/* newly nonzero coef */
656            arith_encode(cinfo, st + 1, 1);
657            arith_encode(cinfo, entropy->fixed_bin, 0);
658          }
659          break;
660        }
661      } else {
662        v = -v;
663        if (v >>= cinfo->Al) {
664          if (v >> 1)			/* previously nonzero coef */
665            arith_encode(cinfo, st + 2, (v & 1));
666          else {			/* newly nonzero coef */
667            arith_encode(cinfo, st + 1, 1);
668            arith_encode(cinfo, entropy->fixed_bin, 1);
669          }
670          break;
671        }
672      }
673      arith_encode(cinfo, st + 1, 0);
674      st += 3;
675    }
676  }
677  /* Encode EOB decision only if k < cinfo->Se */
678  if (k < cinfo->Se) {
679    st = entropy->ac_stats[tbl] + 3 * k;
680    arith_encode(cinfo, st, 1);
681  }
682
683  return TRUE;
684}
685
686
687/*
688 * Encode and output one MCU's worth of arithmetic-compressed coefficients.
689 */
690
691METHODDEF(boolean)
692encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
693{
694  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
695  jpeg_component_info * compptr;
696  JBLOCKROW block;
697  unsigned char *st;
698  int blkn, ci, tbl, k, ke;
699  int v, v2, m;
700  const int * natural_order;
701
702  /* Emit restart marker if needed */
703  if (cinfo->restart_interval) {
704    if (entropy->restarts_to_go == 0) {
705      emit_restart(cinfo, entropy->next_restart_num);
706      entropy->restarts_to_go = cinfo->restart_interval;
707      entropy->next_restart_num++;
708      entropy->next_restart_num &= 7;
709    }
710    entropy->restarts_to_go--;
711  }
712
713  natural_order = cinfo->natural_order;
714
715  /* Encode the MCU data blocks */
716  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
717    block = MCU_data[blkn];
718    ci = cinfo->MCU_membership[blkn];
719    compptr = cinfo->cur_comp_info[ci];
720
721    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
722
723    tbl = compptr->dc_tbl_no;
724
725    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
726    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
727
728    /* Figure F.4: Encode_DC_DIFF */
729    if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
730      arith_encode(cinfo, st, 0);
731      entropy->dc_context[ci] = 0;	/* zero diff category */
732    } else {
733      entropy->last_dc_val[ci] = (*block)[0];
734      arith_encode(cinfo, st, 1);
735      /* Figure F.6: Encoding nonzero value v */
736      /* Figure F.7: Encoding the sign of v */
737      if (v > 0) {
738        arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */
739        st += 2;			/* Table F.4: SP = S0 + 2 */
740        entropy->dc_context[ci] = 4;	/* small positive diff category */
741      } else {
742        v = -v;
743        arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */
744        st += 3;			/* Table F.4: SN = S0 + 3 */
745        entropy->dc_context[ci] = 8;	/* small negative diff category */
746      }
747      /* Figure F.8: Encoding the magnitude category of v */
748      m = 0;
749      if (v -= 1) {
750        arith_encode(cinfo, st, 1);
751        m = 1;
752        v2 = v;
753        st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
754        while (v2 >>= 1) {
755          arith_encode(cinfo, st, 1);
756          m <<= 1;
757          st += 1;
758        }
759      }
760      arith_encode(cinfo, st, 0);
761      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
762      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
763        entropy->dc_context[ci] = 0;	/* zero diff category */
764      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
765        entropy->dc_context[ci] += 8;	/* large diff category */
766      /* Figure F.9: Encoding the magnitude bit pattern of v */
767      st += 14;
768      while (m >>= 1)
769        arith_encode(cinfo, st, (m & v) ? 1 : 0);
770    }
771
772    /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
773
774    if ((ke = cinfo->lim_Se) == 0) continue;
775    tbl = compptr->ac_tbl_no;
776
777    /* Establish EOB (end-of-block) index */
778    do {
779      if ((*block)[natural_order[ke]]) break;
780    } while (--ke);
781
782    /* Figure F.5: Encode_AC_Coefficients */
783    for (k = 0; k < ke;) {
784      st = entropy->ac_stats[tbl] + 3 * k;
785      arith_encode(cinfo, st, 0);	/* EOB decision */
786      while ((v = (*block)[natural_order[++k]]) == 0) {
787        arith_encode(cinfo, st + 1, 0);
788        st += 3;
789      }
790      arith_encode(cinfo, st + 1, 1);
791      /* Figure F.6: Encoding nonzero value v */
792      /* Figure F.7: Encoding the sign of v */
793      if (v > 0) {
794        arith_encode(cinfo, entropy->fixed_bin, 0);
795      } else {
796        v = -v;
797        arith_encode(cinfo, entropy->fixed_bin, 1);
798      }
799      st += 2;
800      /* Figure F.8: Encoding the magnitude category of v */
801      m = 0;
802      if (v -= 1) {
803        arith_encode(cinfo, st, 1);
804        m = 1;
805        v2 = v;
806        if (v2 >>= 1) {
807          arith_encode(cinfo, st, 1);
808          m <<= 1;
809          st = entropy->ac_stats[tbl] +
810               (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
811          while (v2 >>= 1) {
812            arith_encode(cinfo, st, 1);
813            m <<= 1;
814            st += 1;
815          }
816        }
817      }
818      arith_encode(cinfo, st, 0);
819      /* Figure F.9: Encoding the magnitude bit pattern of v */
820      st += 14;
821      while (m >>= 1)
822        arith_encode(cinfo, st, (m & v) ? 1 : 0);
823    }
824    /* Encode EOB decision only if k < cinfo->lim_Se */
825    if (k < cinfo->lim_Se) {
826      st = entropy->ac_stats[tbl] + 3 * k;
827      arith_encode(cinfo, st, 1);
828    }
829  }
830
831  return TRUE;
832}
833
834
835/*
836 * Initialize for an arithmetic-compressed scan.
