1/*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "SkBitmapCache.h"
9#include "SkBitmapController.h"
10#include "SkBitmapProcState.h"
11#include "SkColorPriv.h"
12#include "SkFilterProc.h"
13#include "SkPaint.h"
14#include "SkShader.h"   // for tilemodes
15#include "SkUtilsArm.h"
16#include "SkBitmapScaler.h"
17#include "SkMipMap.h"
18#include "SkPixelRef.h"
19#include "SkImageEncoder.h"
20#include "SkResourceCache.h"
21
22#if !SK_ARM_NEON_IS_NONE
23// These are defined in src/opts/SkBitmapProcState_arm_neon.cpp
24extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[];
25extern void  S16_D16_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, uint16_t*);
26extern void  Clamp_S16_D16_filter_DX_shaderproc_neon(const void *, int, int, uint16_t*, int);
27extern void  Repeat_S16_D16_filter_DX_shaderproc_neon(const void *, int, int, uint16_t*, int);
28extern void  SI8_opaque_D32_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, SkPMColor*);
29extern void  SI8_opaque_D32_filter_DX_shaderproc_neon(const void *, int, int, uint32_t*, int);
30extern void  Clamp_SI8_opaque_D32_filter_DX_shaderproc_neon(const void*, int, int, uint32_t*, int);
31#endif
32
33extern void Clamp_S32_opaque_D32_nofilter_DX_shaderproc(const void*, int, int, uint32_t*, int);
34
35#define   NAME_WRAP(x)  x
36#include "SkBitmapProcState_filter.h"
37#include "SkBitmapProcState_procs.h"
38
39SkBitmapProcState::SkBitmapProcState(const SkBitmapProvider& provider,
40                                     SkShader::TileMode tmx, SkShader::TileMode tmy)
41    : fProvider(provider)
42    , fBMState(nullptr)
43{
44    fTileModeX = tmx;
45    fTileModeY = tmy;
46}
47
48SkBitmapProcState::SkBitmapProcState(const SkBitmap& bm,
49                                     SkShader::TileMode tmx, SkShader::TileMode tmy)
50    : fProvider(SkBitmapProvider(bm))
51    , fBMState(nullptr)
52{
53    fTileModeX = tmx;
54    fTileModeY = tmy;
55}
56
57SkBitmapProcState::~SkBitmapProcState() {
58    SkInPlaceDeleteCheck(fBMState, fBMStateStorage.get());
59}
60
61///////////////////////////////////////////////////////////////////////////////
62
63// true iff the matrix contains, at most, scale and translate elements
64static bool matrix_only_scale_translate(const SkMatrix& m) {
65    return m.getType() <= (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask);
66}
67
68/**
69 *  For the purposes of drawing bitmaps, if a matrix is "almost" translate
70 *  go ahead and treat it as if it were, so that subsequent code can go fast.
71 */
72static bool just_trans_clamp(const SkMatrix& matrix, const SkPixmap& pixmap) {
73    SkASSERT(matrix_only_scale_translate(matrix));
74
75    if (matrix.getType() & SkMatrix::kScale_Mask) {
76        SkRect dst;
77        SkRect src = SkRect::Make(pixmap.bounds());
78
79        // Can't call mapRect(), since that will fix up inverted rectangles,
80        // e.g. when scale is negative, and we don't want to return true for
81        // those.
82        matrix.mapPoints(SkTCast<SkPoint*>(&dst),
83                         SkTCast<const SkPoint*>(&src),
84                         2);
85
86        // Now round all 4 edges to device space, and then compare the device
87        // width/height to the original. Note: we must map all 4 and subtract
88        // rather than map the "width" and compare, since we care about the
89        // phase (in pixel space) that any translate in the matrix might impart.
