1/*
2 * Copyright 2016 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "SkCodec.h"
9#include "SkCodecPriv.h"
10#include "SkColorPriv.h"
11#include "SkData.h"
12#include "SkJpegCodec.h"
13#include "SkMutex.h"
14#include "SkRawCodec.h"
15#include "SkRefCnt.h"
16#include "SkStream.h"
17#include "SkStreamPriv.h"
18#include "SkSwizzler.h"
19#include "SkTArray.h"
20#include "SkTaskGroup.h"
21#include "SkTemplates.h"
22#include "SkTypes.h"
23
24#include "dng_area_task.h"
25#include "dng_color_space.h"
26#include "dng_errors.h"
27#include "dng_exceptions.h"
28#include "dng_host.h"
29#include "dng_info.h"
30#include "dng_memory.h"
31#include "dng_render.h"
32#include "dng_stream.h"
33
34#include "src/piex.h"
35
36#include <cmath>  // for std::round,floor,ceil
37#include <limits>
38
39namespace {
40
41// Caluclates the number of tiles of tile_size that fit into the area in vertical and horizontal
42// directions.
43dng_point num_tiles_in_area(const dng_point &areaSize,
44                            const dng_point_real64 &tileSize) {
45  // FIXME: Add a ceil_div() helper in SkCodecPriv.h
46  return dng_point(static_cast<int32>((areaSize.v + tileSize.v - 1) / tileSize.v),
47                   static_cast<int32>((areaSize.h + tileSize.h - 1) / tileSize.h));
48}
49
50int num_tasks_required(const dng_point& tilesInTask,
51                         const dng_point& tilesInArea) {
52  return ((tilesInArea.v + tilesInTask.v - 1) / tilesInTask.v) *
53         ((tilesInArea.h + tilesInTask.h - 1) / tilesInTask.h);
54}
55
56// Calculate the number of tiles to process per task, taking into account the maximum number of
57// tasks. It prefers to increase horizontally for better locality of reference.
58dng_point num_tiles_per_task(const int maxTasks,
59                             const dng_point &tilesInArea) {
60  dng_point tilesInTask = {1, 1};
61  while (num_tasks_required(tilesInTask, tilesInArea) > maxTasks) {
62      if (tilesInTask.h < tilesInArea.h) {
63          ++tilesInTask.h;
64      } else if (tilesInTask.v < tilesInArea.v) {
65          ++tilesInTask.v;
66      } else {
67          ThrowProgramError("num_tiles_per_task calculation is wrong.");
68      }
69  }
70  return tilesInTask;
71}
72
73std::vector<dng_rect> compute_task_areas(const int maxTasks, const dng_rect& area,
74                                         const dng_point& tileSize) {
75  std::vector<dng_rect> taskAreas;
76  const dng_point tilesInArea = num_tiles_in_area(area.Size(), tileSize);
77  const dng_point tilesPerTask = num_tiles_per_task(maxTasks, tilesInArea);
78  const dng_point taskAreaSize = {tilesPerTask.v * tileSize.v,
79                                    tilesPerTask.h * tileSize.h};
80  for (int v = 0; v < tilesInArea.v; v += tilesPerTask.v) {
81    for (int h = 0; h < tilesInArea.h; h += tilesPerTask.h) {
82      dng_rect taskArea;
83      taskArea.t = area.t + v * tileSize.v;
84      taskArea.l = area.l + h * tileSize.h;
85      taskArea.b = Min_int32(taskArea.t + taskAreaSize.v, area.b);
86      taskArea.r = Min_int32(taskArea.l + taskAreaSize.h, area.r);
87
88      taskAreas.push_back(taskArea);
89    }
90  }
91  return taskAreas;
92}
93
94class SkDngHost : public dng_host {
95public:
96    explicit SkDngHost(dng_memory_allocator* allocater) : dng_host(allocater) {}
97
98    void PerformAreaTask(dng_area_task& task, const dng_rect& area) override {
99        // The area task gets split up into max_tasks sub-tasks. The max_tasks is defined by the
100        // dng-sdks default implementation of dng_area_task::MaxThreads() which returns 8 or 32
101        // sub-tasks depending on the architecture.
