GrGLProgram.cpp revision ef818a470ef7ea28ad8f70ef77bb658458cee48a
1/*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrGLProgram.h"
9
10#include "GrAllocator.h"
11#include "GrEffect.h"
12#include "GrGLEffect.h"
13#include "GrGLShaderVar.h"
14#include "GrBackendEffectFactory.h"
15#include "SkTrace.h"
16#include "SkXfermode.h"
17
18SK_DEFINE_INST_COUNT(GrGLProgram)
19
20#define GL_CALL(X) GR_GL_CALL(fContextInfo.interface(), X)
21#define GL_CALL_RET(R, X) GR_GL_CALL_RET(fContextInfo.interface(), R, X)
22
23#define PRINT_SHADERS 0
24
25#define COL_ATTR_NAME "aColor"
26#define COV_ATTR_NAME "aCoverage"
27#define EDGE_ATTR_NAME "aEdge"
28
29namespace {
30inline void tex_attr_name(int coordIdx, SkString* s) {
31    *s = "aTexCoord";
32    s->appendS32(coordIdx);
33}
34
35inline const char* float_vector_type_str(int count) {
36    return GrGLShaderVar::TypeString(GrSLFloatVectorType(count));
37}
38
39inline const char* vector_all_coords(int count) {
40    static const char* ALL[] = {"ERROR", "", ".xy", ".xyz", ".xyzw"};
41    GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ALL));
42    return ALL[count];
43}
44
45inline const char* declared_color_output_name() { return "fsColorOut"; }
46inline const char* dual_source_output_name() { return "dualSourceOut"; }
47
48}
49
50GrGLProgram* GrGLProgram::Create(const GrGLContextInfo& gl,
51                                 const Desc& desc,
52                                 const GrEffectStage* stages[]) {
53    GrGLProgram* program = SkNEW_ARGS(GrGLProgram, (gl, desc, stages));
54    if (!program->succeeded()) {
55        delete program;
56        program = NULL;
57    }
58    return program;
59}
60
61GrGLProgram::GrGLProgram(const GrGLContextInfo& gl,
62                         const Desc& desc,
63                         const GrEffectStage* stages[])
64: fContextInfo(gl)
65, fUniformManager(gl) {
66    fDesc = desc;
67    fVShaderID = 0;
68    fGShaderID = 0;
69    fFShaderID = 0;
70    fProgramID = 0;
71
72    fViewMatrix = SkMatrix::InvalidMatrix();
73    fViewportSize.set(-1, -1);
74    fColor = GrColor_ILLEGAL;
75    fColorFilterColor = GrColor_ILLEGAL;
76    fRTHeight = -1;
77
78    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
79        fEffects[s] = NULL;
80    }
81
82    this->genProgram(stages);
83}
84
85GrGLProgram::~GrGLProgram() {
86    if (fVShaderID) {
87        GL_CALL(DeleteShader(fVShaderID));
88    }
89    if (fGShaderID) {
90        GL_CALL(DeleteShader(fGShaderID));
91    }
92    if (fFShaderID) {
93        GL_CALL(DeleteShader(fFShaderID));
94    }
95    if (fProgramID) {
96        GL_CALL(DeleteProgram(fProgramID));
97    }
98
99    for (int i = 0; i < GrDrawState::kNumStages; ++i) {
100        delete fEffects[i];
101    }
102}
103
104void GrGLProgram::abandon() {
105    fVShaderID = 0;
106    fGShaderID = 0;
107    fFShaderID = 0;
108    fProgramID = 0;
109}
110
111void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff,
112                                GrBlendCoeff* dstCoeff) const {
113    switch (fDesc.fDualSrcOutput) {
114        case Desc::kNone_DualSrcOutput:
115            break;
116        // the prog will write a coverage value to the secondary
117        // output and the dst is blended by one minus that value.
118        case Desc::kCoverage_DualSrcOutput:
119        case Desc::kCoverageISA_DualSrcOutput:
120        case Desc::kCoverageISC_DualSrcOutput:
121        *dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
122        break;
123        default:
124            GrCrash("Unexpected dual source blend output");
125            break;
126    }
127}
128
129// given two blend coeffecients determine whether the src
130// and/or dst computation can be omitted.
131static inline void needBlendInputs(SkXfermode::Coeff srcCoeff,
132                                   SkXfermode::Coeff dstCoeff,
133                                   bool* needSrcValue,
134                                   bool* needDstValue) {
135    if (SkXfermode::kZero_Coeff == srcCoeff) {
136        switch (dstCoeff) {
137            // these all read the src
138            case SkXfermode::kSC_Coeff:
139            case SkXfermode::kISC_Coeff:
140            case SkXfermode::kSA_Coeff:
141            case SkXfermode::kISA_Coeff:
142                *needSrcValue = true;
143                break;
144            default:
145                *needSrcValue = false;
146                break;
147        }
148    } else {
149        *needSrcValue = true;
150    }
151    if (SkXfermode::kZero_Coeff == dstCoeff) {
152        switch (srcCoeff) {
153            // these all read the dst
154            case SkXfermode::kDC_Coeff:
155            case SkXfermode::kIDC_Coeff:
156            case SkXfermode::kDA_Coeff:
157            case SkXfermode::kIDA_Coeff:
158                *needDstValue = true;
159                break;
160            default:
161                *needDstValue = false;
162                break;
163        }
164    } else {
165        *needDstValue = true;
166    }
167}
168
169/**
170 * Create a blend_coeff * value string to be used in shader code. Sets empty
171 * string if result is trivially zero.