837 */
838
839METHODDEF(void)
840start_pass (j_compress_ptr cinfo, boolean gather_statistics)
841{
842  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
843  int ci, tbl;
844  jpeg_component_info * compptr;
845
846  if (gather_statistics)
847    /* Make sure to avoid that in the master control logic!
848     * We are fully adaptive here and need no extra
849     * statistics gathering pass!
850     */
851    ERREXIT(cinfo, JERR_NOT_COMPILED);
852
853  /* We assume jcmaster.c already validated the progressive scan parameters. */
854
855  /* Select execution routines */
856  if (cinfo->progressive_mode) {
857    if (cinfo->Ah == 0) {
858      if (cinfo->Ss == 0)
859        entropy->pub.encode_mcu = encode_mcu_DC_first;
860      else
861        entropy->pub.encode_mcu = encode_mcu_AC_first;
862    } else {
863      if (cinfo->Ss == 0)
864        entropy->pub.encode_mcu = encode_mcu_DC_refine;
865      else
866        entropy->pub.encode_mcu = encode_mcu_AC_refine;
867    }
868  } else
869    entropy->pub.encode_mcu = encode_mcu;
870
871  /* Allocate & initialize requested statistics areas */
872  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
873    compptr = cinfo->cur_comp_info[ci];
874    /* DC needs no table for refinement scan */
875    if (cinfo->Ss == 0 && cinfo->Ah == 0) {
876      tbl = compptr->dc_tbl_no;
877      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
878        ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
879      if (entropy->dc_stats[tbl] == NULL)
880        entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
881          ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
882      MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
883      /* Initialize DC predictions to 0 */
884      entropy->last_dc_val[ci] = 0;
885      entropy->dc_context[ci] = 0;
886    }
887    /* AC needs no table when not present */
888    if (cinfo->Se) {
889      tbl = compptr->ac_tbl_no;
890      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
891        ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
892      if (entropy->ac_stats[tbl] == NULL)
893        entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
894          ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
895      MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
896#ifdef CALCULATE_SPECTRAL_CONDITIONING
897      if (cinfo->progressive_mode)
898        /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
899        cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
900#endif
901    }
902  }
903
904  /* Initialize arithmetic encoding variables */
905  entropy->c = 0;
906  entropy->a = 0x10000L;
907  entropy->sc = 0;
908  entropy->zc = 0;
909  entropy->ct = 11;
910  entropy->buffer = -1;  /* empty */
911
912  /* Initialize restart stuff */
913  entropy->restarts_to_go = cinfo->restart_interval;
914  entropy->next_restart_num = 0;
915}
916
917
918/*
919 * Module initialization routine for arithmetic entropy encoding.
920 */
921
922GLOBAL(void)
923jinit_arith_encoder (j_compress_ptr cinfo)
924{
925  arith_entropy_ptr entropy;
926  int i;
927
928  entropy = (arith_entropy_ptr)
929    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
930                                SIZEOF(arith_entropy_encoder));
931  cinfo->entropy = &entropy->pub;
932  entropy->pub.start_pass = start_pass;
933  entropy->pub.finish_pass = finish_pass;
934
935  /* Mark tables unallocated */
936  for (i = 0; i < NUM_ARITH_TBLS; i++) {
937    entropy->dc_stats[i] = NULL;
938    entropy->ac_stats[i] = NULL;
939  }
940
941  /* Initialize index for fixed probability estimation */
942  entropy->fixed_bin[0] = 113;
943}
944