102        const int maxTasks = static_cast<int>(task.MaxThreads());
103
104        SkTaskGroup taskGroup;
105
106        // tileSize is typically 256x256
107        const dng_point tileSize(task.FindTileSize(area));
108        const std::vector<dng_rect> taskAreas = compute_task_areas(maxTasks, area, tileSize);
109        const int numTasks = static_cast<int>(taskAreas.size());
110
111        SkMutex mutex;
112        SkTArray<dng_exception> exceptions;
113        task.Start(numTasks, tileSize, &Allocator(), Sniffer());
114        for (int taskIndex = 0; taskIndex < numTasks; ++taskIndex) {
115            taskGroup.add([&mutex, &exceptions, &task, this, taskIndex, taskAreas, tileSize] {
116                try {
117                    task.ProcessOnThread(taskIndex, taskAreas[taskIndex], tileSize, this->Sniffer());
118                } catch (dng_exception& exception) {
119                    SkAutoMutexAcquire lock(mutex);
120                    exceptions.push_back(exception);
121                } catch (...) {
122                    SkAutoMutexAcquire lock(mutex);
123                    exceptions.push_back(dng_exception(dng_error_unknown));
124                }
125            });
126        }
127
128        taskGroup.wait();
129        task.Finish(numTasks);
130
131        // Currently we only re-throw the first catched exception.
132        if (!exceptions.empty()) {
133            Throw_dng_error(exceptions.front().ErrorCode(), nullptr, nullptr);
134        }
135    }
136
137    uint32 PerformAreaTaskThreads() override {
138        // FIXME: Need to get the real amount of available threads used in the SkTaskGroup.
139        return kMaxMPThreads;
140    }
141
142private:
143    typedef dng_host INHERITED;
144};
145
146// T must be unsigned type.
147template <class T>
148bool safe_add_to_size_t(T arg1, T arg2, size_t* result) {
149    SkASSERT(arg1 >= 0);
150    SkASSERT(arg2 >= 0);
151    if (arg1 >= 0 && arg2 <= std::numeric_limits<T>::max() - arg1) {
152        T sum = arg1 + arg2;
153        if (sum <= std::numeric_limits<size_t>::max()) {
154            *result = static_cast<size_t>(sum);
155            return true;
156        }
157    }
158    return false;
159}
160
161class SkDngMemoryAllocator : public dng_memory_allocator {
162public:
163    ~SkDngMemoryAllocator() override {}
164
165    dng_memory_block* Allocate(uint32 size) override {
166        // To avoid arbitary allocation requests which might lead to out-of-memory, limit the
167        // amount of memory that can be allocated at once. The memory limit is based on experiments
168        // and supposed to be sufficient for all valid DNG images.
169        if (size > 300 * 1024 * 1024) {  // 300 MB
170            ThrowMemoryFull();
171        }
172        return dng_memory_allocator::Allocate(size);
173    }
174};
175
176bool is_asset_stream(const SkStream& stream) {
177    return stream.hasLength() && stream.hasPosition();
178}
179
180}  // namespace
181
182class SkRawStream {
183public:
184    virtual ~SkRawStream() {}
185
186   /*
187    * Gets the length of the stream. Depending on the type of stream, this may require reading to
188    * the end of the stream.
189    */
190   virtual uint64 getLength() = 0;
191
192   virtual bool read(void* data, size_t offset, size_t length) = 0;
193
194    /*
195     * Creates an SkMemoryStream from the offset with size.
196     * Note: for performance reason, this function is destructive to the SkRawStream. One should
197     *       abandon current object after the function call.
198     */
199   virtual SkMemoryStream* transferBuffer(size_t offset, size_t size) = 0;
200};
201
202class SkRawLimitedDynamicMemoryWStream : public SkDynamicMemoryWStream {
203public:
204    virtual ~SkRawLimitedDynamicMemoryWStream() {}
205
206    bool write(const void* buffer, size_t size) override {
207        size_t newSize;
208        if (!safe_add_to_size_t(this->bytesWritten(), size, &newSize) ||
209            newSize > kMaxStreamSize)
210        {
211            SkCodecPrintf("Error: Stream size exceeds the limit.\n");
212            return false;
213        }
214        return this->INHERITED::write(buffer, size);
215    }
216
217private:
218    // Most of valid RAW images will not be larger than 100MB. This limit is helpful to avoid
219    // streaming too large data chunk. We can always adjust the limit here if we need.