172 */
173static void blendTermString(SkString* str, SkXfermode::Coeff coeff,
174                             const char* src, const char* dst,
175                             const char* value) {
176    switch (coeff) {
177    case SkXfermode::kZero_Coeff:    /** 0 */
178        *str = "";
179        break;
180    case SkXfermode::kOne_Coeff:     /** 1 */
181        *str = value;
182        break;
183    case SkXfermode::kSC_Coeff:
184        str->printf("(%s * %s)", src, value);
185        break;
186    case SkXfermode::kISC_Coeff:
187        str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), src, value);
188        break;
189    case SkXfermode::kDC_Coeff:
190        str->printf("(%s * %s)", dst, value);
191        break;
192    case SkXfermode::kIDC_Coeff:
193        str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), dst, value);
194        break;
195    case SkXfermode::kSA_Coeff:      /** src alpha */
196        str->printf("(%s.a * %s)", src, value);
197        break;
198    case SkXfermode::kISA_Coeff:     /** inverse src alpha (i.e. 1 - sa) */
199        str->printf("((1.0 - %s.a) * %s)", src, value);
200        break;
201    case SkXfermode::kDA_Coeff:      /** dst alpha */
202        str->printf("(%s.a * %s)", dst, value);
203        break;
204    case SkXfermode::kIDA_Coeff:     /** inverse dst alpha (i.e. 1 - da) */
205        str->printf("((1.0 - %s.a) * %s)", dst, value);
206        break;
207    default:
208        GrCrash("Unexpected xfer coeff.");
209        break;
210    }
211}
212/**
213 * Adds a line to the fragment shader code which modifies the color by
214 * the specified color filter.
215 */
216static void addColorFilter(SkString* fsCode, const char * outputVar,
217                           SkXfermode::Coeff uniformCoeff,
218                           SkXfermode::Coeff colorCoeff,
219                           const char* filterColor,
220                           const char* inColor) {
221    SkString colorStr, constStr;
222    blendTermString(&colorStr, colorCoeff, filterColor, inColor, inColor);
223    blendTermString(&constStr, uniformCoeff, filterColor, inColor, filterColor);
224
225    fsCode->appendf("\t%s = ", outputVar);
226    GrGLSLAdd4f(fsCode, colorStr.c_str(), constStr.c_str());
227    fsCode->append(";\n");
228}
229
230bool GrGLProgram::genEdgeCoverage(SkString* coverageVar,
231                                  GrGLShaderBuilder* builder) const {
232    if (fDesc.fVertexLayout & GrDrawTarget::kEdge_VertexLayoutBit) {
233        const char *vsName, *fsName;
234        builder->addVarying(kVec4f_GrSLType, "Edge", &vsName, &fsName);
235        builder->fVSAttrs.push_back().set(kVec4f_GrSLType,
236                                          GrGLShaderVar::kAttribute_TypeModifier,
237                                          EDGE_ATTR_NAME);
238        builder->fVSCode.appendf("\t%s = " EDGE_ATTR_NAME ";\n", vsName);
239        switch (fDesc.fVertexEdgeType) {
240        case GrDrawState::kHairLine_EdgeType:
241            builder->fFSCode.appendf("\tfloat edgeAlpha = abs(dot(vec3(%s.xy,1), %s.xyz));\n", builder->fragmentPosition(), fsName);
242            builder->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
243            break;
244        case GrDrawState::kQuad_EdgeType:
245            builder->fFSCode.append("\tfloat edgeAlpha;\n");
246            // keep the derivative instructions outside the conditional
247            builder->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
248            builder->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
249            builder->fFSCode.appendf("\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName);
250            // today we know z and w are in device space. We could use derivatives
251            builder->fFSCode.appendf("\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName, fsName);
252            builder->fFSCode.append ("\t} else {\n");
253            builder->fFSCode.appendf("\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
254                                     "\t\t               2.0*%s.x*duvdy.x - duvdy.y);\n",
255                                     fsName, fsName);
256            builder->fFSCode.appendf("\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
257            builder->fFSCode.append("\t\tedgeAlpha = clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n"
258                                    "\t}\n");
259            if (kES2_GrGLBinding == fContextInfo.binding()) {
260                builder->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
261            }
262            break;
263        case GrDrawState::kHairQuad_EdgeType:
264            builder->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
265            builder->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
266            builder->fFSCode.appendf("\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
267                                     "\t               2.0*%s.x*duvdy.x - duvdy.y);\n",
268                                     fsName, fsName);
269            builder->fFSCode.appendf("\tfloat edgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