90        SkIRect idst;
91        dst.round(&idst);
92        return idst.width() == pixmap.width() && idst.height() == pixmap.height();
93    }
94    // if we got here, we're either kTranslate_Mask or identity
95    return true;
96}
97
98static bool just_trans_general(const SkMatrix& matrix) {
99    SkASSERT(matrix_only_scale_translate(matrix));
100
101    if (matrix.getType() & SkMatrix::kScale_Mask) {
102        const SkScalar tol = SK_Scalar1 / 32768;
103
104        if (!SkScalarNearlyZero(matrix[SkMatrix::kMScaleX] - SK_Scalar1, tol)) {
105            return false;
106        }
107        if (!SkScalarNearlyZero(matrix[SkMatrix::kMScaleY] - SK_Scalar1, tol)) {
108            return false;
109        }
110    }
111    // if we got here, treat us as either kTranslate_Mask or identity
112    return true;
113}
114
115static bool valid_for_filtering(unsigned dimension) {
116    // for filtering, width and height must fit in 14bits, since we use steal
117    // 2 bits from each to store our 4bit subpixel data
118    return (dimension & ~0x3FFF) == 0;
119}
120
121/*
122 *  Analyze filter-quality and matrix, and decide how to implement that.
123 *
124 *  In general, we cascade down the request level [ High ... None ]
125 *  - for a given level, if we can fulfill it, fine, else
126 *    - else we downgrade to the next lower level and try again.
127 *  We can always fulfill requests for Low and None
128 *  - sometimes we will "ignore" Low and give None, but this is likely a legacy perf hack
129 *    and may be removed.
130 */
131bool SkBitmapProcState::chooseProcs(const SkMatrix& inv, const SkPaint& paint) {
132    fPixmap.reset();
133    fInvMatrix = inv;
134    fFilterLevel = paint.getFilterQuality();
135
136    const int origW = fProvider.info().width();
137    const int origH = fProvider.info().height();
138    bool allow_ignore_fractional_translate = true;  // historical default
139    if (kMedium_SkFilterQuality == fFilterLevel) {
140        allow_ignore_fractional_translate = false;
141    }
142
143    SkDefaultBitmapController controller;
144    fBMState = controller.requestBitmap(fProvider, inv, paint.getFilterQuality(),
145                                        fBMStateStorage.get(), fBMStateStorage.size());
146    // Note : we allow the controller to return an empty (zero-dimension) result. Should we?
147    if (nullptr == fBMState || fBMState->pixmap().info().isEmpty()) {
148        return false;
149    }
150    fPixmap = fBMState->pixmap();
151    fInvMatrix = fBMState->invMatrix();
152    fFilterLevel = fBMState->quality();
153    SkASSERT(fPixmap.addr());
154
155    bool trivialMatrix = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0;
156    bool clampClamp = SkShader::kClamp_TileMode == fTileModeX &&
157                      SkShader::kClamp_TileMode == fTileModeY;
158
159    // Most of the scanline procs deal with "unit" texture coordinates, as this
160    // makes it easy to perform tiling modes (repeat = (x & 0xFFFF)). To generate
161    // those, we divide the matrix by its dimensions here.
162    //
163    // We don't do this if we're either trivial (can ignore the matrix) or clamping
164    // in both X and Y since clamping to width,height is just as easy as to 0xFFFF.
165
166    if (!(clampClamp || trivialMatrix)) {
167        fInvMatrix.postIDiv(fPixmap.width(), fPixmap.height());
168    }
169
170    // Now that all possible changes to the matrix have taken place, check
171    // to see if we're really close to a no-scale matrix.  If so, explicitly
172    // set it to be so.  Subsequent code may inspect this matrix to choose
173    // a faster path in this case.
174
175    // This code will only execute if the matrix has some scale component;
176    // if it's already pure translate then we won't do this inversion.