220    const size_t kMaxStreamSize = 100 * 1024 * 1024;  // 100MB
221
222    typedef SkDynamicMemoryWStream INHERITED;
223};
224
225// Note: the maximum buffer size is 100MB (limited by SkRawLimitedDynamicMemoryWStream).
226class SkRawBufferedStream : public SkRawStream {
227public:
228    // Will take the ownership of the stream.
229    explicit SkRawBufferedStream(SkStream* stream)
230        : fStream(stream)
231        , fWholeStreamRead(false)
232    {
233        // Only use SkRawBufferedStream when the stream is not an asset stream.
234        SkASSERT(!is_asset_stream(*stream));
235    }
236
237    ~SkRawBufferedStream() override {}
238
239    uint64 getLength() override {
240        if (!this->bufferMoreData(kReadToEnd)) {  // read whole stream
241            ThrowReadFile();
242        }
243        return fStreamBuffer.bytesWritten();
244    }
245
246    bool read(void* data, size_t offset, size_t length) override {
247        if (length == 0) {
248            return true;
249        }
250
251        size_t sum;
252        if (!safe_add_to_size_t(offset, length, &sum)) {
253            return false;
254        }
255
256        return this->bufferMoreData(sum) && fStreamBuffer.read(data, offset, length);
257    }
258
259    SkMemoryStream* transferBuffer(size_t offset, size_t size) override {
260        SkAutoTUnref<SkData> data(SkData::NewUninitialized(size));
261        if (offset > fStreamBuffer.bytesWritten()) {
262            // If the offset is not buffered, read from fStream directly and skip the buffering.
263            const size_t skipLength = offset - fStreamBuffer.bytesWritten();
264            if (fStream->skip(skipLength) != skipLength) {
265                return nullptr;
266            }
267            const size_t bytesRead = fStream->read(data->writable_data(), size);
268            if (bytesRead < size) {
269                data.reset(SkData::NewSubset(data.get(), 0, bytesRead));
270            }
271        } else {
272            const size_t alreadyBuffered = SkTMin(fStreamBuffer.bytesWritten() - offset, size);
273            if (alreadyBuffered > 0 &&
274                !fStreamBuffer.read(data->writable_data(), offset, alreadyBuffered)) {
275                return nullptr;
276            }
277
278            const size_t remaining = size - alreadyBuffered;
279            if (remaining) {
280                auto* dst = static_cast<uint8_t*>(data->writable_data()) + alreadyBuffered;
281                const size_t bytesRead = fStream->read(dst, remaining);
282                size_t newSize;
283                if (bytesRead < remaining) {
284                    if (!safe_add_to_size_t(alreadyBuffered, bytesRead, &newSize)) {
285                        return nullptr;
286                    }
287                    data.reset(SkData::NewSubset(data.get(), 0, newSize));
288                }
289            }
290        }
291        return new SkMemoryStream(data);
292    }
293
294private:
295    // Note: if the newSize == kReadToEnd (0), this function will read to the end of stream.
296    bool bufferMoreData(size_t newSize) {
297        if (newSize == kReadToEnd) {
298            if (fWholeStreamRead) {  // already read-to-end.
299                return true;
300            }
301
302            // TODO: optimize for the special case when the input is SkMemoryStream.
303            return SkStreamCopy(&fStreamBuffer, fStream.get());
304        }
305
306        if (newSize <= fStreamBuffer.bytesWritten()) {  // already buffered to newSize
307            return true;
308        }
309        if (fWholeStreamRead) {  // newSize is larger than the whole stream.
310            return false;
311        }
312
313        // Try to read at least 8192 bytes to avoid to many small reads.
314        const size_t kMinSizeToRead = 8192;
315        const size_t sizeRequested = newSize - fStreamBuffer.bytesWritten();
316        const size_t sizeToRead = SkTMax(kMinSizeToRead, sizeRequested);
317        SkAutoSTMalloc<kMinSizeToRead, uint8> tempBuffer(sizeToRead);
318        const size_t bytesRead = fStream->read(tempBuffer.get(), sizeToRead);
319        if (bytesRead < sizeRequested) {
320            return false;
321        }
322        return fStreamBuffer.write(tempBuffer.get(), bytesRead);
323    }
324
325    SkAutoTDelete<SkStream> fStream;
326    bool fWholeStreamRead;
327
328    // Use a size-limited stream to avoid holding too huge buffer.