270            builder->fFSCode.append("\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / dot(gF, gF));\n");
271            builder->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
272            if (kES2_GrGLBinding == fContextInfo.binding()) {
273                builder->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
274            }
275            break;
276        case GrDrawState::kCircle_EdgeType:
277            builder->fFSCode.append("\tfloat edgeAlpha;\n");
278            builder->fFSCode.appendf("\tfloat d = distance(%s.xy, %s.xy);\n", builder->fragmentPosition(), fsName);
279            builder->fFSCode.appendf("\tfloat outerAlpha = smoothstep(d - 0.5, d + 0.5, %s.z);\n", fsName);
280            builder->fFSCode.appendf("\tfloat innerAlpha = %s.w == 0.0 ? 1.0 : smoothstep(%s.w - 0.5, %s.w + 0.5, d);\n", fsName, fsName, fsName);
281            builder->fFSCode.append("\tedgeAlpha = outerAlpha * innerAlpha;\n");
282            break;
283        default:
284            GrCrash("Unknown Edge Type!");
285            break;
286        }
287        if (fDesc.fDiscardIfOutsideEdge) {
288            builder->fFSCode.appendf("\tif (edgeAlpha <= 0.0) {\n\t\tdiscard;\n\t}\n");
289        }
290        *coverageVar = "edgeAlpha";
291        return true;
292    } else {
293        coverageVar->reset();
294        return false;
295    }
296}
297
298void GrGLProgram::genInputColor(GrGLShaderBuilder* builder, SkString* inColor) {
299    switch (fDesc.fColorInput) {
300        case GrGLProgram::Desc::kAttribute_ColorInput: {
301            builder->fVSAttrs.push_back().set(kVec4f_GrSLType,
302                GrGLShaderVar::kAttribute_TypeModifier,
303                COL_ATTR_NAME);
304            const char *vsName, *fsName;
305            builder->addVarying(kVec4f_GrSLType, "Color", &vsName, &fsName);
306            builder->fVSCode.appendf("\t%s = " COL_ATTR_NAME ";\n", vsName);
307            *inColor = fsName;
308            } break;
309        case GrGLProgram::Desc::kUniform_ColorInput: {
310            const char* name;
311            fUniforms.fColorUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
312                                                      kVec4f_GrSLType, "Color", &name);
313            *inColor = name;
314            break;
315        }
316        case GrGLProgram::Desc::kTransBlack_ColorInput:
317            GrAssert(!"needComputedColor should be false.");
318            break;
319        case GrGLProgram::Desc::kSolidWhite_ColorInput:
320            break;
321        default:
322            GrCrash("Unknown color type.");
323            break;
324    }
325}
326
327void GrGLProgram::genUniformCoverage(GrGLShaderBuilder* builder, SkString* inOutCoverage) {
328    const char* covUniName;
329    fUniforms.fCoverageUni = builder->addUniform(GrGLShaderBuilder::kFragment_ShaderType,
330                                                 kVec4f_GrSLType, "Coverage", &covUniName);
331    if (inOutCoverage->size()) {
332        builder->fFSCode.appendf("\tvec4 uniCoverage = %s * %s;\n",
333                                  covUniName, inOutCoverage->c_str());
334        *inOutCoverage = "uniCoverage";
335    } else {
336        *inOutCoverage = covUniName;
337    }
338}
339
340namespace {
341void gen_attribute_coverage(GrGLShaderBuilder* segments,
342                            SkString* inOutCoverage) {
343    segments->fVSAttrs.push_back().set(kVec4f_GrSLType,
344                                       GrGLShaderVar::kAttribute_TypeModifier,
345                                       COV_ATTR_NAME);
346    const char *vsName, *fsName;
347    segments->addVarying(kVec4f_GrSLType, "Coverage", &vsName, &fsName);
348    segments->fVSCode.appendf("\t%s = " COV_ATTR_NAME ";\n", vsName);
349    if (inOutCoverage->size()) {
350        segments->fFSCode.appendf("\tvec4 attrCoverage = %s * %s;\n",
351                                  fsName, inOutCoverage->c_str());
352        *inOutCoverage = "attrCoverage";
353    } else {
354        *inOutCoverage = fsName;
355    }
356}
357}
358
359void GrGLProgram::genGeometryShader(GrGLShaderBuilder* segments) const {
360#if GR_GL_EXPERIMENTAL_GS
361    if (fDesc.fExperimentalGS) {
362        GrAssert(fContextInfo.glslGeneration() >= k150_GrGLSLGeneration);
363        segments->fGSHeader.append("layout(triangles) in;\n"
364                                   "layout(triangle_strip, max_vertices = 6) out;\n");
365        segments->fGSCode.append("\tfor (int i = 0; i < 3; ++i) {\n"
366                                 "\t\tgl_Position = gl_in[i].gl_Position;\n");
367        if (fDesc.fEmitsPointSize) {
368            segments->fGSCode.append("\t\tgl_PointSize = 1.0;\n");
369        }
370        GrAssert(segments->fGSInputs.count() == segments->fGSOutputs.count());
371        int count = segments->fGSInputs.count();
372        for (int i = 0; i < count; ++i) {
373            segments->fGSCode.appendf("\t\t%s = %s[i];\n",
374                                      segments->fGSOutputs[i].getName().c_str(),
375                                      segments->fGSInputs[i].getName().c_str());
376        }
377        segments->fGSCode.append("\t\tEmitVertex();\n"
378                                 "\t}\n"
379                                 "\tEndPrimitive();\n");