177
178    if (matrix_only_scale_translate(fInvMatrix)) {
179        SkMatrix forward;
180        if (fInvMatrix.invert(&forward)) {
181            if ((clampClamp && allow_ignore_fractional_translate)
182                           ? just_trans_clamp(forward, fPixmap)
183                           : just_trans_general(forward)) {
184                fInvMatrix.setTranslate(-forward.getTranslateX(), -forward.getTranslateY());
185            }
186        }
187    }
188
189    fInvProc        = fInvMatrix.getMapXYProc();
190    fInvType        = fInvMatrix.getType();
191    fInvSx          = SkScalarToFixed(fInvMatrix.getScaleX());
192    fInvSxFractionalInt = SkScalarToFractionalInt(fInvMatrix.getScaleX());
193    fInvKy          = SkScalarToFixed(fInvMatrix.getSkewY());
194    fInvKyFractionalInt = SkScalarToFractionalInt(fInvMatrix.getSkewY());
195
196    fAlphaScale = SkAlpha255To256(paint.getAlpha());
197
198    fShaderProc32 = nullptr;
199    fShaderProc16 = nullptr;
200    fSampleProc32 = nullptr;
201
202    // recompute the triviality of the matrix here because we may have
203    // changed it!
204
205    trivialMatrix = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0;
206
207    // If our target pixmap is the same as the original, then we revert back to legacy behavior
208    // and allow the code to ignore fractional translate.
209    //
210    // The width/height check allows allow_ignore_fractional_translate to stay false if we
211    // previously set it that way (e.g. we started in kMedium).
212    //
213    if (fPixmap.width() == origW && fPixmap.height() == origH) {
214        allow_ignore_fractional_translate = true;
215    }
216
217    if (kLow_SkFilterQuality == fFilterLevel && allow_ignore_fractional_translate) {
218        // Only try bilerp if the matrix is "interesting" and
219        // the image has a suitable size.
220
221        if (fInvType <= SkMatrix::kTranslate_Mask ||
222            !valid_for_filtering(fPixmap.width() | fPixmap.height()))
223        {
224            fFilterLevel = kNone_SkFilterQuality;
225        }
226    }
227
228    return this->chooseScanlineProcs(trivialMatrix, clampClamp, paint);
229}
230
231bool SkBitmapProcState::chooseScanlineProcs(bool trivialMatrix, bool clampClamp,
232                                            const SkPaint& paint) {
233    fMatrixProc = this->chooseMatrixProc(trivialMatrix);
234    // TODO(dominikg): SkASSERT(fMatrixProc) instead? chooseMatrixProc never returns nullptr.
235    if (nullptr == fMatrixProc) {
236        return false;
237    }
238
239    ///////////////////////////////////////////////////////////////////////
240
241    const SkAlphaType at = fPixmap.alphaType();
242
243    // No need to do this if we're doing HQ sampling; if filter quality is
244    // still set to HQ by the time we get here, then we must have installed
245    // the shader procs above and can skip all this.
246
247    if (fFilterLevel < kHigh_SkFilterQuality) {
248
249        int index = 0;
250        if (fAlphaScale < 256) {  // note: this distinction is not used for D16
251            index |= 1;
252        }
253        if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) {
254            index |= 2;
255        }
256        if (fFilterLevel > kNone_SkFilterQuality) {
257            index |= 4;
258        }
259        // bits 3,4,5 encoding the source bitmap format
260        switch (fPixmap.colorType()) {
261            case kN32_SkColorType:
262                if (kPremul_SkAlphaType != at && kOpaque_SkAlphaType != at) {
263                    return false;
264                }
265                index |= 0;
266                break;
267            case kRGB_565_SkColorType:
268                index |= 8;
269                break;
270            case kIndex_8_SkColorType:
271                if (kPremul_SkAlphaType != at && kOpaque_SkAlphaType != at) {
272                    return false;
273                }
274                index |= 16;
275                break;
276            case kARGB_4444_SkColorType:
277                if (kPremul_SkAlphaType != at && kOpaque_SkAlphaType != at) {
278                    return false;
279                }
280                index |= 24;
281                break;
282            case kAlpha_8_SkColorType:
283                index |= 32;
284                fPaintPMColor = SkPreMultiplyColor(paint.getColor());
285                break;
286            case kGray_8_SkColorType:
287                index |= 40;
288                fPaintPMColor = SkPreMultiplyColor(paint.getColor());
289                break;
290            default:
291                // TODO(dominikg): Should we ever get here? SkASSERT(false) instead?