329    SkRawLimitedDynamicMemoryWStream fStreamBuffer;
330
331    const size_t kReadToEnd = 0;
332};
333
334class SkRawAssetStream : public SkRawStream {
335public:
336    // Will take the ownership of the stream.
337    explicit SkRawAssetStream(SkStream* stream)
338        : fStream(stream)
339    {
340        // Only use SkRawAssetStream when the stream is an asset stream.
341        SkASSERT(is_asset_stream(*stream));
342    }
343
344    ~SkRawAssetStream() override {}
345
346    uint64 getLength() override {
347        return fStream->getLength();
348    }
349
350
351    bool read(void* data, size_t offset, size_t length) override {
352        if (length == 0) {
353            return true;
354        }
355
356        size_t sum;
357        if (!safe_add_to_size_t(offset, length, &sum)) {
358            return false;
359        }
360
361        return fStream->seek(offset) && (fStream->read(data, length) == length);
362    }
363
364    SkMemoryStream* transferBuffer(size_t offset, size_t size) override {
365        if (fStream->getLength() < offset) {
366            return nullptr;
367        }
368
369        size_t sum;
370        if (!safe_add_to_size_t(offset, size, &sum)) {
371            return nullptr;
372        }
373
374        // This will allow read less than the requested "size", because the JPEG codec wants to
375        // handle also a partial JPEG file.
376        const size_t bytesToRead = SkTMin(sum, fStream->getLength()) - offset;
377        if (bytesToRead == 0) {
378            return nullptr;
379        }
380
381        if (fStream->getMemoryBase()) {  // directly copy if getMemoryBase() is available.
382            SkAutoTUnref<SkData> data(SkData::NewWithCopy(
383                static_cast<const uint8_t*>(fStream->getMemoryBase()) + offset, bytesToRead));
384            fStream.free();
385            return new SkMemoryStream(data);
386        } else {
387            SkAutoTUnref<SkData> data(SkData::NewUninitialized(bytesToRead));
388            if (!fStream->seek(offset)) {
389                return nullptr;
390            }
391            const size_t bytesRead = fStream->read(data->writable_data(), bytesToRead);
392            if (bytesRead < bytesToRead) {
393                data.reset(SkData::NewSubset(data.get(), 0, bytesRead));
394            }
395            return new SkMemoryStream(data);
396        }
397    }
398private:
399    SkAutoTDelete<SkStream> fStream;
400};
401
402class SkPiexStream : public ::piex::StreamInterface {
403public:
404    // Will NOT take the ownership of the stream.
405    explicit SkPiexStream(SkRawStream* stream) : fStream(stream) {}
406
407    ~SkPiexStream() override {}
408
409    ::piex::Error GetData(const size_t offset, const size_t length,
410                          uint8* data) override {
411        return fStream->read(static_cast<void*>(data), offset, length) ?
412            ::piex::Error::kOk : ::piex::Error::kFail;
413    }
414
415private:
416    SkRawStream* fStream;
417};
418
419class SkDngStream : public dng_stream {
420public:
421    // Will NOT take the ownership of the stream.
422    SkDngStream(SkRawStream* stream) : fStream(stream) {}
423
424    ~SkDngStream() override {}
425
426    uint64 DoGetLength() override { return fStream->getLength(); }
427
428    void DoRead(void* data, uint32 count, uint64 offset) override {
429        size_t sum;
430        if (!safe_add_to_size_t(static_cast<uint64>(count), offset, &sum) ||
431            !fStream->read(data, static_cast<size_t>(offset), static_cast<size_t>(count))) {
432            ThrowReadFile();
433        }
434    }
435
436private:
437    SkRawStream* fStream;
438};
439
440class SkDngImage {
441public:
442    /*
443     * Initializes the object with the information from Piex in a first attempt. This way it can
444     * save time and storage to obtain the DNG dimensions and color filter array (CFA) pattern
445     * which is essential for the demosaicing of the sensor image.
446     * Note: this will take the ownership of the stream.
447     */
448    static SkDngImage* NewFromStream(SkRawStream* stream) {
449        SkAutoTDelete<SkDngImage> dngImage(new SkDngImage(stream));
450        if (!dngImage->isTiffHeaderValid()) {
451            return nullptr;
452        }
453
454        if (!dngImage->initFromPiex()) {
455            if (!dngImage->readDng()) {
456                return nullptr;
457            }
458        }
459
460        return dngImage.release();
461    }
462
463    /*
464     * Renders the DNG image to the size. The DNG SDK only allows scaling close to integer factors
465     * down to 80 pixels on the short edge. The rendered image will be close to the specified size,
466     * but there is no guarantee that any of the edges will match the requested size. E.g.