380    }
381#endif
382}
383
384const char* GrGLProgram::adjustInColor(const SkString& inColor) const {
385    if (inColor.size()) {
386          return inColor.c_str();
387    } else {
388        if (Desc::kSolidWhite_ColorInput == fDesc.fColorInput) {
389            return GrGLSLOnesVecf(4);
390        } else {
391            return GrGLSLZerosVecf(4);
392        }
393    }
394}
395
396namespace {
397// prints a shader using params similar to glShaderSource
398void print_shader(GrGLint stringCnt,
399                  const GrGLchar** strings,
400                  GrGLint* stringLengths) {
401    for (int i = 0; i < stringCnt; ++i) {
402        if (NULL == stringLengths || stringLengths[i] < 0) {
403            GrPrintf(strings[i]);
404        } else {
405            GrPrintf("%.*s", stringLengths[i], strings[i]);
406        }
407    }
408}
409
410// Compiles a GL shader, returns shader ID or 0 if failed params have same meaning as glShaderSource
411GrGLuint compile_shader(const GrGLContextInfo& gl,
412                        GrGLenum type,
413                        int stringCnt,
414                        const char** strings,
415                        int* stringLengths) {
416    SK_TRACE_EVENT1("GrGLProgram::CompileShader",
417                    "stringCount", SkStringPrintf("%i", stringCnt).c_str());
418
419    GrGLuint shader;
420    GR_GL_CALL_RET(gl.interface(), shader, CreateShader(type));
421    if (0 == shader) {
422        return 0;
423    }
424
425    const GrGLInterface* gli = gl.interface();
426    GrGLint compiled = GR_GL_INIT_ZERO;
427    GR_GL_CALL(gli, ShaderSource(shader, stringCnt, strings, stringLengths));
428    GR_GL_CALL(gli, CompileShader(shader));
429    GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_COMPILE_STATUS, &compiled));
430
431    if (!compiled) {
432        GrGLint infoLen = GR_GL_INIT_ZERO;
433        GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_INFO_LOG_LENGTH, &infoLen));
434        SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
435        if (infoLen > 0) {
436            // retrieve length even though we don't need it to workaround bug in chrome cmd buffer
437            // param validation.
438            GrGLsizei length = GR_GL_INIT_ZERO;
439            GR_GL_CALL(gli, GetShaderInfoLog(shader, infoLen+1,
440                                             &length, (char*)log.get()));
441            print_shader(stringCnt, strings, stringLengths);
442            GrPrintf("\n%s", log.get());
443        }
444        GrAssert(!"Shader compilation failed!");
445        GR_GL_CALL(gli, DeleteShader(shader));
446        return 0;
447    }
448    return shader;
449}
450
451// helper version of above for when shader is already flattened into a single SkString
452GrGLuint compile_shader(const GrGLContextInfo& gl, GrGLenum type, const SkString& shader) {
453    const GrGLchar* str = shader.c_str();
454    int length = shader.size();
455    return compile_shader(gl, type, 1, &str, &length);
456}
457
458}
459
460// compiles all the shaders from builder and stores the shader IDs
461bool GrGLProgram::compileShaders(const GrGLShaderBuilder& builder) {
462
463    SkString shader;
464
465    builder.getShader(GrGLShaderBuilder::kVertex_ShaderType, &shader);
466#if PRINT_SHADERS
467    GrPrintf(shader.c_str());
468    GrPrintf("\n");
469#endif
470    if (!(fVShaderID = compile_shader(fContextInfo, GR_GL_VERTEX_SHADER, shader))) {
471        return false;
472    }
473
474    if (builder.fUsesGS) {
475        builder.getShader(GrGLShaderBuilder::kGeometry_ShaderType, &shader);
476#if PRINT_SHADERS
477        GrPrintf(shader.c_str());
478        GrPrintf("\n");
479#endif
480        if (!(fGShaderID = compile_shader(fContextInfo, GR_GL_GEOMETRY_SHADER, shader))) {
481            return false;
482        }
483    } else {
484        fGShaderID = 0;
485    }
486
487    builder.getShader(GrGLShaderBuilder::kFragment_ShaderType, &shader);
488#if PRINT_SHADERS
489    GrPrintf(shader.c_str());
490    GrPrintf("\n");
491#endif
492    if (!(fFShaderID = compile_shader(fContextInfo, GR_GL_FRAGMENT_SHADER, shader))) {
493        return false;
494    }
495
496    return true;
497}
498
499bool GrGLProgram::genProgram(const GrEffectStage* stages[]) {
500    GrAssert(0 == fProgramID);
501
502    GrGLShaderBuilder builder(fContextInfo, fUniformManager);
503    const uint32_t& layout = fDesc.fVertexLayout;
504
505#if GR_GL_EXPERIMENTAL_GS
506    builder.fUsesGS = fDesc.fExperimentalGS;
507#endif
508
509    SkXfermode::Coeff colorCoeff, uniformCoeff;
510    // The rest of transfer mode color filters have not been implemented
511    if (fDesc.fColorFilterXfermode < SkXfermode::kCoeffModesCnt) {
512        GR_DEBUGCODE(bool success =)
513            SkXfermode::ModeAsCoeff(static_cast<SkXfermode::Mode>
514                                    (fDesc.fColorFilterXfermode),
515                                    &uniformCoeff, &colorCoeff);
516        GR_DEBUGASSERT(success);
517    } else {
518        colorCoeff = SkXfermode::kOne_Coeff;
519        uniformCoeff = SkXfermode::kZero_Coeff;
520    }
521
522    // no need to do the color filter if coverage is 0. The output color is scaled by the coverage.
