segmentation.cpp revision 793ee12c6df9cad3806238d32528c49a3ff9331d
1/*M///////////////////////////////////////////////////////////////////////////////////////
2//
3//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4//
5//  By downloading, copying, installing or using the software you agree to this license.
6//  If you do not agree to this license, do not download, install,
7//  copy or use the software.
8//
9//
10//                           License Agreement
11//                For Open Source Computer Vision Library
12//
13// Copyright (C) 2000, Intel Corporation, all rights reserved.
14// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
15// Third party copyrights are property of their respective owners.
16//
17// Redistribution and use in source and binary forms, with or without modification,
18// are permitted provided that the following conditions are met:
19//
20//   * Redistribution's of source code must retain the above copyright notice,
21//     this list of conditions and the following disclaimer.
22//
23//   * Redistribution's in binary form must reproduce the above copyright notice,
24//     this list of conditions and the following disclaimer in the documentation
25//     and/or other materials provided with the distribution.
26//
27//   * The name of the copyright holders may not be used to endorse or promote products
28//     derived from this software without specific prior written permission.
29//
30// This software is provided by the copyright holders and contributors "as is" and
31// any express or implied warranties, including, but not limited to, the implied
32// warranties of merchantability and fitness for a particular purpose are disclaimed.
33// In no event shall the Intel Corporation or contributors be liable for any direct,
34// indirect, incidental, special, exemplary, or consequential damages
35// (including, but not limited to, procurement of substitute goods or services;
36// loss of use, data, or profits; or business interruption) however caused
37// and on any theory of liability, whether in contract, strict liability,
38// or tort (including negligence or otherwise) arising in any way out of
39// the use of this software, even if advised of the possibility of such damage.
40//
41//M*/
42
43#include "precomp.hpp"
44
45/****************************************************************************************\
46*                                       Watershed                                        *
47\****************************************************************************************/
48
49namespace cv
50{
51// A node represents a pixel to label
52struct WSNode
53{
54    int next;
55    int mask_ofs;
56    int img_ofs;
57};
58
59// Queue for WSNodes
60struct WSQueue
61{
62    WSQueue() { first = last = 0; }
63    int first, last;
64};
65
66
67static int
68allocWSNodes( std::vector<WSNode>& storage )
69{
70    int sz = (int)storage.size();
71    int newsz = MAX(128, sz*3/2);
72
73    storage.resize(newsz);
74    if( sz == 0 )
75    {
76        storage[0].next = 0;
77        sz = 1;
78    }
79    for( int i = sz; i < newsz-1; i++ )
80        storage[i].next = i+1;
81    storage[newsz-1].next = 0;
82    return sz;
83}
84
85}
86
87
88void cv::watershed( InputArray _src, InputOutputArray _markers )
89{
90    // Labels for pixels
91    const int IN_QUEUE = -2; // Pixel visited
92    const int WSHED = -1; // Pixel belongs to watershed
93
94    // possible bit values = 2^8
95    const int NQ = 256;
96
97    Mat src = _src.getMat(), dst = _markers.getMat();
98    Size size = src.size();
99
100    // Vector of every created node
101    std::vector<WSNode> storage;
102    int free_node = 0, node;
103    // Priority queue of queues of nodes
104    // from high priority (0) to low priority (255)
105    WSQueue q[NQ];
106    // Non-empty queue with highest priority
107    int active_queue;
108    int i, j;
109    // Color differences
110    int db, dg, dr;
111    int subs_tab[513];
112
113    // MAX(a,b) = b + MAX(a-b,0)
114    #define ws_max(a,b) ((b) + subs_tab[(a)-(b)+NQ])
115    // MIN(a,b) = a - MAX(a-b,0)
116    #define ws_min(a,b) ((a) - subs_tab[(a)-(b)+NQ])
117
118    // Create a new node with offsets mofs and iofs in queue idx
119    #define ws_push(idx,mofs,iofs)          \