467     *   100% size:              4000 x 3000
468     *   requested size:         1600 x 1200
469     *   returned size could be: 2000 x 1500
470     */
471    dng_image* render(int width, int height) {
472        if (!fHost || !fInfo || !fNegative || !fDngStream) {
473            if (!this->readDng()) {
474                return nullptr;
475            }
476        }
477
478        // DNG SDK preserves the aspect ratio, so it only needs to know the longer dimension.
479        const int preferredSize = SkTMax(width, height);
480        try {
481            // render() takes ownership of fHost, fInfo, fNegative and fDngStream when available.
482            SkAutoTDelete<dng_host> host(fHost.release());
483            SkAutoTDelete<dng_info> info(fInfo.release());
484            SkAutoTDelete<dng_negative> negative(fNegative.release());
485            SkAutoTDelete<dng_stream> dngStream(fDngStream.release());
486
487            host->SetPreferredSize(preferredSize);
488            host->ValidateSizes();
489
490            negative->ReadStage1Image(*host, *dngStream, *info);
491
492            if (info->fMaskIndex != -1) {
493                negative->ReadTransparencyMask(*host, *dngStream, *info);
494            }
495
496            negative->ValidateRawImageDigest(*host);
497            if (negative->IsDamaged()) {
498                return nullptr;
499            }
500
501            const int32 kMosaicPlane = -1;
502            negative->BuildStage2Image(*host);
503            negative->BuildStage3Image(*host, kMosaicPlane);
504
505            dng_render render(*host, *negative);
506            render.SetFinalSpace(dng_space_sRGB::Get());
507            render.SetFinalPixelType(ttByte);
508
509            dng_point stage3_size = negative->Stage3Image()->Size();
510            render.SetMaximumSize(SkTMax(stage3_size.h, stage3_size.v));
511
512            return render.Render();
513        } catch (...) {
514            return nullptr;
515        }
516    }
517
518    const SkImageInfo& getImageInfo() const {
519        return fImageInfo;
520    }
521
522    bool isScalable() const {
523        return fIsScalable;
524    }
525
526    bool isXtransImage() const {
527        return fIsXtransImage;
528    }
529
530private:
531    // Quick check if the image contains a valid TIFF header as requested by DNG format.
532    bool isTiffHeaderValid() const {
533        const size_t kHeaderSize = 4;
534        SkAutoSTMalloc<kHeaderSize, unsigned char> header(kHeaderSize);
535        if (!fStream->read(header.get(), 0 /* offset */, kHeaderSize)) {
536            return false;
537        }
538
539        // Check if the header is valid (endian info and magic number "42").
540        return
541            (header[0] == 0x49 && header[1] == 0x49 && header[2] == 0x2A && header[3] == 0x00) ||
542            (header[0] == 0x4D && header[1] == 0x4D && header[2] == 0x00 && header[3] == 0x2A);
543    }
544
545    void init(const int width, const int height, const dng_point& cfaPatternSize) {
546        fImageInfo = SkImageInfo::Make(width, height, kN32_SkColorType, kOpaque_SkAlphaType);
547
548        // The DNG SDK scales only during demosaicing, so scaling is only possible when
549        // a mosaic info is available.
550        fIsScalable = cfaPatternSize.v != 0 && cfaPatternSize.h != 0;
551        fIsXtransImage = fIsScalable ? (cfaPatternSize.v == 6 && cfaPatternSize.h == 6) : false;
552    }
553
554    bool initFromPiex() {
555        // Does not take the ownership of rawStream.
556        SkPiexStream piexStream(fStream.get());
557        ::piex::PreviewImageData imageData;
558        if (::piex::IsRaw(&piexStream)
559            && ::piex::GetPreviewImageData(&piexStream, &imageData) == ::piex::Error::kOk)
560        {
561            // Verify the size information, as it is only optional information for PIEX.
562            if (imageData.full_width == 0 || imageData.full_height == 0) {
563                return false;
564            }
565
566            dng_point cfaPatternSize(imageData.cfa_pattern_dim[1], imageData.cfa_pattern_dim[0]);
567            this->init(static_cast<int>(imageData.full_width),
568                       static_cast<int>(imageData.full_height), cfaPatternSize);
569            return true;
570        }
571        return false;
572    }
573
574    bool readDng() {
575        try {
576            // Due to the limit of DNG SDK, we need to reset host and info.