292                return false;
293        }
294
295#if !SK_ARM_NEON_IS_ALWAYS
296        static const SampleProc32 gSkBitmapProcStateSample32[] = {
297            S32_opaque_D32_nofilter_DXDY,
298            S32_alpha_D32_nofilter_DXDY,
299            S32_opaque_D32_nofilter_DX,
300            S32_alpha_D32_nofilter_DX,
301            S32_opaque_D32_filter_DXDY,
302            S32_alpha_D32_filter_DXDY,
303            S32_opaque_D32_filter_DX,
304            S32_alpha_D32_filter_DX,
305
306            S16_opaque_D32_nofilter_DXDY,
307            S16_alpha_D32_nofilter_DXDY,
308            S16_opaque_D32_nofilter_DX,
309            S16_alpha_D32_nofilter_DX,
310            S16_opaque_D32_filter_DXDY,
311            S16_alpha_D32_filter_DXDY,
312            S16_opaque_D32_filter_DX,
313            S16_alpha_D32_filter_DX,
314
315            SI8_opaque_D32_nofilter_DXDY,
316            SI8_alpha_D32_nofilter_DXDY,
317            SI8_opaque_D32_nofilter_DX,
318            SI8_alpha_D32_nofilter_DX,
319            SI8_opaque_D32_filter_DXDY,
320            SI8_alpha_D32_filter_DXDY,
321            SI8_opaque_D32_filter_DX,
322            SI8_alpha_D32_filter_DX,
323
324            S4444_opaque_D32_nofilter_DXDY,
325            S4444_alpha_D32_nofilter_DXDY,
326            S4444_opaque_D32_nofilter_DX,
327            S4444_alpha_D32_nofilter_DX,
328            S4444_opaque_D32_filter_DXDY,
329            S4444_alpha_D32_filter_DXDY,
330            S4444_opaque_D32_filter_DX,
331            S4444_alpha_D32_filter_DX,
332
333            // A8 treats alpha/opaque the same (equally efficient)
334            SA8_alpha_D32_nofilter_DXDY,
335            SA8_alpha_D32_nofilter_DXDY,
336            SA8_alpha_D32_nofilter_DX,
337            SA8_alpha_D32_nofilter_DX,
338            SA8_alpha_D32_filter_DXDY,
339            SA8_alpha_D32_filter_DXDY,
340            SA8_alpha_D32_filter_DX,
341            SA8_alpha_D32_filter_DX,
342
343            // todo: possibly specialize on opaqueness
344            SG8_alpha_D32_nofilter_DXDY,
345            SG8_alpha_D32_nofilter_DXDY,
346            SG8_alpha_D32_nofilter_DX,
347            SG8_alpha_D32_nofilter_DX,
348            SG8_alpha_D32_filter_DXDY,
349            SG8_alpha_D32_filter_DXDY,
350            SG8_alpha_D32_filter_DX,
351            SG8_alpha_D32_filter_DX
352        };
353#endif
354
355        fSampleProc32 = SK_ARM_NEON_WRAP(gSkBitmapProcStateSample32)[index];
356        index >>= 1;    // shift away any opaque/alpha distinction
357
358        // our special-case shaderprocs
359        if (SK_ARM_NEON_WRAP(SI8_opaque_D32_filter_DX) == fSampleProc32 && clampClamp) {
360            fShaderProc32 = SK_ARM_NEON_WRAP(Clamp_SI8_opaque_D32_filter_DX_shaderproc);
361        } else if (S32_opaque_D32_nofilter_DX == fSampleProc32 && clampClamp) {
362            fShaderProc32 = Clamp_S32_opaque_D32_nofilter_DX_shaderproc;
363        }
364
365        if (nullptr == fShaderProc32) {
366            fShaderProc32 = this->chooseShaderProc32();
367        }
368    }
369
370    // see if our platform has any accelerated overrides
371    this->platformProcs();
372
373    return true;
374}
375
376static void Clamp_S32_D32_nofilter_trans_shaderproc(const void* sIn,
377                                                    int x, int y,
378                                                    SkPMColor* SK_RESTRICT colors,
379                                                    int count) {
380    const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn);
381    SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0);
382    SkASSERT(s.fInvKy == 0);
383    SkASSERT(count > 0 && colors != nullptr);
384    SkASSERT(kNone_SkFilterQuality == s.fFilterLevel);
385
386    const int maxX = s.fPixmap.width() - 1;