120    {                                       \
121        if( !free_node )                    \
122            free_node = allocWSNodes( storage );\
123        node = free_node;                   \
124        free_node = storage[free_node].next;\
125        storage[node].next = 0;             \
126        storage[node].mask_ofs = mofs;      \
127        storage[node].img_ofs = iofs;       \
128        if( q[idx].last )                   \
129            storage[q[idx].last].next=node; \
130        else                                \
131            q[idx].first = node;            \
132        q[idx].last = node;                 \
133    }
134
135    // Get next node from queue idx
136    #define ws_pop(idx,mofs,iofs)           \
137    {                                       \
138        node = q[idx].first;                \
139        q[idx].first = storage[node].next;  \
140        if( !storage[node].next )           \
141            q[idx].last = 0;                \
142        storage[node].next = free_node;     \
143        free_node = node;                   \
144        mofs = storage[node].mask_ofs;      \
145        iofs = storage[node].img_ofs;       \
146    }
147
148    // Get highest absolute channel difference in diff
149    #define c_diff(ptr1,ptr2,diff)           \
150    {                                        \
151        db = std::abs((ptr1)[0] - (ptr2)[0]);\
152        dg = std::abs((ptr1)[1] - (ptr2)[1]);\
153        dr = std::abs((ptr1)[2] - (ptr2)[2]);\
154        diff = ws_max(db,dg);                \
155        diff = ws_max(diff,dr);              \
156        assert( 0 <= diff && diff <= 255 );  \
157    }
158
159    CV_Assert( src.type() == CV_8UC3 && dst.type() == CV_32SC1 );
160    CV_Assert( src.size() == dst.size() );
161
162    // Current pixel in input image
163    const uchar* img = src.ptr();
164    // Step size to next row in input image
165    int istep = int(src.step/sizeof(img[0]));
166
167    // Current pixel in mask image
168    int* mask = dst.ptr<int>();
169    // Step size to next row in mask image
170    int mstep = int(dst.step / sizeof(mask[0]));
171
172    for( i = 0; i < 256; i++ )
173        subs_tab[i] = 0;
174    for( i = 256; i <= 512; i++ )
175        subs_tab[i] = i - 256;
176
177    // draw a pixel-wide border of dummy "watershed" (i.e. boundary) pixels
178    for( j = 0; j < size.width; j++ )
179        mask[j] = mask[j + mstep*(size.height-1)] = WSHED;
180
181    // initial phase: put all the neighbor pixels of each marker to the ordered queue -
182    // determine the initial boundaries of the basins
183    for( i = 1; i < size.height-1; i++ )
184    {
185        img += istep; mask += mstep;
186        mask[0] = mask[size.width-1] = WSHED; // boundary pixels
187
188        for( j = 1; j < size.width-1; j++ )
189        {
190            int* m = mask + j;
191            if( m[0] < 0 ) m[0] = 0;
192            if( m[0] == 0 && (m[-1] > 0 || m[1] > 0 || m[-mstep] > 0 || m[mstep] > 0) )
193            {
194                // Find smallest difference to adjacent markers
195                const uchar* ptr = img + j*3;
196                int idx = 256, t;
197                if( m[-1] > 0 )
198                    c_diff( ptr, ptr - 3, idx );
199                if( m[1] > 0 )
200                {
201                    c_diff( ptr, ptr + 3, t );
202                    idx = ws_min( idx, t );
203                }
204                if( m[-mstep] > 0 )
205                {
206                    c_diff( ptr, ptr - istep, t );
207                    idx = ws_min( idx, t );
208                }
209                if( m[mstep] > 0 )
210                {
211                    c_diff( ptr, ptr + istep, t );
212                    idx = ws_min( idx, t );
213                }
214
215                // Add to according queue
216                assert( 0 <= idx && idx <= 255 );
217                ws_push( idx, i*mstep + j, i*istep + j*3 );
218                m[0] = IN_QUEUE;
219            }
220        }
221    }
222
223    // find the first non-empty queue
224    for( i = 0; i < NQ; i++ )
225        if( q[i].first )
226            break;
227
228    // if there is no markers, exit immediately
229    if( i == NQ )
230        return;
231
232    active_queue = i;
233    img = src.ptr();