523    // All the dual source outputs are scaled by the coverage as well.
524    if (Desc::kTransBlack_ColorInput == fDesc.fCoverageInput) {
525        colorCoeff = SkXfermode::kZero_Coeff;
526        uniformCoeff = SkXfermode::kZero_Coeff;
527    }
528
529    // If we know the final color is going to be all zeros then we can
530    // simplify the color filter coefficients. needComputedColor will then
531    // come out false below.
532    if (Desc::kTransBlack_ColorInput == fDesc.fColorInput) {
533        colorCoeff = SkXfermode::kZero_Coeff;
534        if (SkXfermode::kDC_Coeff == uniformCoeff ||
535            SkXfermode::kDA_Coeff == uniformCoeff) {
536            uniformCoeff = SkXfermode::kZero_Coeff;
537        } else if (SkXfermode::kIDC_Coeff == uniformCoeff ||
538                   SkXfermode::kIDA_Coeff == uniformCoeff) {
539            uniformCoeff = SkXfermode::kOne_Coeff;
540        }
541    }
542
543    bool needColorFilterUniform;
544    bool needComputedColor;
545    needBlendInputs(uniformCoeff, colorCoeff,
546                    &needColorFilterUniform, &needComputedColor);
547
548    // the dual source output has no canonical var name, have to
549    // declare an output, which is incompatible with gl_FragColor/gl_FragData.
550    bool dualSourceOutputWritten = false;
551    builder.fHeader.append(GrGetGLSLVersionDecl(fContextInfo.binding(),
552                                                fContextInfo.glslGeneration()));
553
554    GrGLShaderVar colorOutput;
555    bool isColorDeclared = GrGLSLSetupFSColorOuput(fContextInfo.glslGeneration(),
556                                                   declared_color_output_name(),
557                                                   &colorOutput);
558    if (isColorDeclared) {
559        builder.fFSOutputs.push_back(colorOutput);
560    }
561
562    const char* viewMName;
563    fUniforms.fViewMatrixUni = builder.addUniform(GrGLShaderBuilder::kVertex_ShaderType,
564                                                  kMat33f_GrSLType, "ViewM", &viewMName);
565
566
567    builder.fVSCode.appendf("\tvec3 pos3 = %s * vec3(%s, 1);\n"
568                            "\tgl_Position = vec4(pos3.xy, 0, pos3.z);\n",
569                            viewMName, builder.positionAttribute().getName().c_str());
570
571    // incoming color to current stage being processed.
572    SkString inColor;
573
574    if (needComputedColor) {
575        this->genInputColor(&builder, &inColor);
576    }
577
578    // we output point size in the GS if present
579    if (fDesc.fEmitsPointSize && !builder.fUsesGS){
580        builder.fVSCode.append("\tgl_PointSize = 1.0;\n");
581    }
582
583    // add texture coordinates that are used to the list of vertex attr decls
584    SkString texCoordAttrs[GrDrawState::kMaxTexCoords];
585    for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
586        if (GrDrawTarget::VertexUsesTexCoordIdx(t, layout)) {
587            tex_attr_name(t, texCoordAttrs + t);
588            builder.fVSAttrs.push_back().set(kVec2f_GrSLType,
589                GrGLShaderVar::kAttribute_TypeModifier,
590                texCoordAttrs[t].c_str());
591        }
592    }
593
594    ///////////////////////////////////////////////////////////////////////////
595    // compute the final color
596
597    // if we have color stages string them together, feeding the output color
598    // of each to the next and generating code for each stage.