387    const int maxY = s.fPixmap.height() - 1;
388    int ix = s.fFilterOneX + x;
389    int iy = SkClampMax(s.fFilterOneY + y, maxY);
390    const SkPMColor* row = s.fPixmap.addr32(0, iy);
391
392    // clamp to the left
393    if (ix < 0) {
394        int n = SkMin32(-ix, count);
395        sk_memset32(colors, row[0], n);
396        count -= n;
397        if (0 == count) {
398            return;
399        }
400        colors += n;
401        SkASSERT(-ix == n);
402        ix = 0;
403    }
404    // copy the middle
405    if (ix <= maxX) {
406        int n = SkMin32(maxX - ix + 1, count);
407        memcpy(colors, row + ix, n * sizeof(SkPMColor));
408        count -= n;
409        if (0 == count) {
410            return;
411        }
412        colors += n;
413    }
414    SkASSERT(count > 0);
415    // clamp to the right
416    sk_memset32(colors, row[maxX], count);
417}
418
419static inline int sk_int_mod(int x, int n) {
420    SkASSERT(n > 0);
421    if ((unsigned)x >= (unsigned)n) {
422        if (x < 0) {
423            x = n + ~(~x % n);
424        } else {
425            x = x % n;
426        }
427    }
428    return x;
429}
430
431static inline int sk_int_mirror(int x, int n) {
432    x = sk_int_mod(x, 2 * n);
433    if (x >= n) {
434        x = n + ~(x - n);
435    }
436    return x;
437}
438
439static void Repeat_S32_D32_nofilter_trans_shaderproc(const void* sIn,
440                                                     int x, int y,
441                                                     SkPMColor* SK_RESTRICT colors,
442                                                     int count) {
443    const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn);
444    SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0);
445    SkASSERT(s.fInvKy == 0);
446    SkASSERT(count > 0 && colors != nullptr);
447    SkASSERT(kNone_SkFilterQuality == s.fFilterLevel);
448
449    const int stopX = s.fPixmap.width();
450    const int stopY = s.fPixmap.height();
451    int ix = s.fFilterOneX + x;
452    int iy = sk_int_mod(s.fFilterOneY + y, stopY);
453    const SkPMColor* row = s.fPixmap.addr32(0, iy);
454
455    ix = sk_int_mod(ix, stopX);
456    for (;;) {
457        int n = SkMin32(stopX - ix, count);
458        memcpy(colors, row + ix, n * sizeof(SkPMColor));
459        count -= n;
460        if (0 == count) {
461            return;
462        }
463        colors += n;
464        ix = 0;
465    }
466}
467
468static void S32_D32_constX_shaderproc(const void* sIn,
469                                      int x, int y,
470                                      SkPMColor* SK_RESTRICT colors,
471                                      int count) {
472    const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn);
473    SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) == 0);
474    SkASSERT(s.fInvKy == 0);
475    SkASSERT(count > 0 && colors != nullptr);
476    SkASSERT(1 == s.fPixmap.width());
477
478    int iY0;
479    int iY1   SK_INIT_TO_AVOID_WARNING;
480    int iSubY SK_INIT_TO_AVOID_WARNING;
481
482    if (kNone_SkFilterQuality != s.fFilterLevel) {
483        SkBitmapProcState::MatrixProc mproc = s.getMatrixProc();
484        uint32_t xy[2];
485
486        mproc(s, xy, 1, x, y);
487
488        iY0 = xy[0] >> 18;
489        iY1 = xy[0] & 0x3FFF;
490        iSubY = (xy[0] >> 14) & 0xF;
491    } else {
492        int yTemp;
493
494        if (s.fInvType > SkMatrix::kTranslate_Mask) {
495            const SkBitmapProcStateAutoMapper mapper(s, x, y);
496
497            // When the matrix has a scale component the setup code in
498            // chooseProcs multiples the inverse matrix by the inverse of the
499            // bitmap's width and height. Since this method is going to do
500            // its own tiling and sampling we need to undo that here.