577            fHost.reset(new SkDngHost(&fAllocator));
578            fInfo.reset(new dng_info);
579            fDngStream.reset(new SkDngStream(fStream));
580
581            fHost->ValidateSizes();
582            fInfo->Parse(*fHost, *fDngStream);
583            fInfo->PostParse(*fHost);
584            if (!fInfo->IsValidDNG()) {
585                return false;
586            }
587
588            fNegative.reset(fHost->Make_dng_negative());
589            fNegative->Parse(*fHost, *fDngStream, *fInfo);
590            fNegative->PostParse(*fHost, *fDngStream, *fInfo);
591            fNegative->SynchronizeMetadata();
592
593            dng_point cfaPatternSize(0, 0);
594            if (fNegative->GetMosaicInfo() != nullptr) {
595                cfaPatternSize = fNegative->GetMosaicInfo()->fCFAPatternSize;
596            }
597            this->init(static_cast<int>(fNegative->DefaultCropSizeH().As_real64()),
598                       static_cast<int>(fNegative->DefaultCropSizeV().As_real64()),
599                       cfaPatternSize);
600            return true;
601        } catch (...) {
602            return false;
603        }
604    }
605
606    SkDngImage(SkRawStream* stream)
607        : fStream(stream) {}
608
609    SkDngMemoryAllocator fAllocator;
610    SkAutoTDelete<SkRawStream> fStream;
611    SkAutoTDelete<dng_host> fHost;
612    SkAutoTDelete<dng_info> fInfo;
613    SkAutoTDelete<dng_negative> fNegative;
614    SkAutoTDelete<dng_stream> fDngStream;
615
616    SkImageInfo fImageInfo;
617    bool fIsScalable;
618    bool fIsXtransImage;
619};
620
621/*
622 * Tries to handle the image with PIEX. If PIEX returns kOk and finds the preview image, create a
623 * SkJpegCodec. If PIEX returns kFail, then the file is invalid, return nullptr. In other cases,
624 * fallback to create SkRawCodec for DNG images.
625 */
626SkCodec* SkRawCodec::NewFromStream(SkStream* stream) {
627    SkAutoTDelete<SkRawStream> rawStream;
628    if (is_asset_stream(*stream)) {
629        rawStream.reset(new SkRawAssetStream(stream));
630    } else {
631        rawStream.reset(new SkRawBufferedStream(stream));
632    }
633
634    // Does not take the ownership of rawStream.
635    SkPiexStream piexStream(rawStream.get());
636    ::piex::PreviewImageData imageData;
637    if (::piex::IsRaw(&piexStream)) {
638        ::piex::Error error = ::piex::GetPreviewImageData(&piexStream, &imageData);
639
640        //  Theoretically PIEX can return JPEG compressed image or uncompressed RGB image. We only
641        //  handle the JPEG compressed preview image here.
642        if (error == ::piex::Error::kOk && imageData.preview.length > 0 &&
643            imageData.preview.format == ::piex::Image::kJpegCompressed)
644        {
645            // transferBuffer() is destructive to the rawStream. Abandon the rawStream after this
646            // function call.
647            // FIXME: one may avoid the copy of memoryStream and use the buffered rawStream.
648            SkMemoryStream* memoryStream =
649                rawStream->transferBuffer(imageData.preview.offset, imageData.preview.length);
650            return memoryStream ? SkJpegCodec::NewFromStream(memoryStream) : nullptr;
651        } else if (error == ::piex::Error::kFail) {
652            return nullptr;
653        }
654    }
655
656    // Takes the ownership of the rawStream.