599    if (needComputedColor) {
600        SkString outColor;
601        for (int s = 0; s < fDesc.fFirstCoverageStage; ++s) {
602            if (GrGLEffect::kNoEffectKey != fDesc.fEffectKeys[s]) {
603                // create var to hold stage result
604                outColor = "color";
605                outColor.appendS32(s);
606                builder.fFSCode.appendf("\tvec4 %s;\n", outColor.c_str());
607
608                const char* inCoords;
609                // figure out what our input coords are
610                int tcIdx = GrDrawTarget::VertexTexCoordsForStage(s, layout);
611                if (tcIdx < 0) {
612                    inCoords = builder.positionAttribute().c_str();
613                } else {
614                    // must have input tex coordinates if stage is enabled.
615                    GrAssert(texCoordAttrs[tcIdx].size());
616                    inCoords = texCoordAttrs[tcIdx].c_str();
617                }
618
619                builder.setCurrentStage(s);
620                fEffects[s] = GenStageCode(*stages[s],
621                                           fDesc.fEffectKeys[s],
622                                           &fUniforms.fStages[s],
623                                           inColor.size() ? inColor.c_str() : NULL,
624                                           outColor.c_str(),
625                                           inCoords,
626                                           &builder);
627                builder.setNonStage();
628                inColor = outColor;
629            }
630        }
631    }
632
633    // if have all ones or zeros for the "dst" input to the color filter then we
634    // may be able to make additional optimizations.
635    if (needColorFilterUniform && needComputedColor && !inColor.size()) {
636        GrAssert(Desc::kSolidWhite_ColorInput == fDesc.fColorInput);
637        bool uniformCoeffIsZero = SkXfermode::kIDC_Coeff == uniformCoeff ||
638                                  SkXfermode::kIDA_Coeff == uniformCoeff;
639        if (uniformCoeffIsZero) {
640            uniformCoeff = SkXfermode::kZero_Coeff;
641            bool bogus;
642            needBlendInputs(SkXfermode::kZero_Coeff, colorCoeff,
643                            &needColorFilterUniform, &bogus);
644        }
645    }
646    const char* colorFilterColorUniName = NULL;
647    if (needColorFilterUniform) {
648        fUniforms.fColorFilterUni = builder.addUniform(GrGLShaderBuilder::kFragment_ShaderType,
649                                                       kVec4f_GrSLType, "FilterColor",
650                                                       &colorFilterColorUniName);
651    }
652    bool wroteFragColorZero = false;
653    if (SkXfermode::kZero_Coeff == uniformCoeff &&
654        SkXfermode::kZero_Coeff == colorCoeff) {
655        builder.fFSCode.appendf("\t%s = %s;\n",
656                                colorOutput.getName().c_str(),
657                                GrGLSLZerosVecf(4));
658        wroteFragColorZero = true;
659    } else if (SkXfermode::kDst_Mode != fDesc.fColorFilterXfermode) {
660        builder.fFSCode.append("\tvec4 filteredColor;\n");
661        const char* color = adjustInColor(inColor);
662        addColorFilter(&builder.fFSCode, "filteredColor", uniformCoeff,
663                       colorCoeff, colorFilterColorUniName, color);
664        inColor = "filteredColor";
665    }
666
667    ///////////////////////////////////////////////////////////////////////////
668    // compute the partial coverage (coverage stages and edge aa)
669
670    SkString inCoverage;
671    bool coverageIsZero = Desc::kTransBlack_ColorInput == fDesc.fCoverageInput;
672    // we don't need to compute coverage at all if we know the final shader
673    // output will be zero and we don't have a dual src blend output.
674    if (!wroteFragColorZero || Desc::kNone_DualSrcOutput != fDesc.fDualSrcOutput) {
675
676        if (!coverageIsZero) {
677            bool inCoverageIsScalar  = this->genEdgeCoverage(&inCoverage, &builder);
678
679            switch (fDesc.fCoverageInput) {
680                case Desc::kSolidWhite_ColorInput:
681                    // empty string implies solid white
682                    break;
683                case Desc::kAttribute_ColorInput:
684                    gen_attribute_coverage(&builder, &inCoverage);
685                    inCoverageIsScalar = false;
686                    break;
687                case Desc::kUniform_ColorInput:
688                    this->genUniformCoverage(&builder, &inCoverage);
689                    inCoverageIsScalar = false;
690                    break;
691                default:
692                    GrCrash("Unexpected input coverage.");
693            }
694
695            SkString outCoverage;
696            const int& startStage = fDesc.fFirstCoverageStage;
697            for (int s = startStage; s < GrDrawState::kNumStages; ++s) {
698                if (fDesc.fEffectKeys[s]) {
699                    // create var to hold stage output
700                    outCoverage = "coverage";
701                    outCoverage.appendS32(s);
702                    builder.fFSCode.appendf("\tvec4 %s;\n", outCoverage.c_str());
703
704                    const char* inCoords;
705                    // figure out what our input coords are
706                    int tcIdx =
707                        GrDrawTarget::VertexTexCoordsForStage(s, layout);
708                    if (tcIdx < 0) {
709                        inCoords = builder.positionAttribute().c_str();
710                    } else {
711                        // must have input tex coordinates if stage is
712                        // enabled.
