1#include <iostream> 2#include <vector> 3 4#include "opencv2/core.hpp" 5#include <opencv2/core/utility.hpp> 6#include "opencv2/imgproc.hpp" 7#include "opencv2/highgui.hpp" 8#include "opencv2/video.hpp" 9#include "opencv2/cudaoptflow.hpp" 10#include "opencv2/cudaimgproc.hpp" 11 12using namespace std; 13using namespace cv; 14using namespace cv::cuda; 15 16static void download(const GpuMat& d_mat, vector<Point2f>& vec) 17{ 18 vec.resize(d_mat.cols); 19 Mat mat(1, d_mat.cols, CV_32FC2, (void*)&vec[0]); 20 d_mat.download(mat); 21} 22 23static void download(const GpuMat& d_mat, vector<uchar>& vec) 24{ 25 vec.resize(d_mat.cols); 26 Mat mat(1, d_mat.cols, CV_8UC1, (void*)&vec[0]); 27 d_mat.download(mat); 28} 29 30static void drawArrows(Mat& frame, const vector<Point2f>& prevPts, const vector<Point2f>& nextPts, const vector<uchar>& status, Scalar line_color = Scalar(0, 0, 255)) 31{ 32 for (size_t i = 0; i < prevPts.size(); ++i) 33 { 34 if (status[i]) 35 { 36 int line_thickness = 1; 37 38 Point p = prevPts[i]; 39 Point q = nextPts[i]; 40 41 double angle = atan2((double) p.y - q.y, (double) p.x - q.x); 42 43 double hypotenuse = sqrt( (double)(p.y - q.y)*(p.y - q.y) + (double)(p.x - q.x)*(p.x - q.x) ); 44 45 if (hypotenuse < 1.0) 46 continue; 47 48 // Here we lengthen the arrow by a factor of three. 49 q.x = (int) (p.x - 3 * hypotenuse * cos(angle)); 50 q.y = (int) (p.y - 3 * hypotenuse * sin(angle)); 51 52 // Now we draw the main line of the arrow. 53 line(frame, p, q, line_color, line_thickness); 54 55 // Now draw the tips of the arrow. I do some scaling so that the 56 // tips look proportional to the main line of the arrow. 57 58 p.x = (int) (q.x + 9 * cos(angle + CV_PI / 4)); 59 p.y = (int) (q.y + 9 * sin(angle + CV_PI / 4)); 60 line(frame, p, q, line_color, line_thickness); 61 62 p.x = (int) (q.x + 9 * cos(angle - CV_PI / 4)); 63 p.y = (int) (q.y + 9 * sin(angle - CV_PI / 4)); 64 line(frame, p, q, line_color, line_thickness); 65 } 66 } 67} 68 69template <typename T> inline T clamp (T x, T a, T b) 70{ 71 return ((x) > (a) ? ((x) < (b) ? (x) : (b)) : (a)); 72} 73 74template <typename T> inline T mapValue(T x, T a, T b, T c, T d) 75{ 76 x = clamp(x, a, b); 77 return c + (d - c) * (x - a) / (b - a); 78} 79 80int main(int argc, const char* argv[]) 81{ 82 const char* keys = 83 "{ h help | | print help message }" 84 "{ l left | ../data/pic1.png | specify left image }" 85 "{ r right | ../data/pic2.png | specify right image }" 86 "{ gray | | use grayscale sources [PyrLK Sparse] }" 87 "{ win_size | 21 | specify windows size [PyrLK] }" 88 "{ max_level | 3 | specify max level [PyrLK] }" 89 "{ iters | 30 | specify iterations count [PyrLK] }" 90 "{ points | 4000 | specify points count [GoodFeatureToTrack] }" 91 "{ min_dist | 0 | specify minimal distance between points [GoodFeatureToTrack] }"; 92 93 CommandLineParser cmd(argc, argv, keys); 94 95 if (cmd.has("help") || !cmd.check()) 96 { 97 cmd.printMessage(); 98 cmd.printErrors(); 99 return 0; 100 } 101 102 string fname0 = cmd.get<string>("left"); 103 string fname1 = cmd.get<string>("right"); 104 105 if (fname0.empty() || fname1.empty()) 106 { 107 cerr << "Missing input file names" << endl; 108 return -1; 109 } 110 111 bool useGray = cmd.has("gray"); 112 int winSize = cmd.get<int>("win_size"); 113 int maxLevel = cmd.get<int>("max_level"); 114 int iters = cmd.get<int>("iters"); 115 int points = cmd.get<int>("points"); 116 double minDist = cmd.get<double>("min_dist"); 117 118 Mat frame0 = imread(fname0); 119 Mat frame1 = imread(fname1); 120 121 if (frame0.empty() || frame1.empty()) 122 { 123 cout << "Can't load input images" << endl; 124 return -1; 125 } 126 127 namedWindow("PyrLK [Sparse]", WINDOW_NORMAL); 128 namedWindow("PyrLK [Dense] Flow Field", WINDOW_NORMAL); 129 130 cout << "Image size : " << frame0.cols << " x " << frame0.rows << endl; 131 cout << "Points count : " << points << endl; 132 133 cout << endl; 134 135 Mat frame0Gray; 136 cv::cvtColor(frame0, frame0Gray, COLOR_BGR2GRAY); 137 Mat frame1Gray; 138 cv::cvtColor(frame1, frame1Gray, COLOR_BGR2GRAY); 139 140 // goodFeaturesToTrack 141 142 GpuMat d_frame0Gray(frame0Gray); 143 GpuMat d_prevPts; 144 145 Ptr<cuda::CornersDetector> detector = cuda::createGoodFeaturesToTrackDetector(d_frame0Gray.type(), points, 0.01, minDist); 146 147 detector->detect(d_frame0Gray, d_prevPts); 148 149 // Sparse 150 151 Ptr<cuda::SparsePyrLKOpticalFlow> d_pyrLK = cuda::SparsePyrLKOpticalFlow::create( 152 Size(winSize, winSize), maxLevel, iters); 153 154 GpuMat d_frame0(frame0); 155 GpuMat d_frame1(frame1); 156 GpuMat d_frame1Gray(frame1Gray); 157 GpuMat d_nextPts; 158 GpuMat d_status; 159 160 d_pyrLK->calc(useGray ? d_frame0Gray : d_frame0, useGray ? d_frame1Gray : d_frame1, d_prevPts, d_nextPts, d_status); 161 162 // Draw arrows 163 164 vector<Point2f> prevPts(d_prevPts.cols); 165 download(d_prevPts, prevPts); 166 167 vector<Point2f> nextPts(d_nextPts.cols); 168 download(d_nextPts, nextPts); 169 170 vector<uchar> status(d_status.cols); 171 download(d_status, status); 172 173 drawArrows(frame0, prevPts, nextPts, status, Scalar(255, 0, 0)); 174 175 imshow("PyrLK [Sparse]", frame0); 176 177 waitKey(); 178 179 return 0; 180} 181