657    SkAutoTDelete<SkDngImage> dngImage(SkDngImage::NewFromStream(rawStream.release()));
658    if (!dngImage) {
659        return nullptr;
660    }
661
662    return new SkRawCodec(dngImage.release());
663}
664
665SkCodec::Result SkRawCodec::onGetPixels(const SkImageInfo& requestedInfo, void* dst,
666                                        size_t dstRowBytes, const Options& options,
667                                        SkPMColor ctable[], int* ctableCount,
668                                        int* rowsDecoded) {
669    if (!conversion_possible(requestedInfo, this->getInfo())) {
670        SkCodecPrintf("Error: cannot convert input type to output type.\n");
671        return kInvalidConversion;
672    }
673
674    SkAutoTDelete<SkSwizzler> swizzler(SkSwizzler::CreateSwizzler(
675            SkSwizzler::kRGB, nullptr, requestedInfo, options));
676    SkASSERT(swizzler);
677
678    const int width = requestedInfo.width();
679    const int height = requestedInfo.height();
680    SkAutoTDelete<dng_image> image(fDngImage->render(width, height));
681    if (!image) {
682        return kInvalidInput;
683    }
684
685    // Because the DNG SDK can not guarantee to render to requested size, we allow a small
686    // difference. Only the overlapping region will be converted.
687    const float maxDiffRatio = 1.03f;
688    const dng_point& imageSize = image->Size();
689    if (imageSize.h / width > maxDiffRatio || imageSize.h < width ||
690        imageSize.v / height > maxDiffRatio || imageSize.v < height) {
691        return SkCodec::kInvalidScale;
692    }
693
694    void* dstRow = dst;
695    SkAutoTMalloc<uint8_t> srcRow(width * 3);
696
697    dng_pixel_buffer buffer;
698    buffer.fData = &srcRow[0];
699    buffer.fPlane = 0;
700    buffer.fPlanes = 3;
701    buffer.fColStep = buffer.fPlanes;
702    buffer.fPlaneStep = 1;
703    buffer.fPixelType = ttByte;
704    buffer.fPixelSize = sizeof(uint8_t);
705    buffer.fRowStep = width * 3;
706
707    for (int i = 0; i < height; ++i) {
708        buffer.fArea = dng_rect(i, 0, i + 1, width);
709
710        try {
711            image->Get(buffer, dng_image::edge_zero);
712        } catch (...) {
713            *rowsDecoded = i;
714            return kIncompleteInput;
715        }
716
717        swizzler->swizzle(dstRow, &srcRow[0]);
718        dstRow = SkTAddOffset<void>(dstRow, dstRowBytes);
719    }
720    return kSuccess;
721}
722
723SkISize SkRawCodec::onGetScaledDimensions(float desiredScale) const {
724    SkASSERT(desiredScale <= 1.f);
725
726    const SkISize dim = this->getInfo().dimensions();
727    SkASSERT(dim.fWidth != 0 && dim.fHeight != 0);
728
729    if (!fDngImage->isScalable()) {
730        return dim;
731    }
732
733    // Limits the minimum size to be 80 on the short edge.
734    const float shortEdge = static_cast<float>(SkTMin(dim.fWidth, dim.fHeight));
735    if (desiredScale < 80.f / shortEdge) {
736        desiredScale = 80.f / shortEdge;
737    }
738
739    // For Xtrans images, the integer-factor scaling does not support the half-size scaling case
740    // (stronger downscalings are fine). In this case, returns the factor "3" scaling instead.
741    if (fDngImage->isXtransImage() && desiredScale > 1.f / 3.f && desiredScale < 1.f) {
742        desiredScale = 1.f / 3.f;
743    }
744
745    // Round to integer-factors.
746    const float finalScale = std::floor(1.f/ desiredScale);
747    return SkISize::Make(static_cast<int32_t>(std::floor(dim.fWidth / finalScale)),
748                         static_cast<int32_t>(std::floor(dim.fHeight / finalScale)));
749}
750
751bool SkRawCodec::onDimensionsSupported(const SkISize& dim) {
752    const SkISize fullDim = this->getInfo().dimensions();
753    const float fullShortEdge = static_cast<float>(SkTMin(fullDim.fWidth, fullDim.fHeight));
754    const float shortEdge = static_cast<float>(SkTMin(dim.fWidth, dim.fHeight));
755
756    SkISize sizeFloor = this->onGetScaledDimensions(1.f / std::floor(fullShortEdge / shortEdge));
757    SkISize sizeCeil = this->onGetScaledDimensions(1.f / std::ceil(fullShortEdge / shortEdge));
758    return sizeFloor == dim || sizeCeil == dim;
759}
760
761SkRawCodec::~SkRawCodec() {}
762
763SkRawCodec::SkRawCodec(SkDngImage* dngImage)
764    : INHERITED(dngImage->getImageInfo(), nullptr)
765    , fDngImage(dngImage) {}
766