713                        GrAssert(texCoordAttrs[tcIdx].size());
714                        inCoords = texCoordAttrs[tcIdx].c_str();
715                    }
716
717                    // stages don't know how to deal with a scalar input. (Maybe they should. We
718                    // could pass a GrGLShaderVar)
719                    if (inCoverageIsScalar) {
720                        builder.fFSCode.appendf("\tvec4 %s4 = vec4(%s);\n",
721                                                inCoverage.c_str(), inCoverage.c_str());
722                        inCoverage.append("4");
723                    }
724                    builder.setCurrentStage(s);
725                    fEffects[s] = GenStageCode(*stages[s],
726                                               fDesc.fEffectKeys[s],
727                                               &fUniforms.fStages[s],
728                                               inCoverage.size() ? inCoverage.c_str() : NULL,
729                                               outCoverage.c_str(),
730                                               inCoords,
731                                               &builder);
732                    builder.setNonStage();
733                    inCoverage = outCoverage;
734                }
735            }
736        }
737
738        if (Desc::kNone_DualSrcOutput != fDesc.fDualSrcOutput) {
739            builder.fFSOutputs.push_back().set(kVec4f_GrSLType,
740                                               GrGLShaderVar::kOut_TypeModifier,
741                                               dual_source_output_name());
742            bool outputIsZero = coverageIsZero;
743            SkString coeff;
744            if (!outputIsZero &&
745                Desc::kCoverage_DualSrcOutput != fDesc.fDualSrcOutput && !wroteFragColorZero) {
746                if (!inColor.size()) {
747                    outputIsZero = true;
748                } else {
749                    if (Desc::kCoverageISA_DualSrcOutput == fDesc.fDualSrcOutput) {
750                        coeff.printf("(1 - %s.a)", inColor.c_str());
751                    } else {
752                        coeff.printf("(vec4(1,1,1,1) - %s)", inColor.c_str());
753                    }
754                }
755            }
756            if (outputIsZero) {
757                builder.fFSCode.appendf("\t%s = %s;\n",
758                                        dual_source_output_name(),
759                                        GrGLSLZerosVecf(4));
760            } else {
761                builder.fFSCode.appendf("\t%s =", dual_source_output_name());
762                GrGLSLModulate4f(&builder.fFSCode, coeff.c_str(), inCoverage.c_str());
763                builder.fFSCode.append(";\n");
764            }
765            dualSourceOutputWritten = true;
766        }
767    }
768
769    ///////////////////////////////////////////////////////////////////////////
770    // combine color and coverage as frag color
771
772    if (!wroteFragColorZero) {
773        if (coverageIsZero) {
774            builder.fFSCode.appendf("\t%s = %s;\n",
775                                    colorOutput.getName().c_str(),
776                                    GrGLSLZerosVecf(4));
777        } else {
778            builder.fFSCode.appendf("\t%s = ", colorOutput.getName().c_str());
779            GrGLSLModulate4f(&builder.fFSCode, inColor.c_str(), inCoverage.c_str());
780            builder.fFSCode.append(";\n");
781        }
782    }
783
784    ///////////////////////////////////////////////////////////////////////////
785    // insert GS
786#if GR_DEBUG
787    this->genGeometryShader(&builder);
788#endif
789
790    ///////////////////////////////////////////////////////////////////////////
791    // compile and setup attribs and unis
792
793    if (!this->compileShaders(builder)) {
794        return false;
795    }
796
797    if (!this->bindOutputsAttribsAndLinkProgram(builder,
798                                                texCoordAttrs,
799                                                isColorDeclared,
800                                                dualSourceOutputWritten)) {
801        return false;
802    }
803
804    builder.finished(fProgramID);
805    this->initSamplerUniforms();
806    fUniforms.fRTHeight = builder.getRTHeightUniform();
807
808    return true;
809}
810
811bool GrGLProgram::bindOutputsAttribsAndLinkProgram(const GrGLShaderBuilder& builder,
812                                                   SkString texCoordAttrNames[],
813                                                   bool bindColorOut,
814                                                   bool bindDualSrcOut) {
815    GL_CALL_RET(fProgramID, CreateProgram());
816    if (!fProgramID) {
817        return false;
818    }
819
820    GL_CALL(AttachShader(fProgramID, fVShaderID));
821    if (fGShaderID) {
822        GL_CALL(AttachShader(fProgramID, fGShaderID));
823    }
824    GL_CALL(AttachShader(fProgramID, fFShaderID));
825
826    if (bindColorOut) {
827        GL_CALL(BindFragDataLocation(fProgramID, 0, declared_color_output_name()));
828    }
829    if (bindDualSrcOut) {
830        GL_CALL(BindFragDataLocationIndexed(fProgramID, 0, 1, dual_source_output_name()));
831    }
832
833    // Bind the attrib locations to same values for all shaders
834    GL_CALL(BindAttribLocation(fProgramID,
835                               PositionAttributeIdx(),
836                               builder.positionAttribute().c_str()));
837    for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
838        if (texCoordAttrNames[t].size()) {
839            GL_CALL(BindAttribLocation(fProgramID,
840                                       TexCoordAttributeIdx(t),
841                                       texCoordAttrNames[t].c_str()));
842        }
843    }
844
845    GL_CALL(BindAttribLocation(fProgramID, ColorAttributeIdx(), COL_ATTR_NAME));
846    GL_CALL(BindAttribLocation(fProgramID, CoverageAttributeIdx(), COV_ATTR_NAME));
847    GL_CALL(BindAttribLocation(fProgramID, EdgeAttributeIdx(), EDGE_ATTR_NAME));
848
849    GL_CALL(LinkProgram(fProgramID));
850
851    GrGLint linked = GR_GL_INIT_ZERO;
852    GL_CALL(GetProgramiv(fProgramID, GR_GL_LINK_STATUS, &linked));
853    if (!linked) {
854        GrGLint infoLen = GR_GL_INIT_ZERO;
855        GL_CALL(GetProgramiv(fProgramID, GR_GL_INFO_LOG_LENGTH, &infoLen));
856        SkAutoMalloc log(sizeof(char)*(infoLen+1));  // outside if for debugger
857        if (infoLen > 0) {
858            // retrieve length even though we don't need it to workaround
859            // bug in chrome cmd buffer param validation.