234    mask = dst.ptr<int>();
235
236    // recursively fill the basins
237    for(;;)
238    {
239        int mofs, iofs;
240        int lab = 0, t;
241        int* m;
242        const uchar* ptr;
243
244        // Get non-empty queue with highest priority
245        // Exit condition: empty priority queue
246        if( q[active_queue].first == 0 )
247        {
248            for( i = active_queue+1; i < NQ; i++ )
249                if( q[i].first )
250                    break;
251            if( i == NQ )
252                break;
253            active_queue = i;
254        }
255
256        // Get next node
257        ws_pop( active_queue, mofs, iofs );
258
259        // Calculate pointer to current pixel in input and marker image
260        m = mask + mofs;
261        ptr = img + iofs;
262
263        // Check surrounding pixels for labels
264        // to determine label for current pixel
265        t = m[-1]; // Left
266        if( t > 0 ) lab = t;
267        t = m[1]; // Right
268        if( t > 0 )
269        {
270            if( lab == 0 ) lab = t;
271            else if( t != lab ) lab = WSHED;
272        }
273        t = m[-mstep]; // Top
274        if( t > 0 )
275        {
276            if( lab == 0 ) lab = t;
277            else if( t != lab ) lab = WSHED;
278        }
279        t = m[mstep]; // Bottom
280        if( t > 0 )
281        {
282            if( lab == 0 ) lab = t;
283            else if( t != lab ) lab = WSHED;
284        }
285
286        // Set label to current pixel in marker image
287        assert( lab != 0 );
288        m[0] = lab;
289
290        if( lab == WSHED )
291            continue;
292
293        // Add adjacent, unlabeled pixels to corresponding queue
294        if( m[-1] == 0 )
295        {
296            c_diff( ptr, ptr - 3, t );
297            ws_push( t, mofs - 1, iofs - 3 );
298            active_queue = ws_min( active_queue, t );
299            m[-1] = IN_QUEUE;
300        }
301        if( m[1] == 0 )
302        {
303            c_diff( ptr, ptr + 3, t );
304            ws_push( t, mofs + 1, iofs + 3 );
305            active_queue = ws_min( active_queue, t );
306            m[1] = IN_QUEUE;
307        }
308        if( m[-mstep] == 0 )
309        {
310            c_diff( ptr, ptr - istep, t );
311            ws_push( t, mofs - mstep, iofs - istep );
312            active_queue = ws_min( active_queue, t );
313            m[-mstep] = IN_QUEUE;
314        }
315        if( m[mstep] == 0 )
316        {
317            c_diff( ptr, ptr + istep, t );
318            ws_push( t, mofs + mstep, iofs + istep );
319            active_queue = ws_min( active_queue, t );
320            m[mstep] = IN_QUEUE;
321        }
322    }
323}
324
325
326/****************************************************************************************\
327*                                         Meanshift                                      *
328\****************************************************************************************/
329
330
331void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst,
332                                double sp0, double sr, int max_level,
333                                TermCriteria termcrit )
334{
335    Mat src0 = _src.getMat();
336
337    if( src0.empty() )
338        return;
339
340    _dst.create( src0.size(), src0.type() );
341    Mat dst0 = _dst.getMat();
342
343    const int cn = 3;
344    const int MAX_LEVELS = 8;
345
346    if( (unsigned)max_level > (unsigned)MAX_LEVELS )
347        CV_Error( CV_StsOutOfRange, "The number of pyramid levels is too large or negative" );
348
349    std::vector<cv::Mat> src_pyramid(max_level+1);
350    std::vector<cv::Mat> dst_pyramid(max_level+1);
351    cv::Mat mask0;
352    int i, j, level;
353    //uchar* submask = 0;
354
355    #define cdiff(ofs0) (tab[c0-dptr[ofs0]+255] + \
356        tab[c1-dptr[(ofs0)+1]+255] + tab[c2-dptr[(ofs0)+2]+255] >= isr22)
357
358    double sr2 = sr * sr;
359    int isr2 = cvRound(sr2), isr22 = MAX(isr2,16);
360    int tab[768];
361
362
363    if( src0.type() != CV_8UC3 )
364        CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel images are supported" );
365
366    if( src0.type() != dst0.type() )
367        CV_Error( CV_StsUnmatchedFormats, "The input and output images must have the same type" );