501            if (SkShader::kClamp_TileMode != s.fTileModeX ||
502                SkShader::kClamp_TileMode != s.fTileModeY) {
503                yTemp = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height());
504            } else {
505                yTemp = mapper.intY();
506            }
507        } else {
508            yTemp = s.fFilterOneY + y;
509        }
510
511        const int stopY = s.fPixmap.height();
512        switch (s.fTileModeY) {
513            case SkShader::kClamp_TileMode:
514                iY0 = SkClampMax(yTemp, stopY-1);
515                break;
516            case SkShader::kRepeat_TileMode:
517                iY0 = sk_int_mod(yTemp, stopY);
518                break;
519            case SkShader::kMirror_TileMode:
520            default:
521                iY0 = sk_int_mirror(yTemp, stopY);
522                break;
523        }
524
525#ifdef SK_DEBUG
526        {
527            const SkBitmapProcStateAutoMapper mapper(s, x, y);
528            int iY2;
529
530            if (s.fInvType > SkMatrix::kTranslate_Mask &&
531                (SkShader::kClamp_TileMode != s.fTileModeX ||
532                 SkShader::kClamp_TileMode != s.fTileModeY)) {
533                iY2 = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height());
534            } else {
535                iY2 = mapper.intY();
536            }
537
538            switch (s.fTileModeY) {
539            case SkShader::kClamp_TileMode:
540                iY2 = SkClampMax(iY2, stopY-1);
541                break;
542            case SkShader::kRepeat_TileMode:
543                iY2 = sk_int_mod(iY2, stopY);
544                break;
545            case SkShader::kMirror_TileMode:
546            default:
547                iY2 = sk_int_mirror(iY2, stopY);
548                break;
549            }
550
551            SkASSERT(iY0 == iY2);
552        }
553#endif
554    }
555
556    const SkPMColor* row0 = s.fPixmap.addr32(0, iY0);
557    SkPMColor color;
558
559    if (kNone_SkFilterQuality != s.fFilterLevel) {
560        const SkPMColor* row1 = s.fPixmap.addr32(0, iY1);
561
562        if (s.fAlphaScale < 256) {
563            Filter_32_alpha(iSubY, *row0, *row1, &color, s.fAlphaScale);
564        } else {
565            Filter_32_opaque(iSubY, *row0, *row1, &color);
566        }
567    } else {
568        if (s.fAlphaScale < 256) {
569            color = SkAlphaMulQ(*row0, s.fAlphaScale);
570        } else {
571            color = *row0;
572        }
573    }
574
575    sk_memset32(colors, color, count);
576}
577
578static void DoNothing_shaderproc(const void*, int x, int y,
579                                 SkPMColor* SK_RESTRICT colors, int count) {
580    // if we get called, the matrix is too tricky, so we just draw nothing
581    sk_memset32(colors, 0, count);
582}
583
584bool SkBitmapProcState::setupForTranslate() {
585    SkPoint pt;
586    const SkBitmapProcStateAutoMapper mapper(*this, 0, 0, &pt);
587
588    /*
589     *  if the translate is larger than our ints, we can get random results, or
590     *  worse, we might get 0x80000000, which wreaks havoc on us, since we can't
591     *  negate it.