860            GrGLsizei length = GR_GL_INIT_ZERO;
861            GL_CALL(GetProgramInfoLog(fProgramID,
862                                      infoLen+1,
863                                      &length,
864                                      (char*)log.get()));
865            GrPrintf((char*)log.get());
866        }
867        GrAssert(!"Error linking program");
868        GL_CALL(DeleteProgram(fProgramID));
869        fProgramID = 0;
870        return false;
871    }
872    return true;
873}
874
875void GrGLProgram::initSamplerUniforms() {
876    GL_CALL(UseProgram(fProgramID));
877    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
878        int count = fUniforms.fStages[s].fSamplerUniforms.count();
879        // FIXME: We're still always reserving one texture per stage. After GrTextureParams are
880        // expressed by the effect rather than the GrEffectStage we can move texture binding
881        // into GrGLProgram and it should be easier to fix this.
882        GrAssert(count <= 1);
883        for (int t = 0; t < count; ++t) {
884            UniformHandle uh = fUniforms.fStages[s].fSamplerUniforms[t];
885            if (GrGLUniformManager::kInvalidUniformHandle != uh) {
886                fUniformManager.setSampler(uh, s);
887            }
888        }
889    }
890}
891
892///////////////////////////////////////////////////////////////////////////////
893// Stage code generation
894
895// TODO: Move this function to GrGLShaderBuilder
896GrGLEffect* GrGLProgram::GenStageCode(const GrEffectStage& stage,
897                                      GrGLEffect::EffectKey key,
898                                      StageUniforms* uniforms,
899                                      const char* fsInColor, // NULL means no incoming color
900                                      const char* fsOutColor,
901                                      const char* vsInCoord,
902                                      GrGLShaderBuilder* builder) {
903
904    const GrEffect* effect = stage.getEffect();
905    GrGLEffect* glEffect = effect->getFactory().createGLInstance(*effect);
906
907    // setup texture samplers for GL effect
908    int numTextures = effect->numTextures();
909    SkSTArray<8, GrGLShaderBuilder::TextureSampler> textureSamplers;
910    textureSamplers.push_back_n(numTextures);
911    for (int i = 0; i < numTextures; ++i) {
912        textureSamplers[i].init(builder, &effect->textureAccess(i));
913        uniforms->fSamplerUniforms.push_back(textureSamplers[i].fSamplerUniform);
914    }
915
916    // Enclose custom code in a block to avoid namespace conflicts
917    builder->fVSCode.appendf("\t{ // %s\n", glEffect->name());
918    builder->fFSCode.appendf("\t{ // %s \n", glEffect->name());
919    glEffect->emitCode(builder,
920                       stage,
921                       key,
922                       vsInCoord,
923                       fsOutColor,
924                       fsInColor,
925                       textureSamplers);
926    builder->fVSCode.appendf("\t}\n");
927    builder->fFSCode.appendf("\t}\n");
928
929    return glEffect;
930}
931
932void GrGLProgram::setData(const GrDrawState& drawState) {
933    int rtHeight = drawState.getRenderTarget()->height();
934    if (GrGLUniformManager::kInvalidUniformHandle != fUniforms.fRTHeight && fRTHeight != rtHeight) {
935        fUniformManager.set1f(fUniforms.fRTHeight, SkIntToScalar(rtHeight));
936        fRTHeight = rtHeight;
937    }
938    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
939        if (NULL != fEffects[s]) {
940            const GrEffectStage& stage = drawState.getStage(s);
941            GrAssert(NULL != stage.getEffect());
942            fEffects[s]->setData(fUniformManager, stage);
943        }
944    }
945}
946