368
369    if( src0.size() != dst0.size() )
370        CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" );
371
372    if( !(termcrit.type & CV_TERMCRIT_ITER) )
373        termcrit.maxCount = 5;
374    termcrit.maxCount = MAX(termcrit.maxCount,1);
375    termcrit.maxCount = MIN(termcrit.maxCount,100);
376    if( !(termcrit.type & CV_TERMCRIT_EPS) )
377        termcrit.epsilon = 1.f;
378    termcrit.epsilon = MAX(termcrit.epsilon, 0.f);
379
380    for( i = 0; i < 768; i++ )
381        tab[i] = (i - 255)*(i - 255);
382
383    // 1. construct pyramid
384    src_pyramid[0] = src0;
385    dst_pyramid[0] = dst0;
386    for( level = 1; level <= max_level; level++ )
387    {
388        src_pyramid[level].create( (src_pyramid[level-1].rows+1)/2,
389                        (src_pyramid[level-1].cols+1)/2, src_pyramid[level-1].type() );
390        dst_pyramid[level].create( src_pyramid[level].rows,
391                        src_pyramid[level].cols, src_pyramid[level].type() );
392        cv::pyrDown( src_pyramid[level-1], src_pyramid[level], src_pyramid[level].size() );
393        //CV_CALL( cvResize( src_pyramid[level-1], src_pyramid[level], CV_INTER_AREA ));
394    }
395
396    mask0.create(src0.rows, src0.cols, CV_8UC1);
397    //CV_CALL( submask = (uchar*)cvAlloc( (sp+2)*(sp+2) ));
398
399    // 2. apply meanshift, starting from the pyramid top (i.e. the smallest layer)
400    for( level = max_level; level >= 0; level-- )
401    {
402        cv::Mat src = src_pyramid[level];
403        cv::Size size = src.size();
404        const uchar* sptr = src.ptr();
405        int sstep = (int)src.step;
406        uchar* mask = 0;
407        int mstep = 0;
408        uchar* dptr;
409        int dstep;
410        float sp = (float)(sp0 / (1 << level));
411        sp = MAX( sp, 1 );
412
413        if( level < max_level )
414        {
415            cv::Size size1 = dst_pyramid[level+1].size();
416            cv::Mat m( size.height, size.width, CV_8UC1, mask0.ptr() );
417            dstep = (int)dst_pyramid[level+1].step;
418            dptr = dst_pyramid[level+1].ptr() + dstep + cn;
419            mstep = (int)m.step;
420            mask = m.ptr() + mstep;
421            //cvResize( dst_pyramid[level+1], dst_pyramid[level], CV_INTER_CUBIC );
422            cv::pyrUp( dst_pyramid[level+1], dst_pyramid[level], dst_pyramid[level].size() );
423            m.setTo(cv::Scalar::all(0));
424
425            for( i = 1; i < size1.height-1; i++, dptr += dstep - (size1.width-2)*3, mask += mstep*2 )
426            {
427                for( j = 1; j < size1.width-1; j++, dptr += cn )
428                {
429                    int c0 = dptr[0], c1 = dptr[1], c2 = dptr[2];
430                    mask[j*2 - 1] = cdiff(-3) || cdiff(3) || cdiff(-dstep-3) || cdiff(-dstep) ||
431                        cdiff(-dstep+3) || cdiff(dstep-3) || cdiff(dstep) || cdiff(dstep+3);
432                }
433            }
434
435            cv::dilate( m, m, cv::Mat() );
436            mask = m.ptr();
437        }
438
439        dptr = dst_pyramid[level].ptr();
440        dstep = (int)dst_pyramid[level].step;
441
442        for( i = 0; i < size.height; i++, sptr += sstep - size.width*3,
443                                          dptr += dstep - size.width*3,
444                                          mask += mstep )
445        {
446            for( j = 0; j < size.width; j++, sptr += 3, dptr += 3 )
447            {
448                int x0 = j, y0 = i, x1, y1, iter;
449                int c0, c1, c2;
450
451                if( mask && !mask[j] )
452                    continue;
453
454                c0 = sptr[0], c1 = sptr[1], c2 = sptr[2];
455
456                // iterate meanshift procedure
457                for( iter = 0; iter < termcrit.maxCount; iter++ )
458                {
459                    const uchar* ptr;
460                    int x, y, count = 0;
461                    int minx, miny, maxx, maxy;
462                    int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0;
463                    double icount;
464                    int stop_flag;
465
466                    //mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp)
467                    minx = cvRound(x0 - sp); minx = MAX(minx, 0);