592     */
593    const SkScalar too_big = SkIntToScalar(1 << 30);
594    if (SkScalarAbs(pt.fX) > too_big || SkScalarAbs(pt.fY) > too_big) {
595        return false;
596    }
597
598    // Since we know we're not filtered, we re-purpose these fields allow
599    // us to go from device -> src coordinates w/ just an integer add,
600    // rather than running through the inverse-matrix
601    fFilterOneX = mapper.intX();
602    fFilterOneY = mapper.intY();
603
604    return true;
605}
606
607SkBitmapProcState::ShaderProc32 SkBitmapProcState::chooseShaderProc32() {
608
609    if (kN32_SkColorType != fPixmap.colorType()) {
610        return nullptr;
611    }
612
613    static const unsigned kMask = SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask;
614
615    if (1 == fPixmap.width() && 0 == (fInvType & ~kMask)) {
616        if (kNone_SkFilterQuality == fFilterLevel &&
617            fInvType <= SkMatrix::kTranslate_Mask &&
618            !this->setupForTranslate()) {
619            return DoNothing_shaderproc;
620        }
621        return S32_D32_constX_shaderproc;
622    }
623
624    if (fAlphaScale < 256) {
625        return nullptr;
626    }
627    if (fInvType > SkMatrix::kTranslate_Mask) {
628        return nullptr;
629    }
630    if (kNone_SkFilterQuality != fFilterLevel) {
631        return nullptr;
632    }
633
634    SkShader::TileMode tx = (SkShader::TileMode)fTileModeX;
635    SkShader::TileMode ty = (SkShader::TileMode)fTileModeY;
636
637    if (SkShader::kClamp_TileMode == tx && SkShader::kClamp_TileMode == ty) {
638        if (this->setupForTranslate()) {
639            return Clamp_S32_D32_nofilter_trans_shaderproc;
640        }
641        return DoNothing_shaderproc;
642    }
643    if (SkShader::kRepeat_TileMode == tx && SkShader::kRepeat_TileMode == ty) {
644        if (this->setupForTranslate()) {
645            return Repeat_S32_D32_nofilter_trans_shaderproc;
646        }
647        return DoNothing_shaderproc;
648    }
649    return nullptr;
650}
651
652///////////////////////////////////////////////////////////////////////////////
653
654#ifdef SK_DEBUG
655
656static void check_scale_nofilter(uint32_t bitmapXY[], int count,
657                                 unsigned mx, unsigned my) {
658    unsigned y = *bitmapXY++;
659    SkASSERT(y < my);
660
661    const uint16_t* xptr = reinterpret_cast<const uint16_t*>(bitmapXY);
662    for (int i = 0; i < count; ++i) {
663        SkASSERT(xptr[i] < mx);
664    }
665}
666
667static void check_scale_filter(uint32_t bitmapXY[], int count,
668                                 unsigned mx, unsigned my) {
669    uint32_t YY = *bitmapXY++;
670    unsigned y0 = YY >> 18;
671    unsigned y1 = YY & 0x3FFF;
672    SkASSERT(y0 < my);
673    SkASSERT(y1 < my);
674
675    for (int i = 0; i < count; ++i) {
676        uint32_t XX = bitmapXY[i];
677        unsigned x0 = XX >> 18;
678        unsigned x1 = XX & 0x3FFF;
679        SkASSERT(x0 < mx);
680        SkASSERT(x1 < mx);
681    }
682}
683
684static void check_affine_nofilter(uint32_t bitmapXY[], int count,
685                                 unsigned mx, unsigned my) {
686    for (int i = 0; i < count; ++i) {
687        uint32_t XY = bitmapXY[i];
688        unsigned x = XY & 0xFFFF;
689        unsigned y = XY >> 16;
690        SkASSERT(x < mx);
691        SkASSERT(y < my);
692    }
693}
694
695static void check_affine_filter(uint32_t bitmapXY[], int count,
696                                 unsigned mx, unsigned my) {
697    for (int i = 0; i < count; ++i) {
698        uint32_t YY = *bitmapXY++;
699        unsigned y0 = YY >> 18;
700        unsigned y1 = YY & 0x3FFF;
701        SkASSERT(y0 < my);
702        SkASSERT(y1 < my);
703
704        uint32_t XX = *bitmapXY++;
705        unsigned x0 = XX >> 18;
706        unsigned x1 = XX & 0x3FFF;
707        SkASSERT(x0 < mx);
708        SkASSERT(x1 < mx);
709    }
710}
711
712void SkBitmapProcState::DebugMatrixProc(const SkBitmapProcState& state,
713                                        uint32_t bitmapXY[], int count,