468                    miny = cvRound(y0 - sp); miny = MAX(miny, 0);
469                    maxx = cvRound(x0 + sp); maxx = MIN(maxx, size.width-1);
470                    maxy = cvRound(y0 + sp); maxy = MIN(maxy, size.height-1);
471                    ptr = sptr + (miny - i)*sstep + (minx - j)*3;
472
473                    for( y = miny; y <= maxy; y++, ptr += sstep - (maxx-minx+1)*3 )
474                    {
475                        int row_count = 0;
476                        x = minx;
477                        #if CV_ENABLE_UNROLLED
478                        for( ; x + 3 <= maxx; x += 4, ptr += 12 )
479                        {
480                            int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
481                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
482                            {
483                                s0 += t0; s1 += t1; s2 += t2;
484                                sx += x; row_count++;
485                            }
486                            t0 = ptr[3], t1 = ptr[4], t2 = ptr[5];
487                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
488                            {
489                                s0 += t0; s1 += t1; s2 += t2;
490                                sx += x+1; row_count++;
491                            }
492                            t0 = ptr[6], t1 = ptr[7], t2 = ptr[8];
493                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
494                            {
495                                s0 += t0; s1 += t1; s2 += t2;
496                                sx += x+2; row_count++;
497                            }
498                            t0 = ptr[9], t1 = ptr[10], t2 = ptr[11];
499                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
500                            {
501                                s0 += t0; s1 += t1; s2 += t2;
502                                sx += x+3; row_count++;
503                            }
504                        }
505                        #endif
506                        for( ; x <= maxx; x++, ptr += 3 )
507                        {
508                            int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
509                            if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
510                            {
511                                s0 += t0; s1 += t1; s2 += t2;
512                                sx += x; row_count++;
513                            }
514                        }
515                        count += row_count;
516                        sy += y*row_count;
517                    }
518
519                    if( count == 0 )
520                        break;
521
522                    icount = 1./count;
523                    x1 = cvRound(sx*icount);
524                    y1 = cvRound(sy*icount);
525                    s0 = cvRound(s0*icount);
526                    s1 = cvRound(s1*icount);
527                    s2 = cvRound(s2*icount);
528
529                    stop_flag = (x0 == x1 && y0 == y1) || std::abs(x1-x0) + std::abs(y1-y0) +
530                        tab[s0 - c0 + 255] + tab[s1 - c1 + 255] +
531                        tab[s2 - c2 + 255] <= termcrit.epsilon;
532
533                    x0 = x1; y0 = y1;
534                    c0 = s0; c1 = s1; c2 = s2;
535
536                    if( stop_flag )
537                        break;
538                }
539
540                dptr[0] = (uchar)c0;
541                dptr[1] = (uchar)c1;
542                dptr[2] = (uchar)c2;
543            }
544        }
545    }
546}
547
548
549///////////////////////////////////////////////////////////////////////////////////////////////
550
551CV_IMPL void cvWatershed( const CvArr* _src, CvArr* _markers )
552{
553    cv::Mat src = cv::cvarrToMat(_src), markers = cv::cvarrToMat(_markers);
554    cv::watershed(src, markers);
555}
556
557
558CV_IMPL void
559cvPyrMeanShiftFiltering( const CvArr* srcarr, CvArr* dstarr,
560                        double sp0, double sr, int max_level,
561                        CvTermCriteria termcrit )
562{
563    cv::Mat src = cv::cvarrToMat(srcarr);
564    const cv::Mat dst = cv::cvarrToMat(dstarr);
565
566    cv::pyrMeanShiftFiltering(src, dst, sp0, sr, max_level, termcrit);
567}
568