714                                        int x, int y) {
715    SkASSERT(bitmapXY);
716    SkASSERT(count > 0);
717
718    state.fMatrixProc(state, bitmapXY, count, x, y);
719
720    void (*proc)(uint32_t bitmapXY[], int count, unsigned mx, unsigned my);
721
722    // There are four formats possible:
723    //  scale -vs- affine
724    //  filter -vs- nofilter
725    if (state.fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) {
726        proc = state.fFilterLevel != kNone_SkFilterQuality ? check_scale_filter : check_scale_nofilter;
727    } else {
728        proc = state.fFilterLevel != kNone_SkFilterQuality ? check_affine_filter : check_affine_nofilter;
729    }
730    proc(bitmapXY, count, state.fPixmap.width(), state.fPixmap.height());
731}
732
733SkBitmapProcState::MatrixProc SkBitmapProcState::getMatrixProc() const {
734    return DebugMatrixProc;
735}
736
737#endif
738
739///////////////////////////////////////////////////////////////////////////////
740/*
741    The storage requirements for the different matrix procs are as follows,
742    where each X or Y is 2 bytes, and N is the number of pixels/elements:
743
744    scale/translate     nofilter      Y(4bytes) + N * X
745    affine/perspective  nofilter      N * (X Y)
746    scale/translate     filter        Y Y + N * (X X)
747    affine/perspective  filter        N * (Y Y X X)
748 */
749int SkBitmapProcState::maxCountForBufferSize(size_t bufferSize) const {
750    int32_t size = static_cast<int32_t>(bufferSize);
751
752    size &= ~3; // only care about 4-byte aligned chunks
753    if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) {
754        size -= 4;   // the shared Y (or YY) coordinate
755        if (size < 0) {
756            size = 0;
757        }
758        size >>= 1;
759    } else {
760        size >>= 2;
761    }
762
763    if (fFilterLevel != kNone_SkFilterQuality) {
764        size >>= 1;
765    }
766
767    return size;
768}
769
770///////////////////////
771
772void  Clamp_S32_opaque_D32_nofilter_DX_shaderproc(const void* sIn, int x, int y,
773                                                  SkPMColor* SK_RESTRICT dst, int count) {
774    const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn);
775    SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask |
776                             SkMatrix::kScale_Mask)) == 0);
777
778    const unsigned maxX = s.fPixmap.width() - 1;
779    SkFractionalInt fx;
780    int dstY;
781    {
782        const SkBitmapProcStateAutoMapper mapper(s, x, y);
783        const unsigned maxY = s.fPixmap.height() - 1;
784        dstY = SkClampMax(mapper.intY(), maxY);
785        fx = mapper.fractionalIntX();
786    }
787
788    const SkPMColor* SK_RESTRICT src = s.fPixmap.addr32(0, dstY);
789    const SkFractionalInt dx = s.fInvSxFractionalInt;
790
791    // Check if we're safely inside [0...maxX] so no need to clamp each computed index.
792    //
793    if ((uint64_t)SkFractionalIntToInt(fx) <= maxX &&
794        (uint64_t)SkFractionalIntToInt(fx + dx * (count - 1)) <= maxX)
795    {
796        int count4 = count >> 2;
797        for (int i = 0; i < count4; ++i) {
798            SkPMColor src0 = src[SkFractionalIntToInt(fx)]; fx += dx;
799            SkPMColor src1 = src[SkFractionalIntToInt(fx)]; fx += dx;
800            SkPMColor src2 = src[SkFractionalIntToInt(fx)]; fx += dx;
801            SkPMColor src3 = src[SkFractionalIntToInt(fx)]; fx += dx;
802            dst[0] = src0;
803            dst[1] = src1;
804            dst[2] = src2;
805            dst[3] = src3;
806            dst += 4;
807        }
808        for (int i = (count4 << 2); i < count; ++i) {
809            unsigned index = SkFractionalIntToInt(fx);
810            SkASSERT(index <= maxX);
811            *dst++ = src[index];
812            fx += dx;
813        }
814    } else {
815        for (int i = 0; i < count; ++i) {
816            dst[i] = src[SkClampMax(SkFractionalIntToInt(fx), maxX)];
817            fx += dx;
818        }
819    }
820}
821
822